BioDeep LC-MS Annotation Workflow: urine
urine workflow
find top 500 related metabolites that could be annotated by the biodeep LC-MS urine metabolite annotation workflow. All of these metabolites can be stably annotated through the current metabolite annotation process from your sample data.
Umbelliferone
Umbelliferone is a hydroxycoumarin that is coumarin substituted by a hydroxy group ay position 7. It has a role as a fluorescent probe, a plant metabolite and a food component. Umbelliferone is a natural product found in Ficus septica, Artemisia ordosica, and other organisms with data available. See also: Chamomile (part of). Occurs widely in plants including Angelica subspecies Phytoalexin of infected sweet potato. Umbelliferone is found in many foods, some of which are macadamia nut, silver linden, quince, and capers. Umbelliferone is found in anise. Umbelliferone occurs widely in plants including Angelica species Phytoalexin of infected sweet potat A hydroxycoumarin that is coumarin substituted by a hydroxy group ay position 7. [Raw Data] CB220_Umbelliferone_pos_50eV_CB000077.txt [Raw Data] CB220_Umbelliferone_pos_40eV_CB000077.txt [Raw Data] CB220_Umbelliferone_pos_30eV_CB000077.txt [Raw Data] CB220_Umbelliferone_pos_10eV_CB000077.txt [Raw Data] CB220_Umbelliferone_pos_20eV_CB000077.txt [Raw Data] CB220_Umbelliferone_neg_40eV_000039.txt [Raw Data] CB220_Umbelliferone_neg_10eV_000039.txt [Raw Data] CB220_Umbelliferone_neg_30eV_000039.txt [Raw Data] CB220_Umbelliferone_neg_20eV_000039.txt Umbelliferone. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=93-35-6 (retrieved 2024-07-12) (CAS RN: 93-35-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Umbelliferone (7-Hydroxycoumarin), a natural product of the coumarin family, is a fluorescing compound which can be used as a sunscreen agent. Umbelliferone (7-Hydroxycoumarin), a natural product of the coumarin family, is a fluorescing compound which can be used as a sunscreen agent.
Epicatechin
Epicatechin is an antioxidant flavonoid, occurring especially in woody plants as both (+)-catechin and (-)-epicatechin (cis) forms. Catechin is a tannin peculiar to green and white tea because the black tea oxidation process reduces catechins in black tea. Catechin is a powerful, water soluble polyphenol and antioxidant that is easily oxidized. Several thousand types are available in the plant world. As many as two thousand are known to have a flavon structure and are called flavonoids. Catechin is one of them. Green tea is manufactured from fresh, unfermented tea leaves; the oxidation of catechins is minimal, and hence they are able to serve as antioxidants. Researchers believe that catechin is effective because it easily sticks to proteins, blocking bacteria from adhering to cell walls and disrupting their ability to destroy them. Viruses have hooks on their surfaces and can attach to cell walls. The catechin in green tea prevents viruses from adhering and causing harm. Catechin reacts with toxins created by harmful bacteria (many of which belong to the protein family) and harmful metals such as lead, mercury, chrome, and cadmium. From its NMR espectra, there is a doubt on 2 and 3 atoms configuration. It seems to be that they are in trans position. Epicatechin, also known as (+)-cyanidanol-3 or 2,3-cis-epicatechin, is a member of the class of compounds known as catechins. Catechins are compounds containing a catechin moiety, which is a 3,4-dihydro-2-chromene-3,5.7-tiol. Thus, epicatechin is considered to be a flavonoid lipid molecule. Epicatechin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Epicatechin can be found in cashew nut, which makes epicatechin a potential biomarker for the consumption of this food product. Epicatechin can be found primarily in blood, feces, and urine, as well as throughout most human tissues. Epicatechin is a flavan-3-ol, a type of natural phenol and antioxidant. It is a plant secondary metabolite. It belongs to the group of flavan-3-ols (or simply flavanols), part of the chemical family of flavonoids . (-)-epicatechin is a catechin with (2R,3R)-configuration. It has a role as an antioxidant. It is a polyphenol and a catechin. It is an enantiomer of a (+)-epicatechin. Epicatechin has been used in trials studying the treatment of Pre-diabetes. (-)-Epicatechin is a natural product found in Visnea mocanera, Litsea rotundifolia, and other organisms with data available. An antioxidant flavonoid, occurring especially in woody plants as both (+)-catechin and (-)-epicatechin (cis) forms. See also: Crofelemer (monomer of); Bilberry (part of); Cats Claw (part of) ... View More ... A catechin with (2R,3R)-configuration. [Raw Data] CB030_(-)-Epicatechin_pos_20eV_CB000016.txt [Raw Data] CB030_(-)-Epicatechin_pos_50eV_CB000016.txt [Raw Data] CB030_(-)-Epicatechin_pos_40eV_CB000016.txt [Raw Data] CB030_(-)-Epicatechin_pos_10eV_CB000016.txt [Raw Data] CB030_(-)-Epicatechin_pos_30eV_CB000016.txt [Raw Data] CB030_(-)-Epicatechin_neg_50eV_000009.txt [Raw Data] CB030_(-)-Epicatechin_neg_30eV_000009.txt [Raw Data] CB030_(-)-Epicatechin_neg_10eV_000009.txt [Raw Data] CB030_(-)-Epicatechin_neg_40eV_000009.txt [Raw Data] CB030_(-)-Epicatechin_neg_20eV_000009.txt Epicatechin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=490-46-0 (retrieved 2024-07-09) (CAS RN: 490-46-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). (-)-Epicatechin inhibits cyclooxygenase-1 (COX-1) with an IC50 of 3.2 μM. (-)-Epicatechin inhibits the IL-1β-induced expression of iNOS by blocking the nuclear localization of the p65 subunit of NF-κB. (-)-Epicatechin inhibits cyclooxygenase-1 (COX-1) with an IC50 of 3.2 μM. (-)-Epicatechin inhibits the IL-1β-induced expression of iNOS by blocking the nuclear localization of the p65 subunit of NF-κB. (-)-Epicatechin inhibits cyclooxygenase-1 (COX-1) with an IC50 of 3.2 μM. (-)-Epicatechin inhibits the IL-1β-induced expression of iNOS by blocking the nuclear localization of the p65 subunit of NF-κB. (-)-Epicatechin inhibits cyclooxygenase-1 (COX-1) with an IC50 of 3.2 μM. (-)-Epicatechin inhibits the IL-1β-induced expression of iNOS by blocking the nuclear localization of the p65 subunit of NF-κB.
Ursodeoxycholate
Ursodeoxycholic acid is a bile acid found in the bile of bears (Ursidae) as a conjugate with taurine. Used therapeutically, it prevents the synthesis and absorption of cholesterol and can lead to the dissolution of gallstones. It has a role as a human metabolite and a mouse metabolite. It is a bile acid, a dihydroxy-5beta-cholanic acid and a C24-steroid. It is a conjugate acid of an ursodeoxycholate. Ursodeoxycholic acid is an epimer of [chenodeoxycholic acid]. It is a mammalian bile acid found first in the bear and is apparently either a precursor or a product of chenodeoxycholate. Its administration changes the composition of bile and may dissolve gallstones. It is used as a cholagogue and choleretic. Ursodiol is a Bile Acid. Ursodeoxycholic acid or ursodiol is a naturally occurring bile acid that is used dissolve cholesterol gall stones and to treat cholestatic forms of liver diseases including primary biliary cirrhosis. Ursodiol has been linked to rare instances of transient and mild serum aminotransferase elevations during therapy and to rare instances of jaundice and worsening of liver disease in patients with preexisting cirrhosis. Ursodeoxycholic acid is a natural product found in Myocastor coypus with data available. Ursodiol is a synthetically-derived form of ursodiol, a bile acid produced by the liver and secreted and stored in the gallbladder. Also produced by the Chinese black bear liver, ursodiol has been used in the treatment of liver disease for centuries. This agent dissolves or prevents cholesterol gallstones by blocking hepatic cholesterol production and decreasing bile cholesterol. Ursodiol also reduces the absorption of cholesterol from the intestinal tract. An epimer of chenodeoxycholic acid. It is a mammalian bile acid found first in the bear and is apparently either a precursor or a product of chenodeoxycholate. Its administration changes the composition of bile and may dissolve gallstones. It is used as a cholagogue and choleretic. See also: Dimethicone; pancrelipase; ursodiol (component of). Ursodeoxycholic acid, also known as ursodeoxycholate or acid deoxyursocholic, belongs to the class of organic compounds known as dihydroxy bile acids, alcohols and derivatives. Dihydroxy bile acids, alcohols and derivatives are compounds containing or derived from a bile acid or alcohol, and which bears exactly two carboxylic acid groups. Ursodeoxycholic acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. An epimer of chenodeoxycholic acid. It is a mammalian bile acid found first in the bear and is apparently either a precursor or a product of chenodeoxycholate. Its administration changes the composition of bile and may dissolve gallstones. It is used as a cholagogue and choleretic. [HMDB] Ursodeoxycholic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=128-13-2 (retrieved 2024-07-02) (CAS RN: 128-13-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
L-Valine
L-valine is the L-enantiomer of valine. It has a role as a nutraceutical, a micronutrient, a human metabolite, an algal metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite and a mouse metabolite. It is a pyruvate family amino acid, a proteinogenic amino acid, a valine and a L-alpha-amino acid. It is a conjugate base of a L-valinium. It is a conjugate acid of a L-valinate. It is an enantiomer of a D-valine. It is a tautomer of a L-valine zwitterion.
Valine is a branched-chain essential amino acid that has stimulant activity. It promotes muscle growth and tissue repair. It is a precursor in the penicillin biosynthetic pathway.
L-Valine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655).
Valine is an aliphatic and extremely hydrophobic essential amino acid in humans related to leucine, Valine is found in many proteins, mostly in the interior of globular proteins helping to determine three-dimensional structure. A glycogenic amino acid, valine maintains mental vigor, muscle coordination, and emotional calm. Valine is obtained from soy, cheese, fish, meats and vegetables. Valine supplements are used for muscle growth, tissue repair, and energy. (NCI04)
Valine (abbreviated as Val or V) is an -amino acid with the chemical formula HO2CCH(NH2)CH(CH3)2. It is named after the plant valerian. L-Valine is one of 20 proteinogenic amino acids. Its codons are GUU, GUC, GUA, and GUG. This essential amino acid is classified as nonpolar. Along with leucine and isoleucine, valine is a branched-chain amino acid. Branched chain amino acids (BCAA) are essential amino acids whose carbon structure is marked by a branch point. These three amino acids are critical to human life and are particularly involved in stress, energy and muscle metabolism. BCAA supplementation as therapy, both oral and intravenous, in human health and disease holds great promise. BCAA denotes valine, isoleucine and leucine which are branched chain essential amino acids. Despite their structural similarities, the branched amino acids have different metabolic routes, with valine going solely to carbohydrates, leucine solely to fats and isoleucine to both. The different metabolism accounts for different requirements for these essential amino acids in humans: 12 mg/kg, 14 mg/kg and 16 mg/kg of valine, leucine and isoleucine respectively. Furthermore, these amino acids have different deficiency symptoms. Valine deficiency is marked by neurological defects in the brain, while isoleucine deficiency is marked by muscle tremors. Many types of inborn errors of BCAA metabolism exist, and are marked by various abnormalities. The most common form is the maple syrup urine disease, marked by a characteristic urinary odor. Other abnormalities are associated with a wide range of symptoms, such as mental retardation, ataxia, hypoglycemia, spinal muscle atrophy, rash, vomiting and excessive muscle movement. Most forms of BCAA metabolism errors are corrected by dietary restriction of BCAA and at least one form is correctable by supplementation with 10 mg of biotin daily. BCAA are decreased in patients with liver disease, such as hepatitis, hepatic coma, cirrhosis, extrahepatic biliary atresia or portacaval shunt; aromatic amino acids (AAA) tyrosine, tryptophan and phenylalanine, as well as methionine are increased in these conditions. Valine in particular, has been established as a useful supplemental therapy to the ailing liver. All the BCAA probably compete with AAA for absorption into the brain. Supplemental BCAA with vitamin B6 and zinc help normalize the BCAA:AAA ratio. In sickle-cell disease, valine substitutes for the hydrophilic amino acid glutamic acid in hemoglobin. Because valine is hydrophobic, the hemoglobin does not fold correctly. Valine is an essential amino acid, hence it must be ingested, usually as a component of proteins.
A branched-chain essential amino acid that has stimulant activity. It promotes muscle growth and ...
Valine (Val) or L-valine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. L-valine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Valine is found in all organisms ranging from bacteria to plants to animals. It is classified as a non-polar, uncharged (at physiological pH) aliphatic amino acid. Valine was first isolated from casein in 1901 by Hermann Emil Fischer. The name valine comes from valeric acid, which in turn is named after the plant valerian due to the presence of valine in the roots of the plant. Valine is essential in humans, meaning the body cannot synthesize it, and it must be obtained from the diet. Human dietary sources are foods that contain protein, such as meats, dairy products, soy products, beans and legumes. L-valine is a branched chain amino acid (BCAA). The BCAAs consist of leucine, valine and isoleucine (and occasionally threonine). BCAAs are essential amino acids whose carbon structure is marked by a branch point at the beta-carbon position. BCAAs are critical to human life and are particularly involved in stress, energy and muscle metabolism. BCAA supplementation as therapy, both oral and intravenous, in human health and disease holds great promise. BCAAs have different metabolic routes, with valine going solely to carbohydrates (glucogenic), leucine solely to fats (ketogenic) and isoleucine being both a glucogenic and a ketogenic amino acid. The different metabolism accounts for different requirements for these essential amino acids in humans: 12 mg/kg, 14 mg/kg and 16 mg/kg of valine, leucine and isoleucine respectively. Like other branched-chain amino acids, the catabolism of valine starts with the removal of the amino group by transamination, giving alpha-ketoisovalerate, an alpha-keto acid, which is converted to isobutyryl-CoA through oxidative decarboxylation by the branched-chain α-ketoacid dehydrogenase complex. This is further oxidised and rearranged to succinyl-CoA, which can enter the citric acid cycle. Furthermore, these amino acids have different deficiency symptoms. Valine deficiency is marked by neurological defects in the brain, while isoleucine deficiency is marked by muscle tremors. Many types of inborn errors of BCAA metabolism exist, and are marked by various abnormalities. The most common form is the maple syrup urine disease, marked by a characteristic urinary odor. Other abnormalities are associated with a wide range of symptoms, such as mental retardation, ataxia, hypoglycemia, spinal muscle atrophy, rash, vomiting and excessive muscle movement. Most forms of BCAA metabolism errors are corrected by dietary restriction of BCAA and at least one form is correctable by supplementation with 10 mg of biotin daily. BCAA are decreased in patients with liver disease, such as hepatitis, hepatic coma, cirrhosis, extrahepatic biliary atresia or portacaval shunt. Valine in particular, has been established as a useful supplemental therapy to the ailing liver. Valine, like other branched-chain amino acids, is associated with insulin resistance: higher levels of valine are observed in the blood of diabetic mice, rats, and humans (PMID: 25287287). Mice fed a valine deprivation diet for one day have improved insulin sensitivity and feeding of a valine deprivation diet for one week significantly decreases blood glucose levels (PMID: 24684822). In diet-induced obese and insulin resistant mice, a diet with decreased levels of valine and the other branched-chain amino acids results in reduced adiposity and improved insulin sensitivity (PMID: 29266268). In sickle-cell disease, valine substitutes for the hydrophilic amino acid glutamic acid in hemoglobin. Because valine ...
L-valine, also known as (2s)-2-amino-3-methylbutanoic acid or L-(+)-alpha-aminoisovaleric acid, belongs to valine and derivatives class of compounds. Those are compounds containing valine or a derivative thereof resulting from reaction of valine at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom. L-valine is soluble (in water) and a moderately acidic compound (based on its pKa). L-valine can be found in watermelon, which makes L-valine a potential biomarker for the consumption of this food product. L-valine can be found primarily in most biofluids, including cerebrospinal fluid (CSF), breast milk, urine, and blood, as well as in human epidermis and fibroblasts tissues. L-valine exists in all living species, ranging from bacteria to humans. In humans, L-valine is involved in several metabolic pathways, some of which include streptomycin action pathway, tetracycline action pathway, methacycline action pathway, and kanamycin action pathway. L-valine is also involved in several metabolic disorders, some of which include methylmalonic aciduria due to cobalamin-related disorders, 3-methylglutaconic aciduria type III, isovaleric aciduria, and methylmalonic aciduria. Moreover, L-valine is found to be associated with schizophrenia, alzheimers disease, paraquat poisoning, and hypervalinemia. L-valine is a non-carcinogenic (not listed by IARC) potentially toxic compound. Valine (abbreviated as Val or V) is an α-amino acid that is used in the biosynthesis of proteins. It contains an α-amino group (which is in the protonated −NH3+ form under biological conditions), an α-carboxylic acid group (which is in the deprotonated −COO− form under biological conditions), and a side chain isopropyl group, making it a non-polar aliphatic amino acid. It is essential in humans, meaning the body cannot synthesize it: it must be obtained from the diet. Human dietary sources are foods that contain protein, such as meats, dairy products, soy products, beans and legumes. In the genetic code it is encoded by all codons starting with GU, namely GUU, GUC, GUA, and GUG (Applies to Valine, Leucine and Isoleucine)
This group of essential amino acids are identified as the branched-chain amino acids, BCAAs. Because this arrangement of carbon atoms cannot be made by humans, these amino acids are an essential element in the diet. The catabolism of all three compounds initiates in muscle and yields NADH and FADH2 which can be utilized for ATP generation. The catabolism of all three of these amino acids uses the same enzymes in the first two steps. The first step in each case is a transamination using a single BCAA aminotransferase, with a-ketoglutarate as amine acceptor. As a result, three different a-keto acids are produced and are oxidized using a common branched-chain a-keto acid dehydrogenase, yielding the three different CoA derivatives. Subsequently the metabolic pathways diverge, producing many intermediates.
The principal product from valine is propionylCoA, the glucogenic precursor of succinyl-CoA. Isoleucine catabolism terminates with production of acetylCoA and propionylCoA; thus isoleucine is both glucogenic and ketogenic. Leucine gives rise to acetylCoA and acetoacetylCoA, and is thus classified as strictly ketogenic.
There are a number of genetic diseases associated with faulty catabolism of the BCAAs. The most common defect is in the branched-chain a-keto acid dehydrogenase. Since there is only one dehydrogenase enzyme for all three amino acids, all three a-keto acids accumulate and are excreted in the urine. The disease is known as Maple syrup urine disease because of the characteristic odor of the urine in afflicted individuals. Mental retardation in these cases is extensive. Unfortunately, since these are essential amino acids, they cannot be heavily restricted in the diet; ultimately, the life of afflicted individuals is short and development is abnormal The main neurological pr...
L-Valine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=7004-03-7 (retrieved 2024-06-29) (CAS RN: 72-18-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
L-Valine (Valine) is a new nonlinear semiorganic material[1].
L-Valine (Valine) is a new nonlinear semiorganic material[1].
Naringenin
Naringenin is a flavorless, colorless flavanone, a type of flavonoid. It is the predominant flavanone in grapefruit, and is found in a variety of fruits and herbs. Naringenin has the skeleton structure of a flavanone with three hydroxy groups at the 4, 5, and 7 carbons. It may be found both in the aglycol form, naringenin, or in its glycosidic form, naringin, which has the addition of the disaccharide neohesperidose attached via a glycosidic linkage at carbon 7. Naringenin (not to be confused with naringin) is a flavanone that is considered to have a bioactive effect on human health as antioxidant, free radical scavenger, antiinflammatory, carbohydrate metabolism promoter, immunity system modulater. This substance has also been shown to repair DNA. Scientists exposed cells to 80 micomoles of naringenin per liter, for 24 hours, and found that the amount of hydroxyl damage to the DNA was reduced by 24 percent in that very short period of time. Unfortunately, this bioflavonoid is difficult to absorb on oral ingestion. Only 15\\\\\\\% of ingested naringenin will get absorbed, in the human gastrointestinal tract, in the best case scenario. A full glass of orange juice will supply about enough naringenin to achieve a concentration of about 0.5 micromoles per liter. Naringenin is a biomarker for the consumption of citrus fruits. (S)-naringenin is the (S)-enantiomer of naringenin. It has a role as an expectorant and a plant metabolite. It is a naringenin and a (2S)-flavan-4-one. It is a conjugate acid of a (S)-naringenin(1-). It is an enantiomer of a (R)-naringenin. Naringenin is a natural product found in Elaeodendron croceum, Garcinia multiflora, and other organisms with data available. See also: Naringin (related). Most widely distributed flavanone. Citrus fruits (grapefruit, oranges and pummelos) are especially good sources. Glycosides also widely distributed The (S)-enantiomer of naringenin. [Raw Data] CB070_Naringenin_pos_20eV_CB000030.txt [Raw Data] CB070_Naringenin_pos_10eV_CB000030.txt [Raw Data] CB070_Naringenin_pos_40eV_CB000030.txt [Raw Data] CB070_Naringenin_pos_30eV_CB000030.txt [Raw Data] CB070_Naringenin_pos_50eV_CB000030.txt [Raw Data] CB070_Naringenin_neg_10eV_000021.txt [Raw Data] CB070_Naringenin_neg_30eV_000021.txt [Raw Data] CB070_Naringenin_neg_50eV_000021.txt [Raw Data] CB070_Naringenin_neg_20eV_000021.txt [Raw Data] CB070_Naringenin_neg_40eV_000021.txt (±)-Naringenin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=67604-48-2 (retrieved 2024-07-09) (CAS RN: 67604-48-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). (±)-Naringenin is a naturally-occurring flavonoid. (±)-Naringenin displays vasorelaxant effect on endothelium-denuded vessels via the activation of BKCa channels in myocytes[1]. (±)-Naringenin is a naturally-occurring flavonoid. (±)-Naringenin displays vasorelaxant effect on endothelium-denuded vessels via the activation of BKCa channels in myocytes[1]. Naringenin is the predominant flavanone in Citrus reticulata Blanco; displays strong anti-inflammatory and antioxidant activities. Naringenin has anti-dengue virus (DENV) activity. Naringenin is the predominant flavanone in Citrus reticulata Blanco; displays strong anti-inflammatory and antioxidant activities. Naringenin has anti-dengue virus (DENV) activity.
Thymidine
C10H14N2O5 (242.09026740000002)
Deoxythymidine, also known as 2-deoxy-5-methyluridine or 5-methyl-2-deoxyuridine, is a member of the class of compounds known as pyrimidine 2-deoxyribonucleosides. Pyrimidine 2-deoxyribonucleosides are compounds consisting of a pyrimidine linked to a ribose which lacks a hydroxyl group at position 2. Deoxythymidine is soluble (in water) and a very weakly acidic compound (based on its pKa). Deoxythymidine can be synthesized from thymine. Deoxythymidine is also a parent compound for other transformation products, including but not limited to, tritiated thymidine, alpha-tritiated thymidine, and 5,6-dihydrothymidine. Deoxythymidine can be found in a number of food items such as butternut squash, mammee apple, catjang pea, and climbing bean, which makes deoxythymidine a potential biomarker for the consumption of these food products. Deoxythymidine can be found primarily in most biofluids, including blood, amniotic fluid, cerebrospinal fluid (CSF), and urine, as well as throughout most human tissues. Deoxythymidine exists in all living species, ranging from bacteria to humans. In humans, deoxythymidine is involved in the pyrimidine metabolism. Deoxythymidine is also involved in few metabolic disorders, which include beta ureidopropionase deficiency, dihydropyrimidinase deficiency, MNGIE (mitochondrial neurogastrointestinal encephalopathy), and UMP synthase deficiency (orotic aciduria). Moreover, deoxythymidine is found to be associated with canavan disease and degenerative disc disease. Thymidine (deoxythymidine; other names deoxyribosylthymine, thymine deoxyriboside) is a pyrimidine deoxynucleoside. Deoxythymidine is the DNA nucleoside T, which pairs with deoxyadenosine (A) in double-stranded DNA. In cell biology it is used to synchronize the cells in G1/early S phase . Thymidine, also known as deoxythymidine or deoxyribosylthymine or thymine deoxyriboside, is a pyrimidine deoxynucleoside. It consists of the nucleobase thymine attached to deoxyribose through a beta N- glycosidic bond. Thymidine also belongs to the class of organic compounds known as pyrimidine 2-deoxyribonucleosides. Pyrimidine 2-deoxyribonucleosides are compounds consisting of a pyrimidine linked to a ribose which lacks a hydroxyl group at position 2. Deoxythymidine (or thymidine) is the DNA nucleoside T, which pairs with deoxyadenosine (A) in double-stranded DNA. Therefore, thymidine is essential to all life. Indeed, thymidine exists in all living species, ranging from bacteria to plants to humans. Within humans, thymidine participates in a number of enzymatic reactions. In particular, thymidine can be biosynthesized from 5-thymidylic acid through its interaction with the enzyme cytosolic purine 5-nucleotidase. In addition, thymidine can be converted into 5-thymidylic acid; which is catalyzed by the enzyme thymidine kinase. Deoxythymidine can be phosphorylated with one, two or three phosphoric acid groups, creating dTMP (deoxythymidine monophosphate), dTDP, or dTTP (for the di- and tri- phosphates, respectively). dTMP can be incorporated into DNA via DNA polymerases. In cell biology, thymidine can be used to synchronize the cells in S phase. Derivatives of thymidine are used in a number of drugs, including Azidothymidine (AZT), which is used in the treatment of HIV infection. AZT inhibits the process of reverse transcription in the human immunodeficiency virus. Thymidine is a pyrimidine 2-deoxyribonucleoside having thymine as the nucleobase. It has a role as a metabolite, a human metabolite, an Escherichia coli metabolite and a mouse metabolite. It is functionally related to a thymine. It is an enantiomer of a telbivudine. Thymidine is a pyrimidine deoxynucleoside. Thymidine is the DNA nucleoside T, which pairs with deoxyadenosine (A) in double-stranded DNA. In cell biology it is used to synchronize the cells in S phase. Thymidine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Thymidine is a natural product found in Fritillaria thunbergii, Saussurea medusa, and other organisms with data available. Thymidine is a pyrimidine nucleoside that is composed of the pyrimidine base thymine attached to the sugar deoxyribose. As a constituent of DNA, thymidine pairs with adenine in the DNA double helix. (NCI04) Thymidine is a metabolite found in or produced by Saccharomyces cerevisiae. A nucleoside in which THYMINE is linked to DEOXYRIBOSE. A pyrimidine 2-deoxyribonucleoside having thymine as the nucleobase. KEIO_ID T014; [MS2] KO009272 KEIO_ID T014 Thymidine, a specific precursor of deoxyribonucleic acid, is used as a cell synchronizing agent. Thymidine is a DNA synthesis inhibitor that can arrest cell at G1/S boundary, prior to DNA replication[1][2][3]. Thymidine, a specific precursor of deoxyribonucleic acid, is used as a cell synchronizing agent. Thymidine is a DNA synthesis inhibitor that can arrest cell at G1/S boundary, prior to DNA replication[1][2][3].
Adenosine
C10H13N5O4 (267.09674980000005)
Adenosine is a ribonucleoside composed of a molecule of adenine attached to a ribofuranose moiety via a beta-N(9)-glycosidic bond. It has a role as an anti-arrhythmia drug, a vasodilator agent, an analgesic, a human metabolite and a fundamental metabolite. It is a purines D-ribonucleoside and a member of adenosines. It is functionally related to an adenine. The structure of adenosine was first described in 1931, though the vasodilating effects were not described in literature until the 1940s. Adenosine is indicated as an adjunct to thallium-201 in myocardial perfusion scintigraphy, though it is rarely used in this indication, having largely been replaced by [dipyridamole] and [regadenson]. Adenosine is also indicated in the treatment of supraventricular tachycardia. Adenosine was granted FDA approval on 30 October 1989. Adenosine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Adenosine is an Adenosine Receptor Agonist. The mechanism of action of adenosine is as an Adenosine Receptor Agonist. Adenosine is a natural product found in Smilax bracteata, Mikania laevigata, and other organisms with data available. Adenosine is a ribonucleoside comprised of adenine bound to ribose, with vasodilatory, antiarrhythmic and analgesic activities. Phosphorylated forms of adenosine play roles in cellular energy transfer, signal transduction and the synthesis of RNA. Adenosine is a nucleoside that is composed of adenine and d-ribose. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. For instance, adenosine plays an important role in energy transfer - as adenosine triphosphate (ATP) and adenosine diphosphate (ADP). It also plays a role in signal transduction as cyclic adenosine monophosphate, cAMP. Adenosine itself is both a neurotransmitter and potent vasodilator. When administered intravenously, adenosine causes transient heart block in the AV node. Because of the effects of adenosine on AV node-dependent supraventricular tachycardia, adenosine is considered a class V antiarrhythmic agent. Adenosine is a metabolite found in or produced by Saccharomyces cerevisiae. A nucleoside that is composed of adenine and d-ribose. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. Adenosine itself is a neurotransmitter. See also: Adenosine; Niacinamide (component of); Adenosine; Glycerin (component of); Adenosine; ginsenosides (component of) ... View More ... Adenosine is a nucleoside that is composed of adenine and D-ribose. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. For instance, adenosine plays an important role in energy transfer as adenosine triphosphate (ATP) and adenosine diphosphate (ADP). It also plays a role in signal transduction as cyclic adenosine monophosphate (cAMP). Adenosine itself is both a neurotransmitter and potent vasodilator. When administered intravenously adenosine causes transient heart block in the AV node. Due to the effects of adenosine on AV node-dependent supraventricular tachycardia, adenosine is considered a class V antiarrhythmic agent. Overdoses of adenosine intake (as a drug) can lead to several side effects including chest pain, feeling faint, shortness of breath, and tingling of the senses. Serious side effects include a worsening dysrhythmia and low blood pressure. When present in sufficiently high levels, adenosine can act as an immunotoxin and a metabotoxin. An immunotoxin disrupts, limits the function, or destroys immune cells. A metabotoxin is an endogenous metabolite that causes adverse health effects at chronically high levels. Chronically high levels of adenosine are associated with adenosine deaminase deficiency. Adenosine is a precursor to deoxyadenosine, which is a precursor to dATP. A buildup of dATP in cells inhibits ribonucleotide reductase and prevents DNA synthesis, so cells are unable to divide. Since developing T cells and B cells are some of the most mitotically active cells, they are unable to divide and propagate to respond to immune challenges. High levels of deoxyadenosine also lead to an increase in S-adenosylhomocysteine, which is toxic to immature lymphocytes. Adenosine is a nucleoside composed of a molecule of adenine attached to a ribose sugar molecule (ribofuranose) moiety via a beta-N9-glycosidic bond. [Wikipedia]. Adenosine is found in many foods, some of which are borage, japanese persimmon, nuts, and barley. COVID info from PDB, Protein Data Bank, COVID-19 Disease Map, clinicaltrial, clinicaltrials, clinical trial, clinical trials A ribonucleoside composed of a molecule of adenine attached to a ribofuranose moiety via a beta-N(9)-glycosidic bond. Adenosine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=58-61-7 (retrieved 2024-06-29) (CAS RN: 58-61-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Adenosine (Adenine riboside), a ubiquitous endogenous autacoid, acts through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Adenosine affects almost all aspects of cellular physiology, including neuronal activity, vascular function, platelet aggregation, and blood cell regulation[1][2]. Adenosine (Adenine riboside), a ubiquitous endogenous autacoid, acts through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Adenosine affects almost all aspects of cellular physiology, including neuronal activity, vascular function, platelet aggregation, and blood cell regulation[1][2]. Adenosine (Adenine riboside), a ubiquitous endogenous autacoid, acts through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Adenosine affects almost all aspects of cellular physiology, including neuronal activity, vascular function, platelet aggregation, and blood cell regulation[1][2].
Sucrose
Sucrose is a nonreducing disaccharide composed of glucose and fructose linked via their anomeric carbons. It is obtained commercially from sugarcane (Saccharum officinarum), sugar beet (Beta vulgaris), and other plants and used extensively as a food and a sweetener. Sucrose is derived by crushing and extracting sugarcane with water or by extracting sugar beet with water, evaporating, and purifying with lime, carbon, and various liquids. Sucrose is also obtainable from sorghum. Sucrose occurs in low percentages in honey and maple syrup. Sucrose is used as a sweetener in foods and soft drinks, in the manufacture of syrups, in invert sugar, confectionery, preserves and jams, demulcent, pharmaceutical products, and caramel. Sucrose is also a chemical intermediate for detergents, emulsifying agents, and other sucrose derivatives. Sucrose is widespread in the seeds, leaves, fruits, flowers, and roots of plants, where it functions as an energy store for metabolism and as a carbon source for biosynthesis. The annual world production of sucrose is in excess of 90 million tons mainly from the juice of sugar cane (20\\\%) and sugar beet (17\\\%). In addition to its use as a sweetener, sucrose is used in food products as a preservative, antioxidant, moisture control agent, stabilizer, and thickening agent. BioTransformer predicts that sucrose is a product of 6-O-sinapoyl sucrose metabolism via a hydrolysis-of-carboxylic-acid-ester-pattern1 reaction occurring in human gut microbiota and catalyzed by the liver carboxylesterase 1 (P23141) enzyme (PMID: 30612223). Sucrose appears as white odorless crystalline or powdery solid. Denser than water. Sucrose is a glycosyl glycoside formed by glucose and fructose units joined by an acetal oxygen bridge from hemiacetal of glucose to the hemiketal of the fructose. It has a role as an osmolyte, a sweetening agent, a human metabolite, an algal metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite and a mouse metabolite. A nonreducing disaccharide composed of glucose and fructose linked via their anomeric carbons. It is obtained commercially from sugarcane, sugar beet (beta vulgaris), and other plants and used extensively as a food and a sweetener. Sucrose is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Sucrose is a natural product found in Haplophyllum ramosissimum, Cyperus esculentus, and other organisms with data available. Sucrose is a metabolite found in or produced by Saccharomyces cerevisiae. A nonreducing disaccharide composed of GLUCOSE and FRUCTOSE linked via their anomeric carbons. It is obtained commercially from SUGARCANE, sugar beet (BETA VULGARIS), and other plants and used extensively as a food and a sweetener. See also: Anise; ferrous disulfide; sucrose (component of); Phosphoric acid; sucrose (component of); Sucrose caramel (related) ... View More ... In chemistry, sugar loosely refers to a number of carbohydrates, such as monosaccharides, disaccharides, or oligosaccharides. In food, sugar refers to a class of edible crystalline carbohydrates, mainly sucrose, lactose, and fructose characterized by a sweet flavor. Other sugars are used in industrial food preparation, but are usually known by more specific names - glucose, fructose or fruit sugar, high fructose corn syrup, etc. Sugars is found in many foods, some of which are ucuhuba, butternut squash, common walnut, and miso. A glycosyl glycoside formed by glucose and fructose units joined by an acetal oxygen bridge from hemiacetal of glucose to the hemiketal of the fructose. Sucrose, a disaccharide, is a sugar composed of glucose and fructose subunits. It is produced naturally in plants and is the main constituent of white sugar. It has the molecular formula C 12H 22O 11. For human consumption, sucrose is extracted and refined from either sugarcane or sugar beet. Sugar mills – typically located in tropical regions near where sugarcane is grown – crush the cane and produce raw sugar which is shipped to other factories for refining into pure sucrose. Sugar beet factories are located in temperate climates where the beet is grown, and process the beets directly into refined sugar. The sugar-refining process involves washing the raw sugar crystals before dissolving them into a sugar syrup which is filtered and then passed over carbon to remove any residual colour. The sugar syrup is then concentrated by boiling under a vacuum and crystallized as the final purification process to produce crystals of pure sucrose that are clear, odorless, and sweet. Sugar is often an added ingredient in food production and recipes. About 185 million tonnes of sugar were produced worldwide in 2017.[6] Sucrose is particularly dangerous as a risk factor for tooth decay because Streptococcus mutans bacteria convert it into a sticky, extracellular, dextran-based polysaccharide that allows them to cohere, forming plaque. Sucrose is the only sugar that bacteria can use to form this sticky polysaccharide.[7] Sucrose. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=8030-20-4 (retrieved 2024-06-29) (CAS RN: 57-50-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Gallic acid
Gallic acid is an odorless white solid. Sinks in water. (USCG, 1999) Gallic acid is a trihydroxybenzoic acid in which the hydroxy groups are at positions 3, 4, and 5. It has a role as an astringent, a cyclooxygenase 2 inhibitor, a plant metabolite, an antioxidant, an antineoplastic agent, a human xenobiotic metabolite, an EC 1.13.11.33 (arachidonate 15-lipoxygenase) inhibitor, an apoptosis inducer and a geroprotector. It is a conjugate acid of a gallate. Gallic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Gallic Acid is a natural product found in Visnea mocanera, Ardisia paniculata, and other organisms with data available. Gallic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A colorless or slightly yellow crystalline compound obtained from nutgalls. It is used in photography, pharmaceuticals, and as an analytical reagent. See also: Gallic acid monohydrate (active moiety of); Paeonia lactiflora root (part of); Galium aparine whole (part of) ... View More ... Gallic acid is an organic acid, also known as 3,4,5-trihydroxybenzoic acid, found in gallnuts, sumac, witch hazel, tea leaves, oak bark, and other plants. The chemical formula is C6H2(OH)3CO2H. Gallic acid is widely distributed in plants and is found both free and as part of tannins. It is commonly used in the pharmaceutical industry. Gallic acid can also be used to synthesize the hallucinogenic alkaloid mescaline, also known as 3,4,5-trimethoxyphenethylamine. Salts and esters of gallic acid are termed gallates. Gallic acid has been found to be s metabolite of Aspergillus (PMID:24031294). A trihydroxybenzoic acid in which the hydroxy groups are at positions 3, 4, and 5. Present in red wine. Japan approved food antioxidant additive Gallic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=149-91-7 (retrieved 2024-07-01) (CAS RN: 149-91-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Gallic acid (3,4,5-Trihydroxybenzoic acid) is a natural polyhydroxyphenolic compound and an free radical scavenger to inhibit cyclooxygenase-2 (COX-2)[1]. Gallic acid has various activities, such as antimicrobial, antioxidant, antimicrobial, anti-inflammatory, and anticance activities[2]. Gallic acid (3,4,5-Trihydroxybenzoic acid) is a natural polyhydroxyphenolic compound and an free radical scavenger to inhibit cyclooxygenase-2 (COX-2)[1]. Gallic acid has various activities, such as antimicrobial, antioxidant, antimicrobial, anti-inflammatory, and anticance activities[2].
4-Hydroxycinnamic acid
4-Hydroxycinnamic acid, also known as p-Coumaric acid, is a coumaric acid in which the hydroxy substituent is located at C-4 of the phenyl ring. It has a role as a plant metabolite. It is a conjugate acid of a 4-coumarate. p-coumaric acid is an organic compound that is a hydroxy derivative of cinnamic acid. There are three isomers of coumaric acid: o-coumaric acid, m-coumaric acid, and p-coumaric acid, that differ by the position of the hydroxy substitution of the phenyl group. p-Coumaric acid is the most abundant isomer of the three in nature. p-Coumaric acid exists in two forms trans-p-coumaric acid and cis-p-coumaric acid. It is a crystalline solid that is slightly soluble in water, but very soluble in ethanol and diethyl ether. 4-Hydroxycinnamic acid belongs to the class of organic compounds known as hydroxycinnamic acids. Hydroxycinnamic acids are compounds containing an cinnamic acid where the benzene ring is hydroxylated. 4-Hydroxycinnamic acid exists in all living species, ranging from bacteria to humans. Outside of the human body, 4-Hydroxycinnamic acid is found, on average, in the highest concentration within a few different foods, such as pepper (Capsicum frutescens), pineapples, and sunflowers and in a lower concentration in spinachs, kiwis, and sweet oranges. 4-Hydroxycinnamic acid has also been detected, but not quantified in several different foods, such as wild rices, soursops, garden onions, hyssops, and avocado. 4-coumaric acid is a coumaric acid in which the hydroxy substituent is located at C-4 of the phenyl ring. It has a role as a plant metabolite. It is a conjugate acid of a 4-coumarate. 4-Hydroxycinnamic acid is a natural product found in Ficus septica, Visnea mocanera, and other organisms with data available. trans-4-Coumaric acid is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Black Cohosh (part of); Galium aparine whole (part of); Lycium barbarum fruit (part of) ... View More ... Coumaric acid is a hydroxycinnamic acid, an organic compound that is a hydroxy derivative of cinnamic acid. There are three isomers, o-coumaric acid, m-coumaric acid, and p-coumaric acid, that differ by the position of the hydroxy substitution of the phenyl group. p-Coumaric acid is the most abundant isomer of the three in nature. p-Coumaric acid is found in many foods, some of which are garden onion, turmeric, green bell pepper, and common thyme. D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents D000975 - Antioxidants > D016166 - Free Radical Scavengers D020011 - Protective Agents > D000975 - Antioxidants The trans-isomer of 4-coumaric acid. D000890 - Anti-Infective Agents Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 168 KEIO_ID C024 p-Coumaric acid is the abundant isomer of cinnamic acid which has antitumor and anti-mutagenic activities. p-Coumaric acid is the abundant isomer of cinnamic acid which has antitumor and anti-mutagenic activities. p-Hydroxycinnamic acid, a common dietary phenol, could inhibit platelet activity, with IC50s of 371 μM, 126 μM for thromboxane B2 production and lipopolysaccharide-induced prostaglandin E2 generation, respectively. p-Hydroxycinnamic acid, a common dietary phenol, could inhibit platelet activity, with IC50s of 371 μM, 126 μM for thromboxane B2 production and lipopolysaccharide-induced prostaglandin E2 generation, respectively. p-Coumaric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=7400-08-0 (retrieved 2024-09-04) (CAS RN: 7400-08-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Deoxycholic acid
Deoxycholic acid is a bile acid that is 5beta-cholan-24-oic acid substituted by hydroxy groups at positions 3 and 12 respectively. It has a role as a human blood serum metabolite. It is a bile acid, a dihydroxy-5beta-cholanic acid and a C24-steroid. It is a conjugate acid of a deoxycholate. Deoxycholic acid is a a bile acid which emulsifies and solubilizes dietary fats in the intestine, and when injected subcutaneously, it disrupts cell membranes in adipocytes and destroys fat cells in that tissue. In April 2015, deoxycholic acid was approved by the FDA for the treatment submental fat to improve aesthetic appearance and reduce facial fullness or convexity. It is marketed under the brand name Kybella by Kythera Biopharma and is the first pharmacological agent available for submental fat reduction, allowing for a safer and less invasive alternative than surgical procedures. Deoxycholic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Deoxycholic acid is a Cytolytic Agent. The physiologic effect of deoxycholic acid is by means of Decreased Cell Membrane Integrity. Deoxycholic acid is a natural product found in Pseudomonas syringae and Homo sapiens with data available. Deoxycholic Acid is a steroidal acid that is a secondary bile acid, with cytolytic activity. Upon subcutaneous administration, deoxycholic acid causes lysis of adipocytes and improves the appearance of fullness associated with submental fat. Also, it may potentially be able to reduce fat in other subcutaneous fatty tissues. Deoxycholic acid, naturally produced by the metabolism of cholic acid by intestinal bacteria, is involved in the emulsification of dietary fats in the intestine. Deoxycholic acid is a bile acid formed by bacterial action from cholate. It is usually conjugated with glycine or taurine. Deoxycholic acid acts as a detergent to solubilize fats for intestinal absorption, is reabsorbed itself, and is used as a choleretic and detergent. Bile acids are steroid acids found predominantly in bile of mammals. The distinction between different bile acids is minute, depends only on presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g., membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues. (A3407, A3408, A3409, A3410). A bile acid formed by bacterial action from cholate. It is usually conjugated with glycine or taurine. Deoxycholic acid acts as a detergent to solubilize fats for intestinal absorption, is reabsorbed itself, and is used as a choleretic and detergent. Deoxycholic acid is a secondary bile acid produced in the liver and is usually conjugated with glycine or taurine. It facilitates fat absorption and cholesterol excretion. Bile acids are steroid acids found predominantly in the bile of mammals. The distinction between different bile acids is minute, and depends only on the presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine, and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH, and consequently require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g. membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487, 16037564, 12576301, 11907135). When present in sufficiently high levels, deoxycholic acid can act as a hepatotoxin, a metabotoxin, and an oncometabolite. A hepatotoxin causes damage to the liver or liver cells. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. An oncometabolite is a compound, when present at chronically high levels, that promotes tumour growth and survival. Among the primary bile acids, cholic acid is considered to be the least hepatotoxic while deoxycholic acid is the most hepatoxic (PMID: 1641875). The liver toxicity of bile acids appears to be due to their ability to peroxidate lipids and to lyse liver cells. High bile acid levels lead to the generation of reactive oxygen species and reactive nitrogen species, disruption of the cell membrane and mitochondria, induction of DNA damage, mutation and apoptosis, and the development of reduced apoptosis capability upon chronic exposure (PMID: 24884764). Chronically high levels of deoxycholic acid are associated with familial hypercholanemia. In hypercholanemia, bile acids, including deoxycholic acid, are elevated in the blood. This disease causes liver damage, extensive itching, poor fat absorption, and can lead to rickets due to lack of calcium in bones. The deficiency of normal bile acids in the intestines results in a deficiency of vitamin K, which also adversely affects clotting of the blood. The bile acid ursodiol (ursodeoxycholic acid) can improve symptoms associated with familial hypercholanemia. Chronically high levels of deoxycholic acid are also associated with several forms of cancer including colon cancer, pancreatic cancer, esophageal cancer, and many other GI cancers. A bile acid that is 5beta-cholan-24-oic acid substituted by hydroxy groups at positions 3 and 12 respectively. Deoxycholic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=83-44-3 (retrieved 2024-07-01) (CAS RN: 83-44-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Deoxycholic acid (cholanoic acid), a bile acid, is a by-product of intestinal metabolism, that activates the G protein-coupled bile acid receptorTGR5[1][2]. Deoxycholic acid (cholanoic acid), a bile acid, is a by-product of intestinal metabolism, that activates the G protein-coupled bile acid receptorTGR5[1][2].
5-Hydroxy-L-tryptophan
5-Hydroxy-L-tryptophan is an aromatic amino acid naturally produced by the body from the essential amino acid L-tryptophan. 5-Hydroxy-L-tryptophan is the immediate precursor of the neurotransmitter serotonin. The conversion to serotonin is catalyzed by the enzyme aromatic L-amino acid decarboxylase (EC 4.1.1.28) (AADC1 also known as DOPA decarboxylase), an essential enzyme in the metabolism of the monoamine neurotransmitters. An accumulation of 5-hydroxy-L-tryptophan in cerebrospinal fluid occurs in aromatic L-amino acid decarboxylase deficiency (AADC deficiency) (OMIM: 608643) accompanied by an increased excretion in the urine of the patients, which are indicative of the disorder but not specific. 5-Hydroxy-L-tryptophan is also increased in other disorders such as in Parkinsons patients with severe postural instability and gait disorders. The amount of endogenous 5-hydroxy-L-tryptophan available for serotonin synthesis depends on the availability of tryptophan and on the activity of various enzymes, especially tryptophan hydroxylase (EC 1.14.16.4), indoleamine 2,3-dioxygenase (EC 1.13.11.52), and tryptophan 2,3-dioxygenase (TDO) (EC 1.13.11.11). 5-Hydroxy-L-tryptophan has been used clinically for over 30 years. In addition to its use in the treatment of depression, the therapeutic administration of 5-hydroxy-L-tryptophan has been shown to be effective in treating a wide variety of conditions, including fibromyalgia, insomnia, binge eating associated with obesity, cerebellar ataxia, and chronic headaches. 5-Hydroxy-L-tryptophan easily crosses the blood-brain barrier and effectively increases central nervous system (CNS) synthesis of serotonin. Supplementation with 5-hydroxy-L-tryptophan is hypothesized to normalize serotonin synthesis, which is putatively related to its antidepressant properties (PMID: 9295177, 17240182, 16023217). When present in sufficiently high levels, 5-hydroxytryptophan can be a neurotoxin and a metabotoxin. A neurotoxin is a compound that disrupts or attacks neural cells or tissue. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Signs and symptoms of AADC deficiency generally appear in the first year of life. Affected infants may have severe developmental delay, weak muscle tone (hypotonia), muscle stiffness, difficulty moving, and involuntary writhing movements of the limbs (athetosis). They may be lacking in energy (lethargic), feed poorly, startle easily, and have sleep disturbances. Since 5-hydroxytryptophan is a precursor to serotonin, altered levels of serotonin can accumulate in the brain, which leads to abnormal neural signalling. Infants with AADC deficiency have very low levels of neural signalling molecules while individuals who consume high levels of 5-hydroxytryptophan will have very high levels of neural signalling molecules. Both conditions can lead to vomiting, nausea, extreme drowsiness, and lethargy. 5-Hydroxytryptophan (5-HTP), also known as oxitriptan (INN) is sold over-the-counter in the United Kingdom, the United States, and Canada as a dietary supplement for use as an antidepressant, appetite suppressant, and sleep aid. It is also marketed in many European countries for the indication of major depression under trade names such as Cincofarm, Levothym, Levotonine, Oxyfan, Telesol, Tript-OH, and Triptum. Several double-blind placebo-controlled clinical trials have demonstrated the effectiveness of 5-HTP in the treatment of depression, though a lack of high-quality studies has been noted. More and larger studies are needed to determine if 5-HTP is truly effective in treating depression. 5-hydroxy-L-tryptophan is the L-enantiomer of 5-hydroxytryptophan. It has a role as a human metabolite, a plant metabolite and a mouse metabolite. It is a 5-hydroxytryptophan, a hydroxy-L-tryptophan and a non-proteinogenic L-alpha-amino acid. It is an enantiomer of a 5-hydroxy-D-tryptophan. It is a tautomer of a 5-hydroxy-L-tryptophan zwitterion. 5-Hydroxytryptophan (5-HTP), also known as oxitriptan (INN), is a naturally occurring amino acid and metabolic intermediate in the synthesis of serotonin and melatonin. 5-HTP is sold over-the-counter in the United Kingdom, United States and Canada as a dietary supplement for use as an antidepressant, appetite suppressant, and sleep aid, and is also marketed in many European countries for the indication of major depression under trade names like Cincofarm, Levothym, Levotonine, Oxyfan, Telesol, Tript-OH, and Triptum. Several double-blind placebo-controlled clinical trials have demonstrated the effectiveness of 5-HTP in the treatment of depression, though a lack of high quality studies has been noted. More study is needed to determine efficacy in treating depression. Oxitriptan is an aromatic amino acid with antidepressant activity. In vivo, oxitriptan (or 5-hydroxytryptophan) is converted into 5-hydroxytryptamine (5-HT or serotonin) as well as other neurotransmitters. Oxitriptan may exert its antidepressant activity via conversion to serotonin or directly by binding to serotonin (5-HT) receptors within the central nervous system (CNS). Endogenous oxitriptan is produced from the essential amino acid L-tryptophan. The exogenous therapeutic form is isolated from the seeds of the African plant Griffonia simplicifolia. The immediate precursor in the biosynthesis of SEROTONIN from tryptophan. It is used as an antiepileptic and antidepressant. See also: ... View More ... 5-Hydroxytryptophan (5-HTP), also known as oxitriptan (INN), is a naturally-occurring amino acid and chemical precursor as well as metabolic intermediate in the biosynthesis of the neurotransmitters serotonin and melatonin from tryptophan. 5-Hydroxy-L-tryptophan is found in french plantain. 5-Hydroxy-L-tryptophan. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=4350-09-8 (retrieved 2024-07-02) (CAS RN: 4350-09-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-5-Hydroxytryptophan (L-5-HTP), a naturally occurring amino acid and a dietary supplement for use as an antidepressant, appetite suppressant, and sleep aid, is the immediate precursor of the neurotransmitter serotonin and a reserpine antagonist[1]. L-5-Hydroxytryptophan (L-5-HTP) is used to treat fibromyalgia, myoclonus, migraine, and cerebellar ataxia[2][3][4][5].
Tryptamine
Tryptamine, also known as TrpN, is a catabolite of tryptophan converted by the gut microbiota. After absorption through the intestinal epithelium, tryptophan catabolites enter the bloodstream and are later excreted in the urine. Both Clostridium sp. and Ruminococcus sp. have been found to convert tryptophan into tryptamine (PMID: 30120222). Tryptamine is a monoamine compound that is a common precursor molecule to many hormones and neurotransmitters. Biosynthesis generally proceeds from the amino acid tryptophan, with tryptamine acting as a precursor for other compounds. Substitutions to the tryptamine molecule give rise to a group of compounds collectively known as tryptamines. The most well-known tryptamines are serotonin, an important neurotransmitter, and melatonin, a hormone involved in regulating the sleep-wake cycle. Tryptamine has been detected, but not quantified in, several different foods, such as onion-family vegetables, acerola, Japanese walnuts, custard apples, and green zucchinis. This could make tryptamine a potential biomarker for the consumption of these foods. Tryptamine is an aminoalkylindole consisting of indole having a 2-aminoethyl group at the 3-position. It has a role as a human metabolite, a plant metabolite and a mouse metabolite. It is an aminoalkylindole, an indole alkaloid, an aralkylamino compound and a member of tryptamines. It is a conjugate base of a tryptaminium. Tryptamine is a natural product found in Mus musculus, Prosopis glandulosa, and other organisms with data available. Occurs widely in plants, especies Lens esculenta (lentil) and the fungi Coprinus micaceus (glistening ink cap) An aminoalkylindole consisting of indole having a 2-aminoethyl group at the 3-position. KEIO_ID T031
Glycocholic acid
C26H43NO6 (465.30902180000004)
Glycocholic acid is an acyl glycine and a bile acid-glycine conjugate. It is a secondary bile acid produced by the action of enzymes existing in the microbial flora of the colonic environment. Bacteroides, Bifidobacterium, Clostridium and Lactobacillus are involved in bile acid metabolism and produce glycocholic acid (PMID: 6265737; 10629797). In hepatocytes, both primary and secondary bile acids undergo amino acid conjugation at the C-24 carboxylic acid on the side chain, and almost all bile acids in the bile duct therefore exist in a glycine conjugated form (PMID: 16949895). More specifically, glycocholic acid or cholylglycine, is a crystalline bile acid involved in the emulsification of fats. It occurs as a sodium salt in the bile of mammals. Its anion is called glycocholate. As the glycine conjugate of cholic acid, this compound acts as a detergent to solubilize fats for absorption and is itself absorbed (PubChem). Bile acids are steroid acids found predominantly in bile of mammals. The distinction between different bile acids is minute, depends only on presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g., membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487, 16037564, 12576301, 11907135). Glycocholic acid is found to be associated with alpha-1-antitrypsin deficiency, which is an inborn error of metabolism. Glycocholic acid is a bile acid glycine conjugate having cholic acid as the bile acid component. It has a role as a human metabolite. It is functionally related to a cholic acid and a glycochenodeoxycholic acid. It is a conjugate acid of a glycocholate. Glycocholic acid is a natural product found in Caenorhabditis elegans and Homo sapiens with data available. The glycine conjugate of CHOLIC ACID. It acts as a detergent to solubilize fats for absorption and is itself absorbed. Glycocholic acid, or cholylglycine, is a crystalline bile acid involved in the emulsification of fats. It occurs as a sodium salt in the bile of mammals. It is a conjugate of cholic acid with glycine. Its anion is called glycocholate. [Wikipedia] A bile acid glycine conjugate having cholic acid as the bile acid component. Glycocholic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=475-31-0 (retrieved 2024-07-01) (CAS RN: 475-31-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Glycocholic acid is a bile acid with anticancer activity, targeting against pump resistance-related and non-pump resistance-related pathways[1]. Glycocholic acid is a bile acid with anticancer activity, targeting against pump resistance-related and non-pump resistance-related pathways[1].
L-Tryptophan
Tryptophan (Trp) or L-tryptophan is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. L-tryptophan is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Tryptophan is found in all organisms ranging from bacteria to plants to animals. It is classified as a non-polar, uncharged (at physiological pH) aromatic amino acid. Tryptophan is an essential amino acid, meaning the body cannot synthesize it, and it must be obtained from the diet. The requirement for tryptophan and protein decreases with age. The minimum daily requirement for adults is 3 mg/kg/day or about 200 mg a day. There is 400 mg of tryptophan in a cup of wheat germ. A cup of low-fat cottage cheese contains 300 mg of tryptophan and chicken and turkey contain up to 600 mg of tryptophan per pound (http://www.dcnutrition.com). Tryptophan is particularly plentiful in chocolate, oats, dried dates, milk, yogurt, cottage cheese, red meat, eggs, fish, poultry, sesame, chickpeas, almonds, sunflower seeds, pumpkin seeds, buckwheat, spirulina, and peanuts. Tryptophan is the precursor of both serotonin and melatonin. Melatonin is a hormone that is produced by the pineal gland in animals, which regulates sleep and wakefulness. Serotonin is a brain neurotransmitter, platelet clotting factor, and neurohormone found in organs throughout the body. Metabolism of tryptophan into serotonin requires nutrients such as vitamin B6, niacin, and glutathione. Niacin (also known as vitamin B3) is an important metabolite of tryptophan. It is synthesized via kynurenine and quinolinic acids, which are products of tryptophan degradation. There are a number of conditions or diseases that are characterized by tryptophan deficiencies. For instance, fructose malabsorption causes improper absorption of tryptophan in the intestine, which reduces levels of tryptophan in the blood and leads to depression. High corn diets or other tryptophan-deficient diets can cause pellagra, which is a niacin-tryptophan deficiency disease with symptoms of dermatitis, diarrhea, and dementia. Hartnups disease is a disorder in which tryptophan and other amino acids are not absorbed properly. Symptoms of Hartnups disease include skin rashes, difficulty coordinating movements (cerebellar ataxia), and psychiatric symptoms such as depression or psychosis. Tryptophan supplements may be useful for treating Hartnups disease. Assessment of tryptophan deficiency is done through studying excretion of tryptophan metabolites in the urine or blood. Blood may be the most sensitive test because the amino acid tryptophan is transported in a unique way. Increased urination of tryptophan breakdown products (such as kynurenine) correlates with increased tryptophan degradation, which occurs with oral contraception, depression, mental retardation, hypertension, and anxiety states. Tryptophan plays a role in "feast-induced" drowsiness. Ingestion of a meal rich in carbohydrates triggers the release of insulin. Insulin, in turn, stimulates the uptake of large neutral branched-chain amino acids (BCAAs) into muscle, increasing the ratio of tryptophan to BCAA in the bloodstream. The increased tryptophan ratio reduces competition at the large neutral amino acid transporter (which transports both BCAAs and tryptophan), resulting in greater uptake of tryptophan across the blood-brain barrier into the cerebrospinal fluid (CSF). Once in the CSF, tryptophan is converted into serotonin and the resulting serotonin is further metabolized into melatonin by the pineal gland, which promotes sleep. Because tryptophan is converted into 5-hydroxytryptophan (5-HTP) which is then converted into the neurotransmitter serotonin, it has been proposed th... L-tryptophan is a white powder with a flat taste. An essential amino acid; occurs in isomeric forms. (NTP, 1992) L-tryptophan is the L-enantiomer of tryptophan. It has a role as an antidepressant, a nutraceutical, a micronutrient, a plant metabolite, a human metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite and a mouse metabolite. It is an erythrose 4-phosphate/phosphoenolpyruvate family amino acid, a proteinogenic amino acid, a tryptophan and a L-alpha-amino acid. It is a conjugate base of a L-tryptophanium. It is a conjugate acid of a L-tryptophanate. It is an enantiomer of a D-tryptophan. It is a tautomer of a L-tryptophan zwitterion. An essential amino acid that is necessary for normal growth in infants and for nitrogen balance in adults. It is a precursor of indole alkaloids in plants. It is a precursor of serotonin (hence its use as an antidepressant and sleep aid). It can be a precursor to niacin, albeit inefficiently, in mammals. L-Tryptophan is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Tryptophan is the least plentiful of all 22 amino acids and an essential amino acid in humans (provided by food), Tryptophan is found in most proteins and a precursor of serotonin. Tryptophan is converted to 5-hydroxy-tryptophan (5-HTP), converted in turn to serotonin, a neurotransmitter essential in regulating appetite, sleep, mood, and pain. Tryptophan is a natural sedative and present in dairy products, meats, brown rice, fish, and soybeans. (NCI04) Tryptophan is an essential amino acid which is the precursor of serotonin. Serotonin is a brain neurotransmitter, platelet clotting factor and neurohormone found in organs throughout the body. Metabolism of tryptophan to serotonin requires nutrients such as vitamin B6, niacin and glutathione. Niacin is an important metabolite of tryptophan. High corn or other tryptophan-deficient diets can cause pellagra, which is a niacin-tryptophan deficiency disease with symptoms of dermatitis, diarrhea and dementia. Inborn errors of tryptophan metabolism exist where a tumor (carcinoid) makes excess serotonin. Hartnups disease is a disease where tryptophan and other amino acids are not absorbed properly. Tryptophan supplements may be useful in each condition, in carcinoid replacing the over-metabolized nutrient and in Hartnups supplementing a malabsorbed nutrient. Some disorders of excess tryptophan in the blood may contribute to mental retardation. Assessment of tryptophan deficiency is done through studying excretion of tryptophan metabolites in the urine or blood. Blood may be the most sensitive test because the amino acid tryptophan is transported in a unique way. Increased urination of tryptophan fragments correlates with increased tryptophan degradation, which occurs with oral contraception, depression, mental retardation, hypertension and anxiety states. The requirement for tryptophan and protein decreases with age. Adults minimum daily requirement is 3 mg/kg/day or about 200 mg a day. This may be an underestimation, for there are 400 mg of tryptophan in just a cup of wheat germ. A cup of low fat cottage cheese contains 300 mg of tryptophan and chicken and turkey contain up to 600 mg per pound. An essential amino acid that is necessary for normal growth in infants and for NITROGEN balance in adults. It is a precursor of INDOLE ALKALOIDS in plants. It is a precursor of SEROTONIN (hence its use as an antidepressant and sleep aid). It can be a precursor to NIACIN, albeit inefficiently, in mammals. See also: Serotonin; tryptophan (component of); Chamomile; ginger; melatonin; thiamine; tryptophan (component of) ... View More ... Constituent of many plants. Enzymatic hydrolysis production of most plant and animal proteins. Dietary supplement, nutrient D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants COVID info from PDB, Protein Data Bank The L-enantiomer of tryptophan. Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CBA09_Tryptophan_pos_30eV_1-1_01_662.txt [Raw Data] CBA09_Tryptophan_pos_20eV_1-1_01_661.txt [Raw Data] CBA09_Tryptophan_neg_30eV_1-1_01_716.txt [Raw Data] CBA09_Tryptophan_pos_10eV_1-1_01_660.txt [Raw Data] CBA09_Tryptophan_neg_10eV_1-1_01_714.txt [Raw Data] CBA09_Tryptophan_neg_40eV_1-1_01_717.txt [Raw Data] CBA09_Tryptophan_neg_20eV_1-1_01_715.txt [Raw Data] CBA09_Tryptophan_pos_50eV_1-1_01_664.txt [Raw Data] CBA09_Tryptophan_neg_50eV_1-1_01_718.txt [Raw Data] CBA09_Tryptophan_pos_40eV_1-1_01_663.txt IPB_RECORD: 253; CONFIDENCE confident structure KEIO_ID T003 DL-Tryptophan is an endogenous metabolite. L-Tryptophan (Tryptophan) is an essential amino acid that is the precursor of serotonin, melatonin, and vitamin B3[1]. L-Tryptophan (Tryptophan) is an essential amino acid that is the precursor of serotonin, melatonin, and vitamin B3[1].
Cholic acid
Cholic acid is a bile acid that is 5beta-cholan-24-oic acid bearing three alpha-hydroxy substituents at position 3, 7 and 12. It has a role as a human metabolite and a mouse metabolite. It is a bile acid, a C24-steroid, a 3alpha-hydroxy steroid, a 7alpha-hydroxy steroid, a 12alpha-hydroxy steroid and a trihydroxy-5beta-cholanic acid. It is a conjugate acid of a cholate. Cholic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Cholic acid is a Bile Acid. Cholic acid is a naturally occurring bile acid that is used to treat patients with genetic deficiencies in the synthesis of bile acids. When given in high doses, cholic acid replacement therapy has been linked to minor elevations in serum aminotransferase levels, but it has not been linked to instances of clinically apparent acute liver injury with jaundice. Cholic acid is a natural product found in Caenorhabditis elegans, Bufo bufo, and Homo sapiens with data available. Cholic acid is a major primary bile acid produced in the liver and usually conjugated with glycine or taurine. It facilitates fat absorption and cholesterol excretion. Bile acids are steroid acids found predominantly in bile of mammals. The distinction between different bile acids is minute, depends only on presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g., membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues. (A3407, A3408, A3409, A3410). A major primary bile acid produced in the liver and usually conjugated with glycine or taurine. It facilitates fat absorption and cholesterol excretion. See also: Cholic acid; ferrous gluconate; honey (component of). Cholic acid is a major primary bile acid produced in the liver and is usually conjugated with glycine or taurine. It facilitates fat absorption and cholesterol excretion. Bile acids are steroid acids found predominantly in the bile of mammals. The distinction between different bile acids is minute, and depends only on the presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine, and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH, and consequently require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g. membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487, 16037564, 12576301, 11907135). When present in sufficiently high levels, cholic acid can act as a hepatotoxin and a metabotoxin. A hepatotoxin causes damage to the liver or liver cells. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Among the primary bile acids, cholic acid is considered to be the least hepatotoxic while deoxycholic acid is the most hepatoxic (PMID: 1641875). The liver toxicity of bile acids appears to be due to their ability to peroxidate lipids and to lyse liver cells. Chronically high levels of cholic acid are associated with familial hypercholanemia. In hypercholanemia, bile acids, including cholic acid, are elevated in the blood. This disease causes liver damage, extensive itching, poor fat absorption, and can lead to rickets due to lack of calcium in bones. The deficiency of normal bile acids in the intestines results in a deficiency of vitamin K, which also adversely affects clotting of the blood. The bile acid ursodiol (ursodeoxycholic acid) can improve symptoms associated with familial hypercholanemia. Cholic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=81-25-4 (retrieved 2024-06-29) (CAS RN: 81-25-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Cholic acid is a major primary bile acid produced in the liver and usually conjugated with glycine or taurine. It facilitates fat absorption and cholesterol excretion. Cholic acid is orally active[1][2]. Cholic acid is a major primary bile acid produced in the liver and usually conjugated with glycine or taurine. It facilitates fat absorption and cholesterol excretion. Cholic acid is orally active[1][2].
Colchicine
Colchicine appears as odorless or nearly odorless pale yellow needles or powder that darkens on exposure to light. Used to treat gouty arthritis, pseudogout, sarcoidal arthritis and calcific tendinitis. (EPA, 1998) (S)-colchicine is a colchicine that has (S)-configuration. It is a secondary metabolite, has anti-inflammatory properties and is used to treat gout, crystal-induced joint inflammation, familial Mediterranean fever, and many other conditions. It has a role as a mutagen, an anti-inflammatory agent and a gout suppressant. It is a colchicine and an alkaloid. It is an enantiomer of a (R)-colchicine. Colchicine is an Alkaloid. Colchicine is a plant alkaloid that is widely used for treatment of gout. Colchicine has not been associated with acute liver injury or liver test abnormalities except with serious overdoses. Colchicine is a natural product found in Colchicum arenarium, Colchicum bivonae, and other organisms with data available. Colchicine is an alkaloid isolated from Colchicum autumnale with anti-gout and anti-inflammatory activities. The exact mechanism of action by which colchicines exerts its effect has not been completely established. Colchicine binds to tubulin, thereby interfering with the polymerization of tubulin, interrupting microtubule dynamics, and disrupting mitosis. This leads to an inhibition of migration of leukocytes and other inflammatory cells, thereby reducing the inflammatory response to deposited urate crystals. Colchicine may also interrupt the cycle of monosodium urate crystal deposition in joint tissues, thereby also preventing the resultant inflammatory response. Overall, colchicine decreases leukocyte chemotaxis/migration and phagocytosis to inflamed areas, and inhibits the formation and release of a chemotactic glycoprotein that is produced during phagocytosis of urate crystals. A major alkaloid from Colchicum autumnale L. and found also in other Colchicum species. Its primary therapeutic use is in the treatment of gout, but it has been used also in the therapy of familial Mediterranean fever (PERIODIC DISEASE). See also: Colchicine; probenecid (component of). Colchicine is only found in individuals that have used or taken this drug. It is a major alkaloid from Colchicum autumnale L. and found also in other Colchicum species. Its primary therapeutic use is in the treatment of gout, but it has been used also in the therapy of familial Mediterranean fever (periodic disease). [PubChem]The precise mechanism of action has not been completely established. In patients with gout, colchicine apparently interrupts the cycle of monosodium urate crystal deposition in joint tissues and the resultant inflammatory response that initiates and sustains an acute attack. Colchicine decreases leukocyte chemotaxis and phagocytosis and inhibits the formation and release of a chemotactic glycoprotein that is produced during phagocytosis of urate crystals. Colchicine also inhibits urate crystal deposition, which is enhanced by a low pH in the tissues, probably by inhibiting oxidation of glucose and subsequent lactic acid production in leukocytes. Colchicine has no analgesic or antihyperuricemic activity. Colchicine inhibits microtubule assembly in various cells, including leukocytes, probably by binding to and interfering with polymerization of the microtubule subunit tubulin. Although some studies have found that this action probably does not contribute significantly to colchicines antigout action, a recent in vitro study has shown that it may be at least partially involved. CONFIDENCE standard compound; INTERNAL_ID 328; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7704; ORIGINAL_PRECURSOR_SCAN_NO 7702 CONFIDENCE standard compound; INTERNAL_ID 328; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7690; ORIGINAL_PRECURSOR_SCAN_NO 7687 CONFIDENCE standard compound; INTERNAL_ID 328; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7668; ORIGINAL_PRECURSOR_SCAN_NO 7666 CONFIDENCE standard compound; INTERNAL_ID 328; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7693; ORIGINAL_PRECURSOR_SCAN_NO 7689 CONFIDENCE standard compound; INTERNAL_ID 328; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7645; ORIGINAL_PRECURSOR_SCAN_NO 7643 CONFIDENCE standard compound; INTERNAL_ID 328; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7687; ORIGINAL_PRECURSOR_SCAN_NO 7684 M - Musculo-skeletal system > M04 - Antigout preparations > M04A - Antigout preparations > M04AC - Preparations with no effect on uric acid metabolism COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials, Guide to PHARMACOLOGY C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C273 - Antimitotic Agent D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents D018501 - Antirheumatic Agents > D006074 - Gout Suppressants CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2258 INTERNAL_ID 2258; CONFIDENCE Reference Standard (Level 1) [Raw Data] CB194_Colchicine_pos_30eV_CB000068.txt [Raw Data] CB194_Colchicine_pos_50eV_CB000068.txt [Raw Data] CB194_Colchicine_pos_10eV_CB000068.txt [Raw Data] CB194_Colchicine_pos_20eV_CB000068.txt [Raw Data] CB194_Colchicine_pos_40eV_CB000068.txt CONFIDENCE standard compound; INTERNAL_ID 1171 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Colchicine is a tubulin inhibitor and a microtubule disrupting agent. Colchicine inhibits microtubule polymerization with an IC50 of 3 nM[1][2][3]. Colchicine is also a competitive antagonist of the α3 glycine receptors (GlyRs)[4]. Colchicine is a tubulin inhibitor and a microtubule disrupting agent. Colchicine inhibits microtubule polymerization with an IC50 of 3 nM[1][2][3]. Colchicine is also a competitive antagonist of the α3 glycine receptors (GlyRs)[4].
Azelaic acid
Nonanedioic acid is an alpha,omega-dicarboxylic acid that is heptane substituted at positions 1 and 7 by carboxy groups. It has a role as an antibacterial agent, an antineoplastic agent, a dermatologic drug and a plant metabolite. It is a dicarboxylic fatty acid and an alpha,omega-dicarboxylic acid. It is a conjugate acid of an azelaate(2-) and an azelaate. Azelaic acid is a saturated dicarboxylic acid found naturally in wheat, rye, and barley. It is also produced by Malassezia furfur, also known as Pityrosporum ovale, which is a species of fungus that is normally found on human skin. Azelaic acid is effective against a number of skin conditions, such as mild to moderate acne, when applied topically in a cream formulation of 20\\\\\%. It works in part by stopping the growth of skin bacteria that cause acne, and by keeping skin pores clear. Azelaic acids antimicrobial action may be attributable to inhibition of microbial cellular protein synthesis. Azelaic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). The physiologic effect of azelaic acid is by means of Decreased Protein Synthesis, and Decreased Sebaceous Gland Activity. Azelaic Acid is a naturally occurring dicarboxylic acid produced by Malassezia furfur and found in whole grain cereals, rye, barley and animal products. Azelaic acid possesses antibacterial, keratolytic, comedolytic, and anti-oxidant activity. Azelaic acid is bactericidal against Proprionibacterium acnes and Staphylococcus epidermidis due to its inhibitory effect on the synthesis of microbial cellular proteins. Azelaic acid exerts its keratolytic and comedolytic effects by reducing the thickness of the stratum corneum and decreasing the number of keratohyalin granules by reducing the amount and distribution of filaggrin in epidermal layers. Azelaic acid also possesses a direct anti-inflammatory effect due to its scavenger activity of free oxygen radical. This drug is used topically to reduce inflammation associated with acne and rosacea. Azelaic acid is a saturated dicarboxylic acid found naturally in wheat, rye, and barley. It is a natural substance that is produced by Malassezia furfur (also known as Pityrosporum ovale), a yeast that lives on normal skin. It is effective against a number of skin conditions, such as mild to moderate acne, when applied topically in a cream formulation of 20\\\\\%. It works in part by stopping the growth of skin bacteria that cause acne, and by keeping skin pores clear. Azelaic acids antimicrobial action may be attributable to inhibition of microbial cellular protein synthesis. See also: Azelaic acid; niacinamide (component of) ... View More ... Azelaic acid (AZA) is a naturally occurring saturated nine-carbon dicarboxylic acid (COOH (CH2)7-COOH). It possesses a variety of biological actions both in vitro and in vivo. Interest in the biological activity of AZA arose originally out of studies of skin surface lipids and the pathogenesis of hypochromia in pityriasis versicolor infection. Later, it was shown that Pityrosporum can oxidize unsaturated fatty acids to C8-C12 dicarboxylic acids that are cornpetitive inhibitors of tyrosinase in vitro. Azelaic acid was chosen for further investigation and development of a new topical drug for treating hyperpigmentary disorders for the following reasons: it possesses a middle-range of antityrosinase activity, is inexpensive, and more soluble to be incorporated into a base cream than other dicarboxylic acids. Azelaic acid is another option for the topical treatment of mild to moderate inflammatory acne vulgaris. It offers effectiveness similar to that of other agents without the systemic side effects of oral antibiotics or the allergic sensitization of topical benzoyl peroxide and with less irritation than tretinoin. Azelaic acid is less expensive than certain other prescription acne preparations, but it is much more expensive than nonprescription benzoyl peroxide preparations. Whether it is safe and effective when used in combination with other agents is not known. (PMID: 7737781, 8961845). An alpha,omega-dicarboxylic acid that is heptane substituted at positions 1 and 7 by carboxy groups. Plants biology In plants, azelaic acid serves as a "distress flare" involved in defense responses after infection.[7] It serves as a signal that induces the accumulation of salicylic acid, an important component of a plant's defensive response.[8] Human biology The mechanism of action in humans is thought to be through the inhibition of hyperactive protease activity that converts cathelicidin into the antimicrobial skin peptide LL-37.[9] Polymers and related materials Esters of this dicarboxylic acid find applications in lubrication and plasticizers. In lubricant industries it is used as a thickening agent in lithium complex grease. With hexamethylenediamine, azelaic acid forms Nylon-6,9, which finds specialized uses as a plastic.[4] Medical Azelaic acid is used to treat mild to moderate acne, both comedonal acne and inflammatory acne.[10][11] It belongs to a class of medication called dicarboxylic acids. It works by killing acne bacteria that infect skin pores. It also decreases the production of keratin, which is a natural substance that promotes the growth[clarification needed] of acne bacteria.[12] Azelaic acid is also used as a topical gel treatment for rosacea, due to its ability to reduce inflammation.[11] It clears the bumps and swelling caused by rosacea. In topical pharmaceutical preparations and scientific research AzA is typically used in concentrations between 15\\\% and 20\\\% but some research demonstrates that in certain vehicle formulations the pharmaceutical effects of 10\\\% Azelaic acid has the potential to be fully comparable to that of some 20\\\% creams.[13] Acne treatment Azelaic acid is effective for mild to moderate acne when applied topically at a 15\\\%-20\\\% concentration.[14][15][16][17] In patients with moderate acne, twice daily application over 3 months of 20\\\% AzA significantly reduced the number of comedones, papules, and pustules;[18][19] at this strength, it’s considered to be as effective as benzoyl peroxide 5\\\%, tretinoin 0.05\\\%, erythromycin 2\\\%, and oral tetracycline at 500 mg-1000 mg.[20][21] In a comparative review of effects of topical AzA, Salicylic acid, Nicotinamide, Sulfur, Zinc, and alpha-hydroxy acid, AzA had more high-quality evidence of effectiveness than the rest.[22] Results can be expected after 4 weeks of twice-daily treatment. The effectiveness of long term use is unclear, but it’s been recommended that AzA be used for at least 6 months continuously for maintenance.[20] Whitening agent Azelaic acid is used for treatment of skin pigmentation, including melasma and postinflammatory hyperpigmentation, particularly in those with darker skin types. It has been recommended as an alternative to hydroquinone.[23] As a tyrosinase inhibitor,[5] azelaic acid reduces synthesis of melanin.[24] According to one report in 1988, azelaic acid in combination with zinc sulfate in vitro was found to be a potent (90\\\% inhibition) 5α-reductase inhibitor, similar to the hair loss drugs finasteride and dutasteride.[25] In vitro research during mid-1980s evaluating azelaic acid's depigmenting (whitening) capability concluded it is effective (cytotoxic to melanocytes) at only high concentrations.[26] A 1996 review claimed 20\\\% AzA is as potent as 4\\\% hydroquinone after a period of application of three months without the latter's adverse effects and even more effective if applied along with tretinoin for the same period of time.[27][19] Azelaic acid is a nine-carbon dicarboxylic acid. Azelaic acid has antimicrobial activity against Propionibacterium acnes and Staphylococcus epidermidis through inhibition of microbial cellular prorein synthesis. Azelaic acid has hypopigmentation action resulting from its ability to scavenge free radicals[1][2]. Azelaic acid is a nine-carbon dicarboxylic acid. Azelaic acid has antimicrobial activity against Propionibacterium acnes and Staphylococcus epidermidis through inhibition of microbial cellular prorein synthesis. Azelaic acid has hypopigmentation action resulting from its ability to scavenge free radicals[1][2].
L-Tyrosine
Tyrosine (Tyr) or L-tyrosine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. L-tyrosine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Tyrosine is found in all organisms ranging from bacteria to plants to animals. It is classified as a non-polar, uncharged (at physiological pH) aromatic amino acid. Tyrosine is a non-essential amino acid, meaning the body can synthesize it – usually from phenylalanine. The conversion of phenylalanine to tyrosine is catalyzed by the enzyme phenylalanine hydroxylase, a monooxygenase. This enzyme catalyzes the reaction causing the addition of a hydroxyl group to the end of the 6-carbon aromatic ring of phenylalanine, such that it becomes tyrosine. Tyrosine is found in many high-protein food products such as chicken, turkey, fish, milk, yogurt, cottage cheese, cheese, peanuts, almonds, pumpkin seeds, sesame seeds, soy products, lima beans, avocados and bananas. Tyrosine is one of the few amino acids that readily passes the blood-brain barrier. Once in the brain, it is a precursor for the neurotransmitters dopamine, norepinephrine and epinephrine, better known as adrenalin. These neurotransmitters are an important part of the bodys sympathetic nervous system, and their concentrations in the body and brain are directly dependent upon dietary tyrosine. Tyrosine is not found in large concentrations throughout the body, probably because it is rapidly metabolized. Folic acid, copper and vitamin C are cofactor nutrients of these reactions. Tyrosine is also the precursor for hormones, including thyroid hormones (diiodotyrosine), catecholestrogens and the major human pigment, melanin. Tyrosine is an important amino acid in many proteins, peptides and even enkephalins, the bodys natural pain reliever. Valine and other branched amino acids, and possibly tryptophan and phenylalanine may reduce tyrosine absorption. A number of genetic errors of tyrosine metabolism have been identified, such as hawkinsinuria and tyrosinemia I. The most common feature of these diseases is the increased amount of tyrosine in the blood, which is marked by decreased motor activity, lethargy and poor feeding. Infection and intellectual deficits may occur. Vitamin C supplements can help reverse these disease symptoms. Some adults also develop elevated tyrosine in their blood. This typically indicates a need for more vitamin C. More tyrosine is needed under stress, and tyrosine supplements prevent the stress-induced depletion of norepinephrine and can help aleviate biochemical depression. However, tyrosine may not be good for treating psychosis. Many antipsychotic medications apparently function by inhibiting tyrosine metabolism. L-Dopa, which is directly used in Parkinsons, is made from tyrosine. Tyrosine, the nutrient, can be used as an adjunct in the treatment of Parkinsons. Peripheral metabolism of tyrosine necessitates large doses of tyrosine, however, compared to L-Dopa (http://www.dcnutrition.com). In addition to its role as a precursor for neurotransmitters, tyrosine plays an important role for the function of many proteins. Within many proteins or enzymes, certain tyrosine residues can be tagged (at the hydroxyl group) with a phosphate group (phosphorylated) by specialized protein kinases. In its phosphorylated form, tyrosine is called phosphotyrosine. Tyrosine phosphorylation is considered to be one of the key steps in signal transduction and regulation of enzymatic activity. Tyrosine (or its precursor phenylalanine) is also needed to synthesize the benzoquinone structure which forms part of coenzyme Q10. L-tyrosine is an optically active form of tyrosine having L-configuration. It has a role as an EC 1.3.1.43 (arogenate dehydrogenase) inhibitor, a nutraceutical, a micronutrient and a fundamental metabolite. It is an erythrose 4-phosphate/phosphoenolpyruvate family amino acid, a proteinogenic amino acid, a tyrosine and a L-alpha-amino acid. It is functionally related to a L-tyrosinal. It is a conjugate base of a L-tyrosinium. It is a conjugate acid of a L-tyrosinate(1-). It is an enantiomer of a D-tyrosine. It is a tautomer of a L-tyrosine zwitterion. Tyrosine is a non-essential amino acid. In animals it is synthesized from [phenylalanine]. It is also the precursor of [epinephrine], thyroid hormones, and melanin. L-Tyrosine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). L-Tyrosine is the levorotatory isomer of the aromatic amino acid tyrosine. L-tyrosine is a naturally occurring tyrosine and is synthesized in vivo from L-phenylalanine. It is considered a non-essential amino acid; however, in patients with phenylketonuria who lack phenylalanine hydroxylase and cannot convert phenylalanine into tyrosine, it is considered an essential nutrient. In vivo, tyrosine plays a role in protein synthesis and serves as a precursor for the synthesis of catecholamines, thyroxine, and melanin. Tyrosine is an essential amino acid that readily passes the blood-brain barrier. Once in the brain, it is a precursor for the neurotransmitters dopamine, norepinephrine and epinephrine, better known as adrenalin. These neurotransmitters are an important part of the bodys sympathetic nervous system, and their concentrations in the body and brain are directly dependent upon dietary tyrosine. Tyrosine is not found in large concentrations throughout the body, probably because it is rapidly metabolized. Folic acid, copper and vitamin C are cofactor nutrients of these reactions. Tyrosine is also the precursor for hormones, thyroid, catecholestrogens and the major human pigment, melanin. Tyrosine is an important amino acid in many proteins, peptides and even enkephalins, the bodys natural pain reliever. Valine and other branched amino acids, and possibly tryptophan and phenylalanine may reduce tyrosine absorption. A number of genetic errors of tyrosine metabolism occur. Most common is the increased amount of tyrosine in the blood of premature infants, which is marked by decreased motor activity, lethargy and poor feeding. Infection and intellectual deficits may occur. Vitamin C supplements reverse the disease. Some adults also develop elevated tyrosine in their blood. This indicates a need for more vitamin C. More tyrosine is needed under stress, and tyrosine supplements prevent the stress-induced depletion of norepinephrine and can cure biochemical depression. However, tyrosine may not be good for psychosis. Many antipsychotic medications apparently function by inhibiting tyrosine metabolism. L-dopa, which is directly used in Parkinsons, is made from tyrosine. Tyrosine, the nutrient, can be used as an adjunct in the treatment of Parkinsons. Peripheral metabolism of tyrosine necessitates large doses of tyrosine, however, compared to L-dopa. A non-essential amino acid. In animals it is synthesized from PHENYLALANINE. It is also the precursor of EPINEPHRINE; THYROID HORMONES; and melanin. Dietary supplement, nutrient. Flavouring ingredient. L-Tyrosine is found in many foods, some of which are blue crab, sweet rowanberry, lemon sole, and alpine sweetvetch. An optically active form of tyrosine having L-configuration. L-Tyrosine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=60-18-4 (retrieved 2024-07-01) (CAS RN: 60-18-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Tyrosine is a non-essential amino acid which can inhibit citrate synthase activity in the posterior cortex. L-Tyrosine is a non-essential amino acid which can inhibit citrate synthase activity in the posterior cortex.
Taurochenodesoxycholic acid
C26H45NO6S (499.29674300000005)
Taurochenodesoxycholic acid is a bile acid formed in the liver by conjugation of chenodeoxycholate with taurine, usually as the sodium salt. Bile acids are steroid acids found predominantly in the bile of mammals. The distinction between different bile acids is minute, depending only on the presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g. membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487, 16037564, 12576301, 11907135). Taurochenodesoxycholic acid has been found to be a microbial metabolite. Taurochenodesoxycholic acid is a bile acid formed in the liver by conjugation of chenodeoxycholate with taurine, usually as the sodium salt. Bile acids are steroid acids found predominantly in bile of mammals. The distinction between different bile acids is minute, depends only on presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g., membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues. (PMID: 11316487, 16037564, 12576301, 11907135) [HMDB] Taurochenodeoxycholic acid is a bile acid taurine conjugate of chenodeoxycholic acid. It has a role as a mouse metabolite and a human metabolite. It is functionally related to a chenodeoxycholic acid. It is a conjugate acid of a taurochenodeoxycholate. Taurochenodeoxycholic acid is an experimental drug that is normally produced in the liver. Its physiologic function is to emulsify lipids such as cholesterol in the bile. As a medication, taurochenodeoxycholic acid reduces cholesterol formation in the liver, and is likely used as a choleretic to increase the volume of bile secretion from the liver and as a cholagogue to increase bile discharge into the duodenum. It is also being investigated for its role in inflammation and cancer therapy. Taurochenodeoxycholic acid is a natural product found in Trypanosoma brucei and Homo sapiens with data available. A bile salt formed in the liver by conjugation of chenodeoxycholate with taurine, usually as the sodium salt. It acts as detergent to solubilize fats in the small intestine and is itself absorbed. It is used as a cholagogue and choleretic. Taurochenodeoxycholic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=516-35-8 (retrieved 2024-07-01) (CAS RN: 516-35-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Taurochenodeoxycholic acid (12-Deoxycholyltaurine) is one of the main bioactive substances of animals' bile acid. Taurochenodeoxycholic acid induces apoptosis and shows obvious anti-inflammatory and immune regulation properties[1][2].
linolenate(18:3)
alpha-Linolenic acid (ALA) is a polyunsaturated fatty acid (PUFA). It is a member of the group of essential fatty acids called omega-3 fatty acids. alpha-Linolenic acid, in particular, is not synthesized by mammals and therefore is an essential dietary requirement for all mammals. Certain nuts (English walnuts) and vegetable oils (canola, soybean, flaxseed/linseed, olive) are particularly rich in alpha-linolenic acid. Omega-3 fatty acids get their name based on the location of one of their first double bond. In all omega-3 fatty acids, the first double bond is located between the third and fourth carbon atom counting from the methyl end of the fatty acid (n-3). Although humans and other mammals can synthesize saturated and some monounsaturated fatty acids from carbon groups in carbohydrates and proteins, they lack the enzymes necessary to insert a cis double bond at the n-6 or the n-3 position of a fatty acid. Omega-3 fatty acids like alpha-linolenic acid are important structural components of cell membranes. When incorporated into phospholipids, they affect cell membrane properties such as fluidity, flexibility, permeability, and the activity of membrane-bound enzymes. Omega-3 fatty acids can modulate the expression of a number of genes, including those involved with fatty acid metabolism and inflammation. alpha-Linolenic acid and other omega-3 fatty acids may regulate gene expression by interacting with specific transcription factors, including peroxisome proliferator-activated receptors (PPARs) and liver X receptors (LXRs). alpha-Linolenic acid is found to be associated with isovaleric acidemia, which is an inborn error of metabolism. α-Linolenic acid can be obtained by humans only through their diets. Humans lack the desaturase enzymes required for processing stearic acid into A-linoleic acid or other unsaturated fatty acids. Dietary α-linolenic acid is metabolized to stearidonic acid, a precursor to a collection of polyunsaturated 20-, 22-, 24-, etc fatty acids (eicosatetraenoic acid, eicosapentaenoic acid, docosapentaenoic acid, tetracosapentaenoic acid, 6,9,12,15,18,21-tetracosahexaenoic acid, docosahexaenoic acid).[12] Because the efficacy of n−3 long-chain polyunsaturated fatty acid (LC-PUFA) synthesis decreases down the cascade of α-linolenic acid conversion, DHA synthesis from α-linolenic acid is even more restricted than that of EPA.[13] Conversion of ALA to DHA is higher in women than in men.[14] α-Linolenic acid, also known as alpha-linolenic acid (ALA) (from Greek alpha meaning "first" and linon meaning flax), is an n−3, or omega-3, essential fatty acid. ALA is found in many seeds and oils, including flaxseed, walnuts, chia, hemp, and many common vegetable oils. In terms of its structure, it is named all-cis-9,12,15-octadecatrienoic acid.[2] In physiological literature, it is listed by its lipid number, 18:3 (n−3). It is a carboxylic acid with an 18-carbon chain and three cis double bonds. The first double bond is located at the third carbon from the methyl end of the fatty acid chain, known as the n end. Thus, α-linolenic acid is a polyunsaturated n−3 (omega-3) fatty acid. It is a regioisomer of gamma-linolenic acid (GLA), an 18:3 (n−6) fatty acid (i.e., a polyunsaturated omega-6 fatty acid with three double bonds). Alpha-linolenic acid is a linolenic acid with cis-double bonds at positions 9, 12 and 15. Shown to have an antithrombotic effect. It has a role as a micronutrient, a nutraceutical and a mouse metabolite. It is an omega-3 fatty acid and a linolenic acid. It is a conjugate acid of an alpha-linolenate and a (9Z,12Z,15Z)-octadeca-9,12,15-trienoate. Alpha-linolenic acid (ALA) is a polyunsaturated omega-3 fatty acid. It is a component of many common vegetable oils and is important to human nutrition. alpha-Linolenic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Linolenic Acid is a natural product found in Prunus mume, Dipteryx lacunifera, and other organisms with data available. Linolenic Acid is an essential fatty acid belonging to the omega-3 fatty acids group. It is highly concentrated in certain plant oils and has been reported to inhibit the synthesis of prostaglandin resulting in reduced inflammation and prevention of certain chronic diseases. Alpha-linolenic acid (ALA) is a polyunsaturated omega-3 fatty acid. It is a component of many common vegetable oils and is important to human nutrition. A fatty acid that is found in plants and involved in the formation of prostaglandins. Seed oils are the richest sources of α-linolenic acid, notably those of hempseed, chia, perilla, flaxseed (linseed oil), rapeseed (canola), and soybeans. α-Linolenic acid is also obtained from the thylakoid membranes in the leaves of Pisum sativum (pea leaves).[3] Plant chloroplasts consisting of more than 95 percent of photosynthetic thylakoid membranes are highly fluid due to the large abundance of ALA, evident as sharp resonances in high-resolution carbon-13 NMR spectra.[4] Some studies state that ALA remains stable during processing and cooking.[5] However, other studies state that ALA might not be suitable for baking as it will polymerize with itself, a feature exploited in paint with transition metal catalysts. Some ALA may also oxidize at baking temperatures. Gamma-linolenic acid (γ-Linolenic acid) is an omega-6 (n-6), 18 carbon (18C-) polyunsaturated fatty acid (PUFA) extracted from Perilla frutescens. Gamma-linolenic acid supplements could restore needed PUFAs and mitigate the disease[1]. Gamma-linolenic acid (γ-Linolenic acid) is an omega-6 (n-6), 18 carbon (18C-) polyunsaturated fatty acid (PUFA) extracted from Perilla frutescens. Gamma-linolenic acid supplements could restore needed PUFAs and mitigate the disease[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1].
L-Threonine
L-threonine is an optically active form of threonine having L-configuration. It has a role as a nutraceutical, a micronutrient, a Saccharomyces cerevisiae metabolite, a plant metabolite, an Escherichia coli metabolite, a human metabolite, an algal metabolite and a mouse metabolite. It is an aspartate family amino acid, a proteinogenic amino acid, a threonine and a L-alpha-amino acid. It is a conjugate base of a L-threoninium. It is a conjugate acid of a L-threoninate. It is an enantiomer of a D-threonine. It is a tautomer of a L-threonine zwitterion. An essential amino acid occurring naturally in the L-form, which is the active form. It is found in eggs, milk, gelatin, and other proteins. L-Threonine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Threonine is an essential amino acid in humans (provided by food), Threonine is an important residue of many proteins, such as tooth enamel, collagen, and elastin. An important amino acid for the nervous system, threonine also plays an important role in porphyrin and fat metabolism and prevents fat buildup in the liver. Useful with intestinal disorders and indigestion, threonine has also been used to alleviate anxiety and mild depression. (NCI04) Threonine is an essential amino acid in humans. It is abundant in human plasma, particularly in newborns. Severe deficiency of threonine causes neurological dysfunction and lameness in experimental animals. Threonine is an immunostimulant which promotes the growth of thymus gland. It also can probably promote cell immune defense function. This amino acid has been useful in the treatment of genetic spasticity disorders and multiple sclerosis at a dose of 1 gram daily. It is highly concentrated in meat products, cottage cheese and wheat germ. The threonine content of most of the infant formulas currently on the market is approximately 20\\\\\\% higher than the threonine concentration in human milk. Due to this high threonine content the plasma threonine concentrations are up to twice as high in premature infants fed these formulas than in infants fed human milk. The whey proteins which are used for infant formulas are sweet whey proteins. Sweet whey results from cheese production. Threonine catabolism in mammals appears to be due primarily (70-80\\\\\\%) to the activity of threonine dehydrogenase (EC 1.1.1.103) that oxidizes threonine to 2-amino-3-oxobutyrate, which forms glycine and acetyl CoA, whereas threonine dehydratase (EC 4.2.1.16) that catabolizes threonine into 2-oxobutyrate and ammonia, is significantly less active. Increasing the threonine plasma concentrations leads to accumulation of threonine and glycine in the brain. Such accumulation affects the neurotransmitter balance which may have consequences for the brain development during early postnatal life. Thus, excessive threonine intake during infant feeding should be avoided. (A3450). An essential amino acid occurring naturally in the L-form, which is the active form. It is found in eggs, milk, gelatin, and other proteins. See also: Amlisimod (monomer of) ... View More ... Threonine (Thr) or L-threonine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. L-threonine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Threonine is found in all organisms ranging from bacteria to plants to animals. It is classified as a polar, uncharged (at physiological pH), aliphatic amino acid. Threonine is sometimes considered as a branched chain amino acid. Threonine was actually the last of the 20 amino acids to be discovered (in 1938). It was named threonine because it was similar in structure to threonic acid, a four-carbon monosaccharide. Threonine is an essential amino acid in humans, meaning the body cannot synthesize it and that it must be obtained from the diet. Foods high in threonine include cottage cheese, poultry, fish, meat, lentils, black turtle bean and sesame seeds. Adult humans require about 20 mg/kg body weight/day. In plants and microorganisms, threonine is synthesized from aspartic acid via alpha-aspartyl-semialdehyde and homoserine. In proteins, the threonine residue is susceptible to numerous posttranslational modifications. The hydroxyl side-chain can undergo O-linked glycosylation and phosphorylation through the action of a threonine kinase. Threonine is abundant in human plasma, particularly in newborns. Severe deficiency of threonine causes neurological dysfunction and lameness in experimental animals. Threonine is an immunostimulant which promotes the growth of thymus gland. It also can probably promote cell immune defense function. The threonine content of most of the infant formulas currently on the market is approximately 20\\\\\\% higher than the threonine concentration in human milk. Due to this high threonine content the plasma threonine concentrations are up to twice as high in premature infants fed these formulas than in infants fed human milk. The whey proteins which are used for infant formulas are sweet whey proteins. Sweet whey results from cheese production. Increasing the threonine plasma concentrations leads to accumulation of threonine and glycine in the brain. Such accumulation affects the neurotransmitter balance which may have consequences for the brain development during early postnatal life. Thus, excessive threonine intake during infant feeding should be avoided. (PMID 9853925). Threonine is metabolized in at least two ways. In many animals it is converted to pyruvate via threonine dehydrogenase. An intermediate in this pathway can undergo thiolysis with CoA to produce acetyl-CoA and glycine. In humans the gene for threonine dehydrogenase is an inactive pseudogene, so threonine is converted to alpha-ketobutyrate. From wide variety of protein hydrolysates. Dietary supplement, nutrient L-Threonine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=72-19-5 (retrieved 2024-07-01) (CAS RN: 72-19-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). DL-Threonine, an essential amino acid, has the potential to treat hypostatic leg ulceration[1]. L-Threonine is a natural amino acid, can be produced by microbial fermentation, and is used in food, medicine, or feed[1]. L-Threonine is a natural amino acid, can be produced by microbial fermentation, and is used in food, medicine, or feed[1].
Niacinamide
Nicotinamide is a white powder. (NTP, 1992) Nicotinamide is a pyridinecarboxamide that is pyridine in which the hydrogen at position 3 is replaced by a carboxamide group. It has a role as an EC 2.4.2.30 (NAD(+) ADP-ribosyltransferase) inhibitor, a metabolite, a cofactor, an antioxidant, a neuroprotective agent, an EC 3.5.1.98 (histone deacetylase) inhibitor, an anti-inflammatory agent, a Sir2 inhibitor, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite, a mouse metabolite, a human urinary metabolite and a geroprotector. It is a vitamin B3, a pyridinecarboxamide and a pyridine alkaloid. It is functionally related to a nicotinic acid. An important compound functioning as a component of the coenzyme NAD. Its primary significance is in the prevention and/or cure of blacktongue and pellagra. Most animals cannot manufacture this compound in amounts sufficient to prevent nutritional deficiency and it therefore must be supplemented through dietary intake. Niacinamide is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Nicotinamide is a natural product found in Mus musculus, Euonymus grandiflorus, and other organisms with data available. Niacinamide is the active form of vitamin B3 and a component of the coenzyme nicotinamide adenine dinucleotide (NAD). Niacinamide acts as a chemo- and radio-sensitizing agent by enhancing tumor blood flow, thereby reducing tumor hypoxia. This agent also inhibits poly(ADP-ribose) polymerases, enzymes involved in the rejoining of DNA strand breaks induced by radiation or chemotherapy. Nicotinamide is a uremic toxin. Uremic toxins can be subdivided into three major groups based upon their chemical and physical characteristics: 1) small, water-soluble, non-protein-bound compounds, such as urea; 2) small, lipid-soluble and/or protein-bound compounds, such as the phenols and 3) larger so-called middle-molecules, such as beta2-microglobulin. Chronic exposure of uremic toxins can lead to a number of conditions including renal damage, chronic kidney disease and cardiovascular disease. Niacinamide or vitamin B3 is an important compound functioning as a component of the coenzyme NAD. Its primary significance is in the prevention and/or cure of blacktongue and pellagra. Most animals cannot manufacture this compound in amounts sufficient to prevent nutritional deficiency and it therefore must be supplemented through dietary intake. Niacinamide is used to increase the effect of radiation therapy on tumor cells. Niacin (nicotinic acid) and niacinamide, while both labeled as vitamin B3 also have different applications. Niacinamide is useful in arthritis and early-onset type I diabetes while niacin is an effective reducer of high cholesterol levels. Niacinamide is a metabolite found in or produced by Saccharomyces cerevisiae. An important compound functioning as a component of the coenzyme NAD. Its primary significance is in the prevention and/or cure of blacktongue and PELLAGRA. Most animals cannot manufacture this compound in amounts sufficient to prevent nutritional deficiency and it therefore must be supplemented through dietary intake. See also: Adenosine; Niacinamide (component of); Dapsone; niacinamide (component of); Adenosine; Niacinamide; Titanium Dioxide (component of) ... View More ... Niacinamide, also known as nicotinamide (NAM), is a form of vitamin B3 found in food and used as a dietary supplement and medication. Niacinamide belongs to the class of organic compounds known as nicotinamides. These are heterocyclic aromatic compounds containing a pyridine ring substituted at position 3 by a carboxamide group. Its primary significance is in the prevention and/or cure of blacktongue and pellagra. The structure of nicotinamide consists of a pyridine ring to which a primary amide group is attached in the meta position. It is an amide of nicotinic acid. As an aromatic compound, it undergoes electrophilic substitution reactions and transformations of its two functional groups. Niacinamide and phosphoribosyl pyrophosphate can be converted into nicotinic acid mononucleotide and phosphate by the enzyme nicotinamide phosphoribosyltransferase. In humans, niacinamide is involved in the metabolic disorder called the nad+ signalling pathway (cancer). Niacinamide is an odorless tasting compound. Outside of the human body, niacinamide is found, on average, in the highest concentration within a few different foods, such as common sages, cow milk, and cocoa beans and in a lower concentration in common pea. Niacinamide has also been detected, but not quantified in several different foods, such as yardlong beans, roselles, apples, oyster mushrooms, and swiss chards. Niacinamide occurs in trace amounts mainly in meat, fish, nuts, and mushrooms, as well as to a lesser extent in some vegetables. It is commonly added to cereals and other foods. Many multivitamins contain 20–30 mg of vitamin B3 and it is also available in higher doses. Most animals cannot manufacture this compound in amounts sufficient to prevent nutritional deficiency and it therefore must be supplemented through dietary intake. COVID info from COVID-19 Disease Map, WikiPathways, PDB, Protein Data Bank, clinicaltrial, clinicaltrials, clinical trial, clinical trials A pyridinecarboxamide that is pyridine in which the hydrogen at position 3 is replaced by a carboxamide group. Widespread in plants, e.g. rice, yeast and fungi. Dietary supplement, may be used in infant formulas Nicotinamide. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=98-92-0 (retrieved 2024-07-01) (CAS RN: 98-92-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Nicotinamide is a form of vitamin B3 or niacin. Nicotinamide Hydrochloride inhibits SIRT2 activity (IC50: 2 μM). Nicotinamide also inhibits SIRT1. Nicotinamide increases cellular NAD+, ATP, ROS levels. Nicotinamide inhibits tumor growth and improves survival. Nicotinamide also has anti-HBV activity[1][2][3][4]. Nicotinamide is a form of vitamin B3 or niacin. Nicotinamide Hydrochloride inhibits SIRT2 activity (IC50: 2 μM). Nicotinamide also inhibits SIRT1. Nicotinamide increases cellular NAD+, ATP, ROS levels. Nicotinamide inhibits tumor growth and improves survival. Nicotinamide also has anti-HBV activity[1][2][3][4]. Nicotinamide is a form of vitamin B3 or niacin. Nicotinamide Hydrochloride inhibits SIRT2 activity (IC50: 2 μM). Nicotinamide also inhibits SIRT1. Nicotinamide increases cellular NAD+, ATP, ROS levels. Nicotinamide inhibits tumor growth and improves survival. Nicotinamide also has anti-HBV activity[1][2][3][4].
Salicylic acid
Salicylic acid is a monohydroxybenzoic acid that is benzoic acid with a hydroxy group at the ortho position. It is obtained from the bark of the white willow and wintergreen leaves. It has a role as an antiinfective agent, an antifungal agent, a keratolytic drug, an EC 1.11.1.11 (L-ascorbate peroxidase) inhibitor, a plant metabolite, an algal metabolite and a plant hormone. It is a conjugate acid of a salicylate. It is a colorless solid, it is a precursor to and a metabolite of aspirin (acetylsalicylic acid). It is a plant hormone. The name is from Latin salix for willow tree. It is an ingredient in some anti-acne products. Salts and esters of salicylic acid are known as salicylates. Salicylic acid modulates COX1 enzymatic activity to decrease the formation of pro-inflammatory prostaglandins. Salicylate may competitively inhibit prostaglandin formation. Salicylates antirheumatic (nonsteroidal anti-inflammatory) actions are a result of its analgesic and anti-inflammatory mechanisms. Salicylic acid works by causing the cells of the epidermis to slough off more readily, preventing pores from clogging up, and allowing room for new cell growth. Salicylic acid inhibits the oxidation of uridine-5-diphosphoglucose (UDPG) competitively with nicotinamide adenosine dinucleotide and noncompetitively with UDPG. It also competitively inhibits the transferring of glucuronyl group of uridine-5-phosphoglucuronic acid to the phenolic acceptor. The wound-healing retardation action of salicylates is probably due mainly to its inhibitory action on mucopolysaccharide synthesis. Salicylic acid is biosynthesized from the amino acid phenylalanine. In Arabidopsis thaliana, it can be synthesized via a phenylalanine-independent pathway. Salicylic acid is an odorless white to light tan solid. Sinks and mixes slowly with water. (USCG, 1999) Salicylic acid is a monohydroxybenzoic acid that is benzoic acid with a hydroxy group at the ortho position. It is obtained from the bark of the white willow and wintergreen leaves. It has a role as an antiinfective agent, an antifungal agent, a keratolytic drug, an EC 1.11.1.11 (L-ascorbate peroxidase) inhibitor, a plant metabolite, an algal metabolite and a plant hormone. It is a conjugate acid of a salicylate. A compound obtained from the bark of the white willow and wintergreen leaves, and also prepared synthetically. It has bacteriostatic, fungicidal, and keratolytic actions. Its salts, the salicylates, are used as analgesics. Salicylic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Salicylic Acid is a beta hydroxy acid that occurs as a natural compound in plants. It has direct activity as an anti-inflammatory agent and acts as a topical antibacterial agent due to its ability to promote exfoliation. A compound obtained from the bark of the white willow and wintergreen leaves, and also prepared synthetically. It has bacteriostatic, fungicidal, and keratolytic actions. Its salts, the salicylates, are used as analgesics. A compound obtained from the bark of the white willow and wintergreen leaves. It has bacteriostatic, fungicidal, and keratolytic actions. See also: Benzoic Acid (has active moiety); Methyl Salicylate (active moiety of); Benzyl salicylate (is active moiety of) ... View More ... A monohydroxybenzoic acid that is benzoic acid with a hydroxy group at the ortho position. It is obtained from the bark of the white willow and wintergreen leaves. Salicylic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=69-72-7 (retrieved 2024-06-29) (CAS RN: 69-72-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Salicylic acid (2-Hydroxybenzoic acid) inhibits cyclo-oxygenase-2 (COX-2) activity independently of transcription factor (NF-κB) activation[1]. Salicylic acid (2-Hydroxybenzoic acid) inhibits cyclo-oxygenase-2 (COX-2) activity independently of transcription factor (NF-κB) activation[1].
Inosine
C10H12N4O5 (268.08076619999997)
Inosine, also known as hypoxanthosine or inotin, belongs to the class of organic compounds known as purine nucleosides. Purine nucleosides are compounds comprising a purine base attached to a ribosyl or deoxyribosyl moiety. Inosine is formed when hypoxanthine is attached to a ribose ring a beta-N9-glycosidic bond. Inosine is an intermediate in the degradation of purines and purine nucleosides to uric acid. Inosine is also an intermediate in the purine salvage pathway. Inosine occurs in the anticodon of certain transfer RNA molecules and is essential for proper translation of the genetic code in wobble base pairs. Inosine exists in all living species, ranging from bacteria to plants to humans. Inosine participates in a number of enzymatic reactions. In particular, inosine can be biosynthesized from inosinic acid through its interaction with the enzyme known as cytosolic purine 5-nucleotidase. In addition, inosine can be converted into hypoxanthine and ribose 1-phosphate through its interaction with the enzyme known as purine nucleoside phosphorylase. Altered levels of inosine have also been associated with purine nucleoside phosphorylase deficiency and xanthinuria type I, both of which are inborn errors of metabolism. Animal studies have suggested that inosine has neuroprotective properties. It has been proposed as a potential treatment for spinal cord injury (PMID: 16317421) and for administration after stroke, as inosine appears to induce axonal rewiring (PMID: 12084941). After ingestion, inosine is metabolized into uric acid, which has been found to be a natural antioxidant and peroxynitrite scavenger. As such, inosine may have potential benefits to patients with multiple sclerosis and Parkinson’s disease (PMID: 19425822). Inosine can also be produced by gut bacteria and appears to have a number of beneficial effects. Inosine, has been shown to activate peroxisome proliferator-activated receptor (PPAR)-gamma signaling in human colon epithelial cells. Furthermore, exogenous treatment of inosine has been found to protect against DSS-induced colitis in rodents by improving adenosine 2A receptor (A2AR)/PPAR-gamma-dependent mucosal barrier functions (PMID: 33820558). Microbiome-derived inosine has also been shown to modulate the response to checkpoint inhibitor immunotherapy in cancer models. In particular, decreased gut barrier function induced by immunotherapy increases systemic translocation of bacterially derived inosine and activates antitumor T cells. The effect of inosine is dependent on T cell expression of the adenosine A2A receptor and requires co-stimulation. Inosine appears to have other roles in non-mammalian system. For instance, it has been found to be an important feed stimulant by itself or in combination with certain amino acids in some species of farmed fish. For example, inosine and inosine-5-monophosphate have been reported as specific feeding stimulants for turbot fry, (Scophthalmus maximus) and Japanese amberjack. Inosine is a purine nucleoside in which hypoxanthine is attached to ribofuranose via a beta-N(9)-glycosidic bond. It has a role as a human metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite and a mouse metabolite. It is a purines D-ribonucleoside and a member of inosines. It is functionally related to a hypoxanthine and a ribofuranose. A purine nucleoside that has hypoxanthine linked by the N9 nitrogen to the C1 carbon of ribose. It is an intermediate in the degradation of purines and purine nucleosides to uric acid and in pathways of purine salvage. It also occurs in the anticodon of certain transfer RNA molecules. (Dorland, 28th ed) Inosine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Inosine is a natural product found in Fritillaria thunbergii, Cichorium endivia, and other organisms with data available. Inosine is a metabolite found in or produced by Saccharomyces cerevisiae. A purine nucleoside that has hypoxanthine linked by the N9 nitrogen to the C1 carbon of ribose. It is an intermediate in the degradation of purines and purine nucleosides to uric acid and in pathways of purine salvage. It also occurs in the anticodon of certain transfer RNA molecules. (Dorland, 28th ed) G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids D - Dermatologicals > D06 - Antibiotics and chemotherapeutics for dermatological use > D06B - Chemotherapeutics for topical use > D06BB - Antivirals A purine nucleoside in which hypoxanthine is attached to ribofuranose via a beta-N(9)-glycosidic bond. COVID info from COVID-19 Disease Map, clinicaltrial, clinicaltrials, clinical trial, clinical trials S - Sensory organs > S01 - Ophthalmologicals Present in meat extracts and sugar beet Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS [Spectral] Inosine (exact mass = 268.08077) and L-Methionine (exact mass = 149.05105) and Adenosine (exact mass = 267.09675) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] Inosine (exact mass = 268.08077) and L-Tyrosine (exact mass = 181.07389) and Guanosine (exact mass = 283.09167) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] Inosine (exact mass = 268.08077) and S-Adenosyl-L-homocysteine (exact mass = 384.12159) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] Inosine (exact mass = 268.08077) and Guanosine (exact mass = 283.09167) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 110 KEIO_ID I003 Inosine is an endogenous purine nucleoside produced by catabolism of adenosine. Inosine has anti-inflammatory, antinociceptive, immunomodulatory and neuroprotective effects. Inosine is an agonist for adenosine A1 (A1R) and A2A (A2AR) receptors[1][2][3]. Inosine is an endogenous purine nucleoside produced by catabolism of adenosine. Inosine has anti-inflammatory, antinociceptive, immunomodulatory and neuroprotective effects. Inosine is an agonist for adenosine A1 (A1R) and A2A (A2AR) receptors[1][2][3]. Inosine is an endogenous purine nucleoside produced by catabolism of adenosine. Inosine has anti-inflammatory, antinociceptive, immunomodulatory and neuroprotective effects. Inosine is an agonist for adenosine A1 (A1R) and A2A (A2AR) receptors[1][2][3]. Inosine is an endogenous purine nucleoside produced by catabolism of adenosine. Inosine has anti-inflammatory, antinociceptive, immunomodulatory and neuroprotective effects. Inosine is an agonist for adenosine A1 (A1R) and A2A (A2AR) receptors[1][2][3].
Guanosine
Guanosine (G), also known as 2-amino-inosine, belongs to the class of organic compounds known as purine nucleosides. Purine nucleosides are compounds comprising a purine base attached to a ribosyl or deoxyribosyl sugar moiety. Guanosine consists of a guanine base attached to a ribose (ribofuranose) ring via a beta-N9-glycosidic bond. Guanosine is a white, crystalline powder with no odor and mild saline taste. It is very soluble in acetic acid, and slightly soluble in water, but insoluble in ethanol, diethyl ether, benzene, and chloroform. Guanosine exists in all living species, ranging from bacteria to plants to humans. High levels of guanosine can be found in clovers, coffee plants, and the pollen of pines. It has been detected, but not quantified in, several different foods, such as leeks, garlic, chicory roots, green bell peppers, and black-eyed peas. Guanosine plays an important role in various biochemical processes including the synthesis of nucleic acids such as RNA and intracellular signal transduction (cGMP). The antiviral drug acyclovir, often used in herpes treatment, and the anti-HIV drug abacavir, are both structurally similar to guanosine. Guanosine can be phosphorylated to become guanosine monophosphate (GMP), cyclic guanosine monophosphate (cGMP), guanosine diphosphate (GDP), and guanosine triphosphate (GTP). In humans, guanosine is involved in intracellular signalling through the adenosine receptors A1R and A2AR (PMID: 31847113). Evidence from rodent and cell models has shown a number of important neurotrophic and neuroprotective effects of guanosine. In particular, it is effective in preventing deleterious consequences of seizures, spinal cord injury, pain, mood disorders and aging-related diseases, such as ischemia, Parkinson‚Äôs and Alzheimer‚Äôs diseases (PMID: 27699087). Studies with rodent models of Parkinson‚Äôs disease have shown that guanosine decreases neuronal apoptotic cell death and increases dopaminergic neurons at substantia nigra pars compacta, accompanied by an improvement of motor symptoms in Parkinson‚Äôs disease (i.e. a reduction of bradykinesia). Guanosine promotes neurite arborization, outgrowth, proliferation and differentiation. Systemic administration of guanosine for eight weeks (8 mg/kg) has been shown to stimulate neuroprogenitors proliferation in the subventricular zone (SVZ) in a mouse model of Parkinsonism (PMID: 27699087). The effect of guanosine treatment is accompanied by an increased number of fibroblast growth factor (FGF-2)-positive cells which is an important regulator of neuroprogenitor/stem cell proliferation, survival and differentiation (PMID: 27699087). Guanosine prevents reactive oxygen species (ROS) generation and cell death in hippocampal slices subjected to the oxygen/glucose deprivation (PMID: 31847113). Guanosine is a purine nucleoside in which guanine is attached to ribofuranose via a beta-N(9)-glycosidic bond. It has a role as a fundamental metabolite. It is a purines D-ribonucleoside and a member of guanosines. It is functionally related to a guanine. Guanosine is a nucleoside comprising guanine attached to a ribose (ribofuranose) ring via a β-N9-glycosidic bond. Guanosine can be phosphorylated to become GMP (guanosine monophosphate), cGMP (cyclic guanosine monophosphate), GDP (guanosine diphosphate) and GTP (guanosine triphosphate) which are factors in signal transduction pathways. Guanosine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Guanosine is a natural product found in Ulva australis, Allium chinense, and other organisms with data available. Guanosine is a purine nucleoside formed from a beta-N9-glycosidic bond between guanine and a ribose ring and is essential for metabolism. Guanosine is a metabolite found in or produced by Saccharomyces cerevisiae. A purine nucleoside that has guanine linked by its N9 nitrogen to the C1 carbon of ribose. It is a component of ribonucleic acid and its nucleotides play important roles in metabolism. (From Dorland, 28th ed) Guanosine is a nucleoside comprising guanine attached to a ribose (ribofuranose) ring via a beta-N9-glycosidic bond. Guanosine can be phosphorylated to become GMP (guanosine monophosphate), cGMP (cyclic guanosine monophosphate), GDP (guanosine diphosphate) and GTP (guanosine triphosphate). ; The nucleoside guanosine exert important neuroprotective and neuromodulator roles in the central nervous system, which may be related to inhibition of the glutamatergic neurotransmission activity. Guanosine is the specific extracellular guanine-based purines effector and indicate that its conversion occurs not only in the central nervous system but also peripherally. (PMID: 16325434); Guanosine is a nucleoside comprising guanine attached to a ribose (ribofuranose) ring via a ?-N9-glycosidic bond. Guanosine is found in many foods, some of which are elderberry, malus (crab apple), acerola, and arrowhead. A purine nucleoside in which guanine is attached to ribofuranose via a beta-N(9)-glycosidic bond. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS [Spectral] Guanosine (exact mass = 283.09167) and 3,4-Dihydroxy-L-phenylalanine (exact mass = 197.06881) and Glutathione disulfide (exact mass = 612.15196) and AMP (exact mass = 347.06308) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] Guanosine (exact mass = 283.09167) and Guanine (exact mass = 151.04941) and 3,4-Dihydroxy-L-phenylalanine (exact mass = 197.06881) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Acquisition and generation of the data is financially supported in part by CREST/JST. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.125 CONFIDENCE standard compound; INTERNAL_ID 317 KEIO_ID G015; [MS2] KO008966 Annotation level-2 KEIO_ID G015 Guanosine (DL-Guanosine) is a purine nucleoside comprising guanine attached to a ribose (ribofuranose) ring via a β-N9-glycosidic bond. Guanosine possesses anti-HSV activity. Guanosine (DL-Guanosine) is a purine nucleoside comprising guanine attached to a ribose (ribofuranose) ring via a β-N9-glycosidic bond. Guanosine possesses anti-HSV activity. Guanosine (DL-Guanosine) is a purine nucleoside comprising guanine attached to a ribose (ribofuranose) ring via a β-N9-glycosidic bond. Guanosine possesses anti-HSV activity.
1,2,3-Trihydroxybenzene
1,2,3-trihydroxybenzene, also known as pyrogallic acid or 1,2,3-benzenetriol, is a member of the class of compounds known as 5-unsubstituted pyrrogallols. 5-unsubstituted pyrrogallols are pyrrogallols that are unsubstituted at th5-position of the benzene ring. 1,2,3-trihydroxybenzene is soluble (in water) and a very weakly acidic compound (based on its pKa). 1,2,3-trihydroxybenzene can be found in arabica coffee, beer, cocoa powder, and coffee, which makes 1,2,3-trihydroxybenzene a potential biomarker for the consumption of these food products. 1,2,3-trihydroxybenzene can be found primarily in blood, feces, and urine. 1,2,3-trihydroxybenzene is an organic compound with the formula C6H3(OH)3. It is a white water-soluble solid although samples are typically brownish because of its sensitivity toward oxygen. It is one of three isomeric benzenetriols . Pyrogallic acid is an odorless white to gray solid. Sinks and mixes with water. (USCG, 1999) Pyrogallol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 3. It has a role as a plant metabolite. It is a phenolic donor and a benzenetriol. Pyrogallol is a natural product found in Gunnera perpensa, Nigella glandulifera, and other organisms with data available. A trihydroxybenzene or dihydroxy phenol that can be prepared by heating GALLIC ACID. See also: Stevia rebaudiuna Leaf (part of); Alchemilla monticola whole (part of); Agrimonia eupatoria flowering top (part of). 1,2,3-Trihydroxybenzene, or pyrogallol is a benzenetriol. It is a white crystalline powder and a powerful reducing agent. It was first prepared by Scheele 1786 by heating gallic acid. An alternate preparation is heating para-chlorophenoldisulphonic acid with potassium hydroxide. 1,2,3-Trihydroxybenzene has been found to be a metabolite of Aspergillus (https://www.tandfonline.com/doi/pdf/10.1080/00021369.1982.10865473). A benzenetriol carrying hydroxy groups at positions 1, 2 and 3. D020011 - Protective Agents > D000975 - Antioxidants Pyrogallol is a polyphenol compound, which has anti-fungal and anti-psoriatic properties. Pyrogallol is a reductant that is able to generate free radicals, in particular superoxide anions. Pyrogallol is a polyphenol compound, which has anti-fungal and anti-psoriatic properties. Pyrogallol is a reductant that is able to generate free radicals, in particular superoxide anions.
Guanine
Guanine is one of the five main nucleobases found in the nucleic acids DNA and RNA. Guanine is a derivative of purine, consisting of a fused pyrimidine-imidazole ring system with conjugated double bonds. Being unsaturated, the bicyclic molecule is planar. The guanine nucleoside is called guanosine. The first isolation of guanine was reported in 1844 from the excreta of sea birds, known as guano, which was used as a source of fertilizer. High affinity binding of guanine nucleotides and the ability to hydrolyze bound GTP to GDP are characteristics of an extended family of intracellular proteins. Guanine nucleotide-binding regulatory proteins may be involved in the activation of phospholipases C and A2 by hormones and other ligands. The binding of hormones to receptors that activate phospholipase C is decreased by guanine nucleotides and these hormones also stimulate a high-affinity GTPase activity in cell membranes. Effects of hormones on phospholipase C activity in cell-free preparations are dependent on the presence of guanine nucleotides. Hypoxanthine-guanine phosphoribosyltransferase (HPRT, EC 2.4.2.8) is a purine salvage enzyme that catalyses the conversion of hypoxanthine and guanine to their respective mononucleotides. Partial deficiency of this enzyme can result in the overproduction of uric acid leading to a severe form of gout, whilst a virtual absence of HPRT activity causes the Lesch-Nyhan syndrome, an inborn error of metabolism, which is characterised by hyperuricaemia, mental retardation, choreoathetosis and compulsive self-mutilation. Peroxynitrite induces DNA base damage predominantly at guanine (G) and 8-oxoguanine (8-oxoG) nucleobases via oxidation reactions. G and 8-oxoG are the most reactive bases toward Peroxynitrite and possibly the major contributors to peroxynitrite-derived genotoxic and mutagenic lesions. The neutral G radical, reacts with NO2 to yield 8-nitroguanine and 5-nitro-4-guanidinohydantoin (PMID: 16352449, 2435586, 2838362, 1487231). Guanine is a 2-aminopurine carrying a 6-oxo substituent. It has a role as a human metabolite, an algal metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite and a mouse metabolite. It is a purine nucleobase, an oxopurine and a member of 2-aminopurines. It derives from a hydride of a 9H-purine. Guanine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Guanine is a natural product found in Fritillaria thunbergii, Isatis tinctoria, and other organisms with data available. Guanine is a purine base that is a constituent of nucleotides occurring in nucleic acids. Guanine is a mineral with formula of C5H3(NH2)N4O. The corresponding IMA (International Mineralogical Association) number is IMA1973-056. The IMA symbol is Gni. Guanine is a metabolite found in or produced by Saccharomyces cerevisiae. Occurs widely in animals and plants. Component of nucleic acids (CCD) A 2-aminopurine carrying a 6-oxo substituent. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS [Spectral] Guanine (exact mass = 151.04941) and 3,4-Dihydroxy-L-phenylalanine (exact mass = 197.06881) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] Guanine (exact mass = 151.04941) and D-Gluconic acid (exact mass = 196.0583) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] Guanine (exact mass = 151.04941) and L-Valine (exact mass = 117.07898) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 54 CONFIDENCE standard compound; ML_ID 43
L-Leucine
Leucine (Leu) or L-leucine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (‚ÄìNH2) and carboxyl (‚ÄìCOOH) functional groups, along with a side chain (R group) specific to each amino acid. L-leucine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Leucine is found in all organisms ranging from bacteria to plants to animals. It is classified as a non-polar, uncharged (at physiological pH) aliphatic amino acid. Leucine is essential in humans, meaning the body cannot synthesize it, and it must be obtained from the diet. Human dietary sources are foods that contain protein, such as meats, dairy products, soy products, beans and legumes. L-Leucine is a branched chain amino acid (BCAA). The BCAAs consist of leucine, valine and isoleucine (and occasionally threonine). BCAAs are essential amino acids whose carbon structure is marked by a branch point at the beta-carbon position. BCAAs are critical to human life and are particularly involved in stress, energy and muscle metabolism. BCAA supplementation as therapy, both oral and intravenous, in human health and disease holds great promise. BCAAs have different metabolic routes, with valine going solely to carbohydrates (glucogenic), leucine solely to fats (ketogenic) and isoleucine being both a glucogenic and a ketogenic amino acid. The different metabolism accounts for different requirements for these essential amino acids in humans: 12 mg/kg, 14 mg/kg and 16 mg/kg of valine, leucine and isoleucine respectively. The primary metabolic end products of leucine metabolism are acetyl-CoA and acetoacetate; consequently, it is one of the two exclusively ketogenic amino acids, with lysine being the other. Leucine is the most important ketogenic amino acid in humans. The vast majority of l-leucine metabolism is initially catalyzed by the branched-chain amino acid aminotransferase enzyme, producing alpha-ketoisocaproate (alpha-KIC). alpha-KIC is metabolized by the mitochondrial enzyme branched-chain alpha-ketoacid dehydrogenase, which converts it to isovaleryl-CoA. Isovaleryl-CoA is subsequently metabolized by the enzyme isovaleryl-CoA dehydrogenase and converted to beta-methylcrotonyl-CoA (MC-CoA), which is used in the synthesis of acetyl-CoA and other compounds. During biotin deficiency, HMB can be synthesized from MC-CoA via enoyl-CoA hydratase and an unknown thioesterase enzyme, which convert MC-CoA into HMB-CoA and HMB-CoA into HMB respectively. Leucine has the capacity to directly stimulate myofibrillar muscle protein synthesis (PMID 15051860). This effect of leucine arises results from its role as an activator of the mechanistic target of rapamycin (mTOR) (PMID 23551944) a serine-threonine protein kinase that regulates protein biosynthesis and cell growth. The activation of mTOR by leucine is mediated through Rag GTPases. Leucine, like other BCAAs, is associated with insulin resistance. In particular, higher levels of leucine are observed in the blood of diabetic mice, rats, and humans (PMID 25287287). BCAAs such as leucine have different deficiency symptoms. Valine deficiency is marked by neurological defects in the brain, while isoleucine deficiency is marked by muscle tremors. Persistently low leucine levels can result in decreased appetite, poor feeding, lethargy, poor growth, weight loss, skin rashes, hair loss, and desquamation. Many types of inborn errors of BCAA metabolism exist and these are marked by various abnormalities. The most common form is maple syrup urine disease, marked by a characteristic urinary odor. Other abnormalities are associated with a wide range of symptoms, such as mental retardation, ataxia, hypoglycemia, spinal muscle atrophy, rash, vomiting and excessive muscle movement. Most forms of BCAA metabolism errors are corrected by dietary res... L-leucine is the L-enantiomer of leucine. It has a role as a plant metabolite, an Escherichia coli metabolite, a Saccharomyces cerevisiae metabolite, a human metabolite, an algal metabolite and a mouse metabolite. It is a pyruvate family amino acid, a proteinogenic amino acid, a leucine and a L-alpha-amino acid. It is a conjugate base of a L-leucinium. It is a conjugate acid of a L-leucinate. It is an enantiomer of a D-leucine. It is a tautomer of a L-leucine zwitterion. An essential branched-chain amino acid important for hemoglobin formation. L-Leucine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Leucine is one of nine essential amino acids in humans (provided by food), Leucine is important for protein synthesis and many metabolic functions. Leucine contributes to regulation of blood-sugar levels; growth and repair of muscle and bone tissue; growth hormone production; and wound healing. Leucine also prevents breakdown of muscle proteins after trauma or severe stress and may be beneficial for individuals with phenylketonuria. Leucine is available in many foods and deficiency is rare. (NCI04) Leucine (abbreviated as Leu or L)[2] is a branched-chain л±-amino acid with the chemical formulaHO2CCH(NH2)CH2CH(CH3)2. Leucine is classified as a hydrophobic amino acid due to its aliphatic isobutyl side chain. It is encoded by six codons (UUA, UUG, CUU, CUC, CUA, and CUG) and is a major component of the subunits in ferritin, astacin, and other buffer proteins. Leucine is an essential amino acid, meaning that the human body cannot synthesize it, and it therefore must be ingested. It is important for hemoglobin formation. An essential branched-chain amino acid important for hemoglobin formation. See also: Isoleucine; Leucine (component of) ... View More ... Dietary supplement, nutrient [DFC]. (±)-Leucine is found in many foods, some of which are green bell pepper, italian sweet red pepper, green zucchini, and red bell pepper. L-Leucine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=61-90-5 (retrieved 2024-07-01) (CAS RN: 61-90-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1].
Uridine
Uridine, also known as beta-uridine or 1-beta-D-ribofuranosylpyrimidine-2,4(1H,3H)-dione, is a member of the class of compounds known as pyrimidine nucleosides. Pyrimidine nucleosides are compounds comprising a pyrimidine base attached to a ribosyl or deoxyribosyl moiety. More specifically, uridine is a nucleoside consisting of uracil and D-ribose and a component of RNA. Uridine is soluble (in water) and a very weakly acidic compound (based on its pKa). Uridine can be synthesized from uracil. It is one of the five standard nucleosides which make up nucleic acids, the others being adenosine, thymidine, cytidine and guanosine. The five nucleosides are commonly abbreviated to their one-letter codes U, A, T, C and G respectively. Uridine is also a parent compound for other transformation products, including but not limited to, nikkomycin Z, 3-(enolpyruvyl)uridine 5-monophosphate, and 5-aminomethyl-2-thiouridine. Uridine can be found in most biofluids, including urine, breast milk, cerebrospinal fluid (CSF), and blood. Within the cell, uridine is primarily located in the mitochondria, in the nucleus and the lysosome. It can also be found in the extracellular space. As an essential nucleoside, uridine exists in all living species, ranging from bacteria to humans. In humans, uridine is involved in several metabolic disorders, some of which include dhydropyrimidinase deficiency, MNGIE (mitochondrial neurogastrointestinal encephalopathy), and beta-ureidopropionase deficiency. Moreover, uridine is found to be associated with Lesch-Nyhan syndrome, which is an inborn error of metabolism. Uridine is a nucleoside consisting of uracil and D-ribose and a component of RNA. Uridine plays a role in the glycolysis pathway of galactose. In humans there is no catabolic process to metabolize galactose. Therefore, galactose is converted to glucose and metabolized via the normal glucose metabolism pathways. More specifically, consumed galactose is converted into galactose 1-phosphate (Gal-1-P). This molecule is a substrate for the enzyme galactose-1-phosphate uridyl transferase which transfers a UDP molecule to the galactose molecule. The end result is UDP-galactose and glucose-1-phosphate. This process is continued to allow the proper glycolysis of galactose. Uridine is found in many foods (anything containing RNA) but is destroyed in the liver and gastrointestinal tract, and so no food, when consumed, has ever been reliably shown to elevate blood uridine levels. On the other hand, consumption of RNA-rich foods may lead to high levels of purines (adenine and guanosine) in blood. High levels of purines are known to increase uric acid production and may aggravate or lead to conditions such as gout. Uridine is a ribonucleoside composed of a molecule of uracil attached to a ribofuranose moiety via a beta-N(1)-glycosidic bond. It has a role as a human metabolite, a fundamental metabolite and a drug metabolite. It is functionally related to a uracil. Uridine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Uridine is a Pyrimidine Analog. The chemical classification of uridine is Pyrimidines, and Analogs/Derivatives. Uridine is a natural product found in Ulva australis, Synechocystis, and other organisms with data available. Uridine is a nucleoside consisting of uracil and D-ribose and a component of RNA. Uridine has been studied as a rescue agent to reduce the toxicities associated with 5-fluorouracil (5-FU), thereby allowing the administration of higher doses of 5-FU in chemotherapy regimens. (NCI04) Uridine is a metabolite found in or produced by Saccharomyces cerevisiae. A ribonucleoside in which RIBOSE is linked to URACIL. Uridine is a molecule (known as a nucleoside) that is formed when uracil is attached to a ribose ring (also known as a ribofuranose) via a b-N1-glycosidic bond. ; Uridine is a molecule (known as a nucleoside) that is formed when uracil is attached to a ribose ring (also known as a ribofuranose) via a ?-N1-glycosidic bond. Uridine is found in many foods, some of which are celery leaves, canola, common hazelnut, and hickory nut. A ribonucleoside composed of a molecule of uracil attached to a ribofuranose moiety via a beta-N(1)-glycosidic bond. [Spectral] Uridine (exact mass = 244.06954) and Adenosine (exact mass = 267.09675) and Glutathione (exact mass = 307.08381) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] Uridine (exact mass = 244.06954) and Glutathione (exact mass = 307.08381) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Uridine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=58-96-8 (retrieved 2024-06-29) (CAS RN: 58-96-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Uridine (β-Uridine) is a glycosylated pyrimidine-analog containing uracil attached to a ribose ring (or more specifically, aribofuranose) via a β-N1-glycosidic bond. Uridine (β-Uridine) is a glycosylated pyrimidine-analog containing uracil attached to a ribose ring (or more specifically, aribofuranose) via a β-N1-glycosidic bond. Uridine (β-Uridine) is a glycosylated pyrimidine-analog containing uracil attached to a ribose ring (or more specifically, aribofuranose) via a β-N1-glycosidic bond.
L-Proline
Proline (Pro), also known as L-proline is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. Proline is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Proline is found in all organisms ranging from bacteria to plants to animals. It is classified as an aliphatic, non-polar amino acid. Proline is sometimes called an imino acid, although the IUPAC definition of an imine requires a carbon-nitrogen double bond. Proline is a non-essential amino acid that is synthesized from glutamic acid. It is an essential component of collagen and is important for proper functioning of joints and tendons. Proline is derived from the amino acid L-glutamate in which glutamate-5-semialdehyde is first formed by glutamate 5-kinase and glutamate-5-semialdehyde dehydrogenase (which requires NADH or NADPH). This semialdehyde can then either spontaneously cyclize to form 1-pyrroline-5-carboxylic acid, which is reduced to proline by pyrroline-5-carboxylate reductase, or turned into ornithine by ornithine aminotransferase, followed by cyclization by ornithine cyclodeaminase to form proline. L-Proline has been found to act as a weak agonist of the glycine receptor and of both NMDA and non-NMDA ionotropic glutamate receptors. It has been proposed to be a potential endogenous excitotoxin/neurotoxin. Studies in rats have shown that when injected into the brain, proline non-selectively destroys pyramidal and granule cells (PMID: 3409032 ). Therefore, under certain conditions proline can act as a neurotoxin and a metabotoxin. A neurotoxin causes damage to nerve cells and nerve tissues. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of proline are associated with at least five inborn errors of metabolism, including hyperprolinemia type I, hyperprolinemia type II, iminoglycinuria, prolinemia type II, and pyruvate carboxylase deficiency. People with hyperprolinemia type I often do not show any symptoms even though they have proline levels in their blood between 3 and 10 times the normal level. Some individuals with hyperprolinemia type I exhibit seizures, intellectual disability, or other neurological or psychiatric problems. Hyperprolinemia type II results in proline levels in the blood between 10 and 15 times higher than normal, and high levels of a related compound called pyrroline-5-carboxylate. Hyperprolinemia type II has signs and symptoms that vary in severity and is more likely than type I to involve seizures or intellectual disability. L-proline is pyrrolidine in which the pro-S hydrogen at position 2 is substituted by a carboxylic acid group. L-Proline is the only one of the twenty DNA-encoded amino acids which has a secondary amino group alpha to the carboxyl group. It is an essential component of collagen and is important for proper functioning of joints and tendons. It also helps maintain and strengthen heart muscles. It has a role as a micronutrient, a nutraceutical, an algal metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite, a mouse metabolite and a member of compatible osmolytes. It is a glutamine family amino acid, a proteinogenic amino acid, a proline and a L-alpha-amino acid. It is a conjugate base of a L-prolinium. It is a conjugate acid of a L-prolinate. It is an enantiomer of a D-proline. It is a tautomer of a L-proline zwitterion. Proline is one of the twenty amino acids used in living organisms as the building blocks of proteins. Proline is sometimes called an imino acid, although the IUPAC definition of an imine requires a carbon-nitrogen double bond. Proline is a non-essential amino acid that is synthesized from glutamic acid. It is an essential component of collagen and is important for proper functioning of joints and tendons. L-Proline is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Proline is a cyclic, nonessential amino acid (actually, an imino acid) in humans (synthesized from glutamic acid and other amino acids), Proline is a constituent of many proteins. Found in high concentrations in collagen, proline constitutes almost a third of the residues. Collagen is the main supportive protein of skin, tendons, bones, and connective tissue and promotes their health and healing. (NCI04) L-Proline is one of the twenty amino acids used in living organisms as the building blocks of proteins. Proline is sometimes called an imino acid, although the IUPAC definition of an imine requires a carbon-nitrogen double bond. Proline is a non-essential amino acid that is synthesized from glutamic acid. It is an essential component of collagen and is important for proper functioning of joints and tendons. A non-essential amino acid that is synthesized from GLUTAMIC ACID. It is an essential component of COLLAGEN and is important for proper functioning of joints and tendons. Pyrrolidine in which the pro-S hydrogen at position 2 is substituted by a carboxylic acid group. L-Proline is the only one of the twenty DNA-encoded amino acids which has a secondary amino group alpha to the carboxyl group. It is an essential component of collagen and is important for proper functioning of joints and tendons. It also helps maintain and strengthen heart muscles. Flavouring ingredient; dietary supplement L-Proline is one of the twenty amino acids used in living organisms as the building blocks of proteins. L-Proline is one of the twenty amino acids used in living organisms as the building blocks of proteins.
Citric acid
Citric acid (citrate) is a tricarboxylic acid, an organic acid with three carboxylate groups. Citrate is an intermediate in the TCA cycle (also known as the Tricarboxylic Acid cycle, the Citric Acid cycle or Krebs cycle). The TCA cycle is a central metabolic pathway for all animals, plants, and bacteria. As a result, citrate is found in all living organisms, from bacteria to plants to animals. In the TCA cycle, the enzyme citrate synthase catalyzes the condensation of oxaloacetate with acetyl CoA to form citrate. Citrate then acts as the substrate for the enzyme known as aconitase and is then converted into aconitic acid. The TCA cycle ends with regeneration of oxaloacetate. This series of chemical reactions in the TCA cycle is the source of two-thirds of the food-derived energy in higher organisms. Citrate can be transported out of the mitochondria and into the cytoplasm, then broken down into acetyl-CoA for fatty acid synthesis, and into oxaloacetate. Citrate is a positive modulator of this conversion, and allosterically regulates the enzyme acetyl-CoA carboxylase, which is the regulating enzyme in the conversion of acetyl-CoA into malonyl-CoA (the commitment step in fatty acid synthesis). In short, citrate is transported into the cytoplasm, converted into acetyl CoA, which is then converted into malonyl CoA by acetyl CoA carboxylase, which is allosterically modulated by citrate. In mammals and other vertebrates, Citrate is a vital component of bone, helping to regulate the size of apatite crystals (PMID: 21127269). Citric acid is found in citrus fruits, most concentrated in lemons and limes, where it can comprise as much as 8\\\\\% of the dry weight of the fruit. Citric acid is a natural preservative and is also used to add an acidic (sour) taste to foods and carbonated drinks. Because it is one of the stronger edible acids, the dominant use of citric acid is as a flavoring and preservative in food and beverages, especially soft drinks and candies. Citric acid is an excellent chelating agent, binding metals by making them soluble. It is used to remove and discourage the buildup of limescale from boilers and evaporators. It can be used to treat water, which makes it useful in improving the effectiveness of soaps and laundry detergents. The salts of citric acid (citrates) can be used as anticoagulants due to their calcium chelating ability. Intolerance to citric acid in the diet is known to exist. Little information is available as the condition appears to be rare, but like other types of food intolerance it is often described as a "pseudo-allergic" reaction. Citric acid appears as colorless, odorless crystals with an acid taste. Denser than water. (USCG, 1999) Citric acid is a tricarboxylic acid that is propane-1,2,3-tricarboxylic acid bearing a hydroxy substituent at position 2. It is an important metabolite in the pathway of all aerobic organisms. It has a role as a food acidity regulator, a chelator, an antimicrobial agent and a fundamental metabolite. It is a conjugate acid of a citrate(1-) and a citrate anion. A key intermediate in metabolism. It is an acid compound found in citrus fruits. The salts of citric acid (citrates) can be used as anticoagulants due to their calcium-chelating ability. Citric acid is one of the active ingredients in Phexxi, a non-hormonal contraceptive agent that was approved by the FDA on May 2020. It is also used in combination with magnesium oxide to form magnesium citrate, an osmotic laxative. Citric acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Anhydrous citric acid is a Calculi Dissolution Agent and Anti-coagulant. The mechanism of action of anhydrous citric acid is as an Acidifying Activity and Calcium Chelating Activity. The physiologic effect of anhydrous citric acid is by means of Decreased Coagulation Factor Activity. Anhydrous Citric Acid is a tricarboxylic acid found in citrus fruits. Citric acid is used as an excipient in pharmaceutical preparations due to its antioxidant properties. It maintains stability of active ingredients and is used as a preservative. It is also used as an acidulant to control pH and acts as an anticoagulant by chelating calcium in blood. A key intermediate in metabolism. It is an acid compound found in citrus fruits. The salts of citric acid (citrates) can be used as anticoagulants due to their calcium chelating ability. See also: Citric Acid Monohydrate (related). Citrate, also known as anhydrous citric acid or 2-hydroxy-1,2,3-propanetricarboxylic acid, belongs to tricarboxylic acids and derivatives class of compounds. Those are carboxylic acids containing exactly three carboxyl groups. Citrate is soluble (in water) and a weakly acidic compound (based on its pKa). Citrate can be found in a number of food items such as ucuhuba, loquat, bayberry, and longan, which makes citrate a potential biomarker for the consumption of these food products. Citrate can be found primarily in most biofluids, including saliva, sweat, feces, and blood, as well as throughout all human tissues. Citrate exists in all living species, ranging from bacteria to humans. In humans, citrate is involved in several metabolic pathways, some of which include the oncogenic action of succinate, the oncogenic action of fumarate, the oncogenic action of 2-hydroxyglutarate, and congenital lactic acidosis. Citrate is also involved in several metabolic disorders, some of which include 2-ketoglutarate dehydrogenase complex deficiency, pyruvate dehydrogenase deficiency (E2), fumarase deficiency, and glutaminolysis and cancer. Moreover, citrate is found to be associated with lung Cancer, tyrosinemia I, maple syrup urine disease, and propionic acidemia. A citrate is a derivative of citric acid; that is, the salts, esters, and the polyatomic anion found in solution. An example of the former, a salt is trisodium citrate; an ester is triethyl citrate. When part of a salt, the formula of the citrate ion is written as C6H5O73− or C3H5O(COO)33− . A tricarboxylic acid that is propane-1,2,3-tricarboxylic acid bearing a hydroxy substituent at position 2. It is an important metabolite in the pathway of all aerobic organisms. Citric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=77-92-9 (retrieved 2024-07-01) (CAS RN: 77-92-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Citric acid is a natural preservative and food tartness enhancer. Citric acid induces apoptosis and cell cycle arrest at G2/M phase and S phase in HaCaT cells. Citric acid cause oxidative damage of the liver by means of the decrease of antioxidative enzyme activities. Citric acid causes renal toxicity in mice[1][2][3]. Citric acid is a natural preservative and food tartness enhancer. Citric acid induces apoptosis and cell cycle arrest at G2/M phase and S phase in HaCaT cells. Citric acid cause oxidative damage of the liver by means of the decrease of antioxidative enzyme activities. Citric acid causes renal toxicity in mice[1][2][3].
Epigallocatechin gallate
Epigallocatechin gallate (EGCG) is the principal catechin in tea from Camellia sinensis, the most consumed beverage worldwide (after water). Depending on brew time and temperature, a single cup of green tea may contain 100-200 mg EGCG. To control the dose of EGCG administered in experimental studies, green tea solids (GTS) or capsules of green tea extract standardized to EGCG content are often employed. However, there is considerable variability in the EGCG content of commercially available dietary supplements, ranging from 12-143\\\\\\\\% of the tablet or capsule weight. While standardizing tea preparations to EGCG or using highly purified EGCG for research presents an important strategy for the conduct of precise studies as well as the ability to replicate experiments, it is worth noting this approach limits the potential contributions and possible synergy with other bioactive tea ingredients, including caffeine and other flavonoids. Human studies of the bioavailability of green tea catechins reveal these compounds to be poorly absorbed, with <0.1\\\\\\\\% of ingested catechins appearing in blood. Most ingested EGCG is rapidly cleared from blood with an elimination half-life of {approx}3 h and preferentially excreted via bile to the colon. The growing interest in the role of EGCG in health promotion and disease prevention is reflected by an exponential growth of research publications in this field. (J Am Coll Nutr. 2007 Aug;26(4):362S-365S). (-)-epigallocatechin 3-gallate is a gallate ester obtained by the formal condensation of gallic acid with the (3R)-hydroxy group of (-)-epigallocatechin. It has a role as an antineoplastic agent, an antioxidant, a Hsp90 inhibitor, a neuroprotective agent, a plant metabolite, a geroprotector and an apoptosis inducer. It is a gallate ester, a polyphenol and a member of flavans. It is functionally related to a (-)-epigallocatechin. Epigallocatechin gallate has been investigated for the treatment of Hypertension and Diabetic Nephropathy. (-)-Epigallocatechin gallate is a natural product found in Limoniastrum guyonianum, Scurrula atropurpurea, and other organisms with data available. Epigallocatechin Gallate is a phenolic antioxidant found in a number of plants such as green and black tea. It inhibits cellular oxidation and prevents free radical damage to cells. It is under study as a potential cancer chemopreventive agent. (NCI) A gallate ester obtained by the formal condensation of gallic acid with the (3R)-hydroxy group of (-)-epigallocatechin. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents D020011 - Protective Agents > D016588 - Anticarcinogenic Agents D020011 - Protective Agents > D016587 - Antimutagenic Agents D020011 - Protective Agents > D000975 - Antioxidants D000970 - Antineoplastic Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 808; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2759; ORIGINAL_PRECURSOR_SCAN_NO 2758 CONFIDENCE standard compound; INTERNAL_ID 808; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2748; ORIGINAL_PRECURSOR_SCAN_NO 2746 CONFIDENCE standard compound; INTERNAL_ID 808; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2762; ORIGINAL_PRECURSOR_SCAN_NO 2760 ORIGINAL_ACQUISITION_NO 2759; CONFIDENCE standard compound; INTERNAL_ID 808; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_PRECURSOR_SCAN_NO 2758 CONFIDENCE standard compound; INTERNAL_ID 808; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2759; ORIGINAL_PRECURSOR_SCAN_NO 2756 CONFIDENCE standard compound; INTERNAL_ID 808; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5920; ORIGINAL_PRECURSOR_SCAN_NO 5917 CONFIDENCE standard compound; INTERNAL_ID 808; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5910; ORIGINAL_PRECURSOR_SCAN_NO 5905 CONFIDENCE standard compound; INTERNAL_ID 808; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2828; ORIGINAL_PRECURSOR_SCAN_NO 2826 ORIGINAL_PRECURSOR_SCAN_NO 2760; CONFIDENCE standard compound; INTERNAL_ID 808; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2762 CONFIDENCE standard compound; INTERNAL_ID 808; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5924; ORIGINAL_PRECURSOR_SCAN_NO 5919 CONFIDENCE standard compound; INTERNAL_ID 808; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2754; ORIGINAL_PRECURSOR_SCAN_NO 2752 CONFIDENCE standard compound; INTERNAL_ID 179 Annotation level-1 (-)-Epigallocatechin Gallate (EGCG) is a major polyphenol in green tea, which can inhibit cell proliferation and induce cell apoptosis. (-)-Epigallocatechin Gallate inhibits glutamate dehydrogenase 1/2 (GDH1/2, GLUD1/2) activity. (-)-Epigallocatechin Gallate has a potent anticancer, antioxidant and anti-inflammatory properties against various types of cancers such as colorectal cancer, myeloid leukemia, thyroid carcinoma[1][2][3][4]. (-)-Epigallocatechin Gallate (EGCG) is a major polyphenol in green tea, which can inhibit cell proliferation and induce cell apoptosis. (-)-Epigallocatechin Gallate inhibits glutamate dehydrogenase 1/2 (GDH1/2, GLUD1/2) activity. (-)-Epigallocatechin Gallate has a potent anticancer, antioxidant and anti-inflammatory properties against various types of cancers such as colorectal cancer, myeloid leukemia, thyroid carcinoma[1][2][3][4]. (-)-Epigallocatechin Gallate (EGCG) is a major polyphenol in green tea, which can inhibit cell proliferation and induce cell apoptosis. (-)-Epigallocatechin Gallate inhibits glutamate dehydrogenase 1/2 (GDH1/2, GLUD1/2) activity. (-)-Epigallocatechin Gallate has a potent anticancer, antioxidant and anti-inflammatory properties against various types of cancers such as colorectal cancer, myeloid leukemia, thyroid carcinoma[1][2][3][4]. (-)-Epigallocatechin Gallate (EGCG) is a major polyphenol in green tea, which can inhibit cell proliferation and induce cell apoptosis. (-)-Epigallocatechin Gallate inhibits glutamate dehydrogenase 1/2 (GDH1/2, GLUD1/2) activity. (-)-Epigallocatechin Gallate has a potent anticancer, antioxidant and anti-inflammatory properties against various types of cancers such as colorectal cancer, myeloid leukemia, thyroid carcinoma[1][2][3][4]. (-)-Epigallocatechin Gallate (EGCG) is a major polyphenol in green tea, which can inhibit cell proliferation and induce cell apoptosis. (-)-Epigallocatechin Gallate inhibits glutamate dehydrogenase 1/2 (GDH1/2, GLUD1/2) activity. (-)-Epigallocatechin Gallate has a potent anticancer, antioxidant and anti-inflammatory properties against various types of cancers such as colorectal cancer, myeloid leukemia, thyroid carcinoma[1][2][3][4]. (-)-Epigallocatechin Gallate (EGCG) is a major polyphenol in green tea, which can inhibit cell proliferation and induce cell apoptosis. (-)-Epigallocatechin Gallate inhibits glutamate dehydrogenase 1/2 (GDH1/2, GLUD1/2) activity. (-)-Epigallocatechin Gallate has a potent anticancer, antioxidant and anti-inflammatory properties against various types of cancers such as colorectal cancer, myeloid leukemia, thyroid carcinoma[1][2][3][4].
Chenodeoxycholic acid
Chenodeoxycholic acid is a dihydroxy-5beta-cholanic acid that is (5beta)-cholan-24-oic acid substituted by hydroxy groups at positions 3 and 7 respectively. It has a role as a human metabolite and a mouse metabolite. It is a bile acid, a dihydroxy-5beta-cholanic acid and a C24-steroid. It is a conjugate acid of a chenodeoxycholate. Chenodeoxycholic acid (or Chenodiol) is an epimer of ursodeoxycholic acid (DB01586). Chenodeoxycholic acid is a bile acid naturally found in the body. It works by dissolving the cholesterol that makes gallstones and inhibiting production of cholesterol in the liver and absorption in the intestines, which helps to decrease the formation of gallstones. It can also reduce the amount of other bile acids that can be harmful to liver cells when levels are elevated. Chenodeoxycholic acid (chenodiol) is a primary bile acid, synthesized in the liver and present in high concentrations in bile that is used therapeutically to dissolve cholesterol gallstones. Chronic therapy is associated with transient elevations in serum aminotransferase levels in up to 30\\\\\% of patients, but chenodiol has been linked to only rare instances of clinically apparent liver injury with jaundice. Chenodeoxycholic acid is a natural product found in Ganoderma lucidum and Homo sapiens with data available. A bile acid, usually conjugated with either glycine or taurine. It acts as a detergent to solubilize fats for intestinal absorption and is reabsorbed by the small intestine. It is used as cholagogue, a choleretic laxative, and to prevent or dissolve gallstones. Chenodeoxycholic acid is a bile acid. Bile acids are steroid acids found predominantly in the bile of mammals. The distinction between different bile acids is minute, depending only on the presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g. membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487, 16037564, 12576301, 11907135). Usually conjugated with either glycine or taurine. It acts as a detergent to solubilize fats for intestinal absorption and is reabsorbed by the small intestine. It is used as cholagogue, a choleretic laxative, and to prevent or dissolve gallstones. A bile acid. Bile acids are steroid acids found predominantly in bile of mammals. The distinction between different bile acids is minute, depends only on presence or absence of hydroxyl groups on positions 3, 7, and 12. A dihydroxy-5beta-cholanic acid that is (5beta)-cholan-24-oic acid substituted by hydroxy groups at positions 3 and 7 respectively. Chenodeoxycholic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=474-25-9 (retrieved 2024-07-01) (CAS RN: 474-25-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Chenodeoxycholic Acid is a hydrophobic primary bile acid that activates nuclear receptors (FXR) involved in cholesterol metabolism. Chenodeoxycholic Acid is a hydrophobic primary bile acid that activates nuclear receptors (FXR) involved in cholesterol metabolism.
Ferulic acid
trans-Ferulic acid is a highly abundant phenolic phytochemical which is present in plant cell walls. Ferulic acid is a phenolic acid that can be absorbed by the small intestine and excreted through the urine. It is one of the most abundant phenolic acids in plants, varying from 5 g/kg in wheat bran to 9 g/kg in sugar-beet pulp and 50 g/kg in corn kernel. It occurs primarily in seeds and leaves both in its free form (albeit rarely) and covalently linked to lignin and other biopolymers. It is usually found as ester cross-links with polysaccharides in the cell wall, such as arabinoxylans in grasses, pectin in spinach and sugar beet, and xyloglucans in bamboo. It also can cross-link with proteins. Due to its phenolic nucleus and an extended side chain conjugation (carbohydrates and proteins), it readily forms a resonance-stabilized phenoxy radical which accounts for its potent antioxidant potential. Food supplementation with curcumin and ferulic acid is considered a nutritional approach to reducing oxidative damage and amyloid pathology in Alzheimer disease (PMID:17127365, 1398220, 15453708, 9878519). Ferulic acid can be found in Pseudomonas and Saccharomyces (PMID:8395165). Ferulic acid is a ferulic acid consisting of trans-cinnamic acid bearing methoxy and hydroxy substituents at positions 3 and 4 respectively on the phenyl ring. It has a role as an antioxidant, a MALDI matrix material, a plant metabolite, an anti-inflammatory agent, an apoptosis inhibitor and a cardioprotective agent. It is a conjugate acid of a ferulate. Ferulic acid is a natural product found in Haplophyllum griffithianum, Visnea mocanera, and other organisms with data available. Ferulic acid is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Angelica sinensis root (part of). Widely distributed in plants, first isolated from Ferula foetida (asafoetida). Antioxidant used to inhibit oxidn. of fats, pastry products, etc. Antifungal agent used to prevent fruit spoilage. trans-Ferulic acid is found in many foods, some of which are deerberry, peach, shea tree, and common bean. A ferulic acid consisting of trans-cinnamic acid bearing methoxy and hydroxy substituents at positions 3 and 4 respectively on the phenyl ring. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents D002491 - Central Nervous System Agents > D000700 - Analgesics D000975 - Antioxidants > D016166 - Free Radical Scavengers D006401 - Hematologic Agents > D000925 - Anticoagulants D020011 - Protective Agents > D000975 - Antioxidants D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID H074 (E)-Ferulic acid is a isomer of Ferulic acid which is an aromatic compound, abundant in plant cell walls. (E)-Ferulic acid causes the phosphorylation of β-catenin, resulting in proteasomal degradation of β-catenin and increases the expression of pro-apoptotic factor Bax and decreases the expression of pro-survival factor survivin. (E)-Ferulic acid shows a potent ability to remove reactive oxygen species (ROS) and inhibits lipid peroxidation. (E)-Ferulic acid exerts both anti-proliferation and anti-migration effects in the human lung cancer cell line H1299[1]. (E)-Ferulic acid is a isomer of Ferulic acid which is an aromatic compound, abundant in plant cell walls. (E)-Ferulic acid causes the phosphorylation of β-catenin, resulting in proteasomal degradation of β-catenin and increases the expression of pro-apoptotic factor Bax and decreases the expression of pro-survival factor survivin. (E)-Ferulic acid shows a potent ability to remove reactive oxygen species (ROS) and inhibits lipid peroxidation. (E)-Ferulic acid exerts both anti-proliferation and anti-migration effects in the human lung cancer cell line H1299[1]. Ferulic acid is a novel fibroblast growth factor receptor 1 (FGFR1) inhibitor with IC50s of 3.78 and 12.5 μM for FGFR1 and FGFR2, respectively. Ferulic acid is a novel fibroblast growth factor receptor 1 (FGFR1) inhibitor with IC50s of 3.78 and 12.5 μM for FGFR1 and FGFR2, respectively.
Benzoic acid
Benzoic acid appears as a white crystalline solid. Slightly soluble in water. The primary hazard is the potential for environmental damage if released. Immediate steps should be taken to limit spread to the environment. Used to make other chemicals, as a food preservative, and for other uses.
Benzoic acid is a compound comprising a benzene ring core carrying a carboxylic acid substituent. It has a role as an antimicrobial food preservative, an EC 3.1.1.3 (triacylglycerol lipase) inhibitor, an EC 1.13.11.33 (arachidonate 15-lipoxygenase) inhibitor, a plant metabolite, a human xenobiotic metabolite, an algal metabolite and a drug allergen. It is a conjugate acid of a benzoate.
A fungistatic compound that is widely used as a food preservative. It is conjugated to GLYCINE in the liver and excreted as hippuric acid. As the sodium salt form, sodium benzoate is used as a treatment for urea cycle disorders due to its ability to bind amino acids. This leads to excretion of these amino acids and a decrease in ammonia levels. Recent research shows that sodium benzoate may be beneficial as an add-on therapy (1 gram/day) in schizophrenia. Total Positive and Negative Syndrome Scale scores dropped by 21\\\\\% compared to placebo.
Benzoic acid is a Nitrogen Binding Agent. The mechanism of action of benzoic acid is as an Ammonium Ion Binding Activity.
Benzoic acid, C6H5COOH, is a colourless crystalline solid and the simplest aromatic carboxylic acid. Benzoic acid occurs naturally free and bound as benzoic acid esters in many plant and animal species. Appreciable amounts have been found in most berries (around 0.05\\\\\%). Cranberries contain as much as 300-1300 mg free benzoic acid per kg fruit. Benzoic acid is a fungistatic compound that is widely used as a food preservative. It often is conjugated to glycine in the liver and excreted as hippuric acid. Benzoic acid is a byproduct of phenylalanine metabolism in bacteria. It is also produced when gut bacteria process polyphenols (from ingested fruits or beverages).
A fungistatic compound that is widely used as a food preservative. It is conjugated to GLYCINE in the liver and excreted as hippuric acid.
See also: Salicylic Acid (active moiety of); Benzoyl Peroxide (active moiety of); Sodium Benzoate (active moiety of) ... View More ...
Widespread in plants especies in essential oils and fruits, mostly in esterified formand is also present in butter, cooked meats, pork fat, white wine, black and green tea, mushroom and Bourbon vanilla. It is used in foodstuffs as antimicrobial and flavouring agent and as preservative. In practical food preservation, the Na salt of benzoic acid is the most widely used form (see
Fumaric acid
Fumaric acid appears as a colorless crystalline solid. The primary hazard is the threat to the environment. Immediate steps should be taken to limit spread to the environment. Combustible, though may be difficult to ignite. Used to make paints and plastics, in food processing and preservation, and for other uses. Fumaric acid is a butenedioic acid in which the C=C double bond has E geometry. It is an intermediate metabolite in the citric acid cycle. It has a role as a food acidity regulator, a fundamental metabolite and a geroprotector. It is a conjugate acid of a fumarate(1-). Fumaric acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Fumaric acid is a precursor to L-malate in the Krebs tricarboxylic acid cycle. It is formed by the oxidation of succinate by succinate dehydrogenase. Fumarate is converted by fumarase to malate. A fumarate is a salt or ester of the organic compound fumaric acid, a dicarboxylic acid. Fumarate has recently been recognized as an oncometabolite. (A15199). As a food additive, fumaric acid is used to impart a tart taste to processed foods. It is also used as an antifungal agent in boxed foods such as cake mixes and flours, as well as tortillas. Fumaric acid is also added to bread to increase the porosity of the final baked product. It is used to impart a sour taste to sourdough and rye bread. In cake mixes, it is used to maintain a low pH and prevent clumping of the flours used in the mix. In fruit drinks, fumaric acid is used to maintain a low pH which, in turn, helps to stabilize flavor and color. Fumaric acid also prevents the growth of E. coli in beverages when used in combination with sodium benzoate. When added to wines, fumaric acid helps to prevent further fermentation and yet maintain low pH and eliminate traces of metallic elements. In this fashion, it helps to stabilize the taste of wine. Fumaric acid can also be added to dairy products, sports drinks, jams, jellies and candies. Fumaric acid helps to break down bonds between gluten proteins in wheat and helps to create a more pliable dough. Fumaric acid is used in paper sizing, printer toner, and polyester resin for making molded walls. Fumaric acid is a dicarboxylic acid. It is a precursor to L-malate in the Krebs tricarboxylic acid (TCA) cycle. It is formed by the oxidation of succinic acid by succinate dehydrogenase. Fumarate is converted by the enzyme fumarase to malate. Fumaric acid has recently been identified as an oncometabolite or an endogenous, cancer causing metabolite. High levels of this organic acid can be found in tumors or biofluids surrounding tumors. Its oncogenic action appears to due to its ability to inhibit prolyl hydroxylase-containing enzymes. In many tumours, oxygen availability becomes limited (hypoxia) very quickly due to rapid cell proliferation and limited blood vessel growth. The major regulator of the response to hypoxia is the HIF transcription factor (HIF-alpha). Under normal oxygen levels, protein levels of HIF-alpha are very low due to constant degradation, mediated by a series of post-translational modification events catalyzed by the prolyl hydroxylase domain-containing enzymes PHD1, 2 and 3, (also known as EglN2, 1 and 3) that hydroxylate HIF-alpha and lead to its degradation. All three of the PHD enzymes are inhibited by fumarate. Fumaric acid is found to be associated with fumarase deficiency, which is an inborn error of metabolism. It is also a metabolite of Aspergillus. Produced industrially by fermentation of Rhizopus nigricans, or manufactured by catalytic or thermal isomerisation of maleic anhydride or maleic acid. Used as an antioxidant, acidulant, leavening agent and flavouring agent in foods. Present in raw lean fish. Dietary supplement. Used in powdered products since fumaric acid is less hygroscopic than other acids. A precursor to L-malate in the Krebs tricarboxylic acid cycle. It is formed by the oxidation of succinate by succinate dehydrogenase (wikipedia). Fumaric acid is also found in garden tomato, papaya, wild celery, and star fruit. Fumaric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=110-17-8 (retrieved 2024-07-01) (CAS RN: 110-17-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Fumaric acid, associated with fumarase deficiency, is identified as an oncometabolite or an endogenous, cancer causing metabolite. Fumaric acid, associated with fumarase deficiency, is identified as an oncometabolite or an endogenous, cancer causing metabolite.
4-Hydroxybenzaldehyde
4-Hydroxybenzaldehyde, also known as 4-formylphenol or 4-hydroxybenzenecarbonal, belongs to the class of organic compounds known as hydroxybenzaldehydes. These are organic aromatic compounds containing a benzene ring carrying an aldehyde group and a hydroxyl group. A hydroxybenzaldehyde that is benzaldehyde substituted with a hydroxy group at position C-4. 4-Hydroxybenzaldehyde exists in all living organisms, ranging from bacteria to humans. 4-Hydroxybenzaldehyde is a sweet, almond, and balsam tasting compound. 4-Hydroxybenzaldehyde is found, on average, in the highest concentration within vinegars and oats. 4-Hydroxybenzaldehyde has also been detected, but not quantified, in several different foods, such as cardoons, colorado pinyons, oyster mushrooms, common chokecherries, and potato. This could make 4-hydroxybenzaldehyde a potential biomarker for the consumption of these foods. 4-hydroxybenzaldehyde is a hydroxybenzaldehyde that is benzaldehyde substituted with a hydroxy group at position C-4. It has a role as a plant metabolite, a mouse metabolite and an EC 1.14.17.1 (dopamine beta-monooxygenase) inhibitor. 4-Hydroxybenzaldehyde is a natural product found in Ficus septica, Visnea mocanera, and other organisms with data available. Occurs naturally combined in many glycosides. Constituent of vanillin. Isol. in free state from opium poppy (Papaver somniferum) A hydroxybenzaldehyde that is benzaldehyde substituted with a hydroxy group at position C-4. 4-Hydroxybenzaldehyde. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=123-08-0 (retrieved 2024-07-02) (CAS RN: 123-08-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations. p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations. p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations.
L-Glutamic acid
Glutamic acid (Glu), also known as L-glutamic acid or as glutamate, the name of its anion, is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (‚ÄìNH2) and carboxyl (‚ÄìCOOH) functional groups, along with a side chain (R group) specific to each amino acid. L-glutamic acid is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Glutamic acid is found in all organisms ranging from bacteria to plants to animals. It is classified as an acidic, charged (at physiological pH), aliphatic amino acid. In humans it is a non-essential amino acid and can be synthesized via alanine or aspartic acid via alpha-ketoglutarate and the action of various transaminases. Glutamate also plays an important role in the bodys disposal of excess or waste nitrogen. Glutamate undergoes deamination, an oxidative reaction catalysed by glutamate dehydrogenase leading to alpha-ketoglutarate. In many respects glutamate is a key molecule in cellular metabolism. Glutamate is the most abundant fast excitatory neurotransmitter in the mammalian nervous system. At chemical synapses, glutamate is stored in vesicles. Nerve impulses trigger release of glutamate from the pre-synaptic cell. In the opposing post-synaptic cell, glutamate receptors, such as the NMDA receptor, bind glutamate and are activated. Because of its role in synaptic plasticity, it is believed that glutamic acid is involved in cognitive functions like learning and memory in the brain. Glutamate transporters are found in neuronal and glial membranes. They rapidly remove glutamate from the extracellular space. In brain injury or disease, they can work in reverse and excess glutamate can accumulate outside cells. This process causes calcium ions to enter cells via NMDA receptor channels, leading to neuronal damage and eventual cell death, and is called excitotoxicity. The mechanisms of cell death include: Damage to mitochondria from excessively high intracellular Ca2+. Glu/Ca2+-mediated promotion of transcription factors for pro-apoptotic genes, or downregulation of transcription factors for anti-apoptotic genes. Excitotoxicity due to glutamate occurs as part of the ischemic cascade and is associated with stroke and diseases like amyotrophic lateral sclerosis, lathyrism, and Alzheimers disease. Glutamic acid has been implicated in epileptic seizures. Microinjection of glutamic acid into neurons produces spontaneous depolarization around one second apart, and this firing pattern is similar to what is known as paroxysmal depolarizing shift in epileptic attacks. This change in the resting membrane potential at seizure foci could cause spontaneous opening of voltage activated calcium channels, leading to glutamic acid release and further depolarization (http://en.wikipedia.org/wiki/Glutamic_acid). Glutamate was discovered in 1866 when it was extracted from wheat gluten (from where it got its name. Glutamate has an important role as a food additive and food flavoring agent. In 1908, Japanese researcher Kikunae Ikeda identified brown crystals left behind after the evaporation of a large amount of kombu broth (a Japanese soup) as glutamic acid. These crystals, when tasted, reproduced a salty, savory flavor detected in many foods, most especially in seaweed. Professor Ikeda termed this flavor umami. He then patented a method of mass-producing a crystalline salt of glutamic acid, monosodium glutamate. L-glutamic acid is an optically active form of glutamic acid having L-configuration. It has a role as a nutraceutical, a micronutrient, an Escherichia coli metabolite, a mouse metabolite, a ferroptosis inducer and a neurotransmitter. It is a glutamine family amino acid, a proteinogenic amino acid, a glutamic acid and a L-alpha-amino acid. It is a conjugate acid of a L-glutamate(1-). It is an enantiomer of a D-glutamic acid. A peptide that is a homopolymer of glutamic acid. L-Glutamic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Glutamic acid (Glu), also referred to as glutamate (the anion), is one of the 20 proteinogenic amino acids. It is not among the essential amino acids. Glutamate is a key molecule in cellular metabolism. In humans, dietary proteins are broken down by digestion into amino acids, which serves as metabolic fuel or other functional roles in the body. Glutamate is the most abundant fast excitatory neurotransmitter in the mammalian nervous system. At chemical synapses, glutamate is stored in vesicles. Nerve impulses trigger release of glutamate from the pre-synaptic cell. In the opposing post-synaptic cell, glutamate receptors, such as the NMDA receptor, bind glutamate and are activated. Because of its role in synaptic plasticity, it is believed that glutamic acid is involved in cognitive functions like learning and memory in the brain. Glutamate transporters are found in neuronal and glial membranes. They rapidly remove glutamate from the extracellular space. In brain injury or disease, they can work in reverse and excess glutamate can accumulate outside cells. This process causes calcium ions to enter cells via NMDA receptor channels, leading to neuronal damage and eventual cell death, and is called excitotoxicity. The mechanisms of cell death include: * Damage to mitochondria from excessively high intracellular Ca2+. * Glu/Ca2+-mediated promotion of transcription factors for pro-apoptotic genes, or downregulation of transcription factors for anti-apoptotic genes. Excitotoxicity due to glutamate occurs as part of the ischemic cascade and is associated with stroke and diseases like amyotrophic lateral sclerosis, lathyrism, and Alzheimers disease. glutamic acid has been implicated in epileptic seizures. Microinjection of glutamic acid into neurons produces spontaneous depolarization around one second apart, and this firing pattern is similar to what is known as paroxysmal depolarizing shift in epileptic attacks. This change in the resting membrane potential at seizure foci could cause spontaneous opening of voltage activated calcium channels, leading to glutamic acid release and further depolarization. A non-essential amino acid naturally occurring in the L-form. Glutamic acid is the most common excitatory neurotransmitter in the CENTRAL NERVOUS SYSTEM. See also: Monosodium Glutamate (active moiety of); Glatiramer Acetate (monomer of); Glatiramer (monomer of) ... View More ... obtained from acid hydrolysis of proteins. Since 1965 the industrial source of glutamic acid for MSG production has been bacterial fermentation of carbohydrate sources such as molasses and corn starch hydrolysate in the presence of a nitrogen source such as ammonium salts or urea. Annual production approx. 350000t worldwide in 1988. Seasoning additive in food manuf. (as Na, K and NH4 salts). Dietary supplement, nutrient Glutamic acid (symbol Glu or E;[4] the anionic form is known as glutamate) is an α-amino acid that is used by almost all living beings in the biosynthesis of proteins. It is a non-essential nutrient for humans, meaning that the human body can synthesize enough for its use. It is also the most abundant excitatory neurotransmitter in the vertebrate nervous system. It serves as the precursor for the synthesis of the inhibitory gamma-aminobutyric acid (GABA) in GABAergic neurons. Its molecular formula is C 5H 9NO 4. Glutamic acid exists in two optically isomeric forms; the dextrorotatory l-form is usually obtained by hydrolysis of gluten or from the waste waters of beet-sugar manufacture or by fermentation.[5][full citation needed] Its molecular structure could be idealized as HOOC−CH(NH 2)−(CH 2)2−COOH, with two carboxyl groups −COOH and one amino group −NH 2. However, in the solid state and mildly acidic water solutions, the molecule assumes an electrically neutral zwitterion structure −OOC−CH(NH+ 3)−(CH 2)2−COOH. It is encoded by the codons GAA or GAG. The acid can lose one proton from its second carboxyl group to form the conjugate base, the singly-negative anion glutamate −OOC−CH(NH+ 3)−(CH 2)2−COO−. This form of the compound is prevalent in neutral solutions. The glutamate neurotransmitter plays the principal role in neural activation.[6] This anion creates the savory umami flavor of foods and is found in glutamate flavorings such as MSG. In Europe, it is classified as food additive E620. In highly alkaline solutions the doubly negative anion −OOC−CH(NH 2)−(CH 2)2−COO− prevails. The radical corresponding to glutamate is called glutamyl. The one-letter symbol E for glutamate was assigned in alphabetical sequence to D for aspartate, being larger by one methylene –CH2– group.[7] DL-Glutamic acid is the conjugate acid of Glutamic acid, which acts as a fundamental metabolite. Comparing with the second phase of polymorphs α and β L-Glutamic acid, DL-Glutamic acid presents better stability[1]. DL-Glutamic acid is the conjugate acid of Glutamic acid, which acts as a fundamental metabolite. Comparing with the second phase of polymorphs α and β L-Glutamic acid, DL-Glutamic acid presents better stability[1]. L-Glutamic acid acts as an excitatory transmitter and an agonist at all subtypes of glutamate receptors (metabotropic, kainate, NMDA, and AMPA). L-Glutamic acid shows a direct activating effect on the release of DA from dopaminergic terminals. L-Glutamic acid is an excitatory amino acid neurotransmitter that acts as an agonist for all subtypes of glutamate receptors (metabolic rhodophylline, NMDA, and AMPA). L-Glutamic acid has an agonist effect on the release of DA from dopaminergic nerve endings. L-Glutamic acid can be used in the study of neurological diseases[1][2][3][4][5]. L-Glutamic acid acts as an excitatory transmitter and an agonist at all subtypes of glutamate receptors (metabotropic, kainate, NMDA, and AMPA). L-Glutamic acid shows a direct activating effect on the release of DA from dopaminergic terminals.
4-Hydroxybenzoic acid
4-Hydroxybenzoic acid, also known as p-hydroxybenzoate or 4-carboxyphenol, belongs to the class of organic compounds known as hydroxybenzoic acid derivatives. Hydroxybenzoic acid derivatives are compounds containing a hydroxybenzoic acid (or a derivative), which is a benzene ring bearing a carboxyl and a hydroxyl groups. 4-Hydroxybenzoic acid is a white crystalline solid that is slightly soluble in water and chloroform but more soluble in polar organic solvents such as alcohols and acetone. It is a nutty and phenolic tasting compound. 4-Hydroxybenzoic acid exists in all living species, ranging from bacteria to plants to humans. 4-Hydroxybenzoic acid can be found naturally in coconut. It is one of the main catechins metabolites found in humans after consumption of green tea infusions. It is also found in wine, in vanilla, in Açaí oil, obtained from the fruit of the açaí palm (Euterpe oleracea), at relatively high concetrations (892±52 mg/kg). It is also found in cloudy olive oil and in the edible mushroom Russula virescens. It has been detected in red huckleberries, rabbiteye blueberries, and corianders and in a lower concentration in olives, red raspberries, and almonds. In humans, 4-hydroxybenzoic acid is involved in ubiquinone biosynthesis. In particular, the enzyme 4-hydroxybenzoate polyprenyltransferase uses a polyprenyl diphosphate and 4-hydroxybenzoate to produce diphosphate and 4-hydroxy-3-polyprenylbenzoate. This enzyme participates in ubiquinone biosynthesis. 4-Hydroxybenzoic acid can be biosynthesized by the enzyme Chorismate lyase. Chorismate lyase is an enzyme that transforms chorismate into 4-hydroxybenzoate and pyruvate. This enzyme catalyses the first step in ubiquinone biosynthesis in Escherichia coli and other Gram-negative bacteria. 4-Hydroxybenzoate is an intermediate in many enzyme-mediated reactions in microbes. For instance, the enzyme 4-hydroxybenzaldehyde dehydrogenase uses 4-hydroxybenzaldehyde, NAD+ and H2O to produce 4-hydroxybenzoate, NADH and H+. This enzyme participates in toluene and xylene degradation in bacteria such as Pseudomonas mendocina. 4-hydroxybenzaldehyde dehydrogenase is also found in carrots. The enzyme 4-hydroxybenzoate 1-hydroxylase transforms 4-hydroxybenzoate, NAD(P)H, 2 H+ and O2 into hydroquinone, NAD(P)+, H2O and CO2. This enzyme participates in 2,4-dichlorobenzoate degradation and is found in Candida parapsilosis. The enzyme 4-hydroxybenzoate 3-monooxygenase transforms 4-hydroxybenzoate, NADPH, H+ and O2 into protocatechuate, NADP+ and H2O. This enzyme participates in benzoate degradation via hydroxylation and 2,4-dichlorobenzoate degradation and is found in Pseudomonas putida and Pseudomonas fluorescens. 4-Hydroxybenzoic acid is a popular antioxidant in part because of its low toxicity. 4-Hydroxybenzoic acid has estrogenic activity both in vitro and in vivo (PMID 9417843).
Isolated from many plants, free and combined. Alkyl esters of 4-hydroxybenzoic acid (see below) are used as food and cosmetic preservatives, mainly in their Na salt form, which makes them more water soluble. They are active at low concentrations and more pH-independent than the commonly used Benzoic acid
Bergaptol
Bergaptol is a member of psoralens and a 5-hydroxyfurocoumarin. It is a conjugate acid of a bergaptol(1-). Bergaptol is a natural product found in Citrus canaliculata, Hansenia forbesii, and other organisms with data available. Bergaptol is a secondary metabolite of psoralen which has been hydroxylated by liver enzymes during phase I metabolism. Bergaptol is a biomarker for the consumption of citrus fruits. Present in various citrus subspecies Bergaptol is found in many foods, some of which are common hazelnut, hazelnut, alaska blueberry, and groundcherry. D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Bergaptol is an inhibitor of debenzylation of the CYP3A4 enzyme with an IC50 of 24.92 uM. Recent studies have shown that it has anti-proliferative and anti-cancer properties. Bergaptol is an inhibitor of debenzylation of the CYP3A4 enzyme with an IC50 of 24.92 uM. Recent studies have shown that it has anti-proliferative and anti-cancer properties.
L-Phenylalanine
Phenylalanine (Phe), also known as L-phenylalanine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (‚ÄìNH2) and carboxyl (‚ÄìCOOH) functional groups, along with a side chain (R group) specific to each amino acid. L-phenylalanine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Phenylalanine is found in all organisms ranging from bacteria to plants to animals. It is classified as an aromatic, non-polar amino acid. In humans, phenylalanine is an essential amino acid and the precursor of the amino acid tyrosine. Like tyrosine, phenylalanine is also a precursor for catecholamines including tyramine, dopamine, epinephrine, and norepinephrine. Catecholamines are neurotransmitters that act as adrenalin-like substances. Interestingly, several psychotropic drugs (mescaline, morphine, codeine, and papaverine) also have phenylalanine as a constituent. Phenylalanine is highly concentrated in the human brain and plasma. Normal metabolism of phenylalanine requires biopterin, iron, niacin, vitamin B6, copper, and vitamin C. An average adult ingests 5 g of phenylalanine per day and may optimally need up to 8 g daily. Phenylalanine is highly concentrated in a number of high protein foods, such as meat, cottage cheese, and wheat germ. An additional dietary source of phenylalanine is artificial sweeteners containing aspartame (a methyl ester of the aspartic acid/phenylalanine dipeptide). As a general rule, aspartame should be avoided by phenylketonurics and pregnant women. When present in sufficiently high levels, phenylalanine can act as a neurotoxin and a metabotoxin. A neurotoxin is a compound that disrupts or attacks neural cells and neural tissue. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of phenylalanine are associated with at least five inborn errors of metabolism, including Hartnup disorder, hyperphenylalaninemia due to guanosine triphosphate cyclohydrolase deficiency, phenylketonuria (PKU), tyrosinemia type 2 (or Richner-Hanhart syndrome), and tyrosinemia type III (TYRO3). Phenylketonurics have elevated serum plasma levels of phenylalanine up to 400 times normal. High plasma concentrations of phenylalanine influence the blood-brain barrier transport of large neutral amino acids. The high plasma phenylalanine concentrations increase phenylalanine entry into the brain and restrict the entry of other large neutral amino acids (PMID: 19191004). Phenylalanine has been found to interfere with different cerebral enzyme systems. Untreated phenylketonuria (PKU) can lead to intellectual disability, seizures, behavioural problems, and mental disorders. It may also result in a musty smell and lighter skin. Classic PKU dramatically affects myelination and white matter tracts in untreated infants; this may be one major cause of neurological disorders associated with phenylketonuria. Mild phenylketonuria can act as an unsuspected cause of hyperactivity, learning problems, and other developmental problems in children. It has been recently suggested that PKU may resemble amyloid diseases, such as Alzheimers disease and Parkinsons disease, due to the formation of toxic amyloid-like assemblies of phenylalanine (PMID: 22706200). Phenylalanine also has some potential benefits. Phenylalanine can act as an effective pain reliever. Its use in premenstrual syndrome and Parkinsons may enhance the effects of acupuncture and electric transcutaneous nerve stimulation (TENS). Phenylalanine and tyrosine, like L-DOPA, produce a catecholamine-like effect. Phenylalanine is better absorbed than tyrosine and may cause fewer headaches. Low phenylalanine diets have been prescribed for certain cancers with mixed results. For instance, some tumours use more phen... L-phenylalanine is an odorless white crystalline powder. Slightly bitter taste. pH (1\\\\\\% aqueous solution) 5.4 to 6. (NTP, 1992) L-phenylalanine is the L-enantiomer of phenylalanine. It has a role as a nutraceutical, a micronutrient, an Escherichia coli metabolite, a Saccharomyces cerevisiae metabolite, a plant metabolite, an algal metabolite, a mouse metabolite, a human xenobiotic metabolite and an EC 3.1.3.1 (alkaline phosphatase) inhibitor. It is an erythrose 4-phosphate/phosphoenolpyruvate family amino acid, a proteinogenic amino acid, a phenylalanine and a L-alpha-amino acid. It is a conjugate base of a L-phenylalaninium. It is a conjugate acid of a L-phenylalaninate. It is an enantiomer of a D-phenylalanine. It is a tautomer of a L-phenylalanine zwitterion. Phenylalanine is an essential aromatic amino acid that is a precursor of melanin, [dopamine], [noradrenalin] (norepinephrine), and [thyroxine]. L-Phenylalanine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Phenylalanine is an essential aromatic amino acid in humans (provided by food), Phenylalanine plays a key role in the biosynthesis of other amino acids and is important in the structure and function of many proteins and enzymes. Phenylalanine is converted to tyrosine, used in the biosynthesis of dopamine and norepinephrine neurotransmitters. The L-form of Phenylalanine is incorporated into proteins, while the D-form acts as a painkiller. Absorption of ultraviolet radiation by Phenylalanine is used to quantify protein amounts. (NCI04) Phenylalanine is an essential amino acid and the precursor for the amino acid tyrosine. Like tyrosine, it is the precursor of catecholamines in the body (tyramine, dopamine, epinephrine and norepinephrine). The psychotropic drugs (mescaline, morphine, codeine, and papaverine) also have phenylalanine as a constituent. Phenylalanine is a precursor of the neurotransmitters called catecholamines, which are adrenalin-like substances. Phenylalanine is highly concentrated in the human brain and plasma. Normal metabolism of phenylalanine requires biopterin, iron, niacin, vitamin B6, copper and vitamin C. An average adult ingests 5 g of phenylalanine per day and may optimally need up to 8 g daily. Phenylalanine is highly concentrated in high protein foods, such as meat, cottage cheese and wheat germ. A new dietary source of phenylalanine is artificial sweeteners containing aspartame. Aspartame appears to be nutritious except in hot beverages; however, it should be avoided by phenylketonurics and pregnant women. Phenylketonurics, who have a genetic error of phenylalanine metabolism, have elevated serum plasma levels of phenylalanine up to 400 times normal. Mild phenylketonuria can be an unsuspected cause of hyperactivity, learning problems, and other developmental problems in children. Phenylalanine can be an effective pain reliever. Its use in premenstrual syndrome and Parkinsons may enhance the effects of acupuncture and electric transcutaneous nerve stimulation (TENS). Phenylalanine and tyrosine, like L-dopa, produce a catecholamine effect. Phenylalanine is better absorbed than tyrosine and may cause fewer headaches. Low phenylalanine diets have been prescribed for certain cancers with mixed results. Some tumors use more phenylalanine (particularly melatonin-producing tumors called melanoma). One strategy is to exclude this amino acid from the diet, i.e., a Phenylketonuria (PKU) diet (compliance is a difficult issue; it is hard to quantify and is under-researched). The other strategy is just to increase phenylalanines competing amino acids, i.e., tryptophan, valine, isoleucine and leucine, but not tyrosine. An essential aromatic amino acid that is a precursor of MELANIN; DOPAMINE; noradrenalin (NOREPINEPHRINE), and THYROXINE. See also: Plovamer (monomer of); Plovamer Acetate (monomer of) ... View More ... L-phenylalanine, also known as phe or f, belongs to phenylalanine and derivatives class of compounds. Those are compounds containing phenylalanine or a derivative thereof resulting from reaction of phenylalanine at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom. L-phenylalanine is slightly soluble (in water) and a moderately acidic compound (based on its pKa). L-phenylalanine can be found in watermelon, which makes L-phenylalanine a potential biomarker for the consumption of this food product. L-phenylalanine can be found primarily in most biofluids, including sweat, blood, urine, and cerebrospinal fluid (CSF), as well as throughout all human tissues. L-phenylalanine exists in all living species, ranging from bacteria to humans. In humans, L-phenylalanine is involved in a couple of metabolic pathways, which include phenylalanine and tyrosine metabolism and transcription/Translation. L-phenylalanine is also involved in few metabolic disorders, which include phenylketonuria, tyrosinemia type 2 (or richner-hanhart syndrome), and tyrosinemia type 3 (TYRO3). Moreover, L-phenylalanine is found to be associated with viral infection, dengue fever, hypothyroidism, and myocardial infarction. L-phenylalanine is a non-carcinogenic (not listed by IARC) potentially toxic compound. Phenylalanine (Phe or F) is an α-amino acid with the formula C 9H 11NO 2. It can be viewed as a benzyl group substituted for the methyl group of alanine, or a phenyl group in place of a terminal hydrogen of alanine. This essential amino acid is classified as neutral, and nonpolar because of the inert and hydrophobic nature of the benzyl side chain. The L-isomer is used to biochemically form proteins, coded for by DNA. The codons for L-phenylalanine are UUU and UUC. Phenylalanine is a precursor for tyrosine; the monoamine neurotransmitters dopamine, norepinephrine (noradrenaline), and epinephrine (adrenaline); and the skin pigment melanin . Hepatic. L-phenylalanine that is not metabolized in the liver is distributed via the systemic circulation to the various tissues of the body, where it undergoes metabolic reactions similar to those that take place in the liver (DrugBank). If PKU is diagnosed early, an affected newborn can grow up with normal brain development, but only by managing and controlling phenylalanine levels through diet, or a combination of diet and medication. The diet requires severely restricting or eliminating foods high in phenylalanine, such as meat, chicken, fish, eggs, nuts, cheese, legumes, milk and other dairy products. Starchy foods, such as potatoes, bread, pasta, and corn, must be monitored. Optimal health ranges (or "target ranges") of serum phenylalanine are between 120 and 360 µmol/L, and aimed to be achieved during at least the first 10 years of life. Recently it has been found that a chiral isomer of L-phenylalanine (called D-phenylalanine) actually arrests the fibril formation by L-phenylalanine and gives rise to flakes. These flakes do not propagate further and prevent amyloid formation by L-phenylalanine. D-phenylalanine may qualify as a therapeutic molecule in phenylketonuria (A8161) (T3DB). L-Phenylalanine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=63-91-2 (retrieved 2024-07-01) (CAS RN: 63-91-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Phenylalanine ((S)-2-Amino-3-phenylpropionic acid) is an essential amino acid isolated from Escherichia coli. L-Phenylalanine is a α2δ subunit of voltage-dependent Ca+ channels antagonist with a Ki of 980 nM. L-phenylalanine is a competitive antagonist for the glycine- and glutamate-binding sites of N-methyl-D-aspartate receptors (NMDARs) (KB of 573 μM ) and non-NMDARs, respectively. L-Phenylalanine is widely used in the production of food flavors and pharmaceuticals[1][2][3][4]. L-Phenylalanine ((S)-2-Amino-3-phenylpropionic acid) is an essential amino acid isolated from Escherichia coli. L-Phenylalanine is a α2δ subunit of voltage-dependent Ca+ channels antagonist with a Ki of 980 nM. L-phenylalanine is a competitive antagonist for the glycine- and glutamate-binding sites of N-methyl-D-aspartate receptors (NMDARs) (KB of 573 μM ) and non-NMDARs, respectively. L-Phenylalanine is widely used in the production of food flavors and pharmaceuticals[1][2][3][4]. L-Phenylalanine ((S)-2-Amino-3-phenylpropionic acid) is an essential amino acid isolated from Escherichia coli. L-Phenylalanine is a α2δ subunit of voltage-dependent Ca+ channels antagonist with a Ki of 980 nM. L-phenylalanine is a competitive antagonist for the glycine- and glutamate-binding sites of N-methyl-D-aspartate receptors (NMDARs) (KB of 573 μM ) and non-NMDARs, respectively. L-Phenylalanine is widely used in the production of food flavors and pharmaceuticals[1][2][3][4].
DL-Mannitol
D-mannitol appears as odorless white crystalline powder or free-flowing granules. Sweet taste. (NTP, 1992) D-mannitol is the D-enantiomer of mannitol. It has a role as an osmotic diuretic, a sweetening agent, an antiglaucoma drug, a metabolite, an allergen, a hapten, a food bulking agent, a food anticaking agent, a food humectant, a food stabiliser, a food thickening agent, an Escherichia coli metabolite and a member of compatible osmolytes. Mannitol is an osmotic diuretic that is metabolically inert in humans and occurs naturally, as a sugar or sugar alcohol, in fruits and vegetables. Mannitol elevates blood plasma osmolality, resulting in enhanced flow of water from tissues, including the brain and cerebrospinal fluid, into interstitial fluid and plasma. As a result, cerebral edema, elevated intracranial pressure, and cerebrospinal fluid volume and pressure may be reduced. Mannitol may also be used for the promotion of diuresis before irreversible renal failure becomes established; the promotion of urinary excretion of toxic substances; as an Antiglaucoma agent; and as a renal function diagnostic aid. On October 30, 2020, mannitol was approved by the FDA as add-on maintenance therapy for the control of pulmonary symptoms associated with cystic fibrosis in adult patients and is currently marketed for this indication under the name BRONCHITOL® by Chiesi USA Inc. Mannitol is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Mannitol is an Osmotic Diuretic. The mechanism of action of mannitol is as an Osmotic Activity. The physiologic effect of mannitol is by means of Increased Diuresis. Mannitol is a natural product found in Pavetta indica, Scoparia dulcis, and other organisms with data available. Mannitol is a naturally occurring alcohol found in fruits and vegetables and used as an osmotic diuretic. Mannitol is freely filtered by the glomerulus and poorly reabsorbed from the renal tubule, thereby causing an increase in osmolarity of the glomerular filtrate. An increase in osmolarity limits tubular reabsorption of water and inhibits the renal tubular reabsorption of sodium, chloride, and other solutes, thereby promoting diuresis. In addition, mannitol elevates blood plasma osmolarity, resulting in enhanced flow of water from tissues into interstitial fluid and plasma. D-mannitol is a metabolite found in or produced by Saccharomyces cerevisiae. A diuretic and renal diagnostic aid related to sorbitol. It has little significant energy value as it is largely eliminated from the body before any metabolism can take place. It can be used to treat oliguria associated with kidney failure or other manifestations of inadequate renal function and has been used for determination of glomerular filtration rate. Mannitol is also commonly used as a research tool in cell biological studies, usually to control osmolarity. See also: Mannitol; sorbitol (component of); Mannitol; menthol (component of). Mannitol, or hexan-1,2,3,4,5,6-hexol (C6H8(OH)6), is an alcohol and a sugar (sugar alcohol), or a polyol, it is a stereoisomer of sorbitol and is similar to the C5 xylitol. The structure of mannitol is made of a straight chain of six carbon atoms, each of which is substituted with a hydroxyl group. Mannitol is one of the most abundant energy and carbon storage molecules in nature, it is produced by a wide range of organisms such as bacteria, fungi and plants (PMID: 19578847). In medicine, mannitol is used as a diuretic and renal diagnostic aid. Mannitol has little significant energy value as it is largely eliminated from the body before any metabolism can take place. It can be used to treat oliguria associated with kidney failure or other manifestations of inadequate renal function and has been used for determination of glomerular filtration rate. Mannitol is also commonly used as a research tool in cell biological studies, usually to control osmolarity. Mannitol has a tendency to lose a hydrogen ion in aqueous solutions, which causes the solution to become acidic. For this, it is not uncommon to add a weak base, such as sodium bicarbonate, to the solution to adjust its pH. Mannitol is a non-permeating molecule i.e., it cannot cross biological membranes. Mannitol is an osmotic diuretic agent and a weak renal vasodilator. Mannitol is found to be associated with cytochrome c oxidase deficiency and ribose-5-phosphate isomerase deficiency, which are inborn errors of metabolism. Mannitol is also a microbial metabolite found in Aspergillus, Candida, Clostridium, Gluconobacter, Lactobacillus, Lactococcus, Leuconostoc, Pseudomonas, Rhodobacteraceae, Saccharomyces, Streptococcus, Torulaspora and Zymomonas (PMID: 15240312; PMID: 29480337). Mannitol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=85085-15-0 (retrieved 2024-07-01) (CAS RN: 69-65-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). DL-Mannitol is obtained by combining D-mannitol with a sample of Lmannitol obtained by reduction of L-mannono-1, Clactone[1]. DL-Mannitol is obtained by combining D-mannitol with a sample of Lmannitol obtained by reduction of L-mannono-1, Clactone[1]. D-Mannitol (Mannitol) is an oral, resistant sugar widely used in the food and pharmaceutical industries to promote the absorption and retention of calcium and magnesium through cecal fermentation, while acting as a osmotic diuretic to reduce tissue edema. D-Mannitol can enhance brown fat formation, improve insulin effect, reduce blood sugar levels, And through the start the β3-adrenergic receptor (β3-AR), PGC1α and PKA induced by means of white fat cells into brown fat cells[1][2][3][4][5][6][7]. D-Mannitol is an osmotic diuretic with weak renal vasodilatory activity. D-Mannitol (Mannitol) is an oral, resistant sugar widely used in the food and pharmaceutical industries to promote the absorption and retention of calcium and magnesium through cecal fermentation, while acting as a osmotic diuretic to reduce tissue edema. D-Mannitol can enhance brown fat formation, improve insulin effect, reduce blood sugar levels, And through the start the β3-adrenergic receptor (β3-AR), PGC1α and PKA induced by means of white fat cells into brown fat cells[1][2][3][4][5][6][7]. D-Mannitol is an osmotic diuretic with weak renal vasodilatory activity.
Hesperetin
Hesperetin, also known as prestwick_908 or YSO2, belongs to the class of organic compounds known as 4-o-methylated flavonoids. These are flavonoids with methoxy groups attached to the C4 atom of the flavonoid backbone. Thus, hesperetin is considered to be a flavonoid lipid molecule. Hesperetin also seems to upregulate the LDL receptor. Hesperetin, in the form of its glycoside , is the predominant flavonoid in lemons and oranges. Hesperetin is a drug which is used for lowering cholesterol and, possibly, otherwise favorably affecting lipids. In vitro research also suggests the possibility that hesperetin might have some anticancer effects and that it might have some anti-aromatase activity. Hesperetin is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Hesperetin is a bitter tasting compound. Hesperetin is found, on average, in the highest concentration within a few different foods, such as limes, persian limes, and sweet oranges and in a lower concentration in pummelo, welsh onions, and lemons. Hesperetin has also been detected, but not quantified, in several different foods, such as yellow bell peppers, carrots, rapinis, hazelnuts, and beers. Hesperetin is a biomarker for the consumption of citrus fruits. Hesperetin reduces or inhibits the activity of acyl-coenzyme A:cholesterol acyltransferase genes (ACAT1 and ACAT2) and it reduces microsomal triglyceride transfer protein (MTP) activity. Hesperetin is a trihydroxyflavanone having the three hydroxy gropus located at the 3-, 5- and 7-positions and an additional methoxy substituent at the 4-position. It has a role as an antioxidant, an antineoplastic agent and a plant metabolite. It is a monomethoxyflavanone, a trihydroxyflavanone, a member of 3-hydroxyflavanones and a member of 4-methoxyflavanones. It is a conjugate acid of a hesperetin(1-). Hesperetin belongs to the flavanone class of flavonoids. Hesperetin, in the form of its glycoside [hesperidin], is the predominant flavonoid in lemons and oranges. Hesperetin is a natural product found in Brassica oleracea var. sabauda, Dalbergia parviflora, and other organisms with data available. Isolated from Mentha (peppermint) and numerous Citrussubspecies, with lemons, tangerines and oranges being especially good sources. Nutriceutical with anti-cancer props. Glycosides also widely distributed A trihydroxyflavanone having the three hydroxy gropus located at the 3-, 5- and 7-positions and an additional methoxy substituent at the 4-position. Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CB046_Hesperetin_pos_40eV_CB000021.txt [Raw Data] CB046_Hesperetin_pos_50eV_CB000021.txt [Raw Data] CB046_Hesperetin_pos_30eV_CB000021.txt [Raw Data] CB046_Hesperetin_pos_20eV_CB000021.txt [Raw Data] CB046_Hesperetin_pos_10eV_CB000021.txt [Raw Data] CB046_Hesperetin_neg_20eV_000014.txt [Raw Data] CB046_Hesperetin_neg_10eV_000014.txt [Raw Data] CB046_Hesperetin_neg_40eV_000014.txt [Raw Data] CB046_Hesperetin_neg_50eV_000014.txt [Raw Data] CB046_Hesperetin_neg_30eV_000014.txt Hesperetin is a natural flavanone, and acts as a potent and broad-spectrum inhibitor against human UGT activity. Hesperetin regulates apoptosis. Hesperetin is a natural flavanone, and acts as a potent and broad-spectrum inhibitor against human UGT activity. Hesperetin regulates apoptosis.
Sinapic acid
Sinapic acid, also known as sinapinate, belongs to the class of organic compounds known as hydroxycinnamic acids. Hydroxycinnamic acids are compounds containing an cinnamic acid where the benzene ring is hydroxylated. Sinapic acid has been detected, but not quantified, in several different foods, such as strawberry guava, purple lavers, common verbena, ryes, and lupines. This could make sinapic acid a potential biomarker for the consumption of these foods. A sinapic acid in which the double bond has trans-configuration. Trans-sinapic acid is a sinapic acid in which the double bond has trans-configuration. It has a role as a MALDI matrix material and a plant metabolite. It is a conjugate acid of a trans-sinapate. Sinapic acid is a matrix for matrix-assisted laser desorption technique for protein MW determination. It is also a constituent of propolis. Sinapic acid is a natural product found in Sida acuta, Limoniastrum guyonianum, and other organisms with data available. A common constituent of plants and fruits. trans-Sinapic acid is found in many foods, some of which are small-leaf linden, redcurrant, malabar spinach, and blackcurrant. D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents A sinapic acid in which the double bond has trans-configuration. Acquisition and generation of the data is financially supported in part by CREST/JST. Profile spectrum of this record is given as a JPEG file.; [Profile] MCH00014.jpg Profile spectrum of this record is given as a JPEG file.; [Profile] MCH00015.jpg CONFIDENCE standard compound; INTERNAL_ID 174 Annotation level-1 Annotation level-2 KEIO_ID S028 Sinapinic acid (Sinapic acid) is a phenolic compound isolated from Hydnophytum formicarum Jack. Rhizome, acts as an inhibitor of HDAC, with an IC50 of 2.27 mM[1], and also inhibits ACE-I activity[2]. Sinapinic acid posssess potent anti-tumor activity, induces apoptosis of tumor cells[1]. Sinapinic acid shows antioxidant and antidiabetic activities[2]. Sinapinic acid reduces total cholesterol, triglyceride, and HOMA-IR index, and also normalizes some serum parameters of antioxidative abilities and oxidative damage in ovariectomized rats[3]. Sinapinic acid (Sinapic acid) is a phenolic compound isolated from Hydnophytum formicarum Jack. Rhizome, acts as an inhibitor of HDAC, with an IC50 of 2.27 mM[1], and also inhibits ACE-I activity[2]. Sinapinic acid posssess potent anti-tumor activity, induces apoptosis of tumor cells[1]. Sinapinic acid shows antioxidant and antidiabetic activities[2]. Sinapinic acid reduces total cholesterol, triglyceride, and HOMA-IR index, and also normalizes some serum parameters of antioxidative abilities and oxidative damage in ovariectomized rats[3].
Succinic acid
Succinic acid appears as white crystals or shiny white odorless crystalline powder. pH of 0.1 molar solution: 2.7. Very acid taste. (NTP, 1992) Succinic acid is an alpha,omega-dicarboxylic acid resulting from the formal oxidation of each of the terminal methyl groups of butane to the corresponding carboxy group. It is an intermediate metabolite in the citric acid cycle. It has a role as a nutraceutical, a radiation protective agent, an anti-ulcer drug, a micronutrient and a fundamental metabolite. It is an alpha,omega-dicarboxylic acid and a C4-dicarboxylic acid. It is a conjugate acid of a succinate(1-). A water-soluble, colorless crystal with an acid taste that is used as a chemical intermediate, in medicine, the manufacture of lacquers, and to make perfume esters. It is also used in foods as a sequestrant, buffer, and a neutralizing agent. (Hawleys Condensed Chemical Dictionary, 12th ed, p1099; McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed, p1851) Succinic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Succinic acid is a dicarboxylic acid. The anion, succinate, is a component of the citric acid cycle capable of donating electrons to the electron transfer chain. Succinic acid is created as a byproduct of the fermentation of sugar. It lends to fermented beverages such as wine and beer a common taste that is a combination of saltiness, bitterness and acidity. Succinate is commonly used as a chemical intermediate, in medicine, the manufacture of lacquers, and to make perfume esters. It is also used in foods as a sequestrant, buffer, and a neutralizing agent. Succinate plays a role in the citric acid cycle, an energy-yielding process and is metabolized by succinate dehydrogenase to fumarate. Succinate dehydrogenase (SDH) plays an important role in the mitochondria, being both part of the respiratory chain and the Krebs cycle. SDH with a covalently attached FAD prosthetic group, binds enzyme substrates (succinate and fumarate) and physiological regulators (oxaloacetate and ATP). Oxidizing succinate links SDH to the fast-cycling Krebs cycle portion where it participates in the breakdown of acetyl-CoA throughout the whole Krebs cycle. Succinate can readily be imported into the mitochondrial matrix by the n-butylmalonate- (or phenylsuccinate-) sensitive dicarboxylate carrier in exchange with inorganic phosphate or another organic acid, e.g. malate. (A3509) Mutations in the four genes encoding the subunits of succinate dehydrogenase are associated with a wide spectrum of clinical presentations (i.e.: Huntingtons disease. (A3510). Succinate also acts as an oncometabolite. Succinate inhibits 2-oxoglutarate-dependent histone and DNA demethylase enzymes, resulting in epigenetic silencing that affects neuroendocrine differentiation. A water-soluble, colorless crystal with an acid taste that is used as a chemical intermediate, in medicine, the manufacture of lacquers, and to make perfume esters. It is also used in foods as a sequestrant, buffer, and a neutralizing agent. (Hawleys Condensed Chemical Dictionary, 12th ed, p1099; McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed, p1851) Succinic acid (succinate) is a dicarboxylic acid. It is an important component of the citric acid or TCA cycle and is capable of donating electrons to the electron transfer chain. Succinate is found in all living organisms ranging from bacteria to plants to mammals. In eukaryotes, succinate is generated in the mitochondria via the tricarboxylic acid cycle (TCA). Succinate can readily be imported into the mitochondrial matrix by the n-butylmalonate- (or phenylsuccinate-) sensitive dicarboxylate carrier in exchange with inorganic phosphate or another organic acid, e. g. malate (PMID 16143825). Succinate can exit the mitochondrial matrix and function in the cytoplasm as well as the extracellular space. Succinate has multiple biological roles including roles as a metabolic intermediate and roles as a cell signalling molecule. Succinate can alter gene expression patterns, thereby modulating the epigenetic landscape or it can exhibit hormone-like signaling functions (PMID: 26971832). As such, succinate links cellular metabolism, especially ATP formation, to the regulation of cellular function. Succinate can be broken down or metabolized into fumarate by the enzyme succinate dehydrogenase (SDH), which is part of the electron transport chain involved in making ATP. Dysregulation of succinate synthesis, and therefore ATP synthesis, can happen in a number of genetic mitochondrial diseases, such as Leigh syndrome, and Melas syndrome. Succinate has been found to be associated with D-2-hydroxyglutaric aciduria, which is an inborn error of metabolism. Succinic acid has recently been identified as an oncometabolite or an endogenous, cancer causing metabolite. High levels of this organic acid can be found in tumors or biofluids surrounding tumors. Its oncogenic action appears to due to its ability to inhibit prolyl hydroxylase-containing enzymes. In many tumours, oxygen availability becomes limited (hypoxia) very quickly due to rapid cell proliferation and limited blood vessel growth. The major regulator of the response to hypoxia is the HIF transcription factor (HIF-alpha). Under normal oxygen levels, protein levels of HIF-alpha are very low due to constant degradation, mediated by a series of post-translational modification events catalyzed by the prolyl hydroxylase domain-containing enzymes PHD1, 2 and 3, (also known as EglN2, 1 and 3) that hydroxylate HIF-alpha and lead to its degradation. All three of the PHD enzymes are inhibited by succinate. In humans, urinary succinic acid is produced by Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumonia, Enterobacter, Acinetobacter, Proteus mirabilis, Citrobacter frundii, Enterococcus faecalis (PMID: 22292465). Succinic acid is also found in Actinobacillus, Anaerobiospirillum, Mannheimia, Corynebacterium and Basfia (PMID: 22292465; PMID: 18191255; PMID: 26360870). Succinic acid is widely distributed in higher plants and produced by microorganisms. It is found in cheeses and fresh meats. Succinic acid is a flavouring enhancer, pH control agent [DFC]. Succinic acid is also found in yellow wax bean, swamp cabbage, peanut, and abalone. An alpha,omega-dicarboxylic acid resulting from the formal oxidation of each of the terminal methyl groups of butane to the corresponding carboxy group. It is an intermediate metabolite in the citric acid cycle. COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID S004 Succinic acid is a potent and orally active anxiolytic agent. Succinic acid is an intermediate product of the tricarboxylic acid cycle. Succinic acid can be used as a precursor of many industrially important chemicals in food, chemical and pharmaceutical industries[1][2]. Succinic acid is a potent and orally active anxiolytic agent. Succinic acid is an intermediate product of the tricarboxylic acid cycle. Succinic acid can be used as a precursor of many industrially important chemicals in food, chemical and pharmaceutical industries[1][2].
Tyrosol
Tyrosol is a phenolic compound present in two of the traditional components of the Mediterranean diet: wine and virgin olive oil. The presence of tyrosol has been described in red and white wines. Tyrosol is also present in vermouth and beer. Tyrosol has been shown to be able to exert antioxidant activity in vitro studies. Oxidation of low-density lipoprotein (LDL) appears to occur predominantly in arterial intimae in microdomains sequestered from antioxidants of plasma. The antioxidant content of the LDL particle is critical for its protection. The ability of tyrosol to bind human LDL has been reported. The bioavailability of tyrosol in humans from virgin olive oil in its natural form has been demonstrated. Urinary tyrosol increases, reaching a peak at 0-4 h after virgin olive oil administration. Men and women show a different pattern of urinary excretion of tyrosol. Moreover, tyrosol is absorbed in a dose-dependent manner after sustained and moderate doses of virgin olive oil. Tyrosol from wine or virgin olive oil could exert beneficial effects on human health in vivo if its biological properties are confirmed (PMID 15134375). Tyrosol is a microbial metabolite found in Bifidobacterium, Escherichia and Lactobacillus (PMID:28393285). 2-(4-hydroxyphenyl)ethanol is a phenol substituted at position 4 by a 2-hydroxyethyl group. It has a role as an anti-arrhythmia drug, an antioxidant, a cardiovascular drug, a protective agent, a fungal metabolite, a geroprotector and a plant metabolite. It is functionally related to a 2-phenylethanol. 2-(4-Hydroxyphenyl)ethanol is a natural product found in Thalictrum petaloideum, Casearia sylvestris, and other organisms with data available. Tyrosol is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Sedum roseum root (part of); Rhodiola crenulata root (part of). D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents A phenol substituted at position 4 by a 2-hydroxyethyl group. D020011 - Protective Agents > D000975 - Antioxidants Tyrosol is a derivative of phenethyl alcohol. Tyrosol attenuates pro-inflammatory cytokines from cultured astrocytes and NF-κB activation. Anti-oxidative and anti-inflammatory effects[1]. Tyrosol is a derivative of phenethyl alcohol. Tyrosol attenuates pro-inflammatory cytokines from cultured astrocytes and NF-κB activation. Anti-oxidative and anti-inflammatory effects[1].
Theophylline
Theophylline is an odorless white crystalline powder. Odorless. Bitter taste. (NTP, 1992) Theophylline is a dimethylxanthine having the two methyl groups located at positions 1 and 3. It is structurally similar to caffeine and is found in green and black tea. It has a role as a vasodilator agent, a bronchodilator agent, a muscle relaxant, an EC 3.1.4.* (phosphoric diester hydrolase) inhibitor, an anti-asthmatic drug, an anti-inflammatory agent, an immunomodulator, an adenosine receptor antagonist, a drug metabolite, a fungal metabolite and a human blood serum metabolite. A methylxanthine derivative from tea with diuretic, smooth muscle relaxant, bronchial dilation, cardiac and central nervous system stimulant activities. Mechanistically, theophylline acts as a phosphodiesterase inhibitor, adenosine receptor blocker, and histone deacetylase activator. Theophylline is marketed under several brand names such as Uniphyl and Theochron, and it is indicated mainly for asthma, bronchospasm, and COPD. Theophylline anhydrous is a Methylxanthine. Theophylline is an orally administered xanthine derivative that induces relaxation of smooth muscle in the bronchial tree causing bronchodilation. Theophylline is widely used in therapy of asthma and is not believed to cause liver injury. Theophylline is a natural product found in Theobroma grandiflorum, Coffea arabica, and other organisms with data available. Theophylline is a natural alkaloid derivative of xanthine isolated from the plants Camellia sinensis and Coffea arabica. Theophylline appears to inhibit phosphodiesterase and prostaglandin production, regulate calcium flux and intracellular calcium distribution, and antagonize adenosine. Physiologically, this agent relaxes bronchial smooth muscle, produces vasodilation (except in cerebral vessels), stimulates the CNS, stimulates cardiac muscle, induces diuresis, and increases gastric acid secretion; it may also suppress inflammation and improve contractility of the diaphragm. (NCI04) A methylxanthine derivative from tea with diuretic, smooth muscle relaxant, bronchial dilation, cardiac and central nervous system stimulant activities. Mechanistically, theophylline acts as a phosphodiesterase inhibitor, adenosine receptor blocker, and histone deacetylase activator. Theophylline is marketed under several brand names such as Uniphyl and Theochron, and it is indicated mainly for asthma, bronchospasm, and COPD. A methyl xanthine derivative from tea with diuretic, smooth muscle relaxant, bronchial dilation, cardiac and central nervous system stimulant activities. Theophylline inhibits the 3,5-CYCLIC NUCLEOTIDE PHOSPHODIESTERASE that degrades CYCLIC AMP thus potentiates the actions of agents that act through ADENYLYL CYCLASES and cyclic AMP. See also: Paullinia cupana seed (part of). Theophylline, also known as quibron TSR or uniphyl, belongs to the class of organic compounds known as xanthines. These are purine derivatives with a ketone group conjugated at carbons 2 and 6 of the purine moiety. Theophylline also binds to the adenosine A2B receptor and blocks adenosine mediated bronchoconstriction. Theophylline is a drug which is used for the treatment of the symptoms and reversible airflow obstruction associated with chronic asthma and other chronic lung diseases, such as emphysema and chronic bronchitis. Theophylline is marketed under several brand names such as Theophylline and Theochron, and it is indicated mainly for asthma, bronchospasm, and COPD. Within humans, theophylline participates in a number of enzymatic reactions. In particular, theophylline and formaldehyde can be biosynthesized from caffeine; which is mediated by the enzymes cytochrome P450 1A2, cytochrome P450 3A4, cytochrome P450 2C8, cytochrome P450 2C9, and cytochrome P450 2E1. In addition, theophylline can be converted into 1-methylxanthine and formaldehyde; which is mediated by the enzyme cytochrome P450 1A2. In humans, theophylline is involved in caffeine metabolism. Theophylline is a bitter tasting compound. Outside of the human body, Theophylline is found, on average, in the highest concentration within cocoa beans and tea. Theophylline has also been detected, but not quantified in a few different foods, such as arabica coffee, lemons, and pummelo. This could make theophylline a potential biomarker for the consumption of these foods. Theophylline is a potentially toxic compound. A dimethylxanthine having the two methyl groups located at positions 1 and 3. It is structurally similar to caffeine and is found in green and black tea. Theophylline, also known as 1,3-dimethylxanthine, is a drug that inhibits phosphodiesterase and blocks adenosine receptors.[1] It is used to treat chronic obstructive pulmonary disease (COPD) and asthma.[2] Its pharmacology is similar to other methylxanthine drugs (e.g., theobromine and caffeine).[1] Trace amounts of theophylline are naturally present in tea, coffee, chocolate, yerba maté, guarana, and kola nut.[1][3] The name 'theophylline' derives from "Thea"—the former genus name for tea + Legacy Greek φύλλον (phúllon, "leaf") + -ine. The use of theophylline is complicated by its interaction with various drugs and by the fact that it has a narrow therapeutic window (<20 mcg/mL).[2] Its use must be monitored by direct measurement of serum theophylline levels to avoid toxicity. It can also cause nausea, diarrhea, increase in heart rate, abnormal heart rhythms, and CNS excitation (headaches, insomnia, irritability, dizziness and lightheadedness).[2][11] Seizures can also occur in severe cases of toxicity, and are considered to be a neurological emergency.[2] Its toxicity is increased by erythromycin, cimetidine, and fluoroquinolones, such as ciprofloxacin. Some lipid-based formulations of theophylline can result in toxic theophylline levels when taken with fatty meals, an effect called dose dumping, but this does not occur with most formulations of theophylline.[12] Theophylline toxicity can be treated with beta blockers. In addition to seizures, tachyarrhythmias are a major concern.[13] Theophylline should not be used in combination with the SSRI fluvoxamine.[14][15] Theophylline (1,3-Dimethylxanthine) is a potent phosphodiesterase (PDE) inhibitor, adenosine receptor antagonist, and histone deacetylase (HDAC) activator. Theophylline (1,3-Dimethylxanthine) inhibits PDE3 activity to relax airway smooth muscle. Theophylline (1,3-Dimethylxanthine) has anti-inflammatory activity by increase IL-10 and inhibit NF-κB into the nucleus. Theophylline (1,3-Dimethylxanthine) induces apoptosis. Theophylline (1,3-Dimethylxanthine) can be used for asthma and chronic obstructive pulmonary disease (COPD) research[1][2][3][4][5]. Theophylline (1,3-Dimethylxanthine) is a potent phosphodiesterase (PDE) inhibitor, adenosine receptor antagonist, and histone deacetylase (HDAC) activator. Theophylline (1,3-Dimethylxanthine) inhibits PDE3 activity to relax airway smooth muscle. Theophylline (1,3-Dimethylxanthine) has anti-inflammatory activity by increase IL-10 and inhibit NF-κB into the nucleus. Theophylline (1,3-Dimethylxanthine) induces apoptosis. Theophylline (1,3-Dimethylxanthine) can be used for asthma and chronic obstructive pulmonary disease (COPD) research[1][2][3][4][5]. Theophylline (1,3-Dimethylxanthine) is a potent phosphodiesterase (PDE) inhibitor, adenosine receptor antagonist, and histone deacetylase (HDAC) activator. Theophylline (1,3-Dimethylxanthine) inhibits PDE3 activity to relax airway smooth muscle. Theophylline (1,3-Dimethylxanthine) has anti-inflammatory activity by increase IL-10 and inhibit NF-κB into the nucleus. Theophylline (1,3-Dimethylxanthine) induces apoptosis. Theophylline (1,3-Dimethylxanthine) can be used for asthma and chronic obstructive pulmonary disease (COPD) research[1][2][3][4][5]. Theophylline (1,3-Dimethylxanthine) is a potent phosphodiesterase (PDE) inhibitor, adenosine receptor antagonist, and histone deacetylase (HDAC) activator. Theophylline (1,3-Dimethylxanthine) inhibits PDE3 activity to relax airway smooth muscle. Theophylline (1,3-Dimethylxanthine) has anti-inflammatory activity by increase IL-10 and inhibit NF-κB into the nucleus. Theophylline (1,3-Dimethylxanthine) induces apoptosis. Theophylline (1,3-Dimethylxanthine) can be used for asthma and chronic obstructive pulmonary disease (COPD) research[1][2][3][4][5].
Galactitol
Galactitol or dulcitol is a sugar alcohol that is a metabolic breakdown product of galactose. Galactose is derived from lactose in food (such as dairy products). When lactose is broken down by the enzyme lactase it produces glucose and galactose. Galactitol has a slightly sweet taste. It is produced from galactose in a reaction catalyzed by aldose reductase. When present in sufficiently high levels, galactitol can act as a metabotoxin, a neurotoxin, and a hepatotoxin. A neurotoxin is a compound that disrupts or attacks neural cells and neural tissue. A hepatotoxin as a compound that disrupts or attacks liver tissue or liver cells. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of galactitol are associated with at least two inborn errors of metabolism, including galactosemia and galactosemia type II. Galactosemia is a rare genetic metabolic disorder that affects an individuals ability to metabolize the sugar galactose properly. Excess lactose consumption in individuals with galactose intolerance or galactosemia activates aldose reductase to produce galactitol, thus depleting NADPH and leading to lowered glutathione reductase activity. As a result, hydrogen peroxide or other free radicals accumulate causing serious oxidative damage to various cells and tissues. In individuals with galactosemia, the enzymes needed for the further metabolism of galactose (galactose-1-phosphate uridyltransferase) are severely diminished or missing entirely, leading to toxic levels of galactose 1-phosphate, galactitol, and galactonate. High levels of galactitol in infants are specifically associated with hepatomegaly (an enlarged liver), cirrhosis, renal failure, cataracts, vomiting, seizure, hypoglycemia, lethargy, brain damage, and ovarian failure. Galactitol is an optically inactive hexitol having meso-configuration. It has a role as a metabolite, a human metabolite, an Escherichia coli metabolite and a mouse metabolite. Galactitol is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Galactitol is a natural product found in Elaeodendron croceum, Salacia chinensis, and other organisms with data available. Galactitol is a naturally occurring product of plants obtained following reduction of galactose. It appears as a white crystalline powder with a slight sweet taste. It may form in excess in the lens of the eye in galactosemias a deficiency of galactokinase. A naturally occurring product of plants obtained following reduction of GALACTOSE. It appears as a white crystalline powder with a slight sweet taste. It may form in excess in the lens of the eye in GALACTOSEMIAS, a deficiency of GALACTOKINASE. A naturally occurring product of plants obtained following reduction of galactose. It appears as a white crystalline powder with a slight sweet taste.; Dulcitol (or galactitol) is a sugar alcohol, the reduction product of galactose. Galactitol in the urine is a biomarker for the consumption of milk. Galactitol is found in many foods, some of which are elliotts blueberry, italian sweet red pepper, catjang pea, and green bean. An optically inactive hexitol having meso-configuration. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Acquisition and generation of the data is financially supported in part by CREST/JST. Dulcite is a sugar alcohol with a slightly sweet taste which is a metabolic breakdown product of galactose. Dulcite is a sugar alcohol with a slightly sweet taste which is a metabolic breakdown product of galactose.
L-Dopa
L-dopa is an optically active form of dopa having L-configuration. Used to treat the stiffness, tremors, spasms, and poor muscle control of Parkinsons disease It has a role as a prodrug, a hapten, a neurotoxin, an antiparkinson drug, a dopaminergic agent, an antidyskinesia agent, an allelochemical, a plant growth retardant, a human metabolite, a mouse metabolite and a plant metabolite. It is a dopa, a L-tyrosine derivative and a non-proteinogenic L-alpha-amino acid. It is a conjugate acid of a L-dopa(1-). It is an enantiomer of a D-dopa. It is a tautomer of a L-dopa zwitterion. Levodopa is a prodrug of dopamine that is administered to patients with Parkinsons due to its ability to cross the blood-brain barrier. Levodopa can be metabolised to dopamine on either side of the blood-brain barrier and so it is generally administered with a dopa decarboxylase inhibitor like carbidopa to prevent metabolism until after it has crossed the blood-brain barrier. Once past the blood-brain barrier, levodopa is metabolized to dopamine and supplements the low endogenous levels of dopamine to treat symptoms of Parkinsons. The first developed drug product that was approved by the FDA was a levodopa and carbidopa combined product called Sinemet that was approved on May 2, 1975. 3,4-Dihydroxy-L-phenylalanine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Levodopa is an Aromatic Amino Acid. Levodopa is an amino acid precursor of dopamine with antiparkinsonian properties. Levodopa is a prodrug that is converted to dopamine by DOPA decarboxylase and can cross the blood-brain barrier. When in the brain, levodopa is decarboxylated to dopamine and stimulates the dopaminergic receptors, thereby compensating for the depleted supply of endogenous dopamine seen in Parkinsons disease. To assure that adequate concentrations of levodopa reach the central nervous system, it is administered with carbidopa, a decarboxylase inhibitor that does not cross the blood-brain barrier, thereby diminishing the decarboxylation and inactivation of levodopa in peripheral tissues and increasing the delivery of dopamine to the CNS. L-Dopa is used for the treatment of Parkinsonian disorders and Dopa-Responsive Dystonia and is usually given with agents that inhibit its conversion to dopamine outside of the central nervous system. Peripheral tissue conversion may be the mechanism of the adverse effects of levodopa. It is standard clinical practice to co-administer a peripheral DOPA decarboxylase inhibitor - carbidopa or benserazide - and often a catechol-O-methyl transferase (COMT) inhibitor, to prevent synthesis of dopamine in peripheral tissue.The naturally occurring form of dihydroxyphenylalanine and the immediate precursor of dopamine. Unlike dopamine itself, it can be taken orally and crosses the blood-brain barrier. It is rapidly taken up by dopaminergic neurons and converted to dopamine. It is used for the treatment of parkinsonian disorders and is usually given with agents that inhibit its conversion to dopamine outside of the central nervous system. [PubChem]L-Dopa is the naturally occurring form of dihydroxyphenylalanine and the immediate precursor of dopamine. Unlike dopamine itself, L-Dopa can be taken orally and crosses the blood-brain barrier. It is rapidly taken up by dopaminergic neurons and converted to dopamine. In particular, it is metabolized to dopamine by aromatic L-amino acid decarboxylase. Pyridoxal phosphate (vitamin B6) is a required cofactor for this decarboxylation, and may be administered along with levodopa, usually as pyridoxine. The naturally occurring form of DIHYDROXYPHENYLALANINE and the immediate precursor of DOPAMINE. Unlike dopamine itself, it can be taken orally and crosses the blood-brain barrier. It is rapidly taken up by dopaminergic neurons and converted to DOPAMINE. It is used for the treatment of PARKINSONIAN DISORDERS and is usually given with agents that inhibit its conversion to dopamine outside ... L-DOPA, also known as levodopa or 3,4-dihydroxyphenylalanine is an alpha amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). L-DOPA is found naturally in both animals and plants. It is made via biosynthesis from the amino acid L-tyrosine by the enzyme tyrosine hydroxylase.. L-DOPA is the precursor to the neurotransmitters dopamine, norepinephrine (noradrenaline), and epinephrine (adrenaline), which are collectively known as catecholamines. The Swedish scientist Arvid Carlsson first showed in the 1950s that administering L-DOPA to animals with drug-induced (reserpine) Parkinsonian symptoms caused a reduction in the intensity of the animals symptoms. Unlike dopamine itself, L-DOPA can be taken orally and crosses the blood-brain barrier. It is rapidly taken up by dopaminergic neurons and converted to dopamine. In particular, it is metabolized to dopamine by aromatic L-amino acid decarboxylase. Pyridoxal phosphate (vitamin B6) is a required cofactor for this decarboxylation, and may be administered along with levodopa, usually as pyridoxine. As a result, L-DOPA is a drug that is now used for the treatment of Parkinsonian disorders and DOPA-Responsive Dystonia. It is usually given with agents that inhibit its conversion to dopamine outside of the central nervous system. It is standard clinical practice in treating Parkinsonism to co-administer a peripheral DOPA decarboxylase inhibitor - carbidopa or benserazide - and often a catechol-O-methyl transferase (COMT) inhibitor, to prevent synthesis of dopamine in peripheral tissue. Side effects of L-DOPA treatment may include: hypertension, arrhythmias, nausea, gastrointestinal bleeding, disturbed respiration, hair loss, disorientation and confusion. L-DOPA can act as an L-tyrosine mimetic and be incorporated into proteins by mammalian cells in place of L-tyrosine, generating protease-resistant and aggregate-prone proteins in vitro and may contribute to neurotoxicity with chronic L-DOPA administration. L-phenylalanine, L-tyrosine, and L-DOPA are all precursors to the biological pigment melanin. The enzyme tyrosinase catalyzes the oxidation of L-DOPA to the reactive intermediate dopaquinone, which reacts further, eventually leading to melanin oligomers. An optically active form of dopa having L-configuration. Used to treat the stiffness, tremors, spasms, and poor muscle control of Parkinsons disease DOPA. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=59-92-7 (retrieved 2024-07-01) (CAS RN: 59-92-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). DL-Dopa is a beta-hydroxylated derivative of phenylalanine. DL-Dopa is a beta-hydroxylated derivative of phenylalanine.
Myristic acid
Tetradecanoic acid is an oily white crystalline solid. (NTP, 1992) Tetradecanoic acid is a straight-chain, fourteen-carbon, long-chain saturated fatty acid mostly found in milk fat. It has a role as a human metabolite, an EC 3.1.1.1 (carboxylesterase) inhibitor, a Daphnia magna metabolite and an algal metabolite. It is a long-chain fatty acid and a straight-chain saturated fatty acid. It is a conjugate acid of a tetradecanoate. Myristic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Myristic acid is a natural product found in Gladiolus italicus, Staphisagria macrosperma, and other organisms with data available. Myristic Acid is a saturated long-chain fatty acid with a 14-carbon backbone. Myristic acid is found naturally in palm oil, coconut oil and butter fat. Myristic acid is a saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils. It is used to synthesize flavor and as an ingredient in soaps and cosmetics. (From Dorland, 28th ed). Myristic acid is also commonly added to a penultimate nitrogen terminus glycine in receptor-associated kinases to confer the membrane localisation of the enzyme. this is achieved by the myristic acid having a high enough hydrophobicity to become incorporated into the fatty acyl core of the phospholipid bilayer of the plasma membrane of the eukaryotic cell.(wikipedia). myristic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils. It is used to synthesize flavor and as an ingredient in soaps and cosmetics. (From Dorland, 28th ed) See also: Cod Liver Oil (part of); Saw Palmetto (part of). Myristic acid, also known as tetradecanoic acid or C14:0, belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Myristic acid (its ester is called myristate) is a saturated fatty acid that has 14 carbons; as such, it is a very hydrophobic molecule that is practically insoluble in water. It exists as an oily white crystalline solid. Myristic acid is found in all living organisms ranging from bacteria to plants to animals, and is found in most animal and vegetable fats, particularly butterfat, as well as coconut, palm, and nutmeg oils. Industrially, myristic acid is used to synthesize a variety of flavour compounds and as an ingredient in soaps and cosmetics (Dorland, 28th ed). Within eukaryotic cells, myristic acid is also commonly conjugated to a penultimate N-terminal glycine residue in receptor-associated kinases to confer membrane localization of these enzymes (a post-translational modification called myristoylation via the enzyme N-myristoyltransferase). Myristic acid has a high enough hydrophobicity to allow the myristoylated protein to become incorporated into the fatty acyl core of the phospholipid bilayer of the plasma membrane of eukaryotic cells. Also, this fatty acid is known because it accumulates as fat in the body; however, its consumption also impacts positively on cardiovascular health (see, for example, PMID: 15936650). Myristic acid is named after the scientific name for nutmeg, Myristica fragrans, from which it was first isolated in 1841 by Lyon Playfair. Myristic acid, also known as 14 or N-tetradecanoic acid, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Thus, myristic acid is considered to be a fatty acid lipid molecule. Myristic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Myristic acid can be found in a number of food items such as strawberry, barley, nutmeg, and soy bean, which makes myristic acid a potential biomarker for the consumption of these food products. Myristic acid can be found primarily in most biofluids, including cerebrospinal fluid (CSF), blood, saliva, and feces, as well as throughout most human tissues. Myristic acid exists in all living species, ranging from bacteria to humans. In humans, myristic acid is involved in the fatty acid biosynthesis. Moreover, myristic acid is found to be associated with schizophrenia. Myristic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Myristic acid (IUPAC systematic name: 1-tetradecanoic acid) is a common saturated fatty acid with the molecular formula CH3(CH2)12COOH. Its salts and esters are commonly referred to as myristates. It is named after the binomial name for nutmeg (Myristica fragrans), from which it was first isolated in 1841 by Lyon Playfair . A straight-chain, fourteen-carbon, long-chain saturated fatty acid mostly found in milk fat. Nutmeg butter has 75\\\% trimyristin, the triglyceride of myristic acid and a source from which it can be synthesised.[13] Besides nutmeg, myristic acid is found in palm kernel oil, coconut oil, butterfat, 8–14\\\% of bovine milk, and 8.6\\\% of breast milk as well as being a minor component of many other animal fats.[9] It is found in spermaceti, the crystallized fraction of oil from the sperm whale. It is also found in the rhizomes of the Iris, including Orris root.[14][15] Myristic acid is a saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils. Myristic acid is a saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils.
Palmitic acid
Palmitic acid, also known as palmitate or hexadecanoic acid, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Thus, palmitic acid is considered to be a fatty acid lipid molecule. Palmitic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Palmitic acid can be found in a number of food items such as sacred lotus, spinach, shallot, and corn salad, which makes palmitic acid a potential biomarker for the consumption of these food products. Palmitic acid can be found primarily in most biofluids, including feces, sweat, cerebrospinal fluid (CSF), and urine, as well as throughout most human tissues. Palmitic acid exists in all living species, ranging from bacteria to humans. In humans, palmitic acid is involved in several metabolic pathways, some of which include alendronate action pathway, rosuvastatin action pathway, simvastatin action pathway, and cerivastatin action pathway. Palmitic acid is also involved in several metabolic disorders, some of which include hypercholesterolemia, familial lipoprotein lipase deficiency, ethylmalonic encephalopathy, and carnitine palmitoyl transferase deficiency (I). Moreover, palmitic acid is found to be associated with schizophrenia. Palmitic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Palmitic acid, or hexadecanoic acid in IUPAC nomenclature, is the most common saturated fatty acid found in animals, plants and microorganisms. Its chemical formula is CH3(CH2)14COOH, and its C:D is 16:0. As its name indicates, it is a major component of the oil from the fruit of oil palms (palm oil). Palmitic acid can also be found in meats, cheeses, butter, and dairy products. Palmitate is the salts and esters of palmitic acid. The palmitate anion is the observed form of palmitic acid at physiologic pH (7.4) . Palmitic acid is the first fatty acid produced during lipogenesis (fatty acid synthesis) and from which longer fatty acids can be produced. Palmitate negatively feeds back on acetyl-CoA carboxylase (ACC) which is responsible for converting acetyl-ACP to malonyl-ACP on the growing acyl chain, thus preventing further palmitate generation (DrugBank). Palmitic acid, or hexadecanoic acid, is one of the most common saturated fatty acids found in animals, plants, and microorganisms. As its name indicates, it is a major component of the oil from the fruit of oil palms (palm oil). Excess carbohydrates in the body are converted to palmitic acid. Palmitic acid is the first fatty acid produced during fatty acid synthesis and is the precursor to longer fatty acids. As a consequence, palmitic acid is a major body component of animals. In humans, one analysis found it to make up 21–30\\\% (molar) of human depot fat (PMID: 13756126), and it is a major, but highly variable, lipid component of human breast milk (PMID: 352132). Palmitic acid is used to produce soaps, cosmetics, and industrial mould release agents. These applications use sodium palmitate, which is commonly obtained by saponification of palm oil. To this end, palm oil, rendered from palm tree (species Elaeis guineensis), is treated with sodium hydroxide (in the form of caustic soda or lye), which causes hydrolysis of the ester groups, yielding glycerol and sodium palmitate. Aluminium salts of palmitic acid and naphthenic acid were combined during World War II to produce napalm. The word "napalm" is derived from the words naphthenic acid and palmitic acid (Wikipedia). Palmitic acid is also used in the determination of water hardness and is a surfactant of Levovist, an intravenous ultrasonic contrast agent. Hexadecanoic acid is a straight-chain, sixteen-carbon, saturated long-chain fatty acid. It has a role as an EC 1.1.1.189 (prostaglandin-E2 9-reductase) inhibitor, a plant metabolite, a Daphnia magna metabolite and an algal metabolite. It is a long-chain fatty acid and a straight-chain saturated fatty acid. It is a conjugate acid of a hexadecanoate. A common saturated fatty acid found in fats and waxes including olive oil, palm oil, and body lipids. Palmitic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Palmitic Acid is a saturated long-chain fatty acid with a 16-carbon backbone. Palmitic acid is found naturally in palm oil and palm kernel oil, as well as in butter, cheese, milk and meat. Palmitic acid, or hexadecanoic acid is one of the most common saturated fatty acids found in animals and plants, a saturated fatty acid found in fats and waxes including olive oil, palm oil, and body lipids. It occurs in the form of esters (glycerides) in oils and fats of vegetable and animal origin and is usually obtained from palm oil, which is widely distributed in plants. Palmitic acid is used in determination of water hardness and is an active ingredient of *Levovist*TM, used in echo enhancement in sonographic Doppler B-mode imaging and as an ultrasound contrast medium. A common saturated fatty acid found in fats and waxes including olive oil, palm oil, and body lipids. A straight-chain, sixteen-carbon, saturated long-chain fatty acid. Palmitic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=57-10-3 (retrieved 2024-07-01) (CAS RN: 57-10-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Campesterol
Campesterol is a phytosterol, meaning it is a steroid derived from plants. As a food additive, phytosterols have cholesterol-lowering properties (reducing cholesterol absorption in intestines), and may act in cancer prevention. Phytosterols naturally occur in small amount in vegetable oils, especially soybean oil. One such phytosterol complex, isolated from vegetable oil, is cholestatin, composed of campesterol, stigmasterol, and brassicasterol, and is marketed as a dietary supplement. Sterols can reduce cholesterol in human subjects by up to 15\\\\\%. The mechanism behind phytosterols and the lowering of cholesterol occurs as follows : the incorporation of cholesterol into micelles in the gastrointestinal tract is inhibited, decreasing the overall amount of cholesterol absorbed. This may in turn help to control body total cholesterol levels, as well as modify HDL, LDL and TAG levels. Many margarines, butters, breakfast cereals and spreads are now enriched with phytosterols and marketed towards people with high cholesterol and a wish to lower it. -- Wikipedia. Campesterol is a member of phytosterols, a 3beta-sterol, a 3beta-hydroxy-Delta(5)-steroid and a C28-steroid. It has a role as a mouse metabolite. It derives from a hydride of a campestane. Campesterol is a natural product found in Haplophyllum bucharicum, Bugula neritina, and other organisms with data available. Campesterol is a steroid derivative that is the simplest sterol, characterized by the hydroxyl group in position C-3 of the steroid skeleton, and saturated bonds throughout the sterol structure, with the exception of the 5-6 double bond in the B ring. Campesterol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=474-62-4 (retrieved 2024-07-01) (CAS RN: 474-62-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Campesterol is a plant sterol with cholesterol lowering and anticarcinogenic effects. Campesterol is a plant sterol with cholesterol lowering and anticarcinogenic effects.
Stigmasterol
Stigmasterol is a phytosterol, meaning it is steroid derived from plants. As a food additive, phytosterols have cholesterol-lowering properties (reducing cholesterol absorption in intestines), and may act in cancer prevention. Phytosterols naturally occur in small amount in vegetable oils, especially soybean oil. One such phytosterol complex, isolated from vegetable oil, is cholestatin, composed of campesterol, stigmasterol, and brassicasterol, and is marketed as a dietary supplement. Sterols can reduce cholesterol in human subjects by up to 15\\%. The mechanism behind phytosterols and the lowering of cholesterol occurs as follows : the incorporation of cholesterol into micelles in the gastrointestinal tract is inhibited, decreasing the overall amount of cholesterol absorbed. This may in turn help to control body total cholesterol levels, as well as modify HDL, LDL and TAG levels. Many margarines, butters, breakfast cereals and spreads are now enriched with phytosterols and marketed towards people with high cholesterol and a wish to lower it. Stigmasterol is found to be associated with phytosterolemia, which is an inborn error of metabolism. Stigmasterol is a 3beta-sterol that consists of 3beta-hydroxystigmastane having double bonds at the 5,6- and 22,23-positions. It has a role as a plant metabolite. It is a 3beta-sterol, a stigmastane sterol, a 3beta-hydroxy-Delta(5)-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Stigmasterol is a natural product found in Ficus auriculata, Xylopia aromatica, and other organisms with data available. Stigmasterol is a steroid derivative characterized by the hydroxyl group in position C-3 of the steroid skeleton, and unsaturated bonds in position 5-6 of the B ring, and position 22-23 in the alkyl substituent. Stigmasterol is found in the fats and oils of soybean, calabar bean and rape seed, as well as several other vegetables, legumes, nuts, seeds, and unpasteurized milk. See also: Comfrey Root (part of); Saw Palmetto (part of); Plantago ovata seed (part of). Stigmasterol is an unsaturated plant sterol occurring in the plant fats or oils of soybean, calabar bean, and rape seed, and in a number of medicinal herbs, including the Chinese herbs Ophiopogon japonicus (Mai men dong) and American Ginseng. Stigmasterol is also found in various vegetables, legumes, nuts, seeds, and unpasteurized milk. A 3beta-sterol that consists of 3beta-hydroxystigmastane having double bonds at the 5,6- and 22,23-positions. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol
beta-Sitosterol
beta-Sitosterol, a main dietary phytosterol found in plants, may have the potential for prevention and therapy for human cancer. Phytosterols are plant sterols found in foods such as oils, nuts, and vegetables. Phytosterols, in the same way as cholesterol, contain a double bond and are susceptible to oxidation, and are characterized by anti-carcinogenic and anti-atherogenic properties (PMID:13129445, 11432711). beta-Sitosterol is a phytopharmacological extract containing a mixture of phytosterols, with smaller amounts of other sterols, bonded with glucosides. These phytosterols are commonly derived from the South African star grass, Hypoxis rooperi, or from species of Pinus and Picea. The purported active constituent is termed beta-sitosterol. Additionally, the quantity of beta-sitosterol-beta-D-glucoside is often reported. Although the exact mechanism of action of beta-sitosterols is unknown, it may be related to cholesterol metabolism or anti-inflammatory effects (via interference with prostaglandin metabolism). Compared with placebo, beta-sitosterol improved urinary symptom scores and flow measures (PMID:10368239). A plant food-based diet modifies the serum beta-sitosterol concentration in hyperandrogenic postmenopausal women. This finding indicates that beta-sitosterol can be used as a biomarker of exposure in observational studies or as a compliance indicator in dietary intervention studies of cancer prevention (PMID:14652381). beta-Sitosterol induces apoptosis and activates key caspases in MDA-MB-231 human breast cancer cells (PMID:12579296). Sitosterol is a member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. It has a role as a sterol methyltransferase inhibitor, an anticholesteremic drug, an antioxidant, a plant metabolite and a mouse metabolite. It is a 3beta-sterol, a stigmastane sterol, a 3beta-hydroxy-Delta(5)-steroid, a C29-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Active fraction of Solanum trilobatum; reduces side-effects of radiation-induced toxicity. Beta-Sitosterol is a natural product found in Elodea canadensis, Ophiopogon intermedius, and other organisms with data available. beta-Sitosterol is one of several phytosterols (plant sterols) with chemical structures similar to that of cholesterol. Sitosterols are white, waxy powders with a characteristic odor. They are hydrophobic and soluble in alcohols. beta-Sitosterol is found in many foods, some of which are ginseng, globe artichoke, sesbania flower, and common oregano. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].
Oleanolic acid
Oleanolic acid is a pentacyclic triterpene, found in the non-glyceride fraction of olive pomace oil (Olive pomace oil, also known as "orujo" olive oil, is a blend of refined-pomace oil and virgin olive oil, fit for human consumption). Pentacyclic triterpenes are natural compounds which are widely distributed in plants. These natural products have been demonstrated to possess anti-inflammatory properties. Triterpenoids have been reported to possess antioxidant properties, since they prevent lipid peroxidation and suppress superoxide anion generation. The triterpenes have a history of medicinal use in many Asian countries. Oleanolic acid exhibits both pro- and anti-inflammatory properties depending on chemical structure and dose and may be useful in modulating the immune response; further studies are required to confirm the immunomodulatory behaviour of this triterpenoid, and characterise the mechanisms underlying the biphasic nature of some aspects of the inflammatory response. Oleanolic acid is a ubiquitous triterpenoid in plant kingdom, medicinal herbs, and is an integral part of the human diet. During the last decade over 700 research articles have been published on triterpenoids research, reflecting tremendous interest and progress in our understanding of these compounds. This included the isolation and purification of these tritepernoids from various plants and herbs, the chemical modifications to make more effective and water soluble derivatives, the pharmacological research on their beneficial effects, the toxicity studies, and the clinical use of these triterpenoids in various diseases including anticancer chemotherapies. (PMID:17292619, 15522132, 15994040). Oleanolic acid is a pentacyclic triterpenoid that is olean-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. It has a role as a plant metabolite. It is a pentacyclic triterpenoid and a hydroxy monocarboxylic acid. It is a conjugate acid of an oleanolate. It derives from a hydride of an oleanane. Oleanolic acid is a natural product found in Ophiopogon japonicus, Freziera, and other organisms with data available. A pentacyclic triterpene that occurs widely in many PLANTS as the free acid or the aglycone for many SAPONINS. It is biosynthesized from lupane. It can rearrange to the isomer, ursolic acid, or be oxidized to taraxasterol and amyrin. See also: Holy basil leaf (part of); Jujube fruit (part of); Paeonia lactiflora root (part of) ... View More ... Occurs as glycosides in cloves (Syzygium aromaticum), sugar beet (Beta vulgaris), olive leaves, etc. Very widely distributed aglycone A pentacyclic triterpenoid that is olean-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. [Raw Data] CBA90_Oleanolic-acid_neg_50eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_20eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_10eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_30eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_40eV.txt Oleanolic acid (Caryophyllin) is a natural compound from plants with anti-tumor activities. Oleanolic acid (Caryophyllin) is a natural compound from plants with anti-tumor activities.
Maltotetraose
Maltotetraose belongs to the class of organic compounds known as oligosaccharides. These are carbohydrates made up of 3 to 10 monosaccharide units linked to each other through glycosidic bonds. Maltotetraose exists in all living organisms, ranging from bacteria to humans. Outside of the human body, maltotetraose has been detected, but not quantified in several different foods, such as welsh onions, kales, small-leaf lindens, other bread, and romaine lettuces. Maltotetraose is a normal human oligo saccharide present in plasma, but is elevated in cases of Pompe disease (PMID 15886040). Alpha-D-Glcp-(1->4)-alpha-D-Glcp-(1->4)-alpha-D-Glcp-(1->4)-D-Glcp is a maltotetraose tetrasaccharide consisting of three alpha-D-glucopyranose residues and a D-glucopyranose residue joined in sequence by (1->4) glycosidic bonds. Amylotetraose is a natural product found in Streptomyces with data available. Constituent of corn syrup. Product of action of a-amylase on starch. Maltooligosaccharide mixtures are important food additives (sweeteners, gelling agents and viscosity modifiers) D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents Maltotetraose can be used as a substrate for the enzyme-coupled determination of amylase activity in biological fluids. Maltotetraose can be used as a substrate for the enzyme-coupled determination of amylase activity in biological fluids.
Ascorbic acid
L-ascorbic acid is a white to very pale yellow crystalline powder with a pleasant sharp acidic taste. Almost odorless. (NTP, 1992) L-ascorbic acid is the L-enantiomer of ascorbic acid and conjugate acid of L-ascorbate. It has a role as a coenzyme, a flour treatment agent, a food antioxidant, a plant metabolite, a cofactor, a skin lightening agent and a geroprotector. It is an ascorbic acid and a vitamin C. It is a conjugate acid of a L-ascorbate. It is an enantiomer of a D-ascorbic acid. A six carbon compound related to glucose. It is found naturally in citrus fruits and many vegetables. Ascorbic acid is an essential nutrient in human diets, and necessary to maintain connective tissue and bone. Its biologically active form, vitamin C, functions as a reducing agent and coenzyme in several metabolic pathways. Vitamin C is considered an antioxidant. Ascorbic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Ascorbic acid is a Vitamin C. Ascorbic Acid is a natural product found in Populus tremula, Rosa platyacantha, and other organisms with data available. Ascorbic Acid is a natural water-soluble vitamin (Vitamin C). Ascorbic acid is a potent reducing and antioxidant agent that functions in fighting bacterial infections, in detoxifying reactions, and in the formation of collagen in fibrous tissue, teeth, bones, connective tissue, skin, and capillaries. Found in citrus and other fruits, and in vegetables, vitamin C cannot be produced or stored by humans and must be obtained in the diet. (NCI04) A six carbon compound related to glucose. It is found naturally in citrus fruits and many vegetables. Ascorbic acid is an essential nutrient in human diets, and necessary to maintain connective tissue and bone. Its biologically active form, vitamin C, functions as a reducing agent and coenzyme in several metabolic pathways. Vitamin C is considered an antioxidant. See also: Sodium Ascorbate (active moiety of); D-ascorbic acid (related); Magnesium Ascorbyl Phosphate (active moiety of) ... View More ... G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids > G01AD - Organic acids A - Alimentary tract and metabolism > A11 - Vitamins > A11G - Ascorbic acid (vitamin c), incl. combinations > A11GA - Ascorbic acid (vitamin c), plain B - Blood and blood forming organs > B03 - Antianemic preparations > B03A - Iron preparations > B03AA - Iron bivalent, oral preparations COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D020011 - Protective Agents > D000975 - Antioxidants C26170 - Protective Agent > C275 - Antioxidant D018977 - Micronutrients > D014815 - Vitamins S - Sensory organs > S01 - Ophthalmologicals Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS L-Ascorbic acid (L-Ascorbate), an electron donor, is an endogenous antioxidant agent. L-Ascorbic acid inhibits selectively Cav3.2 channels with an IC50 of 6.5 μM. L-Ascorbic acid is also a collagen deposition enhancer and an elastogenesis inhibitor[1][2][3]. L-Ascorbic acid exhibits anti-cancer effects through the generation of reactive oxygen species (ROS) and selective damage to cancer cells[4]. L-Ascorbic acid (L-Ascorbate), an electron donor, is an endogenous antioxidant agent. L-Ascorbic acid inhibits selectively Cav3.2 channels with an IC50 of 6.5 μM. L-Ascorbic acid is also a collagen deposition enhancer and an elastogenesis inhibitor[1][2][3]. L-Ascorbic acid exhibits anti-cancer effects through the generation of reactive oxygen species (ROS) and selective damage to cancer cells[4].
Pantothenic acid
(R)-pantothenic acid is a pantothenic acid having R-configuration. It has a role as an antidote to curare poisoning, a human blood serum metabolite and a geroprotector. It is a vitamin B5 and a pantothenic acid. It is a conjugate acid of a (R)-pantothenate. Pantothenic acid, also called pantothenate or vitamin B5 (a B vitamin), is a water-soluble vitamin discovered by Roger J. Williams in 1919. For many animals, pantothenic acid is an essential nutrient as it is required to synthesize coenzyme-A (CoA), as well as to synthesize and metabolize proteins, carbohydrates, and fats. Pantothenic acid is the amide between pantoic acid and β-alanine and commonly found as its alcohol analog, the provitamin panthenol, and as calcium pantothenate. Small quantities of pantothenic acid are found in nearly every food, with high amounts in whole-grain cereals, legumes, eggs, meat, royal jelly, avocado, and yogurt. Pantothenic acid is an ingredient in some hair and skin care products. Only the dextrorotatory (D) isomer of pantothenic acid possesses biological activity. while the levorotatory (L) form may antagonize the effects of the dextrorotatory isomer. Pantothenic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Pantothenic acid is a natural product found in Chlamydomonas reinhardtii, Arabidopsis thaliana, and other organisms with data available. Pantothenic Acid is a water-soluble vitamin ubiquitously found in plants and animal tissues with antioxidant property. Vitamin B5 is a component of coenzyme A (CoA) and a part of the vitamin B2 complex. Vitamin B5 is a growth factor and is essential for various metabolic functions, including the metabolism of carbohydrates, proteins, and fatty acids. This vitamin is also involved in the synthesis of cholesterol, lipids, neurotransmitters, steroid hormones, and hemoglobin. (R)-Pantothenic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A butyryl-beta-alanine that can also be viewed as pantoic acid complexed with BETA ALANINE. It is incorporated into COENZYME A and protects cells against peroxidative damage by increasing the level of GLUTATHIONE. See also: Broccoli (part of). Pantothenic acid, also called vitamin B5, is a water-soluble vitamin required to sustain life. Pantothenic acid is needed to form coenzyme-A (CoA), and is thus critical in the metabolism and synthesis of carbohydrates, proteins, and fats. Its name is derived from the Greek pantothen meaning "from everywhere" and small quantities of pantothenic acid are found in nearly every food, with high amounts in whole grain cereals, legumes, eggs, meat, and royal jelly. Pantothenic acid is classified as a member of the secondary alcohols. Secondary alcohols are compounds containing a secondary alcohol functional group, with the general structure HOC(R)(R) (R,R=alkyl, aryl). Pantothenic acid is considered to be soluble (in water) and acidic. (r)-pantothenate, also known as (+)-pantothenic acid or vitamin b5, is a member of the class of compounds known as secondary alcohols. Secondary alcohols are compounds containing a secondary alcohol functional group, with the general structure HOC(R)(R) (R,R=alkyl, aryl) (r)-pantothenate is soluble (in water) and a weakly acidic compound (based on its pKa). (r)-pantothenate can be found in a number of food items such as spirulina, nance, cereals and cereal products, and sparkleberry, which makes (r)-pantothenate a potential biomarker for the consumption of these food products (r)-pantothenate can be found primarily in blood and urine (r)-pantothenate exists in all eukaryotes, ranging from yeast to humans. D018977 - Micronutrients > D014815 - Vitamins A pantothenic acid having R-configuration. Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID P032; [MS2] KO009182 KEIO_ID P032; [MS3] KO009183 KEIO_ID P032 D-Pantothenic acid (Pantothenate) is an essential trace nutrient that functions as the obligate precursor of coenzyme A (CoA). D-Pantothenic acid plays key roles in myriad biological processes, including many that regulate carbohydrate, lipid, protein, and nucleic acid metabolism[1]. D-Pantothenic acid (Pantothenate) is an essential trace nutrient that functions as the obligate precursor of coenzyme A (CoA). D-Pantothenic acid plays key roles in myriad biological processes, including many that regulate carbohydrate, lipid, protein, and nucleic acid metabolism[1].
Isonicotinic acid
Isonicotinic acid is a pyridinemonocarboxylic acid in which the carboxy group is at position 4 of the pyridine ring. It has a role as a human metabolite and an algal metabolite. It is a conjugate acid of an isonicotinate. Isonicotinic acid is a natural product found in Aloe africana, Chlamydomonas reinhardtii, and other organisms with data available. Heterocyclic acids that are derivatives of 4-pyridinecarboxylic acid (isonicotinic acid). Isonicotinic acid is a metabolite of isoniazid. Isonicotinic acid is an organic compound with a carboxyl group on a pyridine ring. It is an isomer of nicotinic acid. The carboxyl group for isonicotinic acid is on the 4-position instead of the 3-position for nicotinic acid (Wikipedia). A pyridinemonocarboxylic acid in which the carboxy group is at position 4 of the pyridine ring. Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID I017 Isonicotinic acid is a metabolite of Isoniazid. Isoniazid is converted to Isonicotinic acid by hydrazinolysis, with the Isoniazid to Isonicotinic acid biotransformation also to be catalyzed by cytochrome P450 (CYP) enzymes, e.g., CYP2C[1].
Galactose
D-galactopyranose is a galactopyranose having D-configuration. It has a role as an Escherichia coli metabolite and a mouse metabolite. It is a D-galactose and a galactopyranose. D-Galactose is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). D-Galactose is a natural product found in Vigna subterranea, Lilium tenuifolium, and other organisms with data available. An aldohexose that occurs naturally in the D-form in lactose, cerebrosides, gangliosides, and mucoproteins. Deficiency of galactosyl-1-phosphate uridyltransferase (GALACTOSE-1-PHOSPHATE URIDYL-TRANSFERASE DEFICIENCY DISEASE) causes an error in galactose metabolism called GALACTOSEMIA, resulting in elevations of galactose in the blood. V - Various > V04 - Diagnostic agents > V04C - Other diagnostic agents > V04CE - Tests for liver functional capacity Acquisition and generation of the data is financially supported by the Max-Planck-Society
Trigonelline (N'-methylnicotinate)
Trigonelline, also known as caffearin or gynesine, belongs to the class of organic compounds known as alkaloids and derivatives. These are naturally occurring chemical compounds that contain mostly basic nitrogen atoms. This group also includes some related compounds with neutral and even weakly acidic properties. Also some synthetic compounds of similar structure are attributed to alkaloids. In addition to carbon, hydrogen and nitrogen, alkaloids may also contain oxygen, sulfur and more rarely other elements such as chlorine, bromine, and phosphorus. It is also found in coffee, where it may help to prevent dental caries by preventing the bacteria Streptococcus mutans from adhering to teeth. Trigonelline is an alkaloid with chemical formula C7H7NO2 and CAS number 535-83-1. Trigonelline is a product of the metabolism of niacin (vitamin B3) which is excreted in the urine. High amounts of trigonelline have been found in arabica coffee, fenugreeks, and common peas. Another foods such as yellow bell peppers, orange bellpeppers and muskmelons also contain trigonelline but in lower concentrations. Trigonelline has also been detected but not quantified in several different foods, such as rices, triticales, alfalfa, cereals and cereal products, and ryes. Trigonelline in the urine is a biomarker for the consumption of coffee, legumes and soy products. Alkaloid from fenugreek (Trigonella foenum-graecum) (Leguminosae), and very many other subspecies; also present in coffee beans and many animals. Trigonelline is an alkaloid with chemical formula C7H7NO2 and CAS number 535-83-1. It is found in coffee, where it may help to prevent dental caries by preventing the bacteria Streptococcus mutans from adhering to teeth.; Trigonelline is an alkaloid with chemical formula C7H7NO2. It is an inner salt formed by the addition of a methyl group to the nitrogen atom of niacin. Trigonelline is a product of the metabolism of niacin (vitamin B3) which is excreted in the urine. Trigonelline in the urine is a biomarker for the consumption of coffee, legumes and soy products. N-methylnicotinate is an iminium betaine that is the conjugate base of N-methylnicotinic acid, arising from deprotonation of the carboxy group. It has a role as a plant metabolite, a food component and a human urinary metabolite. It is an iminium betaine and an alkaloid. It is functionally related to a nicotinate. It is a conjugate base of a N-methylnicotinic acid. Trigonelline is a natural product found in Hypoestes phyllostachya, Schumanniophyton magnificum, and other organisms with data available. See also: Fenugreek seed (part of). Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; ML_ID 52 KEIO_ID T060 Trigonelline is an alkaloid with potential antidiabetic activity that can be isolated from Trigonella foenum-graecum L or Leonurus artemisia. Trigonelline is a potent Nrf2 inhibitor that blocks Nrf2-dependent proteasome activity, thereby enhancing apoptosis in pancreatic cancer cells. Trigonelline also has anti-HSV-1, antibacterial, and antifungal activity and induces ferroptosis. Trigonelline is an alkaloid with potential antidiabetic activity that can be isolated from Trigonella foenum-graecum L or Leonurus artemisia. Trigonelline is a potent Nrf2 inhibitor that blocks Nrf2-dependent proteasome activity, thereby enhancing apoptosis in pancreatic cancer cells. Trigonelline also has anti-HSV-1, antibacterial, and antifungal activity and induces ferroptosis.
Dicumarol
Dicoumarol is a hydroxycoumarin that is methane in which two hydrogens have each been substituted by a 4-hydroxycoumarin-3-yl group. Related to warfarin, it has been used as an anticoagulant. It has a role as a vitamin K antagonist, an anticoagulant, an EC 1.6.5.2 [NAD(P)H dehydrogenase (quinone)] inhibitor and a Hsp90 inhibitor. Dicoumarol is an oral anticoagulant agent that works by interfering with the metabolism of vitamin K. In addition to its clinical use, it is also used in biochemical experiments as an inhibitor of reductases. Dicumarol is a natural product found in Homo sapiens and Viola arvensis with data available. Dicumarol is a hydroxycoumarin originally isolated from molding sweet-clover hay, with anticoagulant and vitamin K depletion activities. Dicumarol is a competitive inhibitor of vitamin K epoxide reductase; thus, it inhibits vitamin K recycling and causes depletion of active vitamin K in blood. This prevents the formation of the active form of prothrombin and several other coagulant enzymes, and inhibits blood clotting. Dicumarol is only found in individuals that have used or taken this drug. It is an oral anticoagulant that interferes with the metabolism of vitamin K. It is also used in biochemical experiments as an inhibitor of reductases. [PubChem] Dicumarol inhibits vitamin K reductase, resulting in depletion of the reduced form of vitamin K (vitamin KH2). As vitamin K is a cofactor for the carboxylation of glutamate residues on the N-terminal regions of vitamin K-dependent proteins, this limits the gamma-carboxylation and subsequent activation of the vitamin K-dependent coagulant proteins. The synthesis of vitamin K-dependent coagulation factors II, VII, IX, and X and anticoagulant proteins C and S is inhibited. Depression of three of the four vitamin K-dependent coagulation factors (factors II, VII, and X) results in decresed prothrombin levels and a decrease in the amount of thrombin generated and bound to fibrin. This reduces the thrombogenicity of clots. An oral anticoagulant that interferes with the metabolism of vitamin K. It is also used in biochemical experiments as an inhibitor of reductases. Dicumarol is only found in individuals that have used or taken this drug. It is an oral anticoagulant that interferes with the metabolism of vitamin K. It is also used in biochemical experiments as an inhibitor of reductases. [PubChem]Dicumarol inhibits vitamin K reductase, resulting in depletion of the reduced form of vitamin K (vitamin KH2). As vitamin K is a cofactor for the carboxylation of glutamate residues on the N-terminal regions of vitamin K-dependent proteins, this limits the gamma-carboxylation and subsequent activation of the vitamin K-dependent coagulant proteins. The synthesis of vitamin K-dependent coagulation factors II, VII, IX, and X and anticoagulant proteins C and S is inhibited. Depression of three of the four vitamin K-dependent coagulation factors (factors II, VII, and X) results in decresed prothrombin levels and a decrease in the amount of thrombin generated and bound to fibrin. This reduces the thrombogenicity of clots. B - Blood and blood forming organs > B01 - Antithrombotic agents > B01A - Antithrombotic agents > B01AA - Vitamin k antagonists A hydroxycoumarin that is methane in which two hydrogens have each been substituted by a 4-hydroxycoumarin-3-yl group. D006401 - Hematologic Agents > D000925 - Anticoagulants > D015110 - 4-Hydroxycoumarins C78275 - Agent Affecting Blood or Body Fluid > C263 - Anticoagulant Agent D004791 - Enzyme Inhibitors > D014475 - Uncoupling Agents Isolated from Melilotus alba (white melilot)
alpha-Tocopherol
Alpha-tocopherol is a pale yellow, viscous liquid. (NTP, 1992) (R,R,R)-alpha-tocopherol is an alpha-tocopherol that has R,R,R configuration. The naturally occurring stereoisomer of alpha-tocopherol, it is found particularly in sunflower and olive oils. It has a role as an antioxidant, a nutraceutical, an antiatherogenic agent, an EC 2.7.11.13 (protein kinase C) inhibitor, an anticoagulant, an immunomodulator, an antiviral agent, a micronutrient, an algal metabolite and a plant metabolite. It is an enantiomer of a (S,S,S)-alpha-tocopherol. In 1922, vitamin E was demonstrated to be an essential nutrient. Vitamin E is a term used to describe 8 different fat soluble tocopherols and tocotrienols, alpha-tocopherol being the most biologically active. Vitamin E acts as an antioxidant, protecting cell membranes from oxidative damage. The antioxidant effects are currently being researched for use in the treatment of diseases causing bone loss, cardiovascular diseases, diabetes mellitus and associated comorbidities, eye diseases, inflammatory diseases (including skin conditions), lipid disorders, neurological diseases, and radiation damage. Though this research is so far inconclusive, vitamin E remains a popular supplement and is generally considered safe by the FDA. Vitamin E is a natural product found in Monteverdia ilicifolia, Calea jamaicensis, and other organisms with data available. Alpha-Tocopherol is the orally bioavailable alpha form of the naturally-occurring fat-soluble vitamin E, with potent antioxidant and cytoprotective activities. Upon administration, alpha-tocopherol neutralizes free radicals, thereby protecting tissues and organs from oxidative damage. Alpha-tocopherol gets incorporated into biological membranes, prevents protein oxidation and inhibits lipid peroxidation, thereby maintaining cell membrane integrity and protecting the cell against damage. In addition, alpha-tocopherol inhibits the activity of protein kinase C (PKC) and PKC-mediated pathways. Alpha-tocopherol also modulates the expression of various genes, plays a key role in neurological function, inhibits platelet aggregation and enhances vasodilation. Compared with other forms of tocopherol, alpha-tocopherol is the most biologically active form and is the form that is preferentially absorbed and retained in the body. A generic descriptor for all tocopherols and tocotrienols that exhibit alpha-tocopherol activity. By virtue of the phenolic hydrogen on the 2H-1-benzopyran-6-ol nucleus, these compounds exhibit varying degree of antioxidant activity, depending on the site and number of methyl groups and the type of isoprenoids. See also: Alpha-Tocopherol Acetate (is active moiety of); Tocopherol (related); Vitamin E (related) ... View More ... alpha-Tocopherol is traditionally recognized as the most active form of vitamin E in humans and is a powerful biological antioxidant. The measurement of "vitamin E" activity in international units (IU) was based on fertility enhancement by the prevention of spontaneous abortions in pregnant rats relative to alpha-Tocopherol. Natural vitamin E exists in eight different forms or isomers: four tocopherols and four tocotrienols. In foods, the most abundant sources of vitamin E are vegetable oils such as palm oil, sunflower, corn, soybean, and olive oil. Nuts, sunflower seeds, and wheat germ are also good sources. Constituent of many vegetable oils such as soya and sunflower oils. Dietary supplement and nutrient. Nutriceutical with anticancer and antioxidant props. Added to fats and oils to prevent rancidity. The naturally-occurring tocopherol is a single stereoisomer; synthetic forms are a mixture of all eight possible isomers An alpha-tocopherol that has R,R,R configuration. The naturally occurring stereoisomer of alpha-tocopherol, it is found particularly in sunflower and olive oils. α-Tocopherol (alpha-tocopherol) is a type of vitamin E. Its E number is "E307". Vitamin E exists in eight different forms, four tocopherols and four tocotrienols. All feature a chromane ring, with a hydroxyl group that can donate a hydrogen atom to reduce free radicals and a hydrophobic side chain which allows for penetration into biological membranes. Compared to the others, α-tocopherol is preferentially absorbed and accumulated in humans. Vitamin E is found in a variety of tissues, being lipid-soluble, and taken up by the body in a wide variety of ways. The most prevalent form, α-tocopherol, is involved in molecular, cellular, biochemical processes closely related to overall lipoprotein and lipid homeostasis. Ongoing research is believed to be "critical for manipulation of vitamin E homeostasis in a variety of oxidative stress-related disease conditions in humans."[2] One of these disease conditions is the α-tocopherol role in the use by malaria parasites to protect themselves from the highly oxidative environment in erythrocytes.[3] DL-α-Tocopherol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=16826-11-2 (retrieved 2024-06-29) (CAS RN: 10191-41-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). DL-alpha-Tocopherol is a synthetic vitamin E, with antioxidation effect. DL-alpha-Tocopherol protects human skin fibroblasts against the cytotoxic effect of UVB[1]. DL-alpha-Tocopherol is a synthetic vitamin E, with antioxidation effect. DL-alpha-Tocopherol protects human skin fibroblasts against the cytotoxic effect of UVB[1]. rel-α-Vitamin E (rel-D-α-Tocopherol) is a vitamin with antioxidant properties and also a mixture[1]. α-Vitamin E ((+)-α-Tocopherol), a naturally occurring vitamin E form, is a potent antioxidant[1][2]. α-Vitamin E ((+)-α-Tocopherol), a naturally occurring vitamin E form, is a potent antioxidant[1][2].
L-Isoleucine
Isoleucine (Ile) or L-isoleucine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. L-isolecuine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Isoleucine is found in all organisms ranging from bacteria to plants to animals. It is classified as a non-polar, uncharged (at physiological pH) aliphatic amino acid. Isoleucine is an essential amino acid in humans, meaning the body cannot synthesize it and that it must be obtained from the diet. In plants and microorganisms, isoleucine is synthesized starting from pyruvate and alpha-ketobutyrate. Isoleucine is classified as a branched chain amino acid (BCAA). BCAAs include three amino acids: isoleucine, leucine and valine. They are alpha amino acids whose carbon structure is marked by a beta branch point. Despite their structural similarities, BCAAs have different metabolic routes, with valine going solely to carbohydrates (glucogenic), leucine solely to fats (ketogenic) and isoleucine being both a glucogenic and a ketogenic amino acid. Isoleucine is catabolized via with alpha-ketoglutarate where upon it is oxidized and split into propionyl-CoA and acetyl-CoA. Propionyl-CoA is converted into succinyl-CoA, a TCA cycle intermediate which can be converted into oxaloacetate for gluconeogenesis (hence glucogenic). The acetyl-CoA can be fed into the TCA cycle by condensing with oxaloacetate to form citrate or used in the synthesis of ketone bodies or fatty acids. The different metabolism of BCAAs accounts for different requirements for these essential amino acids in humans: 12 mg/kg, 14 mg/kg and 16 mg/kg of valine, leucine and isoleucine are required respectively. Furthermore, these amino acids have different deficiency symptoms. Valine deficiency is marked by neurological defects in the brain, while isoleucine deficiency is marked by muscle tremors. BCAAs are decreased in patients with liver disease, such as hepatitis, hepatic coma, cirrhosis, extrahepatic biliary atresia. An inability to break down isoleucine, along with other amino acids, is associated with maple syrup urine disease (MSUD) (PMID: 34125801). Isoleucine, like other BCAAs, is associated with insulin resistance. In particular, higher levels of isoleucine are observed in the blood of diabetic mice, rats, and humans (PMID 25287287). Mice fed an isoleucine deprivation diet for one day have improved insulin sensitivity, and feeding of an isoleucine deprivation diet for one week significantly decreases blood glucose levels (PMID: 24684822). L-isoleucine is the L-enantiomer of isoleucine. It has a role as a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite, a plant metabolite, a human metabolite, an algal metabolite and a mouse metabolite. It is an aspartate family amino acid, a proteinogenic amino acid, an isoleucine and a L-alpha-amino acid. It is a conjugate base of a L-isoleucinium. It is a conjugate acid of a L-isoleucinate. It is an enantiomer of a D-isoleucine. It is a tautomer of a L-isoleucine zwitterion. An essential branched-chain aliphatic amino acid found in many proteins. It is an isomer of leucine. It is important in hemoglobin synthesis and regulation of blood sugar and energy levels. L-Isoleucine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Isoleucine is one of nine essential amino acids in humans (present in dietary proteins), Isoleucine has diverse physiological functions, such as assisting wound healing, detoxification of nitrogenous wastes, stimulating immune function, and promoting secretion of several hormones. Necessary for hemoglobin formation and regulating blood sugar and energy levels, isoleucine is concentrated in muscle tissues in humans. Isoleucine is found especially in meats, fish, cheese, eggs, and most seeds and nuts. (NCI04) L-Isoleucine is one of the essential amino acids that cannot be made by the body and is known for its ability to help endurance and assist in the repair and rebuilding of muscle. This amino acid is important to body builders as it helps boost energy and helps the body recover from training. L-Isoleucine is also classified as a branched-chain amino acid (BCAA). It helps promote muscle recovery after exercise. Isoleucine is actually broken down for energy within the muscle tissue. It is important in hemoglobin synthesis and regulation of blood sugar and energy levels. An essential branched-chain aliphatic amino acid found in many proteins. It is an isomer of LEUCINE. It is important in hemoglobin synthesis and regulation of blood sugar and energy levels. L-Isoleucine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=73-32-5 (retrieved 2024-07-01) (CAS RN: 73-32-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-isoleucine is a nonpolar hydrophobic amino acid[1]. L-Isoleucine is an essential amino acid. L-isoleucine is a nonpolar hydrophobic amino acid[1]. L-Isoleucine is an essential amino acid.
Trehalose
C12H22O11 (342.11620619999997)
Trehalose, also known as mycose, is a 1-alpha (disaccharide) sugar found extensively but not abundantly in nature. It is thought to be implicated in anhydrobiosis - the ability of plants and animals to withstand prolonged periods of desiccation. The sugar is thought to form a gel phase as cells dehydrate, which prevents disruption of internal cell organelles by effectively splinting them in position. Rehydration then allows normal cellular activity to be resumed without the major, generally lethal damage that would normally follow a dehydration/reyhdration cycle. Trehalose is a non-reducing sugar formed from two glucose units joined by a 1-1 alpha bond giving it the name of alpha-D-glucopyranoglucopyranosyl-1,1-alpha-D-glucopyranoside. The bonding makes trehalose very resistant to acid hydrolysis, and therefore stable in solution at high temperatures even under acidic conditions. The bonding also keeps non-reducing sugars in closed-ring form, such that the aldehyde or ketone end-groups do not bind to the lysine or arginine residues of proteins (a process called glycation). The enzyme trehalase, present but not abundant in most people, breaks it into two glucose molecules, which can then be readily absorbed in the gut. Trehalose is an important components of insects circulating fluid. It acts as a storage form of insect circulating fluid and it is important in respiration. Trehalose has also been found to be a metabolite of Burkholderia, Escherichia and Propionibacterium (PMID:12105274; PMID:25479689) (krishikosh.egranth.ac.in/bitstream/1/84382/1/88571\\\\%20P-1257.pdf). Alpha,alpha-trehalose is a trehalose in which both glucose residues have alpha-configuration at the anomeric carbon. It has a role as a human metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite, a mouse metabolite and a geroprotector. Cabaletta has been used in trials studying the treatment of Oculopharyngeal Muscular Dystrophy. Trehalose is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Trehalose is a natural product found in Cora pavonia, Selaginella nothohybrida, and other organisms with data available. Trehalose is a metabolite found in or produced by Saccharomyces cerevisiae. Occurs in fungi. EU and USA approved sweetener Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 149 D-(+)-Trehalose,which is widespread, can be used as a food ingredient and pharmaceutical excipient. D-(+)-Trehalose,which is widespread, can be used as a food ingredient and pharmaceutical excipient.
Guaiacol
O-methoxyphenol appears as colorless to amber crystals or liquid. Density (of solid) 1.129 g / cm3. Solidifies at 28 °C (82.4 °F), but may remain liquid for a long time even at a much lower temperature. Slightly water soluble. Soluble in aqueous sodium hydroxide. Used medicinally as an expectorant. Used, because of its anti-oxidant properties, as an anti-skinning agent for paints. Guaiacol is a monomethoxybenzene that consists of phenol with a methoxy substituent at the ortho position. It has a role as an expectorant, a disinfectant, a plant metabolite and an EC 1.1.1.25 (shikimate dehydrogenase) inhibitor. It is functionally related to a catechol. Guaiacol is an agent thought to have disinfectant properties and used as an expectorant. Guaiacol is a phenolic natural product first isolated from Guaiac resin and the oxidation of lignin. Guaiacol is also present in wood smoke, as a product of pyrolysis of lignin. Guaiacol has been found in the urine of patients with neuroblastoma and pheochromocytoma. Guaiacol is a natural product found in Verbascum lychnitis, Castanopsis cuspidata, and other organisms with data available. Guaiacol is a phenolic compound with a methoxy group and is the monomethyl ether of catechol. Guaiacol is readily oxidized by the heme iron of peroxidases including the peroxidase of cyclooxygenase (COX) enzymes. It therefore serves as a reducing co-substrate for COX reactions. Guaiacol is a phenolic natural product first isolated from Guaiac resin and the oxidation of lignin. It is a yellowish aromatic oil that is now commonly derived from guaiacum or wood creosote. It is used medicinally as an expectorant, antiseptic, and local anesthetic. Guaiacol is used in traditional dental pulp sedation, and has the property of inducing cell proliferation; guaiacol is a potent scavenger of reactive oxygen radicals and its radical scavenging activity may be associated with its effect on cell proliferation. Guaiacol is also used in the preparation of synthetic vanillin. Guaiacol is also present in wood smoke, as a product of pyrolysis of lignin. Guaiacol has been found in the urine of patients with neuroblastoma and pheochromocytoma. (A3556, A3559). 2-methoxyphenol is a metabolite found in or produced by Saccharomyces cerevisiae. An agent thought to have disinfectant properties and used as an expectorant. (From Martindale, The Extra Pharmacopoeia, 30th ed, p747) See also: Wood Creosote (part of); Tolu balsam (USP) (part of). Guaiacol is a phenolic compound with a methoxy group and is the monomethyl ether of catechol. Guaiacol is readily oxidized by the heme iron of peroxidases including the peroxidase of cyclooxygenase (COX) enzymes. It therefore serves as a reducing co-substrate for COX reactions. Guaiacol is a phenolic natural product first isolated from Guaiac resin and the oxidation of lignin. It is a yellowish aromatic oil that is now commonly derived from guaiacum or wood creosote. It is used medicinally as an expectorant, antiseptic, and local anesthetic. Guaiacol is used in traditional dental pulp sedation, and has the property of inducing cell proliferation; guaiacol is a potent scavenger of reactive oxygen radicals and its radical scavenging activity may be associated with its effect on cell proliferation. Guaiacol is also used in the preparation of synthetic vanillin. Guaiacol is also present in wood smoke, as a product of pyrolysis of lignin. Guaiacol has been found in the urine of patients with neuroblastoma and pheochromocytoma. (PMID 4344880, 16152729). Present in Parmesan cheese, tea and soybean. Flavouring ingredient. 2-Methoxyphenol is found in many foods, some of which are milk and milk products, asparagus, pepper (c. annuum), and wild celery. R - Respiratory system > R05 - Cough and cold preparations > R05C - Expectorants, excl. combinations with cough suppressants > R05CA - Expectorants A monomethoxybenzene that consists of phenol with a methoxy substituent at the ortho position. C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent C78273 - Agent Affecting Respiratory System > C29767 - Expectorant Guaiacol, a phenolic compound, inhibits LPS-stimulated COX-2 expression and NF-κB activation[1]. Anti-inflammatory activity[1]. Guaiacol, a phenolic compound, inhibits LPS-stimulated COX-2 expression and NF-κB activation[1]. Anti-inflammatory activity[1].
4-hydroxyphenylacetate
p-Hydroxyphenylacetic acid, also known as 4-hydroxybenzeneacetate, is classified as a member of the 1-hydroxy-2-unsubstituted benzenoids. 1-Hydroxy-2-unsubstituted benzenoids are phenols that are unsubstituted at the 2-position. p-Hydroxyphenylacetic acid is considered to be slightly soluble (in water) and acidic. p-Hydroxyphenylacetic acid can be synthesized from acetic acid. It is also a parent compound for other transformation products, including but not limited to, methyl 2-(4-hydroxyphenyl)acetate, ixerochinolide, and lactucopicrin 15-oxalate. p-Hydroxyphenylacetic acid can be found in numerous foods such as olives, cocoa beans, oats, and mushrooms. p-Hydroxyphenylacetic acid can be found throughout all human tissues and in all biofluids. Within a cell, p-hydroxyphenylacetic acid is primarily located in the cytoplasm and in the extracellular space. p-Hydroxyphenylacetic acid is also a microbial metabolite produced by Acinetobacter, Clostridium, Klebsiella, Pseudomonas, and Proteus. Higher levels of this metabolite are associated with an overgrowth of small intestinal bacteria from Clostridia species including C. difficile, C. stricklandii, C. lituseburense, C. subterminale, C. putrefaciens, and C. propionicum (PMID: 476929, 12173102). p-Hydroxyphenylacetic acid is detected after the consumption of whole grain. 4-hydroxyphenylacetic acid is a monocarboxylic acid that is acetic acid in which one of the methyl hydrogens is substituted by a 4-hydroxyphenyl group. It has a role as a plant metabolite, a fungal metabolite, a human metabolite and a mouse metabolite. It is a monocarboxylic acid and a member of phenols. It is functionally related to an acetic acid. It is a conjugate acid of a 4-hydroxyphenylacetate. 4-Hydroxyphenylacetic acid is a natural product found in Guanomyces polythrix, Forsythia suspensa, and other organisms with data available. 4-Hydroxyphenylacetic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A monocarboxylic acid that is acetic acid in which one of the methyl hydrogens is substituted by a 4-hydroxyphenyl group. Constituent of sweet clover (Melilotus officinalis) and yeast Hydroxyphenylacetic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=156-38-7 (retrieved 2024-07-02) (CAS RN: 156-38-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). 4-hydroxyphenylacetic acid, a major microbiota-derived metabolite of polyphenols, is involved in the antioxidative action. 4-hydroxyphenylacetic acid induces expression of Nrf2[1]. 4-hydroxyphenylacetic acid, a major microbiota-derived metabolite of polyphenols, is involved in the antioxidative action. 4-hydroxyphenylacetic acid induces expression of Nrf2[1].
Indole-3-carboxaldehyde
Indole-3-carboxaldehyde (IAld or I3A), also known as 3-formylindole or 3-indolealdehyde, belongs to the class of organic compounds known as indoles. Indoles are compounds containing an indole moiety, which consists of a pyrrole ring fused to benzene to form 2,3-benzopyrrole. In humans, I3A is a biologically active metabolite which acts as a receptor agonist at the aryl hydrocarbon receptor in intestinal immune cells. It stimulates the production of interleukin-22 which facilitates mucosal reactivity (PMID:27102537). I3A is a microbially derived tryptophan metabolite produced by Clostridium and Lactobacillus (PMID:30120222, 27102537). I3A has also been found in the urine of patients with untreated phenylketonuria (PMID:5073866). I3A has been detected, but not quantified, in several different foods, such as beans, Brussels sprouts, cucumbers, cereals and cereal products, and white cabbages. This could make I3A a potential biomarker for the consumption of these foods. Indole-3-carbaldehyde is a heteroarenecarbaldehyde that is indole in which the hydrogen at position 3 has been replaced by a formyl group. It has a role as a plant metabolite, a human xenobiotic metabolite, a bacterial metabolite and a marine metabolite. It is a heteroarenecarbaldehyde, an indole alkaloid and a member of indoles. Indole-3-carboxaldehyde is a natural product found in Euphorbia hirsuta, Derris ovalifolia, and other organisms with data available. A heteroarenecarbaldehyde that is indole in which the hydrogen at position 3 has been replaced by a formyl group. Found in barley and tomato seedlings and cotton Indole-3-carboxaldehyde. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=487-89-8 (retrieved 2024-07-02) (CAS RN: 487-89-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Indole-3-carboxaldehyde (3-Formylindole), a banlangen extract, is the product of the oxidative degradation of indole-3-acetic acid (IAA) by crude enzyme preparations from etiolated pea seedlings. Indole-3-carboxaldehyde (3-Formylindole) is a biochemical used to prepare analogs of the indole phytoalexin cyclobrassinin[1]. Indole-3-carboxaldehyde (3-Formylindole), a banlangen extract, is the product of the oxidative degradation of indole-3-acetic acid (IAA) by crude enzyme preparations from etiolated pea seedlings. Indole-3-carboxaldehyde (3-Formylindole) is a biochemical used to prepare analogs of the indole phytoalexin cyclobrassinin[1].
2-Hydroxycinnamic acid
2-coumaric acid, also known as o-coumaric acid, is a monohydroxycinnamic acid in which the hydroxy substituent is located at C-2 of the phenyl ring. It has a role as a plant metabolite. It is a conjugate acid of a 2-coumarate. It is a hydroxycinnamic acid, an organic compound that is a hydroxy derivative of cinnamic acid. There are three isomers of coumaric acids: o-coumaric acid, m-coumaric acid, and p-coumaric acid, that differ by the position of the hydroxy substitution of the phenyl group. 2-Hydroxycinnamic acid belongs to the class of organic compounds known as hydroxycinnamic acids. Hydroxycinnamic acids are compounds containing an cinnamic acid where the benzene ring is hydroxylated. 2-Hydroxycinnamic acid exists in all living organisms, ranging from bacteria to humans. 2-Hydroxycinnamic acid has been found in a few different foods, such as corns, hard wheats, and olives and in a lower concentration in pomegranates, american cranberries, and peanuts. 2-Hydroxycinnamic acid has also been detected, but not quantified in several different foods, such as carrots, soy beans, ryes, rye bread, and turmerics. Coumaric acid is a hydroxycinnamic acid, an organic compound that is a hydroxy derivative of cinnamic acid. There are three isomers, o-coumaric acid, m-coumaric acid, and p-coumaric acid, that differ by the position of the hydroxy substitution of the phenyl group. p-Coumaric acid is the most abundant isomer of the three in nature. o-Coumaric acid is found in many foods, some of which are common wheat, date, bilberry, and corn. 2-coumaric acid is a monohydroxycinnamic acid in which the hydroxy substituent is located at C-2 of the phenyl ring. It has a role as a plant metabolite. It is a conjugate acid of a 2-coumarate. 2-Hydroxycinnamic acid is a natural product found in Mikania glomerata, Coffea arabica, and other organisms with data available. See also: Ipomoea aquatica leaf (part of). The trans-isomer of 2-coumaric acid. o-Coumaric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=583-17-5 (retrieved 2024-07-01) (CAS RN: 583-17-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Maltotetraose
Cellotetraose is a glucotetrose comprised of four D-glucose residues connected by beta(1->4) linkages. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents Maltotetraose can be used as a substrate for the enzyme-coupled determination of amylase activity in biological fluids. Maltotetraose can be used as a substrate for the enzyme-coupled determination of amylase activity in biological fluids.
Cuminaldehyde
Cuminaldehyde is the biologically active constituent of Cuminum cyminum seed oil. C. cyminum seed-derived materials have an inhibitory effect in vitro against rat lens aldose reductase and alpha-glucosidase. This inhibitory action cuminaldehyde suggest a potential utility as an antidiabetic therapeutic. (PMID:15796577). Cuminaldehyde is a volatile compound representative of cumin aroma present in trace amounts in the blood and milk of ewes fed with cumin seed. (PMID:8738023). The terpenoid cuminaldehyde, undergoes reduction biotransformation in mammals, but not oxidation. (PMID:2815827). Cuminaldehyde is a member of the class of benzaldehydes that is benzaldehyde substituted by an isopropyl group at position 4. It is a component of essential oils from Cumin and exhibits insecticidal activities. It has a role as an insecticide, a volatile oil component and a plant metabolite. It derives from a hydride of a cumene. 4-Isopropylbenzaldehyde is a natural product found in Xylopia aromatica, Xylopia sericea, and other organisms with data available. See also: Paeonia lactiflora root (part of). A member of the class of benzaldehydes that is benzaldehyde substituted by an isopropyl group at position 4. It is a component of essential oils from Cumin and exhibits insecticidal activities. Found in many essential oils, including eucalyptus, cumin and cassiaand is also present in grilled or roast beef and cognac. Flavouring agent Cuminaldehyde. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=122-03-2 (retrieved 2024-07-11) (CAS RN: 122-03-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Cuminaldehyde is the major component of Cuminum cyminum, a natural aldehyde with inhibitory effect on alpha-synuclein fibrillation and cytotoxicity. Cuminaldehyde shows anticancer activity[1]. Cuminaldehyde is the major component of Cuminum cyminum, a natural aldehyde with inhibitory effect on alpha-synuclein fibrillation and cytotoxicity. Cuminaldehyde shows anticancer activity[1].
Dopamine
Dopamine is a member of the catecholamine family of neurotransmitters in the brain and is a precursor to epinephrine (adrenaline) and norepinephrine (noradrenaline). Dopamine is synthesized in the body (mainly by nervous tissue and adrenal glands) first by the hydration of the amino acid tyrosine to DOPA by tyrosine hydroxylase and then by the decarboxylation of DOPA by aromatic-L-amino-acid decarboxylase. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (dopamine receptors) mediates its action, which plays a major role in reward-motivated behaviour. Dopamine has many other functions outside the brain. In blood vessels, dopamine inhibits norepinephrine release and acts as a vasodilator (at normal concentrations); in the kidneys, it increases sodium excretion and urine output; in the pancreas, it reduces insulin production; in the digestive system, it reduces gastrointestinal motility and protects intestinal mucosa; and in the immune system, it reduces the activity of lymphocytes. Parkinsons disease, a degenerative condition causing tremor and motor impairment, is caused by a loss of dopamine-secreting neurons in an area of the midbrain called the substantia nigra. There is evidence that schizophrenia involves altered levels of dopamine activity, and most antipsychotic drugs used to treat this are dopamine antagonists, which reduce dopamine activity. Attention deficit hyperactivity disorder, bipolar disorder, and addiction are also characterized by defects in dopamine production or metabolism. It has been suggested that animals derived their dopamine-synthesizing machinery from bacteria via horizontal gene transfer that may have occurred relatively late in evolutionary time. This is perhaps a result of the symbiotic incorporation of bacteria into eukaryotic cells that gave rise to mitochondria. Dopamine is elevated in the urine of people who consume bananas. When present in sufficiently high levels, dopamine can be a neurotoxin and a metabotoxin. A neurotoxin is a compound that disrupts or attacks neural tissue. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of dopamine are associated with neuroblastoma, Costello syndrome, leukemia, phaeochromocytoma, aromatic L-amino acid decarboxylase deficiency, and Menkes disease (MNK). High levels of dopamine can lead to hyperactivity, insomnia, agitation and anxiety, depression, delusions, excessive salivation, nausea, and digestive problems. A study has shown that urinary dopamine is produced by Bacillus and Serratia (PMID: 24621061) Occurs in several higher plants, such as banana (Musa sapientum). As a member of the catecholamine family, dopamine is a precursor to norepinephrine (noradrenaline) and then epinephrine (adrenaline) in the biosynthetic pathways for these neurotransmitters. Dopamine is elevated in the urine of people who consume bananas. Dopamine is found in many foods, some of which are garden onion, purslane, garden tomato, and swiss chard. Dopamine (DA, a contraction of 3,4-dihydroxyphenethylamine) is a neuromodulatory molecule that plays several important roles in cells. It is an organic chemical of the catecholamine and phenethylamine families. Dopamine constitutes about 80\% of the catecholamine content in the brain. It is an amine synthesized by removing a carboxyl group from a molecule of its precursor chemical, L-DOPA, which is synthesized in the brain and kidneys. Dopamine is also synthesized in plants and most animals. In the brain, dopamine functions as a neurotransmitter—a chemical released by neurons (nerve cells) to send signals to other nerve cells. Neurotransmitters are synthesized in specific regions of the brain, but affect many regions systemically. The brain includes several distinct dopamine pathways, one of which plays a major role in the motivational component of reward-motivated behavior. The anticipation of most types of rewards increases the level of dopamine in the brain,[4] and many addictive drugs increase dopamine release or block its reuptake into neurons following release.[5] Other brain dopamine pathways are involved in motor control and in controlling the release of various hormones. These pathways and cell groups form a dopamine system which is neuromodulatory.[5] In popular culture and media, dopamine is often portrayed as the main chemical of pleasure, but the current opinion in pharmacology is that dopamine instead confers motivational salience;[6][7][8] in other words, dopamine signals the perceived motivational prominence (i.e., the desirability or aversiveness) of an outcome, which in turn propels the organism's behavior toward or away from achieving that outcome.[8][9] Outside the central nervous system, dopamine functions primarily as a local paracrine messenger. In blood vessels, it inhibits norepinephrine release and acts as a vasodilator; in the kidneys, it increases sodium excretion and urine output; in the pancreas, it reduces insulin production; in the digestive system, it reduces gastrointestinal motility and protects intestinal mucosa; and in the immune system, it reduces the activity of lymphocytes. With the exception of the blood vessels, dopamine in each of these peripheral systems is synthesized locally and exerts its effects near the cells that release it. Several important diseases of the nervous system are associated with dysfunctions of the dopamine system, and some of the key medications used to treat them work by altering the effects of dopamine. Parkinson's disease, a degenerative condition causing tremor and motor impairment, is caused by a loss of dopamine-secreting neurons in an area of the midbrain called the substantia nigra. Its metabolic precursor L-DOPA can be manufactured; Levodopa, a pure form of L-DOPA, is the most widely used treatment for Parkinson's. There is evidence that schizophrenia involves altered levels of dopamine activity, and most antipsychotic drugs used to treat this are dopamine antagonists which reduce dopamine activity.[10] Similar dopamine antagonist drugs are also some of the most effective anti-nausea agents. Restless legs syndrome and attention deficit hyperactivity disorder (ADHD) are associated with decreased dopamine activity.[11] Dopaminergic stimulants can be addictive in high doses, but some are used at lower doses to treat ADHD. Dopamine itself is available as a manufactured medication for intravenous injection. It is useful in the treatment of severe heart failure or cardiogenic shock.[12] In newborn babies it may be used for hypotension and septic shock.[13] Dopamine is synthesized in a restricted set of cell types, mainly neurons and cells in the medulla of the adrenal glands.[22] The primary and minor metabolic pathways respectively are: Primary: L-Phenylalanine → L-Tyrosine → L-DOPA → Dopamine[19][20] Minor: L-Phenylalanine → L-Tyrosine → p-Tyramine → Dopamine[19][20][21] Minor: L-Phenylalanine → m-Tyrosine → m-Tyramine → Dopamine[21][23][24] The direct precursor of dopamine, L-DOPA, can be synthesized indirectly from the essential amino acid phenylalanine or directly from the non-essential amino acid tyrosine.[25] These amino acids are found in nearly every protein and so are readily available in food, with tyrosine being the most common. Although dopamine is also found in many types of food, it is incapable of crossing the blood–brain barrier that surrounds and protects the brain.[26] It must therefore be synthesized inside the brain to perform its neuronal activity.[26] L-Phenylalanine is converted into L-tyrosine by the enzyme phenylalanine hydroxylase, with molecular oxygen (O2) and tetrahydrobiopterin as cofactors. L-Tyrosine is converted into L-DOPA by the enzyme tyrosine hydroxylase, with tetrahydrobiopterin, O2, and iron (Fe2+) as cofactors.[25] L-DOPA is converted into dopamine by the enzyme aromatic L-amino acid decarboxylase (also known as DOPA decarboxylase), with pyridoxal phosphate as the cofactor.[25] Dopamine itself is used as precursor in the synthesis of the neurotransmitters norepinephrine and epinephrine.[25] Dopamine is converted into norepinephrine by the enzyme dopamine β-hydroxylase, with O2 and L-ascorbic acid as cofactors.[25] Norepinephrine is converted into epinephrine by the enzyme phenylethanolamine N-methyltransferase with S-adenosyl-L-methionine as the cofactor.[25] Some of the cofactors also require their own synthesis.[25] Deficiency in any required amino acid or cofactor can impair the synthesis of dopamine, norepinephrine, and epinephrine.[25] Degradation Dopamine is broken down into inactive metabolites by a set of enzymes—monoamine oxidase (MAO), catechol-O-methyl transferase (COMT), and aldehyde dehydrogenase (ALDH), acting in sequence.[27] Both isoforms of monoamine oxidase, MAO-A and MAO-B, effectively metabolize dopamine.[25] Different breakdown pathways exist but the main end-product is homovanillic acid (HVA), which has no known biological activity.[27] From the bloodstream, homovanillic acid is filtered out by the kidneys and then excreted in the urine.[27] The two primary metabolic routes that convert dopamine into HVA are:[28] Dopamine → DOPAL → DOPAC → HVA – catalyzed by MAO, ALDH, and COMT respectively Dopamine → 3-Methoxytyramine → HVA – catalyzed by COMT and MAO+ALDH respectively In clinical research on schizophrenia, measurements of homovanillic acid in plasma have been used to estimate levels of dopamine activity in the brain. A difficulty in this approach however, is separating the high level of plasma homovanillic acid contributed by the metabolism of norepinephrine.[29][30] Although dopamine is normally broken down by an oxidoreductase enzyme, it is also susceptible to oxidation by direct reaction with oxygen, yielding quinones plus various free radicals as products.[31] The rate of oxidation can be increased by the presence of ferric iron or other factors. Quinones and free radicals produced by autoxidation of dopamine can poison cells, and there is evidence that this mechanism may contribute to the cell loss that occurs in Parkinson's disease and other conditions.[32]
Creatinine
Creatinine or creatine anhydride, is a breakdown product of creatine phosphate in muscle. The loss of water molecule from creatine results in the formation of creatinine. Creatinine is transferred to the kidneys by blood plasma, whereupon it is eliminated from the body by glomerular filtration and partial tubular excretion. Creatinine is usually produced at a fairly constant rate by the body. Measuring serum creatinine is a simple test and it is the most commonly used indicator of renal function. A rise in blood creatinine levels is observed only with marked damage to functioning nephrons; therefore this test is not suitable for detecting early kidney disease. The typical reference range for women is considered about 45-90 umol/l, for men 60-110 umol/l. Creatine and creatinine are metabolized in the kidneys, muscle, liver and pancreas. [HMDB]. Creatinine is a biomarker for the consumption of meat. Creatinine is found in many foods, some of which are canada blueberry, other bread, french plantain, and grape. Creatinine, or creatine anhydride, is a breakdown product of creatine phosphate in muscle. The loss of a water molecule from creatine results in the formation of creatinine. Creatinine is transferred to the kidneys by blood plasma, whereupon it is eliminated from the body by glomerular filtration and partial tubular excretion. Creatinine is usually produced at a fairly constant rate by the body. Measuring serum creatinine is a simple test and it is the most commonly used indicator of renal function. A rise in blood creatinine levels is observed only with marked damage to functioning nephrons. Therefore, this test is not suitable for detecting early kidney disease. The typical reference range for women is considered about 45-90 µmol/L; for men 60-110 µmol/L. Creatine and creatinine are metabolized in the kidneys, muscle, liver, and pancreas. Creatinine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=60-27-5 (retrieved 2024-07-01) (CAS RN: 60-27-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Creatinine (NSC13123) is a breakdown product of creatine phosphate in muscles. Creatinine (NSC13123) is a breakdown product of creatine phosphate in muscles.
1,7-dimethylurate
1,7 dimethyluric acid is the major urinary caffeine metabolites that is produced in the human body. 1,7 dimethyluric acid is formed during metabolism of caffeine and the process is catalyzed primarily by CYP2A6. (PMID: 18715882) [HMDB] 1,7-Dimethyluric acid is the major urinary caffeine metabolite that is produced in the human body. 1,7-Dimethyluric acid is formed during caffeine metabolism and the process is catalyzed primarily by CYP2A6 (PMID: 18715882).
2-Aminobenzoic acid
2-Aminobenzoic acid, also known as anthranilic acid or O-aminobenzoate, belongs to the class of organic compounds known as aminobenzoic acids. These are benzoic acids containing an amine group attached to the benzene moiety. Within humans, 2-aminobenzoic acid participates in a number of enzymatic reactions. In particular, 2-aminobenzoic acid and formic acid can be biosynthesized from formylanthranilic acid through its interaction with the enzyme kynurenine formamidase. In addition, 2-aminobenzoic acid and L-alanine can be biosynthesized from L-kynurenine through its interaction with the enzyme kynureninase. It is a substrate of enzyme 2-Aminobenzoic acid hydroxylase in benzoate degradation via hydroxylation pathway (KEGG). In humans, 2-aminobenzoic acid is involved in tryptophan metabolism. Outside of the human body, 2-Aminobenzoic acid has been detected, but not quantified in several different foods, such as mamey sapotes, prairie turnips, rowals, natal plums, and hyacinth beans. This could make 2-aminobenzoic acid a potential biomarker for the consumption of these foods. 2-Aminobenzoic acid is a is a tryptophan-derived uremic toxin with multidirectional properties that can affect the hemostatic system. Uremic syndrome may affect any part of the body and can cause nausea, vomiting, loss of appetite, and weight loss. Chronic exposure of uremic toxins can lead to a number of conditions including renal damage, chronic kidney disease and cardiovascular disease. It can also cause changes in mental status, such as confusion, reduced awareness, agitation, psychosis, seizures, and coma. 2-Aminobenzoic acid is an organic compound. It is a substrate of enzyme anthranilate hydroxylase [EC 1.14.13.35] in benzoate degradation via hydroxylation pathway (KEGG). [HMDB]. Anthranilic acid is found in many foods, some of which are butternut squash, sunflower, ginger, and hyssop. Acquisition and generation of the data is financially supported in part by CREST/JST. D002491 - Central Nervous System Agents > D000927 - Anticonvulsants CONFIDENCE standard compound; INTERNAL_ID 8844 CONFIDENCE standard compound; INTERNAL_ID 8009 CONFIDENCE standard compound; INTERNAL_ID 115 KEIO_ID A010
1-Methyluric acid
1-Methyluric acid is one of the three main theophylline metabolites in man. 1-Methyluric acid is one of the purine components in urinary calculi. Methylated purines originate from the metabolism of methylxanthines (caffeine, theophylline and theobromine). Methyluric acids are indistinguishable from uric acid by simple methods routinely used in clinical laboratories, requiring the use of high-performance liquid chromatography (HPLC). Purine derivatives in urinary calculi could be considered markers of abnormal purine metabolism. The content of a purine derivative in stone depends on its average urinary excretion in the general population, similarity to the chemical structure of uric acid, and content of the latter in stone. This suggests that purines in stones represent a solid solution with uric acid as solvent. It is also plausible that methylxanthines, ubiquitous components of the diet and drugs, are involved in the pathogenesis of urolithiasis. Caffeine is metabolized via successive pathways mainly catalyzed by CYP1A2, xanthine oxidase or N-acetyltransferase-2 to give 14 different metabolites. CYP1A2 activity shows an inter-individual variability among the population. CYP1A2, an isoform of the CYP1A cytochrome P450 super-family, is involved in the metabolism of many drugs and plays a potentially important role in the induction of chemical carcinogenesis. (PMID: 11712316, 15833286, 3506820, 15013152, 4039734, 9890610) [HMDB] 1-Methyluric acid is one of the three main theophylline metabolites in man. 1-Methyluric acid is one of the purine components in urinary calculi. Methylated purines originate from the metabolism of methylxanthines (caffeine, theophylline, and theobromine). Methyluric acids can be distinguished from uric acid via simple methods routinely used in clinical laboratories, requiring the use of high-performance liquid chromatography (HPLC). Purine derivatives in urinary calculi could be considered markers of abnormal purine metabolism. The content of a purine derivative in stone depends on its average urinary excretion in the general population, similarity to the chemical structure of uric acid, and content of the latter in stone. This suggests that purines in stones represent a solid solution with uric acid as solvent. It is also plausible that methylxanthines, ubiquitous components of the diet and drugs, are involved in the pathogenesis of urolithiasis. Caffeine is metabolized via successive pathways mainly catalyzed by CYP1A2, xanthine oxidase, or N-acetyltransferase-2 to give 14 different metabolites. CYP1A2 activity shows an inter-individual variability among the population. CYP1A2, an isoform of the CYP1A cytochrome P450 superfamily, is involved in the metabolism of many drugs and plays a potentially important role in the induction of chemical carcinogenesis (PMID:11712316, 15833286, 3506820, 15013152, 4039734, 9890610).
1-Methylxanthine
1-Methylxanthine is one of the major metabolites of caffeine in humans. The oxidation of 1-methylxanthine to 1-methyluric acid occurs so rapidly that the parent compound could not be detected in plasma, and only low concentrations could be detected in the brain (PMID: 28863020). 1-methylxanthine is the major metabolites of caffeine in the human. The oxidation of 1-methylxanthine to 1-methyluric acid occurred so rapidly that the parent compound could not be detected in plasma, and only low concentrations could be detected in brain. (PMID: 28863020 [HMDB] 1-Methylxanthine, a caffeine derivative, is an essential human urinary metabolite of caffeine and theophylline (1,3-dimethylxanthine, TP)[1]. 1-Methylxanthine enhances the radiosensitivity of tumor cells[2]. 1-Methylxanthine, a caffeine derivative, is an essential human urinary metabolite of caffeine and theophylline (1,3-dimethylxanthine, TP)[1]. 1-Methylxanthine enhances the radiosensitivity of tumor cells[2].
Deoxycytidine
Deoxycytidine, also known as dC, belongs to the class of organic compounds known as pyrimidine 2-deoxyribonucleosides. Pyrimidine 2-deoxyribonucleosides are compounds consisting of a pyrimidine linked to a ribose which lacks a hydroxyl group at position 2. Deoxycytidine is also classified as a deoxyribonucleoside, a component of deoxyribonucleic acid (DNA). Deoxycytidine is similar to the ribonucleoside cytidine, but with one hydroxyl group removed from the 2 position. Deoxycytidine exists in all living species, ranging from bacteria to plants to humans. Degradation of DNA through apoptosis or cell death produces deoxycytidine. Within humans, deoxycytidine participates in a number of enzymatic reactions. In particular, deoxycytidine can be biosynthesized from dCMP through the action of the enzyme cytosolic purine 5-nucleotidase. In addition, deoxycytidine can be converted into dCMP; which is mediated by the enzyme uridine-cytidine kinase-like 1. Deoxycytidine can be phosphorylated at the C-5 position by the enzyme deoxycytidine kinase to produce deoxycytidine monophosphate (dCMP), and to a lesser extent, deoxycytidine diphosphate (dCDP), and deoxycytidine triphosphate (dCTP). Deoxycytidine can also be phosphorylated by thymidine kinase 2 (TK2). Deoxycytidine can potentially be used for the treatment of the metabolic disorder known as thymidine kinase 2 deficiency (TK2 deficiency). TK2 deficiency has three disease subtypes: i) infantile-onset myopathy with rapid progression to early death ii) childhood-onset myopathy, which resembles spinal muscular atrophy (SMA) type III, begins between ages 1 and 12 years with progression to loss of ambulation within few years and iii) late-onset myopathy starting at age 12 year or later with moderate to severe myopathy manifesting as either isolated chronic progressive external ophthalmoplegia (CPEO) or a generalized myopathy with CPEO plus facial and limb weakness, gradual progression, and, in some cases, respiratory failure and loss of ability to walk in adulthood (PMID: 28318037). In mouse models of TK2, dC was shown to delay disease onset, prolong life span and restore mtDNA copy number as well as respiratory chain enzyme activities (PMID: 28318037). One of the principal nucleosides of DNA composed of cytosine and deoxyribose. A nucleoside consists of only a pentose sugar linked to a purine or pyrimidine base, without a phosphate group. When N1 is linked to the C1 of deoxyribose, deoxynucleosides and nucleotides are formed from cytosine and deoxyribose; deoxycytidine monophosphate (dCMP), deoxycytidine diphosphate (dCDP), deoxycytidine triphosphate (dCTP). CTP is the source of the cytidine in RNA (ribonucleic acid) and deoxycytidine triphosphate (dCTP) is the source of the deoxycytidine in DNA (deoxyribonucleic acid). [HMDB]. Deoxycytidine is found in many foods, some of which are japanese pumpkin, turmeric, prairie turnip, and kai-lan. C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite Acquisition and generation of the data is financially supported in part by CREST/JST. C26170 - Protective Agent > C2459 - Chemoprotective Agent COVID info from COVID-19 Disease Map KEIO_ID D055; [MS2] KO008940 Corona-virus KEIO_ID D055 Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 2'-Deoxycytidine, a deoxyribonucleoside, can inhibit biological effects of Bromodeoxyuridine (Brdu). 2'-Deoxycytidine is essential for the synthesis of nucleic acids, that can be used for the research of cancer[1][2]. 2'-Deoxycytidine, a deoxyribonucleoside, could inhibit biological effects of Bromodeoxyuridine (Brdu).
Deoxyuridine
C9H12N2O5 (228.07461819999997)
Deoxyuridine, also known as dU, belongs to the class of organic compounds known as pyrimidine 2-deoxyribonucleosides. Pyrimidine 2-deoxyribonucleosides are compounds consisting of a pyrimidine linked to a ribose which lacks a hydroxyl group at position 2. It is similar in chemical structure to uridine, but without the 2-hydroxyl group. Deoxyuridine exists in all living organisms, ranging from bacteria to humans. Within humans, deoxyuridine participates in a number of enzymatic reactions. In particular, deoxyuridine can be biosynthesized from deoxycytidine through its interaction with the enzyme cytidine deaminase. In addition, deoxyuridine can be converted into uracil and deoxyribose 1-phosphate through its interaction with the enzyme thymidine phosphorylase. Deoxyuridine is considered to be an antimetabolite that is converted into deoxyuridine triphosphate during DNA synthesis. Laboratory suppression of deoxyuridine is used to diagnose megaloblastic anemia due to vitamin B12 and folate deficiencies. In humans, deoxyuridine is involved in the metabolic disorder called UMP synthase deficiency (orotic aciduria). Outside of the human body, deoxyuridine has been detected, but not quantified in, several different foods, such as lichee, highbush blueberries, agaves, macadamia nut (M. tetraphylla), and red bell peppers. This could make deoxyuridine a potential biomarker for the consumption of these foods. 2-Deoxyuridine is a naturally occurring nucleoside. It is similar in chemical structure to uridine, but without the 2-hydroxyl group. It is considered to be an antimetabolite that is converted to deoxyuridine triphosphate during DNA synthesis. Laboratory suppression of deoxyuridine is used to diagnose megaloblastic anemia due to vitamin B12 and folate deficiencies. [HMDB]. Deoxyuridine is found in many foods, some of which are garden tomato (variety), hickory nut, banana, and hazelnut. Deoxyuridine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=951-78-0 (retrieved 2024-07-01) (CAS RN: 951-78-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). 2'-Deoxyuridine could increase chromosome breakage and results in a decreased thymidylate synthetase activity. A known use of 2'-Deoxyuridine is as a precursor in the synthesis of Edoxudine. 2'-Deoxyuridine could increase chromosome breakage and results in a decreased thymidylate synthetase activity. A known use of 2'-Deoxyuridine is as a precursor in the synthesis of Edoxudine. 2'-Deoxyuridine could increase chromosome breakage and results in a decreased thymidylate synthetase activity. A known use of 2'-Deoxyuridine is as a precursor in the synthesis of Edoxudine.
2-Isopropylmalic acid
2-Isopropylmalic acid (CAS: 3237-44-3), also known as 3-carboxy-3-hydroxyisocaproic acid, belongs to the class of organic compounds known as hydroxy fatty acids. These are fatty acids in which the chain bears a hydroxyl group. 2-Isopropylmalic acid is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. 2-Isopropylmalic acid is an alpha-hydroxy organic acid regularly occurring in the urine of healthy individuals (PMID: 2338430, 544608), and in hemofiltrates (PMID: 7251751). 2-Isopropylmalic acid is elevated during fasting and diabetic ketoacidosis (PMID: 1591279). It is also a metabolite found in Acetobacter (PMID: 6035258). α-Isopropylmalate (α-IPM) is the leucine biosynthetic precursor in Yeast[1]. α-Isopropylmalate. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=3237-44-3 (retrieved 2024-08-26) (CAS RN: 3237-44-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Deoxyadenosine
C10H13N5O3 (251.10183480000003)
Deoxyadenosine is a derivative of the nucleoside adenosine. It is composed of adenine attached to a deoxyribose moiety via a N9-glycosidic bond. Deoxyribose differs from ribose by the absence of oxygen in the 3 position of its ribose ring. Deoxyadenosine is a critical component of DNA. When present in sufficiently high levels, deoxyadensoine can act as an immunotoxin and a metabotoxin. An immunotoxin disrupts, limits the function, or destroys immune cells. A metabotoxin is an endogenous metabolite that causes adverse health effects at chronically high levels. Chronically high levels of deoxyadenosine are associated with adenosine deaminase (ADA) deficiency, an inborn error of metabolism. ADA deficiency damages the immune system and causes severe combined immunodeficiency (SCID). People with SCID lack virtually all immune protection from bacteria, viruses, and fungi. They are prone to repeated and persistent infections that can be very serious or life-threatening. These infections are often caused by "opportunistic" organisms that ordinarily do not cause illness in people with a normal immune system. The main symptoms of ADA deficiency are pneumonia, chronic diarrhea, and widespread skin rashes. The mechanism by which dATP functions as an immunotoxin is as follows: because deoxyadenosine is a precursor to dATP, a buildup of dATP in cells inhibits ribonucleotide reductase and prevents DNA synthesis, so cells are unable to divide. Since developing T cells and B cells are some of the most mitotically active cells, they are unable to divide and propagate to respond to immune challenges. High levels of deoxyadenosine also lead to an increase in S-adenosylhomocysteine, which is toxic to immature lymphocytes. Deoxyadenosine is a derivative of nucleoside adenosine. It is comprised of adenine attached to a deoxyribose moiety via a N9-glycosidic bond. Deoxyribose differs from ribose by the absence of oxygen in the 3 position of its ribose ring. Deoxyadenosine is a critical component of DNA. [HMDB] Acquisition and generation of the data is financially supported in part by CREST/JST. D000890 - Anti-Infective Agents > D000998 - Antiviral Agents COVID info from COVID-19 Disease Map D009676 - Noxae > D009153 - Mutagens KEIO_ID D069 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 2'-Deoxyadenosine is a nucleoside adenosine derivative, pairing with deoxythymidine (T) in double-stranded DNA. 2'-Deoxyadenosine is a nucleoside adenosine derivative, pairing with deoxythymidine (T) in double-stranded DNA. 2'-Deoxyadenosine is a nucleoside adenosine derivative, pairing with deoxythymidine (T) in double-stranded DNA.
2-Methoxyestradiol
2-Methoxyestradiol (2ME2) is a drug that prevents the formation of new blood vessels that tumors need in order to grow (angiogenesis). It is derived from estrogen, although it binds poorly to known estrogen receptors, and belongs to the family of drugs called angiogenesis inhibitors. It has undergone Phase 1 clinical trials against breast cancers. Preclinical models also suggest that 2ME2 could also be effective against inflammatory diseases such as rheumatoid arthritis. The CAS name for 2ME2 is (17 beta)-2-methoxyestra-1,3,5(10)-triene-3,17-diol. It also acts as a vasodilator. [HMDB] 2-Methoxyestradiol (2ME2) is a drug that prevents the formation of new blood vessels that tumours need in order to grow (angiogenesis). It is derived from estrogen, although it binds poorly to known estrogen receptors, and belongs to the family of drugs called angiogenesis inhibitors. It has undergone phase 1 clinical trials against breast cancers. Preclinical models also suggest that 2ME2 could also be effective against inflammatory diseases such as rheumatoid arthritis. 2ME2 also acts as a vasodilator. C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C1821 - Selective Estrogen Receptor Modulator C274 - Antineoplastic Agent > C129818 - Antineoplastic Hormonal/Endocrine Agent > C481 - Antiestrogen C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents C147908 - Hormone Therapy Agent > C547 - Hormone Antagonist C1892 - Chemopreventive Agent 2-Methoxyestradiol (2-ME2), an orally active endogenous metabolite of 17β-estradiol (E2), is an apoptosis inducer and an angiogenesis inhibitor with potent antineoplastic activity. 2-Methoxyestradiol also destablize microtubules. 2-Methoxyestradio, also a potent superoxide dismutase (SOD) inhibitor and a ROS-generating agent, induces autophagy in the transformed cell line HEK293 and the cancer cell lines U87 and HeLa[1][2][3][4][5][6].
1,5-anhydroglucitol (1,5-AG)
1,5-Anhydrosorbitol or 1,5-anhydroglucitol (1,5-AG) is a validated marker of short-term glycemic control. This substance is derived mainly from food, is well absorbed in the intestine, and is distributed to all organs and tissues. It is metabolically stable, being excreted in the urine when its level exceeds the renal threshold. It is reabsorbed in the renal tubules, and is competitively inhibited by glucosuria, which leads to a reduction in its level in serum. The correlation between this reduction and the amount of glucose present in urine is so close that 1,5 AG can be used as a sensitive, day-to-day, real-time marker of glycemic control. It provides useful information on current glycemic control and is superior to both hemoglobin A1C and fructosamine in detecting near-normoglycemia. 1,5-AG in human plasma has been proposed for several years as a short-term, retrospective marker of glycaemic control and seems to be the most suitable parameter for monitoring glucose excursions. The decrease in serum 1,5-AG is very sensitive to urinary glucose excretion. It is a metabolically inert polyol that competes with glucose for reabsorption in the kidneys. Otherwise stable levels of 1,5-AG are rapidly depleted as blood glucose levels exceed the renal threshold for glucosuria. 1,5-AG is also more tightly associated with glucose fluctuations and postprandial glucose. (PMID: 18088226, 12166605, 7783360, 8940824) [HMDB] 1, 5-Anhydrosorbitol or 1,5-anhydroglucitol (1,5-AG) is a validated marker of short-term glycemic control. This substance is derived mainly from food, is well absorbed in the intestine, and is distributed to all organs and tissues. It is metabolically stable, being excreted in the urine when its level exceeds the renal threshold. It is reabsorbed in the renal tubules and is competitively inhibited by glucosuria, which leads to a reduction in its level in serum. The correlation between this reduction and the amount of glucose present in urine is so close that 1,5 AG can be used as a sensitive, day-to-day, real-time marker of glycemic control. It provides useful information on current glycemic control and is superior to both hemoglobin A1C and fructosamine in detecting near-normoglycemia. 1,5-AG in human plasma has been proposed for several years as a short-term, retrospective marker of glycemic control and seems to be the most suitable parameter for monitoring glucose excursions. The decrease in serum 1,5-AG is very sensitive to urinary glucose excretion. It is a metabolically inert polyol that competes with glucose for reabsorption in the kidneys. Otherwise stable levels of 1,5-AG are rapidly depleted as blood glucose levels exceed the renal threshold for glucosuria. 1,5-AG is also more tightly associated with glucose fluctuations and postprandial glucose (PMID:18088226, 12166605, 7783360, 8940824). 1,5-Anhydrosorbitol is a short-term marker for glycemic control. 1,5-Anhydrosorbitol is a short-term marker for glycemic control.
Tryptophol
Tryptophol, also known as indole-3-ethanol, is an indolyl alcohol that is ethanol substituted by a 1H-indol-3-yl group at position 2. It has a role as a Saccharomyces cerevisiae metabolite, an auxin and a plant metabolite. Tryptophol is a catabolite of tryptophan converted by the gut microbiota. After absorption through the intestinal epithelium, tryptophan catabolites enter the bloodstream and are later excreted in the urine (PMID:30120222). Tryptophol production was negatively associated with interferon-gamma production (IFNγ) which suggests that tryptophol has anti-inflammatory properties (PMID:27814509). Tryptophol has also been identified as the hypnotic agent in trypanosomal sleeping sickness, and because it is formed in vivo after ethanol or disulfiram treatment, it is also associated with the study of alcoholism (PMID:7241135). Indole-3-ethanol is a dietary indole present in cruciferous vegetables that has been shown to influence estradiol metabolism in humans and may provide a new chemopreventive approach to estrogen-dependent diseases. (PMID 2342128) Tryptophol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=526-55-6 (retrieved 2024-06-29) (CAS RN: 526-55-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Tryptophol (Indole-3-ethanol) is an endogenous metabolite. Tryptophol (Indole-3-ethanol) is an endogenous metabolite.
Desaminotyrosine
Desaminotyrosine, also known as 4-hydroxyphenylpropionic acid, is a normal constituent of human urine. It is a product of tyrosine metabolism; its concentration in urine increases in patients with gastrointestinal diseases. Desaminotyrosine is a major phenolic acid breakdown product of proanthocyanidin metabolism (PMID:15315398). Urinary desaminotyrosine is produced by Clostridium sporogenes and C. botulinum (PMID:29168502). Desaminotyrosine is also found in Acinetobacter, Bacteroides, Bifidobacteria, Bifidobacterium, Clostridium, Enterococcus, Escherichia, Eubacterium, Klebsiella, Lactobacillus, Pseudomonas, and Staphylococcus (PMID:29168502, 28393285, 19961416). Desaminotyrosine is a phenolic acid metabolite formed by the gut microflora detected after the consumption of whole grain. A normal constituent of human urine. A product of tyrosine metabolism; concentration in urine increases in patients with gastrointestinal diseases. (Dictionary of Organic Compounds) May also result from phenolic acid metabolism by colonic bacteria. (PMID 15315398) [HMDB]. Phloretic acid is found in many foods, some of which are arrowroot, olive, avocado, and peanut. Desaminotyrosine is a microbially associated metabolite protecting from influenza through augmentation of type I interferon signaling. Desaminotyrosine is a microbially associated metabolite protecting from influenza through augmentation of type I interferon signaling.
3,7-Dimethyluric acid
3,7-Dimethyluric acid is a methyl derivative of uric acid, found occasionally in human urine. 3,7-Dimethyluric is one of the purine components in urinary calculi. Methylated purines originate from the metabolism of methylxanthines (caffeine, theophylline and theobromine). Methyluric acids are indistinguishable from uric acid by simple methods routinely used in clinical laboratories, requiring the use of high-performance liquid chromatography (HPLC). Purine derivatives in urinary calculi could be considered markers of abnormal purine metabolism. The content of a purine derivative in stone depends on its average urinary excretion in the general population, similarity to the chemical structure of uric acid, and content of the latter in stone. This suggests that purines in stones represent a solid solution with uric acid as solvent. It is also plausible that methylxanthines, ubiquitous components of the diet and drugs, are involved in the pathogenesis of urolithiasis. Caffeine is metabolized via successive pathways mainly catalyzed by CYP1A2, xanthine oxidase or N-acetyltransferase-2 to give 14 different metabolites. CYP1A2 activity shows an inter-individual variability among the population. CYP1A2, an isoform of the CYP1A cytochrome P450 super-family, is involved in the metabolism of many drugs and plays a potentially important role in the induction of chemical carcinogenesis. (PMID: 11712316, 15833286, 3506820, 15013152) [HMDB] 3,7-Dimethyluric acid is a methyl derivative of uric acid, found occasionally in human urine. 3,7-Dimethyluric is one of the purine components in urinary calculi. Methylated purines originate from the metabolism of methylxanthines (caffeine, theophylline and theobromine). Methyluric acids are indistinguishable from uric acid by simple methods routinely used in clinical laboratories, requiring the use of high-performance liquid chromatography (HPLC). Purine derivatives in urinary calculi could be considered markers of abnormal purine metabolism. The content of a purine derivative in stone depends on its average urinary excretion in the general population, similarity to the chemical structure of uric acid, and content of the latter in stone. This suggests that purines in stones represent a solid solution with uric acid as solvent. It is also plausible that methylxanthines, ubiquitous components of the diet and drugs, are involved in the pathogenesis of urolithiasis. Caffeine is metabolized via successive pathways mainly catalyzed by CYP1A2, xanthine oxidase or N-acetyltransferase-2 to give 14 different metabolites. CYP1A2 activity shows an inter-individual variability among the population. CYP1A2, an isoform of the CYP1A cytochrome P450 super-family, is involved in the metabolism of many drugs and plays a potentially important role in the induction of chemical carcinogenesis (PMID:11712316, 15833286, 3506820, 15013152).
Dehydroepiandrosterone
Dehydroepiandrosterone (DHEA) is a natural steroid hormone produced from cholesterol by the adrenal glands. DHEA is also produced in the gonads, adipose tissue and the brain. DHEA is structurally similar to, and is a precursor of, androstenedione, testosterone, estradiol, estrone and estrogen. It is the most abundant hormone in the human body. Most of DHEA is sulfated (dehydroepiandrosterone sulfate- DEHAS) before secretion. DHEAS is the sulfated version of DHEA; - this conversion is reversibly catalyzed by sulfotransferase (SULT2A1) primarily in the adrenals, the liver, and small intestines. In blood, most DHEA is found as DHEAS with levels that are about 300 times higher than free DHEA. Blood measurements of DHEAS/DHEA are useful to detect excess adrenal activity as seen in adrenal cancer or hyperplasia, including certain forms of congenital adrenal hyperplasia. Women with polycystic ovary syndrome tend to have normal or mildly elevated levels of DHEAS. [HMDB]. Dehydroepiandrosterone is found in many foods, some of which are summer grape, quinoa, calabash, and chinese chives. Dehydroepiandrosterone (DHEA) is a natural steroid hormone produced from cholesterol by the adrenal glands. DHEA is also produced in the gonads, adipose tissue, and the brain. DHEA is structurally similar to and is a precursor of, androstenedione, testosterone, estradiol, estrone, and estrogen. It is the most abundant hormone in the human body. Most of DHEA is sulfated (dehydroepiandrosterone sulfate or DHEA-S) before secretion. DHEA-S is the sulfated version of DHEA; this conversion is reversibly catalyzed by sulfotransferase (SULT2A1) primarily in the adrenals, the liver, and small intestines. In blood, most DHEA is found as DHEA-S with levels that are about 300 times higher than free DHEA. Blood measurements of DHEA-S/DHEA are useful to detect excess adrenal activity as seen in adrenal cancer or hyperplasia, including certain forms of congenital adrenal hyperplasia. Women with polycystic ovary syndrome tend to have normal or mildly elevated levels of DHEA-S. A - Alimentary tract and metabolism > A14 - Anabolic agents for systemic use > A14A - Anabolic steroids > A14AA - Androstan derivatives G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones CONFIDENCE standard compound; EAWAG_UCHEM_ID 3085 D007155 - Immunologic Factors
1-Methylhistidine
1-Methylhistidine, also known as 1-MHis or 1MH, belongs to the class of organic compounds known as histidine and derivatives. 1MH is also classified as a methylamino acid. Methylamino acids are primarily proteogenic amino acids (found in proteins) which have been methylated (in situ) on their side chains by various methyltransferase enzymes. Histidine can be methylated at either the N1 or N3 position of its imidazole ring, yielding the isomers 1-methylhistidine (1MH; also referred to as pi-methylhistidine) or 3-methylhistidine (3MH; tau-methylhistidine), respectively. There is considerable confusion with regard to the nomenclature of the methylated nitrogen atoms on the imidazole ring of histidine and other histidine-containing peptides such as anserine. In particular, older literature (mostly prior to the year 2000) designated anserine (Npi methylated) as beta-alanyl-N1-methyl-histidine, whereas according to standard IUPAC nomenclature, anserine is correctly named as beta-alanyl-N3-methyl-histidine. As a result, many papers published prior to the year 2000 incorrectly identified 1MH as a specific marker for dietary consumption or various pathophysiological effects when they really were referring to 3MH (PMID: 24137022). Recent discoveries have shown that 1MH is produced in essentially all mammals (and other vertebrates) via the enzyme known as METTL9 (PMID: 33563959). METTL9 is a broad-specificity methyltransferase that mediates the formation of the majority of 1MH present in mammalian proteomes. METTL9-catalyzed methylation requires a His-x-His (HxH) motif, where "x" is a small amino acid. This HxH motif is found in a number of abundant mammalian proteins such as ARMC6, S100A9, and NDUFB3 (PMID: 33563959). Because of its abundance in many muscle-related proteins, 1MH has been found to be a good biomarker for the consumption of meat (PMID: 21527577). Dietary studies have shown that poultry consumption (p-trend = 0.0006) and chicken consumption (p-trend = 0.0003) are associated with increased levels of 1MH in human plasma (PMID: 30018457). The consumption of fish, especially salmon and cod, has also been shown to increase the levels of 1MH in serum and urine (PMID: 31401679). As a general rule, urinary 1MH is associated with white meat intake (p< 0.001), whereas urinary 3MH is associated with red meat intake (p< 0.001) (PMID: 34091671). 1-Methyl-L-histidine is an objective indicator of meat ingestion and exogenous 3-methylhistidine (3MH) intake. 1-Methyl-L-histidine is an objective indicator of meat ingestion and exogenous 3-methylhistidine (3MH) intake. 3-Methyl-L-histidine is a biomarker for meat consumption, especially chicken. It is also a biomarker for the consumption of soy products.
4-Aminobenzoic acid
p-Aminobenzoic acid, also known as 4-aminobenzoic acid or PABA, is an organic compound with molecular formula C7H7NO2. PABA is a white crystalline substance that is only slightly soluble in water. It consists of a benzene ring substituted with an amino group and a carboxylic acid. PABA is an essential nutrient for some bacteria and is sometimes called vitamin Bx. However, PABA is not essential for humans and it varies in its activity from other B vitamins. PABA is sometimes marketed as an essential nutrient under the premise that it can stimulate intestinal bacteria. Certain bacteria in the human intestinal tract such as E. coli generate PABA from chorismate. Humans lack the enzymes to convert PABA into folate, and therefore require folate from dietary sources such as green leafy vegetables. Although some intestinal bacteria can synthesize folate from PABA and some E. coli can synthesize folate this requires six enzymatic activities in folate synthesis which are not all done in the same bacteria. PABA used to be a common sunscreen agent until it was found to also be a sensitizer. The potassium salt of PABA is used therapeutically in fibrotic skin disorders. PABA can also be found in Acetobacter (DOI: 10.3181/00379727-52-14147). CONFIDENCE standard compound; INTERNAL_ID 1139; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2913; ORIGINAL_PRECURSOR_SCAN_NO 2910 CONFIDENCE standard compound; INTERNAL_ID 1139; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2878; ORIGINAL_PRECURSOR_SCAN_NO 2876 CONFIDENCE standard compound; INTERNAL_ID 1139; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3022; ORIGINAL_PRECURSOR_SCAN_NO 3020 CONFIDENCE standard compound; INTERNAL_ID 1139; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2902; ORIGINAL_PRECURSOR_SCAN_NO 2899 CONFIDENCE standard compound; INTERNAL_ID 1139; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3034; ORIGINAL_PRECURSOR_SCAN_NO 3032 CONFIDENCE standard compound; INTERNAL_ID 1139; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3039; ORIGINAL_PRECURSOR_SCAN_NO 3037 D - Dermatologicals > D02 - Emollients and protectives > D02B - Protectives against uv-radiation > D02BA - Protectives against uv-radiation for topical use Acquisition and generation of the data is financially supported in part by CREST/JST. Listed in the EAFUS Food Additive Database (Jan. 2001) but with no reported use KEIO_ID A043 4-Aminobenzoic acid is an intermediate in the synthesis of folic acid by bacteria, plants and fungi. 4-Aminobenzoic acid is an intermediate in the synthesis of folic acid by bacteria, plants and fungi.
Androstenedione
Androst-4-en-3,17-dione, also known as androstenedione or delta(4)-androsten-3,17-dione, belongs to androgens and derivatives class of compounds. Those are 3-hydroxylated C19 steroid hormones. They are known to favor the development of masculine characteristics. They also show profound effects on scalp and body hair in humans. Thus, androst-4-en-3,17-dione is considered to be a steroid lipid molecule. Androst-4-en-3,17-dione is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Androst-4-en-3,17-dione can be found in a number of food items such as naranjilla, purslane, common cabbage, and oval-leaf huckleberry, which makes androst-4-en-3,17-dione a potential biomarker for the consumption of these food products. Androst-4-en-3,17-dione can be found primarily in blood, cerebrospinal fluid (CSF), and urine, as well as throughout most human tissues. In humans, androst-4-en-3,17-dione is involved in a couple of metabolic pathways, which include androgen and estrogen metabolism and androstenedione metabolism. Androst-4-en-3,17-dione is also involved in a couple of metabolic disorders, which include 17-beta hydroxysteroid dehydrogenase III deficiency and aromatase deficiency. Moreover, androst-4-en-3,17-dione is found to be associated with rheumatoid arthritis, thyroid cancer , cushings Syndrome, and schizophrenia. Androst-4-en-3,17-dione is a non-carcinogenic (not listed by IARC) potentially toxic compound. Androstenedione is a delta-4 19-carbon steroid that is produced not only in the testis, but also in the ovary and the adrenal cortex. Depending on the tissue type, androstenedione can serve as a precursor to testosterone as well as estrone and estradiol. It is the common precursor of male and female sex hormones. Some androstenedione is also secreted into the plasma and may be converted in peripheral tissues to testosterone and estrogens. Androstenedione originates either from the conversion of dehydroepiandrosterone or from 17-hydroxyprogesterone. It is further converted to either testosterone or estrone. The production of adrenal androstenedione is governed by ACTH, while the production of gonadal androstenedione is under control by gonadotropins. CONFIDENCE standard compound; INTERNAL_ID 396; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9081; ORIGINAL_PRECURSOR_SCAN_NO 9076 CONFIDENCE standard compound; INTERNAL_ID 396; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9111; ORIGINAL_PRECURSOR_SCAN_NO 9108 CONFIDENCE standard compound; INTERNAL_ID 396; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9069; ORIGINAL_PRECURSOR_SCAN_NO 9064 CONFIDENCE standard compound; INTERNAL_ID 396; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9077; ORIGINAL_PRECURSOR_SCAN_NO 9075 CONFIDENCE standard compound; INTERNAL_ID 396; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9113; ORIGINAL_PRECURSOR_SCAN_NO 9112 C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones CONFIDENCE standard compound; INTERNAL_ID 2803 INTERNAL_ID 2803; CONFIDENCE standard compound CONFIDENCE standard compound; INTERNAL_ID 4165
4-Guanidinobutanoic acid
4-Guanidinobutanoic acid, also known as gamma-guanidinobutyrate or 4-(carbamimidamido)butanoate, belongs to the class of organic compounds known as gamma amino acids and derivatives. These are amino acids having a (-NH2) group attached to the gamma carbon atom. 4-Guanidinobutanoic acid is a normal metabolite present in low concentrations. 4-Guanidinobutanoic acid exists in all eukaryotes, ranging from yeast to humans. Outside of the human body, 4-Guanidinobutanoic acid has been detected, but not quantified in a few different foods, such as apples, french plantains, and loquats. This could make 4-guanidinobutanoic acid a potential biomarker for the consumption of these foods. Patients with hyperargininemia have an arginase deficiency which leads to blockade of the urea cycle in the last step with several clinical symptoms. Owing to the arginase deficiency this patients accumulate arginine which leads eventually to epileptogenic guanidino compounds (PMID 7752905). 4-guanidinobutanoic acid, also known as gamma-guanidinobutyrate or 4-(carbamimidamido)butanoate, belongs to gamma amino acids and derivatives class of compounds. Those are amino acids having a (-NH2) group attached to the gamma carbon atom. 4-guanidinobutanoic acid is slightly soluble (in water) and a weakly acidic compound (based on its pKa). 4-guanidinobutanoic acid can be found in apple, french plantain, and loquat, which makes 4-guanidinobutanoic acid a potential biomarker for the consumption of these food products. 4-guanidinobutanoic acid can be found primarily in blood, cerebrospinal fluid (CSF), and urine, as well as in human prostate tissue. 4-guanidinobutanoic acid exists in all eukaryotes, ranging from yeast to humans. Moreover, 4-guanidinobutanoic acid is found to be associated with cirrhosis. CONFIDENCE standard compound; ML_ID 15 KEIO_ID G032 4-Guanidinobutanoic acid is a normal metabolite present in low concentrations. 4-Guanidinobutanoic acid is a normal metabolite present in low concentrations.
4-hydroxymandelic acid
p-Hydroxymandelic acid, also known as 4-hydroxymandelate or 4-hydroxyphenylglycolate, belongs to the class of organic compounds known as 1-hydroxy-2-unsubstituted benzenoids. These are phenols that are unsubstituted at the 2-position. p-Hydroxymandelic acid has been detected, but not quantified in, a few different foods, such as anatidaes (Anatidae), chickens (Gallus gallus), and domestic pigs (Sus scrofa domestica). This could make p-hydroxymandelic acid a potential biomarker for the consumption of these foods. p-Hydroxymandelic acid is a secondary metabolite. Secondary metabolites are metabolically or physiologically non-essential metabolites that may serve a role as defense or signalling molecules. In some cases they are simply molecules that arise from the incomplete metabolism of other secondary metabolites. Based on a literature review a significant number of articles have been published on p-Hydroxymandelic acid. p-Hydroxymandelic acid is a valuable aromatic fine chemical and widely used for production of pharmaceuticals and food additives.
5-Aminolevulinic acid
5-Aminolevulinic acid, also known as 5-aminolevulinate or 5-amino-4-oxopentanoate, belongs to the class of organic compounds known as delta amino acids and derivatives. Delta amino acids and derivatives are compounds containing a carboxylic acid group and an amino group at the C5 carbon atom. 5-Aminolevulinic acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. 5-Aminolevulinic acid exists in all living species, ranging from bacteria to humans. 5-aminolevulinic acid can be biosynthesized from glycine and succinyl-CoA by the enzyme 5-aminolevulinate synthase. The simplest delta-amino acid in which the hydrogens at the gamma position are replaced by an oxo group. In humans, 5-aminolevulinic acid is involved in the metabolic disorder called the dimethylglycine dehydrogenase deficiency pathway. Outside of the human body, 5-Aminolevulinic acid has been detected, but not quantified in several different foods, such as american butterfish, vaccinium (blueberry, cranberry, huckleberry), amaranths, purple mangosteens, and garden cress. Used (in the form of the hydrochloride salt) in combination with blue light illumination for the treatment of minimally to moderately thick actinic keratosis of the face or scalp. It is metabolised to protoporphyrin IX, a photoactive compound which accumulates in the skin. An intermediate in heme synthesis. This is the first compound in the porphyrin synthesis pathway. It is produced by the enzyme ALA synthase, from glycine and succinyl CoA. This reaction is known as the Shemin pathway. Aminolevulinic acid plus blue light illumination using a blue light photodynamic therapy illuminator is indicated for the treatment of minimally to moderately thick actinic keratoses of the face or scalp. [HMDB]. 5-Aminolevulinic acid is found in many foods, some of which are fireweed, chia, sesbania flower, and taro. L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01X - Other antineoplastic agents > L01XD - Sensitizers used in photodynamic/radiation therapy Acquisition and generation of the data is financially supported in part by CREST/JST. D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents C1420 - Photosensitizing Agent D003879 - Dermatologic Agents KEIO_ID A052
5-Aminopentanoic acid
5-Aminopentanoic acid (or 5-aminovalerate) is a lysine degradation product. It can be produced both endogenously or through bacterial catabolism of lysine. 5-aminovalerate is formed via the following multi-step reaction: L-lysine leads to cadverine leads to L-piperideine leads 5-aminovalerate (PMID:405455). In other words it is a metabolite of cadaverine which is formed via the intermediate, 1-piperideine (PMID:6436440). Cadaverine is a foul-smelling diamine compound produced by protein hydrolysis during putrefaction of animal tissue. High levels of 5-aminovalerate in biofluids may indicate bacterial overgrowth or endogenous tissue necrosis. In most cases endogenous 5-aminovalerate is thought to be primarily a microbial metabolite produced by the gut or oral microflora, although it can be produced endogenously. 5-aminovalerate is a normal metabolite present in human saliva, with a tendency to elevated concentration in patients with chronic periodontitis. Bacterial contamination and decomposition of salivary proteins is primarily responsible for elevated salivary levels (PMID 3481959). Beyond being a general waste product, 5-aminovalerate is also believed to act as a methylene homologue of gamma-aminobutyric acid (GABA) and functions as a weak GABA agonist (PMID:4031870). It is also known as an antifibrinolytic amino acid analog and so it functions as a weak inhibitor of the blood clotting pathway (PMID:6703712). 5- aminovalerate is an in vivo substrate of 4-aminobutyrate:2-oxoglutarate aminotransferase (PMID:4031870). It can be found in Corynebacterium (PMID:27717386). 5-aminopentanoic acid is a normal metabolite present in human saliva, with a tendency to elevated concentration in patients with chronic periodontitis. Bacterial contamination and decomposition of salivary proteins is responsible for the elevated salivary levels (PMID 3481959) [HMDB] 5-Aminovaleric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=660-88-8 (retrieved 2024-07-17) (CAS RN: 660-88-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). 5-Aminovaleric acid is believed to act as a methylene homologue of gamma-aminobutyric acid (GABA) and functions as a weak GABA agonist.
Adenosine monophosphate
Adenosine monophosphate, also known as adenylic acid or amp, is a member of the class of compounds known as purine ribonucleoside monophosphates. Purine ribonucleoside monophosphates are nucleotides consisting of a purine base linked to a ribose to which one monophosphate group is attached. Adenosine monophosphate is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Adenosine monophosphate can be found in a number of food items such as kiwi, taro, alaska wild rhubarb, and skunk currant, which makes adenosine monophosphate a potential biomarker for the consumption of these food products. Adenosine monophosphate can be found primarily in most biofluids, including blood, feces, cerebrospinal fluid (CSF), and urine, as well as throughout all human tissues. Adenosine monophosphate exists in all living species, ranging from bacteria to humans. In humans, adenosine monophosphate is involved in several metabolic pathways, some of which include josamycin action pathway, methacycline action pathway, nevirapine action pathway, and aspartate metabolism. Adenosine monophosphate is also involved in several metabolic disorders, some of which include hyperornithinemia-hyperammonemia-homocitrullinuria [hhh-syndrome], molybdenum cofactor deficiency, xanthinuria type I, and mitochondrial DNA depletion syndrome. Adenosine monophosphate is a drug which is used for nutritional supplementation, also for treating dietary shortage or imbalanc. Adenosine monophosphate, also known as 5-adenylic acid and abbreviated AMP, is a nucleotide that is found in RNA. It is an ester of phosphoric acid with the nucleoside adenosine. AMP consists of the phosphate group, the pentose sugar ribose, and the nucleobase adenine. AMP can be produced during ATP synthesis by the enzyme adenylate kinase. AMP has recently been approved as a Bitter Blocker additive to foodstuffs. When AMP is added to bitter foods or foods with a bitter aftertaste it makes them seem sweeter. This potentially makes lower calorie food products more palatable. [Spectral] AMP (exact mass = 347.06308) and Guanine (exact mass = 151.04941) and 3,4-Dihydroxy-L-phenylalanine (exact mass = 197.06881) and Glutathione disulfide (exact mass = 612.15196) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] AMP (exact mass = 347.06308) and Glutathione disulfide (exact mass = 612.15196) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] AMP (exact mass = 347.06308) and Adenine (exact mass = 135.0545) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Adenosine monophosphate. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=67583-85-1 (retrieved 2024-07-01) (CAS RN: 61-19-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Adenosine monophosphate is a key cellular metabolite regulating energy homeostasis and signal transduction. Adenosine monophosphate is a key cellular metabolite regulating energy homeostasis and signal transduction. Adenosine monophosphate is a key cellular metabolite regulating energy homeostasis and signal transduction.
5-methylthioadenosine (MTA)
5-Methylthioadenosine, also known as MTA or thiomethyladenosine, belongs to the class of organic compounds known as 5-deoxy-5-thionucleosides. These are 5-deoxyribonucleosides in which the ribose is thio-substituted at the 5position by a S-alkyl group. 5-Methylthioadenosine is metabolized solely by MTA-phosphorylase, to yield 5-methylthioribose-1-phosphate and adenine, a crucial step in the methionine and purine salvage pathways, respectively. 5-Methylthioadenosine exists in all living species, ranging from bacteria to humans. 5-Methylthioadenosine (MTA) is a naturally occurring sulfur-containing nucleoside present in all mammalian tissues. Within humans, 5-methylthioadenosine participates in a number of enzymatic reactions. In particular, 5-methylthioadenosine and spermidine can be biosynthesized from S-adenosylmethioninamine and putrescine through the action of the enzyme spermidine synthase. In addition, 5-methylthioadenosine can be converted into 5-methylthioribose 1-phosphate and L-methionine; which is catalyzed by the enzyme S-methyl-5-thioadenosine phosphorylase. It is produced from S-adenosylmethionine mainly through the polyamine biosynthetic pathway, where it behaves as a powerful inhibitory product. For instance, 5-Methylthioadenosine has been shown to influence the regulation of gene expression, proliferation, differentiation, and apoptosis (PMID:15313459). In humans, 5-methylthioadenosine is involved in the metabolic disorder called hypermethioninemia. Outside of the human body, 5-Methylthioadenosine has been detected, but not quantified in several different foods, such as soursops, allspices, summer grapes, alaska wild rhubarbs, and breadfruits. Elevated excretion appears in children with severe combined immunodeficiency syndrome (SCID) (PMID:3987052). Evidence suggests that 5-Methylthioadenosine can affect cellular processes in many ways. 5-Methylthioadenosine can be found in human urine. 5-deoxy-5-methylthioadenosine, also known as S-methyl-5-thioadenosine or mta, is a member of the class of compounds known as 5-deoxy-5-thionucleosides. 5-deoxy-5-thionucleosides are 5-deoxyribonucleosides in which the ribose is thio-substituted at the 5position by a S-alkyl group. 5-deoxy-5-methylthioadenosine is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). 5-deoxy-5-methylthioadenosine can be found in a number of food items such as allspice, sesame, roselle, and bayberry, which makes 5-deoxy-5-methylthioadenosine a potential biomarker for the consumption of these food products. 5-deoxy-5-methylthioadenosine can be found primarily in blood and urine, as well as in human fibroblasts, platelet and prostate tissues. 5-deoxy-5-methylthioadenosine exists in all living species, ranging from bacteria to humans. In humans, 5-deoxy-5-methylthioadenosine is involved in a couple of metabolic pathways, which include methionine metabolism and spermidine and spermine biosynthesis. 5-deoxy-5-methylthioadenosine is also involved in several metabolic disorders, some of which include glycine n-methyltransferase deficiency, methionine adenosyltransferase deficiency, homocystinuria-megaloblastic anemia due to defect in cobalamin metabolism, cblg complementation type, and hypermethioninemia. 5'-Methylthioadenosine (5'-(Methylthio)-5'-deoxyadenosine) is a nucleoside generated from S-adenosylmethionine (SAM) during polyamine synthesis[1]. 5'-Methylthioadenosine suppresses tumors by inhibiting tumor cell proliferation, invasion, and the induction of apoptosis while controlling the inflammatory micro-environments of tumor tissue. 5'-Methylthioadenosine and its associated materials have striking regulatory effects on tumorigenesis[2]. 5'-Methylthioadenosine (5'-(Methylthio)-5'-deoxyadenosine) is a nucleoside generated from S-adenosylmethionine (SAM) during polyamine synthesis[1]. 5'-Methylthioadenosine suppresses tumors by inhibiting tumor cell proliferation, invasion, and the induction of apoptosis while controlling the inflammatory micro-environments of tumor tissue. 5'-Methylthioadenosine and its associated materials have striking regulatory effects on tumorigenesis[2]. 5'-Methylthioadenosine (5'-(Methylthio)-5'-deoxyadenosine) is a nucleoside generated from S-adenosylmethionine (SAM) during polyamine synthesis[1]. 5'-Methylthioadenosine suppresses tumors by inhibiting tumor cell proliferation, invasion, and the induction of apoptosis while controlling the inflammatory micro-environments of tumor tissue. 5'-Methylthioadenosine and its associated materials have striking regulatory effects on tumorigenesis[2].
5-Hydroxyindoleacetic acid
5-Hydroxyindoleacetic acid, also known as 5-hydroxyindole-3-acetate or 5-HIAA, belongs to the class of organic compounds known as indole-3-acetic acid derivatives. Indole-3-acetic acid derivatives are compounds containing an acetic acid (or a derivative) linked to the C3 carbon atom of an indole. 5-Hydroxyindoleacetic acid exists in all living organisms, ranging from bacteria to humans. In humans, 5-hydroxyindoleacetic acid is a breakdown product of serotonin that is excreted in the urine and it also participates in a number of enzymatic reactions. 5-hydroxyindoleacetic acid can be biosynthesized from 5-hydroxyindoleacetaldehyde; which is catalyzed by the mitochondrial enzyme aldehyde dehydrogenase. In addition, 5-hydroxyindoleacetic acid and S-adenosylmethionine can be converted into 5-methoxyindoleacetate and S-adenosylhomocysteine through its interaction with the enzyme acetylserotonin O-methyltransferase. 5-Hydroxyindoleacetic acid is also involved in the metabolism of tryptophan. 5-Hydroxyindoleacetic acid has been found to be associated with several human diseases such as brunner syndrome, friedreichs ataxia, schizophrenia, and olivopontocerebral atrophy; 5-hydroxyindoleacetic acid has also been linked to the inborn metabolic disorder sepiapterin reductase deficiency. Elevated levels of 5-hydroxyindoleacetic acid in urine (>20 uM) are indicative of appendicitis and gastroenteritis (PMID: 11462886). Serotonin and 5-Hydroxyindoleacetic acid are produced in excess amounts by carcinoid tumors, and levels of these substances may be measured in the urine to test for carcinoid tumors (NCI). 5-Hydroxyindoleacetic acid has also been found to be a product of human gut microbiota. 5-Hydroxyindoleacetic acid (5-HIAA) is the main metabolite of serotonin in the human body. In chemical analysis of urine samples, 5-HIAA is used to determine the bodys levels of serotonin. 5-Hydroxyindole-3-acetic acid is found in many foods, some of which are pitanga, dandelion, coconut, and white cabbage. 5-Hydroxyindole-3-acetic acid is the main metabolite of serotonin or metanephrines, which can be used as a biomarker of neuroendocrine tumors.
5-Methyltetrahydrofolic acid
5 methyltetrahydrofolic acid (5-MTHF) is the most biologically active form of the B-vitamin known as folic acid, also known generically as folate. 5-MTHF functions, in concert with vitamin B12, as a methyl-group donor involved in the conversion of the amino acid homocysteine to methionine. Methyl (CH3) group donation is vital to many bodily processes, including serotonin, melatonin, and DNA synthesis. Therapeutically, 5-MTHF is instrumental in reducing homocysteine levels, preventing neural tube defects, and improving vascular endothelial function. Research on folate supplementation suggests it plays a key role in preventing cervical dysplasia and protecting against neoplasia in ulcerative colitis. Folic acid also shows promise as part of a nutritional protocol to treat vitiligo, and may reduce inflammation of the gingiva. Furthermore, certain neurological, cognitive, and psychiatric presentations may be secondary to folate deficiency. Such presentations include depression, peripheral neuropathy, myelopathy, restless legs syndrome, insomnia, dementia, forgetfulness, irritability, endogenous depression, organic psychosis, and schizophrenia-like syndromes. After ingestion, the process of conversion of folic acid to the metabolically active coenzyme forms is relatively complex. Synthesis of the active forms of folic acid requires several enzymes, adequate liver and intestinal function, and adequate supplies of riboflavin (B2), niacin (B3), pyridoxine (B6), zinc, vitamin C, and serine. After formation of the coenzyme forms of the vitamin in the liver, these metabolically active compounds are secreted into the small intestine with bile (the folate enterohepatic cycle), where they are reabsorbed and distributed to tissues throughout the body. Human pharmacokinetic studies indicate folic acid has high bioavailability, with large oral doses of folic acid substantially raising plasma levels in healthy subjects in a time and dose dependent manner. Red blood cells (RBCs) appear to be the storage depot for folic acid, as RBC levels remain elevated for periods in excess of 40 days following discontinuation of supplementation. Folic acid is poorly transported to the brain and rapidly cleared from the central nervous system. The primary methods of elimination of absorbed folic acid are fecal (through bile) and urinary. Despite the biochemical complexity of this process, evidence suggests oral supplementation with folic acid increases the bodys pool of 5-MTHF in healthy individuals. However, enzyme defects, mal-absorption, digestive system pathology, and liver disease can result in impaired ability to activate folic acid. In fact, some individuals have a severe congenital deficiency of the enzyme Methyl tetrahydrofolate reductase (5-MTHFR), which is needed to convert folic acid to 5-MTHF. Milder forms of this enzyme defect likely interact with dietary folate status to determine risk for some disease conditions. In individuals with a genetic defect of this enzyme (whether mild or severe), supplementation with 5- MTHF might be preferable to folic acid supplementation. (PMID: 17176169). 5 methyltetrahydrofolic acid (5-MTHF) is the most biologically active form of the B-vitamin folic acid, also known generically as folate. 5-MTHF functions, in concert with vitamin B12, as a methyl-group donor involved in the conversion of the amino acid homocysteine to methionine. Methyl (CH3) group donation is vital to many bodily processes, including serotonin, melatonin, and DNA synthesis. Therapeutically, 5-MTHF is instrumental in reducing homocysteine levels, preventing neural tube defects, and improving vascular endothelial function. Research on folate supplementation suggests it plays a key role in preventing cervical dysplasia and protecting against neoplasia in ulcerative colitis. Folic acid also shows promise as part of a nutritional protocol to treat vitiligo, and may reduce inflammation of the gingiva. Furthermore, certain neurological, cognitive, and psychiatric presentations may be secondary to folate deficiency. Such presentations include depression, peripheral neuropathy, myelopathy, restless legs syndrome, insomnia, dementia, forgetfulness, irritability, endogenous depression, organic psychosis, and schizophrenia-like syndromes. After ingestion, the process of conversion of folic acid to the metabolically active coenzyme forms is relatively complex. Synthesis of the active forms of folic acid requires several enzymes, adequate liver and intestinal function, and adequate supplies of riboflavin (B2), niacin (B3), pyridoxine (B6), zinc, vitamin C, and serine. After formation of the coenzyme forms of the vitamin in the liver, these metabolically active compounds are secreted into the small intestine with bile (the folate enterohepatic cycle), where they are reabsorbed and distributed to tissues throughout the body. Human pharmacokinetic studies indicate folic acid has high bioavailability, with large oral doses of folic acid substantially raising plasma levels in healthy subjects in a time and dose dependent manner. Red blood cells (RBCs) appear to be the storage depot for folic acid, as RBC levels remain elevated for periods in excess of 40 days following discontinuation of supplementation. Folic acid is poorly transported to the brain and rapidly cleared from the central nervous system. The primary methods of elimination of absorbed folic acid are fecal (through bile) and urinary. Despite the biochemical complexity of this process, evidence suggests oral supplementation with folic acid increases the bodys pool of 5-MTHF in healthy individuals. However, enzyme defects, mal-absorption, digestive system pathology, and liver disease can result in impaired ability to activate folic acid. In fact, some individuals have a severe congenital deficiency of the enzyme Methyl tetrahydrofolate reductase (5-MTHFR), which is needed to convert folic acid to 5-MTHF. Milder forms of this enzyme defect likely interact with dietary folate status to determine risk for some disease conditions. In individuals with a genetic defect of this enzyme (whether mild or severe), supplementation with 5- MTHF might be preferable to folic acid supplementation. (PMID: 17176169) [HMDB] 5-Methyltetrahydrofolic acid (5-Methyl THF) is a biologically active form of folic acid. 5-Methyltetrahydrofolic acid is a methylated derivate of tetrahydrofolate. 5-Methyltetrahydrofolic acid is the predominant natural dietary folate and the principal form of folate in plasma and cerebrospinal fluid[1]. Levomefolic acid (5-MTHF) is an orally active, brain-penetrant natural active form of folic acid and is one of the most widely used folic acid food supplements[1][2].
(4-Aminobutyl)guanidine
Agmatine ((4-aminobutyl)guanidine, NH2-CH2-CH2-CH2-CH2-NH-C(-NH2)(=NH)) is the decarboxylation product of the amino acid arginine and is an intermediate in polyamine biosynthesis. It is a putative neurotransmitter. It is synthesized in the brain, stored in synaptic vesicles, accumulated by uptake, released by membrane depolarization, and inactivated by agmatinase. Agmatine binds to 2-adrenergic receptor and imidazoline binding sites, and blocks NMDA receptors and other cation ligand-gated channels. Agmatine inhibits nitric oxide synthase (NOS), and induces the release of some peptide hormones. Treatment with exogenous agmatine exerts neuroprotective effects in animal models of neurotrauma. -- Wikipedia; Agmatine ((4-aminobutyl)guanidine, NH2-CH2-CH2-CH2-CH2-NH-C(-NH2)(=NH)) is the decarboxylation product of the amino acid arginine and is an intermediate in polyamine biosynthesis. It is discussed as a putative neurotransmitter. It is synthesized in the brain, stored in synaptic vesicles, accumulated by uptake, released by membrane depolarization, and inactivated by agmatinase. Agmatine binds to ?2-adrenergic receptor and imidazoline binding sites, and blocks NMDA receptors and other cation ligand-gated channels. Agmatine inhibits nitric oxide synthase (NOS), and induces the release of some peptide hormones. Agmatine is found in many foods, some of which are fruits, kohlrabi, carob, and burdock. Agmatine ((4-aminobutyl)guanidine, NH2-CH2-CH2-CH2-CH2-NH-C(-NH2)(=NH)) is the decarboxylation product of the amino acid arginine and is an intermediate in polyamine biosynthesis. It is a putative neurotransmitter. It is synthesized in the brain, stored in synaptic vesicles, accumulated by uptake, released by membrane depolarization, and inactivated by agmatinase. Agmatine binds to 2-adrenergic receptor and imidazoline binding sites, and blocks NMDA receptors and other cation ligand-gated channels. Agmatine inhibits nitric oxide synthase (NOS), and induces the release of some peptide hormones. Treatment with exogenous agmatine exerts neuroprotective effects in animal models of neurotrauma. Agmatine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=306-60-5 (retrieved 2024-07-01) (CAS RN: 306-60-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Oxoglutaric acid
Oxoglutaric acid, also known as alpha-ketoglutarate, alpha-ketoglutaric acid, AKG, or 2-oxoglutaric acid, is classified as a gamma-keto acid or a gamma-keto acid derivative. gamma-Keto acids are organic compounds containing an aldehyde substituted with a keto group on the C4 carbon atom. alpha-Ketoglutarate is considered to be soluble (in water) and acidic. alpha-Ketoglutarate is a key molecule in the TCA cycle, playing a fundamental role in determining the overall rate of this important metabolic process (PMID: 26759695). In the TCA cycle, AKG is decarboxylated to succinyl-CoA and carbon dioxide by AKG dehydrogenase, which functions as a key control point of the TCA cycle. Additionally, AKG can be generated from isocitrate by oxidative decarboxylation catalyzed by the enzyme known as isocitrate dehydrogenase (IDH). In addition to these routes of production, AKG can be produced from glutamate by oxidative deamination via glutamate dehydrogenase, and as a product of pyridoxal phosphate-dependent transamination reactions (mediated by branched-chain amino acid transaminases) in which glutamate is a common amino donor. AKG is a nitrogen scavenger and a source of glutamate and glutamine that stimulates protein synthesis and inhibits protein degradation in muscles. In particular, AKG can decrease protein catabolism and increase protein synthesis to enhance bone tissue formation in skeletal muscles (PMID: 26759695). Interestingly, enteric feeding of AKG supplements can significantly increase circulating plasma levels of hormones such as insulin, growth hormone, and insulin-like growth factor-1 (PMID: 26759695). It has recently been shown that AKG can extend the lifespan of adult C. elegans by inhibiting ATP synthase and TOR (PMID: 24828042). In combination with molecular oxygen, alpha-ketoglutarate is required for the hydroxylation of proline to hydroxyproline in the production of type I collagen. A recent study has shown that alpha-ketoglutarate promotes TH1 differentiation along with the depletion of glutamine thereby favouring Treg (regulatory T-cell) differentiation (PMID: 26420908). alpha-Ketoglutarate has been found to be associated with fumarase deficiency, 2-ketoglutarate dehydrogenase complex deficiency, and D-2-hydroxyglutaric aciduria, which are all inborn errors of metabolism (PMID: 8338207). Oxoglutaric acid has been found to be a metabolite produced by Corynebacterium and yeast (PMID: 27872963) (YMDB). [Spectral] 2-Oxoglutarate (exact mass = 146.02152) and S-Adenosyl-L-homocysteine (exact mass = 384.12159) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] 2-Oxoglutarate (exact mass = 146.02152) and (S)-Malate (exact mass = 134.02152) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Flavouring ingredient
Epinephrine
Epinephrine, also known as adrenaline, is both a neurotransmitter and a hormone. It plays an important role in your body’s “fight-or-flight” response. It’s also used as a medication to treat many life-threatening conditions. Epinephrine is a catecholamine, a sympathomimetic monoamine derived from the amino acids phenylalanine and tyrosine. It is the active sympathomimetic hormone secreted from the adrenal medulla in most species. It stimulates both the alpha- and beta- adrenergic systems, causes systemic vasoconstriction and gastrointestinal relaxation, stimulates the heart, and dilates bronchi and cerebral vessels. It is used in asthma and cardiac failure and to delay absorption of local anesthetics. Epinephrine also constricts arterioles in the skin and gut while dilating arterioles in leg muscles. It elevates the blood sugar level by increasing hydrolysis of glycogen to glucose in the liver, and at the same time begins the breakdown of lipids in adipocytes. Epinephrine has a suppressive effect on the immune system. [HMDB] Epinephrine, also called adrenaline, is both a hormone and a neurotransmitter. As a hormone, it’s made and released by your adrenal glands, which are hat-shaped glands that sit on top of each kidney. As a central nervous system neurotransmitter, it’s a chemical messenger that helps transmit nerve signals across nerve endings to another nerve cell, muscle cell or gland cell. Epinephrine is part of your sympathetic nervous system, which is part of your body’s emergency response system to danger — the “fight-or-flight” response. Medically, the flight-or-flight response is known as the acute stress response. Epinephrine is also called a catecholamine, as are norepinephrine and dopamine. They’re given this name because of a certain molecule in its structure. As a hormone, epinephrine is made from norepinephrine inside of your adrenal gland. As a neurotransmitter, epinephrine plays a small role. Only a small amount is produced in your nerves. It plays a role in metabolism, attention, focus, panic and excitement. Abnormal levels are linked to sleep disorders, anxiety, hypertension and lowered immunity. Epinephrine’s major action is in its role as a hormone. Epinephrine is released by your adrenal glands in response to stress. This reaction causes a number of changes in your body and is known as the fight-or-flight response.
Aminoadipic acid
Aminoadipic acid (CAS: 542-32-5), also known as 2-aminoadipate, is a metabolite in the principal biochemical pathway of lysine. It is an intermediate in the metabolism (i.e. breakdown or degradation) of lysine and saccharopine. It antagonizes neuroexcitatory activity modulated by the glutamate receptor N-methyl-D-aspartate (NMDA). Aminoadipic acid has also been shown to inhibit the production of kynurenic acid, a broad spectrum excitatory amino acid receptor antagonist, in brain tissue slices (PMID: 8566117). Recent studies have shown that aminoadipic acid is elevated in prostate biopsy tissues from prostate cancer patients (PMID: 23737455). Mutations in DHTKD1 (dehydrogenase E1 and transketolase domain-containing protein 1) have been shown to cause human 2-aminoadipic aciduria and 2-oxoadipic aciduria via impaired decarboxylation of 2-oxoadipate to glutaryl-CoA, which is the last step in the lysine degradation pathway (PMID: 23141293). Aging, diabetes, sepsis, and renal failure are known to catalyze the oxidation of lysyl residues to form 2-aminoadipic acid in human skin collagen and potentially other tissues (PMID: 18448817). Proteolytic breakdown of these tissues can lead to the release of free 2-aminoadipic acid. Studies in rats indicate that aminoadipic acid (along with the three branched-chain amino acids: leucine, valine, and isoleucine) levels are elevated in the pre-diabetic phase and so aminoadipic acid may serve as a predictive biomarker for the development of diabetes (PMID: 15389298). Long-term hyperglycemia of endothelial cells can also lead to elevated levels of aminoadipate which is thought to be a sign of lysine breakdown through oxidative stress and reactive oxygen species (ROS) (PMID: 21961526). 2-Aminoadipate is a potential small-molecule marker of oxidative stress (PMID: 21647514). Therefore, depending on the circumstances aminoadipic acid can act as an acidogen, a diabetogen, an atherogen, and a metabotoxin. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A diabetogen is a compound that can lead to type 2 diabetes. An atherogen is a compound that leads to atherosclerosis and cardiovascular disease. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of aminoadipic acid are associated with at least two inborn errors of metabolism including 2-aminoadipic aciduria and 2-oxoadipic aciduria. Aminoadipic acid is an organic acid and abnormally high levels of organic acids in the blood (organic acidemia), urine (organic aciduria), the brain, and other tissues lead to general metabolic acidosis. Acidosis typically occurs when arterial pH falls below 7.35. In infants with acidosis, the initial symptoms include poor feeding, vomiting, loss of appetite, weak muscle tone (hypotonia), and lack of energy (lethargy). These can progress to heart abnormalities, kidney abnormalities, liver damage, seizures, coma, and possibly death. These are also the characteristic symptoms of the untreated IEMs mentioned above. Many affected children with organic acidemias experience intellectual disability or delayed development. In adults, acidosis or acidemia is characterized by headaches, confusion, feeling tired, tremors, sleepiness, and seizures. As a diabetogen, serum aminoadipic levels appear to regulate glucose homeostasis and have been highly predictive of individuals who later develop diabetes (PMID: 24091325). In particular, aminoadipic acid lowers fasting plasma glucose levels and enhances insulin secretion from human islets. As an atherogen, aminoadipic acid has been found to be produced at high levels via protein lysine oxidation in atherosclerotic plaques (PMID: 28069522). A metabolite in the principal biochemical pathway of lysine. It antagonizes neuroexcitatory activity modulated by the glutamate receptor, N-methyl-D-aspartate; (NMDA). L-α-Aminoadipic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=1118-90-7 (retrieved 2024-07-01) (CAS RN: 1118-90-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Aminoadipic acid is an intermediate in the metabolism of lysine and saccharopine. Aminoadipic acid is an intermediate in the metabolism of lysine and saccharopine.
Argininosuccinic acid disodium
C10H18N4O6 (290.12262880000003)
Arginosuccinic acid is a basic amino acid. Some cells synthesize it from citrulline, aspartic acid and use it as a precursor for arginine in the urea cycle or Citrulline-NO cycle. The enzyme that catalyzes the reaction is argininosuccinate synthetase. Argininosuccinic acid is a precursor to fumarate in the citric acid cycle via argininosuccinate lyase. Defects in the argininosuccinate lyase enzyme can lead to argininosuccinate lyase deficiency, which is an inborn error of metabolism. Argininosuccinate (ASA) lyase deficiency results in defective cleavage of ASA. This leads to an accumulation of ASA in cells and an excessive excretion of ASA in urine (argininosuccinic aciduria). In virtually all respects, this disorder shares the characteristics of other urea cycle defects. The most important characteristic of ASA lyase deficiency is its propensity to cause hyperammonemia in affected individuals. ASA in affected individuals is excreted by the kidney at a rate practically equivalent to the glomerular filtration rate (GFR). Whether ASA itself causes a degree of toxicity due to hepatocellular accumulation is unknown; such an effect could help explain hyperammonemia development in affected individuals. Regardless, the name of the disease is derived from the rapid clearance of ASA in urine, although elevated levels of ASA can be found in plasma. ASA lyase deficiency is associated with high mortality and morbidity rates. Symptoms of ASA lyase deficiency include anorexia, irritability rapid breathing, lethargy and vomiting. Extreme symptoms include coma and cerebral edema. Arginosuccinic acid is a basic amino acid. Some cells synthesize it from citrulline, aspartic acid and use it as a precursor for arginine in the urea cycle or Citrulline-NO cycle. The enzyme that catalyzes the reaction is argininosuccinate synthetase. Argininosuccinic acid is a precursor to fumarate in the citric acid cycle via argininosuccinate lyase. Defects in the arginosuccinate lyase enzyme can lead to arginosuccinate lyase deficiency. Argininosuccinate (ASA) lyase deficiency results in defective cleavage of ASA. This leads to an accumulation of ASA in cells and an excessive excretion of ASA in urine (arginosuccinic aciduria). In virtually all respects, this disorder shares the characteristics of other urea cycle defects. The most important characteristic of ASA lyase deficiency is its propensity to cause hyperammonemia in affected individuals. ASA in affected individuals is excreted by the kidney at a rate practically equivalent to the glomerular filtration rate (GFR). Whether ASA itself causes a degree of toxicity due to hepatocellular accumulation is unknown; such an effect could help explain hyperammonemia development in affected individuals. Regardless, the name of the disease is derived from the rapid clearance of ASA in urine, although elevated levels of ASA can be found in plasma. ASA lyase deficiency is associated with high mortality and morbidity rates. Symptoms of ASA lyase deficiency include anorexia, irritability rapid breathing, lethargy and vomiting. Extreme symptoms include coma and cerebral edema. [HMDB] KEIO_ID A039; [MS2] KO008844 KEIO_ID A039
Asparagine
Asparagine (Asn) or L-asparagine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. L-asparagine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Asparagine is found in all organisms ranging from bacteria to plants to animals. In humans, asparagine is not an essential amino acid, which means that it can be synthesized from central metabolic pathway intermediates in humans and is not required in the diet. The precursor to asparagine is oxaloacetate. Oxaloacetate is converted to aspartate using a transaminase enzyme. This enzyme transfers the amino group from glutamate to oxaloacetate producing alpha-ketoglutarate and aspartate. The enzyme asparagine synthetase produces asparagine, AMP, glutamate, and pyrophosphate from aspartate, glutamine, and ATP. In the asparagine synthetase reaction, ATP is used to activate aspartate, forming beta-aspartyl-AMP. Glutamine donates an ammonium group which reacts with beta-aspartyl-AMP to form asparagine and free AMP. Since the asparagine side chain can make efficient hydrogen bond interactions with the peptide backbone, asparagines are often found near the beginning and end of alpha-helices, and in turn motifs in beta sheets. Its role can be thought as "capping" the hydrogen bond interactions which would otherwise need to be satisfied by the polypeptide backbone. Asparagine also provides key sites for N-linked glycosylation, a modification of the protein chain that is characterized by the addition of carbohydrate chains. A reaction between asparagine and reducing sugars or reactive carbonyls produces acrylamide (acrylic amide) in food when heated to sufficient temperature (i.e. baking). These occur primarily in baked goods such as French fries, potato chips, and roasted coffee. Asparagine was first isolated in 1806 from asparagus juice --hence its name. Asparagine was the first amino acid to be isolated. The smell observed in the urine of some individuals after the consumption of asparagus is attributed to a byproduct of the metabolic breakdown of asparagine, asparagine-amino-succinic-acid monoamide. However, some scientists disagree and implicate other substances in the smell, especially methanethiol. [Spectral] L-Asparagine (exact mass = 132.05349) and L-Aspartate (exact mass = 133.03751) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. One of the nonessential amino acids. Dietary supplement, nutrient. Widely distributed in the plant kingdom. Isolated from asparagus, beetroot, peas, beans, etc. (-)-Asparagine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=70-47-3 (retrieved 2024-07-15) (CAS RN: 70-47-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Asparagine ((-)-Asparagine) is a non-essential amino acid that is involved in the metabolic control of cell functions in nerve and brain tissue. L-Asparagine ((-)-Asparagine) is a non-essential amino acid that is involved in the metabolic control of cell functions in nerve and brain tissue.
Pseudouridine
Beta-pseudouridine, also known as p or 5-(b-D-ribofuranosyl)uracil, is a member of the class of compounds known as nucleoside and nucleotide analogues. Nucleoside and nucleotide analogues are analogues of nucleosides and nucleotides. These include phosphonated nucleosides, C-glycosylated nucleoside bases, analogues where the sugar unit is a pyranose, and carbocyclic nucleosides, among others. Beta-pseudouridine is soluble (in water) and a very weakly acidic compound (based on its pKa). Beta-pseudouridine can be found in a number of food items such as eggplant, wax gourd, asparagus, and garden cress, which makes beta-pseudouridine a potential biomarker for the consumption of these food products. Beta-pseudouridine can be found primarily in amniotic fluid, blood, feces, and urine. Beta-pseudouridine exists in all living species, ranging from bacteria to humans. Moreover, beta-pseudouridine is found to be associated with canavan disease. Pseudouridine, also known as psi-uridine or 5-ribosyluracil, belongs to the class of organic compounds known as nucleoside and nucleotide analogues. These are analogues of nucleosides and nucleotides, such as phosphonated nucleosides, C-glycosylated nucleoside bases, analogues where the sugar unit is a pyranose, and carbocyclic nucleosides. Pseudouridine specifically has its uracil attached via a carbon-carbon instead of a nitrogen-carbon glycosidic bond to the ribofuranose. It is the most prevalent of the over one hundred different modified nucleosides found in RNA (PMID: 17113994). Pseudouridine is a solid that is soluble in water. Pseudouridine exists in all living species, ranging from bacteria to humans, and is in all classes of RNA except mRNA. It is formed by enzymes called pseudouridine synthases, which post-transcriptionally isomerize specific uridine residues in RNA. Pseudouridine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=1445-07-4 (retrieved 2024-07-01) (CAS RN: 1445-07-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Pseudouridine is an isomer of the nucleoside uridine, and the most abundant modified nucleoside in non-coding RNAs. Pseudouridine in rRNA and tRNA can fine-tune and stabilize the regional structure and help maintain their functions in mRNA decoding, ribosome assembly, processing and translation[1][2][3][4]. Pseudouridine is an isomer of the nucleoside uridine, and the most abundant modified nucleoside in non-coding RNAs. Pseudouridine in rRNA and tRNA can fine-tune and stabilize the regional structure and help maintain their functions in mRNA decoding, ribosome assembly, processing and translation[1][2][3][4].
Eicosapentaenoic acid
Icosapent, also known as icosapentaenoate or (5z,8z,11z,14z,17z)-eicosapentaenoic acid, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Thus, icosapent is considered to be a fatty acid lipid molecule. Icosapent is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Icosapent can be found in a number of food items such as barley, sacred lotus, white lupine, and rape, which makes icosapent a potential biomarker for the consumption of these food products. Icosapent can be found primarily in blood, feces, sweat, and urine, as well as throughout most human tissues. In humans, icosapent is involved in the alpha linolenic acid and linoleic acid metabolism. Moreover, icosapent is found to be associated with essential hypertension and hypertension. Ethyl eicosapentaenoic acid (E-EPA, icosapent ethyl) is a derivative of the omega-3 fatty acid eicosapentaenoic acid (EPA) that is used in combination with changes in diet to lower triglyceride levels in adults with severe (≥ 500 mg/dL) hypertriglyceridemia. This was the second class of fish oil-based drug to be approved for use as a drug and was approved by the FDA in 2012. These fish oil drugs are similar to fish oil dietary supplements but the ingredients are better controlled and have been tested in clinical trials . The anti-inflammatory, antithrombotic and immunomodulatory actions of EPA is probably due to its role in eicosanoid physiology and biochemistry. Most eicosanoids are produced by the metabolism of omega-3 fatty acids, specifically, arachidonic acid. These eicosanoids, leukotriene B4 (LTB4) and thromboxane A2 (TXA2) stimulate leukocyte chemotaxis, platelet aggregation and vasoconstriction. They are thrombogenic and artherogenic. On the other hand, EPA is metabolized to leukotriene B5 (LTB5) and thromboxane A3 (TXA3), which are eicosanoids that promote vasodilation, inhibit platelet aggregation and leukocyte chemotaxis and are anti-artherogenic and anti-thrombotic. The triglyceride-lowering effect of EPA results from inhibition of lipogenesis and stimulation of fatty acid oxidation. Fatty acid oxidation of EPA occurs mainly in the mitochondria. EPA is a substrate for Prostaglandin-endoperoxide synthase 1 and 2. It also appears to affect the function and bind to the Carbohydrate responsive element binding protein (ChREBP) and to a fatty acid receptor (G-coupled receptor) known as GP40 (DrugBank). Eicosapentaenoic acid (EPA or also icosapentaenoic acid) is an important polyunsaturated fatty acid found in fish oils. It serves as the precursor for the prostaglandin-3 and thromboxane-3 families. A diet rich in eicosapentaenoic acid lowers serum lipid concentration, reduces incidence of cardiovascular disorders, prevents platelet aggregation, and inhibits arachidonic acid conversion into the thromboxane-2 and prostaglandin-2 families. Eicosapentaenoic acid is an omega-3 fatty acid. In physiological literature, it is given the name 20:5(n-3). Its systematic chemical name is all-cis-5,8,11,14,17-icosapentaenoic acid. It also has the trivial name timnodonic acid. Chemically, EPA is a carboxylic acid with a 20-carbon chain and five cis double bonds; the first double bond is located at the third carbon from the omega end. Because of the presence of double bonds, EPS is a polyunsaturated fatty acid. Metabolically it acts as a precursor for prostaglandin-3 (which inhibits platelet aggregation), thromboxane-3, and leukotriene-5 groups. It is found in fish oils of cod liver, herring, mackerel, salmon, menhaden, and sardine. It is also found in human breast milk (Wikipedia). Chemical was purchased from CAY 90110 (Lot. 0443819-6); Diagnostic ions: 301.2, 257.1, 202.9 CONFIDENCE standard compound; INTERNAL_ID 305 Eicosapentaenoic Acid (EPA) is an orally active Omega-3 long-chain polyunsaturated fatty acid (ω-3 LC-PUFA). Eicosapentaenoic Acid exhibits a DNA demethylating action that promotes the re-expression of the tumor suppressor gene CCAAT/enhancer-binding protein δ (C/EBPδ). Eicosapentaenoic Acid activates RAS/ERK/C/EBPβ pathway through H-Ras intron 1 CpG island demethylation in U937 leukemia cells. Eicosapentaenoic Acid can promote relaxation of vascular smooth muscle cells and vasodilation[1][2][3]. Eicosapentaenoic Acid (EPA) is an orally active Omega-3 long-chain polyunsaturated fatty acid (ω-3 LC-PUFA). Eicosapentaenoic Acid exhibits a DNA demethylating action that promotes the re-expression of the tumor suppressor gene CCAAT/enhancer-binding protein δ (C/EBPδ). Eicosapentaenoic Acid activates RAS/ERK/C/EBPβ pathway through H-Ras intron 1 CpG island demethylation in U937 leukemia cells. Eicosapentaenoic Acid can promote relaxation of vascular smooth muscle cells and vasodilation[1][2][3].
Aconitate [cis or trans]
cis-Aconitic acid is an intermediate in the tricarboxylic acid cycle produced by the dehydration of citric acid. The enzyme aconitase (aconitate hydratase; EC 4.2.1.3) catalyses the stereo-specific isomerization of citrate to isocitrate via cis-aconitate in the tricarboxylic acid cycle. Present in apple fruits, maple syrup and passion fruit juice cis-Aconitic acid, also known as (Z)-aconitic acid, plays several important biological roles: Intermediate in the Citric Acid Cycle: cis-Aconitic acid is an intermediate in the tricarboxylic acid (TCA) cycle, also known as the Krebs cycle or citric acid cycle. It is formed from citrate by the enzyme aconitase and is rapidly converted into isocitrate, another key intermediate in the cycle. The TCA cycle is central to cellular respiration, generating energy-rich molecules like NADH and FADH2. Regulation of Aconitase Activity: The conversion of citrate to cis-aconitate and then to isocitrate by aconitase is an important regulatory step in the TCA cycle. This conversion helps in maintaining the balance of the cycle and is influenced by factors like the energy status of the cell. Role in Cholesterol Synthesis: cis-Aconitic acid is also involved in the synthesis of cholesterol. It serves as a precursor for the synthesis of mevalonate, a key intermediate in the cholesterol biosynthesis pathway. Potential Involvement in Disease: Altered metabolism or accumulation of cis-aconitic acid has been associated with certain diseases, including neurodegenerative disorders and cancer. Its role in these conditions is an area of ongoing research. Plant Growth and Development: In plants, cis-aconitic acid has been found to play a role in growth and development, including seed germination and leaf senescence. In summary, cis-aconitic acid is a crucial intermediate in the TCA cycle, impacting energy production and various metabolic pathways in cells. Its role extends to cholesterol synthesis and potentially to various disease processes, highlighting its importance in cellular metabolism and physiology. cis-Aconitic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=585-84-2 (retrieved 2024-07-01) (CAS RN: 585-84-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). (Z)-Aconitic acid (cis-Aconitic acid) is the cis-isomer of Aconitic acid. (Z)-Aconitic acid (cis-Aconitic acid) is an intermediate in the tricarboxylic acid cycle produced by the dehydration of citric acid. (Z)-Aconitic acid (cis-Aconitic acid) is the cis-isomer of Aconitic acid. (Z)-Aconitic acid (cis-Aconitic acid) is an intermediate in the tricarboxylic acid cycle produced by the dehydration of citric acid.
Corticosterone
Corticosterone, also known as 17-deoxycortisol, belongs to the class of organic compounds known as 21-hydroxysteroids. These are steroids carrying a hydroxyl group at the 21-position of the steroid backbone. Thus, corticosterone is considered to be a steroid lipid molecule. Corticosterone is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. In many species, including amphibians, reptiles, rodents and birds, corticosterone is a main glucocorticoid,[3] involved in regulation of energy, immune reactions, and stress responses. Corticosterone is the precursor molecule to the mineralocorticoid aldosterone, one of the major homeostatic modulators of sodium and potassium levels in vivo. Corticosterone. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=50-22-6 (retrieved 2024-07-15) (CAS RN: 50-22-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Corticosterone (17-Deoxycortisol) is an orally active and adrenal cortex-produced glucocorticoid, which plays an important role in regulating neuronal functions of the limbic system (including hippocampus, prefrontal cortex, and amygdala). Corticosterone increases the Rab-mediated AMPAR membrane traffic via SGK-induced phosphorylation of GDI. Corticosterone also interferes with the maturation of dendritic cells and shows a good immunosuppressive effect[1][2][3][4]. Corticosterone (17-Deoxycortisol) is an orally active and adrenal cortex-produced glucocorticoid, which plays an important role in regulating neuronal functions of the limbic system (including hippocampus, prefrontal cortex, and amygdala). Corticosterone increases the Rab-mediated AMPAR membrane traffic via SGK-induced phosphorylation of GDI. Corticosterone also interferes with the maturation of dendritic cells and shows a good immunosuppressive effect[1][2][3][4]. Corticosterone (17-Deoxycortisol) is an orally active and adrenal cortex-produced glucocorticoid, which plays an important role in regulating neuronal functions of the limbic system (including hippocampus, prefrontal cortex, and amygdala). Corticosterone increases the Rab-mediated AMPAR membrane traffic via SGK-induced phosphorylation of GDI. Corticosterone also interferes with the maturation of dendritic cells and shows a good immunosuppressive effect[1][2][3][4].
Creatine
Creatine, is a naturally occurring non-protein compound. It belongs to the class of organic compounds known as alpha amino acids and derivatives. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon), or a derivative thereof. Creatine is found in all vertebrates where it facilitates recycling of adenosine triphosphate (ATP). Its primary metabolic role is to combine with a phosphoryl group, via the enzyme creatine kinase, to generate phosphocreatine, which is used to regenerate ATP. Most of the human bodys total creatine and phosphocreatine stores are found in skeletal muscle (95\\\\\%), while the remainder is distributed in the blood, brain, testes, and other tissues. Creatine is not an essential nutrient as it is naturally produced in the human body from the amino acids glycine and arginine, with an additional requirement for methionine to catalyze the transformation of guanidinoacetate to creatine. In the first step of its biosynthesis glycine and arginine are combined by the enzyme arginine:glycine amidinotransferase (AGAT) to form guanidinoacetate, which is then methylated by guanidinoacetate N-methyltransferase (GAMT), using S-adenosyl methionine as the methyl donor. Creatine can also be obtained through the diet at a rate of about 1 gram per day from an omnivorous diet. A cyclic form of creatine, called creatinine, exists in equilibrium with its tautomer and with creatine. Clinically, there are three distinct disorders of creatine metabolism. Deficiencies in the two synthesis enzymes (AGAT and GAMT) can cause L-arginine:glycine amidinotransferase deficiency (caused by variants in AGAT) and guanidinoacetate methyltransferase deficiency (caused by variants in GAMT). Both disorders are inherited in an autosomal recessive manner. A third defect, creatine transporter defect, is caused by mutations in SLC6A8 and inherited in a X-linked manner. Creatine is widely used as a supplement by athletes. Its use can increase maximum power and performance in high-intensity anaerobic repetitive work (periods of work and rest) by 5 to 15\\\\\% (PMID: 24688272). Creatine has no significant effect on aerobic endurance, although it will increase power during short sessions of high-intensity aerobic exercise (PMID: 9662683). [Spectral] Creatine (exact mass = 131.06948) and L-Aspartate (exact mass = 133.03751) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] Creatine (exact mass = 131.06948) and L-Cysteine (exact mass = 121.01975) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Creatine is a essential, non-proteinaceous amino acid found in all animals and in some plants. Creatine is synthesized in the kidney, liver and pancreas from L-arginine, glycine and L-methionine. Creatine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=57-00-1 (retrieved 2024-06-29) (CAS RN: 57-00-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Creatine, an endogenous amino acid derivative, plays an important role in cellular energy, especially in muscle and brain. Creatine, an endogenous amino acid derivative, plays an important role in cellular energy, especially in muscle and brain.
Sphinganine
Sphinganine, also known as c18-dihydrosphingosine or safingol, is a member of the class of compounds known as 1,2-aminoalcohols. 1,2-aminoalcohols are organic compounds containing an alkyl chain with an amine group bound to the C1 atom and an alcohol group bound to the C2 atom. Thus, sphinganine is considered to be a sphingoid base lipid molecule. Sphinganine is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Sphinganine can be found in a number of food items such as agar, biscuit, herbs and spices, and pasta, which makes sphinganine a potential biomarker for the consumption of these food products. Sphinganine can be found primarily in blood, feces, and urine, as well as throughout most human tissues. Sphinganine exists in all eukaryotes, ranging from yeast to humans. In humans, sphinganine is involved in few metabolic pathways, which include globoid cell leukodystrophy, metachromatic leukodystrophy (MLD), and sphingolipid metabolism. Sphinganine is also involved in few metabolic disorders, which include fabry disease, gaucher disease, and krabbe disease. Moreover, sphinganine is found to be associated with pregnancy. Sphinganine is a lyso-sphingolipid protein kinase inhibitor. It has the molecular formula C18H39NO2 and is a colorless solid. Medicinally, safingol has demonstrated promising anticancer potential as a modulator of multi-drug resistance and as an inducer of necrosis. The administration of safingol alone has not been shown to exert a significant effect on tumor cell growth. However, preclinical and clinical studies have shown that combining safingol with conventional chemotherapy agents such as fenretinide, vinblastine, irinotecan and mitomycin C can dramatically potentiate their antitumor effects. Currently in Phase I clinical trials, it is believed to be safe to co-administer with cisplatin . Sphinganine belongs to the class of organic compounds known as 1,2-aminoalcohols. These are organic compounds containing an alkyl chain with an amine group bound to the C1 atom and an alcohol group bound to the C2 atom. Thus, sphinganine is considered to be a sphingoid base lipid molecule. Sphinganine is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Sphinganine exists in all living species, ranging from bacteria to humans. Within humans, sphinganine participates in a number of enzymatic reactions. In particular, sphinganine can be converted into 3-dehydrosphinganine through its interaction with the enzyme 3-ketodihydrosphingosine reductase. In addition, sphinganine can be converted into sphinganine 1-phosphate; which is catalyzed by the enzyme sphingosine kinase 2. Outside of the human body, sphinganine has been detected, but not quantified in, several different foods, such as Mexican oregano, jostaberries, winter squash, angelica, and epazotes. This could make sphinganine a potential biomarker for the consumption of these foods. Sphinganine blocks postlysosomal cholesterol transport by inhibiting low-density lipoprotein-induced esterification of cholesterol and causing unesterified cholesterol to accumulate in perinuclear vesicles. It has been suggested that endogenous sphinganine may inhibit cholesterol transport in Niemann-Pick Type C (NPC) disease (PMID: 1817037). D004791 - Enzyme Inhibitors KEIO_ID D078 D-Erythro-dihydrosphingosin directly inhibits cytosolic phospholipase A2α (cPLA2α) activity. D-Erythro-dihydrosphingosin directly inhibits cytosolic phospholipase A2α (cPLA2α) activity.
Glycerate
Glyceric acid is a colourless syrupy acid, obtained from oxidation of glycerol. It is a compound that is secreted excessively in the urine by patients suffering from D-glyceric aciduria, an inborn error of metabolism, and D-glycerate anemia. Deficiency of human glycerate kinase leads to D-glycerate acidemia/D-glyceric aciduria. Symptoms of the disease include progressive neurological impairment, hypotonia, seizures, failure to thrive, and metabolic acidosis. At sufficiently high levels, glyceric acid can act as an acidogen and a metabotoxin. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Glyceric acid is an organic acid. Abnormally high levels of organic acids in the blood (organic acidemia), urine (organic aciduria), the brain, and other tissues lead to general metabolic acidosis. Acidosis typically occurs when arterial pH falls below 7.35. In infants with acidosis, the initial symptoms include poor feeding, vomiting, loss of appetite, weak muscle tone (hypotonia), and lack of energy (lethargy). These can progress to heart abnormalities, seizures, coma, and possibly death. These are also the characteristic symptoms of untreated glyceric aciduria. Many affected children with organic acidemias experience intellectual disability or delayed development. In adults, acidosis or acidemia is characterized by headaches, confusion, feeling tired, tremors, sleepiness, and seizures. Elevated values may also be due to microbial sources such as yeast (Aspergillus, Penicillium, probably Candida) or due to dietary sources containing glycerol (glycerine). Glyceric acid is isolated from various plants (e.g. brassicas, pulses, and Vicia faba). A colorless syrupy acid, obtained from oxidation of glycerol. It is a compound that is secreted excessively in the urine by patients suffering from D-glyceric aciduria and D-glycerate anemia. Deficiency of human glycerate kinase leads to D-glycerate acidemia/D-glyceric aciduria. Symptoms of the disease include progressive neurological impairment, hypotonia, seizures, failure to thrive and metabolic acidosis.; Glyceric acid is a natural three-carbon sugar acid. Salts and esters of glyceric acid are known as glycerates. Glyceric acid is found in many foods, some of which are peanut, common grape, garden tomato (variety), and french plantain. Glyceric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=473-81-4 (retrieved 2024-06-29) (CAS RN: 473-81-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
5,6-Dihydrothymine
Dihydrothymine (CAS: 696-04-8) is an intermediate breakdown product of thymine. Dihydropyrimidine dehydrogenase catalyzes the reduction of thymine into 5,6-dihydrothymine; then dihydropyrimidinase hydrolyzes 5,6-dihydrothymine into N-carbamyl-beta-alanine. Finally, beta-ureidopropionase catalyzes the conversion of N-carbamyl-beta-alanine into beta-alanine. When present at abnormally high levels, dihydrothymine can be toxic, although the mechanism of toxicity is not clear. In particular, patients with dihydropyrimidinase deficiency exhibit highly increased concentrations of 5,6-dihydrouracil and 5,6-dihydrothymine; and moderately increased concentrations of uracil and thymine can be detected in urine. Dihydropyrimidinase deficiency is a disorder that can cause neurological and gastrointestinal problems in some affected individuals. The most common neurological abnormalities that occur are intellectual disability, seizures, weak muscle tone (hypotonia), abnormally small head size (microcephaly), and autistic behaviours that affect communication and social interaction. Gastrointestinal problems that occur in dihydropyrimidinase deficiency include the backflow of acidic stomach contents into the esophagus (gastroesophageal reflux) and recurrent episodes of vomiting. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 5,6-Dihydro-5-methyluracil (Dihydrothymine), an intermediate breakdown product of thymine, comes from animal or plants. 5,6-Dihydro-5-methyluracil (Dihydrothymine) can be toxic when present at abnormally high levels[1].
L-Cystathionine
Cystathionine is a dipeptide formed by serine and homocysteine. Cystathioninuria is a prominent manifestation of vitamin-B6 deficiency. The transsulfuration of methionine yields homocysteine, which combines with serine to form cystathionine, the proximate precursor of cysteine through the enzymatic activity of cystathionase. In conditions in which cystathionine gamma-synthase or cystathionase is deficient, for example, there is cystathioninuria. Although cystathionine has not been detected in normal human serum or plasma by most conventional methods, gas chromatographic/mass spectrometric methodology detected a mean concentration of cystathionine in normal human serum of 140 nM, with a range of 65 to 301 nM. Cystathionine concentrations in CSF have been 10, 1, and 0.5 uM, and "not detected". Only traces (i.e., <1 uM) of cystathionine are present in normal CSF.587. Gamma-cystathionase deficiency (also known as Cystathioninuria), which is an autosomal recessive disorder (NIH: 2428), provided the first instance in which, in a human, the major biochemical abnormality due to a defined enzyme defect was clearly shown to be alleviated by administration of large doses of pyridoxine. The response in gamma-cystathionase-deficient patients is not attributable to correction of a preexisting deficiency of this vitamin (OMMBID, Chap. 88). Isolated from Phallus impudicus (common stinkhorn) CONFIDENCE standard compound; INTERNAL_ID 146 KEIO_ID C019; [MS2] KO008910 KEIO_ID C047 KEIO_ID C019 Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; ML_ID 30 L-Cystathionine is a nonprotein thioether and is a key amino acid associated with the metabolic state of sulfur-containing amino acids. L-Cystathionine protects against Homocysteine-induced mitochondria-dependent apoptosis of vascular endothelial cells (HUVECs). L-Cystathionine plays an important role in cardiovascular protection[1][2]. L-Cystathionine is a nonprotein thioether and is a key amino acid associated with the metabolic state of sulfur-containing amino acids. L-Cystathionine protects against Homocysteine-induced mitochondria-dependent apoptosis of vascular endothelial cells (HUVECs). L-Cystathionine plays an important role in cardiovascular protection[1][2].
Metanephrine
Metanephrine is a metabolite of epinephrine created by action of catechol O-methyltransferase on epinephrine. Technically it is a product of epinephrine O-methylation. It is a commonly occurring, pharmacologically and physiologically inactive metabolite of epinephrine. The measurement of plasma free metanephrines is considered to be the best tool in the diagnosis of pheochromocytoma, a rare kind of adrenal medullary neoplasm. In adrenal chromaffin cells, leakage of norepinephrine and epinephrine from storage granules leads to substantial intracellular production of the O-methylated metabolite metanephrine. In fact, the adrenals constitute the single largest source out of any organ system including the liver for circulating metanephrine. In humans, about 93 percent of circulating metanephrine is derived from catecholamines metabolized within adrenal chromaffin cells. (PMID 15317907). Metanephrine is a metabolite of epinephrine created by action of catechol O-methyltransferase on epinephrine. Technically it is a product of epinephrine O-methylation. It is a commonly occurring, pharmacologically and physiologically inactive metabolite of epinephrine. The measurement of plasma free metanephrines is considered to be the best tool in the diagnosis of pheochromocytoma, a rare kind of adrenal medullary neoplasm.
Sphingosine
Sphingosine, also known as (4E)-sphingenine or sphing-4-enine, belongs to the class of organic compounds known as 1,2-aminoalcohols. These are organic compounds containing an alkyl chain with an amine group bound to the C1 atom and an alcohol group bound to the C2 atom. Sphingosine is an 18-carbon amino alcohol with an unsaturated hydrocarbon chain, which forms a primary part of sphingolipids. Sphingolipids are a class of cell membrane lipids that include sphingomyelin. Thus, sphingosine is considered to be a sphingoid base lipid. Sphingosine is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Sphingosine is found in all living organisms ranging from bacteria to plants to humans. Sphingosine is synthesized from palmitoyl CoA and serine in a condensation required to yield dehydrosphingosine. Dehydrosphingosine is then reduced by NADPH to dihydrosphingosine (sphinganine), and finally oxidized by FAD to sphingosine. Within humans and other mammals, sphingosine participates in a number of enzymatic reactions. In particular, sphingosine can be converted into sphingosine 1-phosphate through its interaction with the enzyme sphingosine kinase 2. sphingosine 1-phosphate is an important signaling molecule. In addition, sphingosine can be biosynthesized from sphingosine 1-phosphate; which is mediated by the enzyme sphingosine-1-phosphate phosphatase 2. Sphingosine and its derivative sphinganine are the major bases of the sphingolipids in mammals. In humans, sphingosine is involved in globoid cell leukodystrophy. Cerebrosides is the common name for a group of glycosphingolipids called monoglycosylceramides which are important components in animal muscle and nerve cell membranes. They consist of a ceramide with a single sugar residue at the 1-hydroxyl moiety. The sugar residue can be either glucose or galactose; the two major types are therefore called glucocerebrosides and galactocerebrosides. Galactocerebrosides are typically found in neural tissue, while glucocerebrosides are found in other tissues. Sphingosine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=123-78-4 (retrieved 2024-07-16) (CAS RN: 123-78-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). D-erythro-Sphingosine (Erythrosphingosine) is a very potent activator of p32-kinase with an EC50 of 8 μM, and inhibits protein kinase C (PKC). D-erythro-Sphingosine (Erythrosphingosine) is also a PP2A activator[1][2][3][4]. D-erythro-Sphingosine (Erythrosphingosine) is a very potent activator of p32-kinase with an EC50 of 8 μM, and inhibits protein kinase C (PKC). D-erythro-Sphingosine (Erythrosphingosine) is also a PP2A activator[1][2][3][4].
Glycylleucine
C8H16N2O3 (188.11608660000002)
Glycylleucine is a dipeptide composed of glycine and leucine. It is an incomplete breakdown product of protein digestion or protein catabolism. Some dipeptides are known to have physiological or cell-signaling effects although most are simply short-lived intermediates on their way to specific amino acid degradation pathways following further proteolysis. It appears to be a common substrate for glycyl-leucine dipeptidase. A dipeptide that appears to be a common substrate for glycyl-leucine dipeptidase. [HMDB] KEIO_ID G071 Glycyl-l-leucine is a dipeptide that can be a common substrate for?glycyl-leucine?dipeptidase.
Glycylglycine
The simplest peptide, made of two glycine molecules; used in the synthesis of more complicated peptides. Glycine is a simple, nonessential amino acid, although experimental animals show reduced growth on low-glycine diets. The average adult ingests 3 to 5 grams of glycine daily. Glycine is involved in the bodys production of DNA, phospholipids and collagen, and in release of energy. Glycine levels are effectively measured in plasma in both normal patients and those with inborn errors of glycine metabolism. (http://www.dcnutrition.com/AminoAcids/) Nonketotic hyperglycinaemia (OMIM 606899) is an autosomal recessive condition caused by deficient enzyme activity of the glycine cleavage enzyme system (EC 2.1.1.10). The glycine cleavage enzyme system comprises four proteins: P-, T-, H- and L-proteins (EC 1.4.4.2, EC 2.1.2.10 and EC 1.8.1.4 for P-, T- and L-proteins). Mutations have been described in the GLDC (OMIM 238300), AMT (OMIM 238310), and GCSH (OMIM 238330) genes encoding the P-, T-, and H-proteins respectively. The glycine cleavage system catalyses the oxidative conversion of glycine into carbon dioxide and ammonia, with the remaining one-carbon unit transferred to folate as methylenetetrahydrofolate. It is the main catabolic pathway for glycine and it also contributes to one-carbon metabolism. Patients with a deficiency of this enzyme system have increased glycine in plasma, urine and cerebrospinal fluid (CSF) with an increased CSF: plasma glycine ratio. (PMID 16151895) [HMDB] The simplest peptide, made of two glycine molecules; used in the synthesis of more complicated peptides. Glycine is a simple, nonessential amino acid, although experimental animals show reduced growth on low-glycine diets. The average adult ingests 3 to 5 grams of glycine daily. Glycine is involved in the bodys production of DNA, phospholipids and collagen, and in release of energy. Glycine levels are effectively measured in plasma in both normal patients and those with inborn errors of glycine metabolism. (http://www.dcnutrition.com/AminoAcids/) Nonketotic hyperglycinaemia (OMIM 606899) is an autosomal recessive condition caused by deficient enzyme activity of the glycine cleavage enzyme system (EC 2.1.1.10). The glycine cleavage enzyme system comprises four proteins: P-, T-, H- and L-proteins (EC 1.4.4.2, EC 2.1.2.10 and EC 1.8.1.4 for P-, T- and L-proteins). Mutations have been described in the GLDC (OMIM 238300), AMT (OMIM 238310), and GCSH (OMIM 238330) genes encoding the P-, T-, and H-proteins respectively. The glycine cleavage system catalyses the oxidative conversion of glycine into carbon dioxide and ammonia, with the remaining one-carbon unit transferred to folate as methylenetetrahydrofolate. It is the main catabolic pathway for glycine and it also contributes to one-carbon metabolism. Patients with a deficiency of this enzyme system have increased glycine in plasma, urine and cerebrospinal fluid (CSF) with an increased CSF: plasma glycine ratio. (PMID 16151895). Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID G037 Glycylglycine is the simplest of all peptides and could function as a gamma-glutamyl acceptor. Glycylglycine is the simplest of all peptides and could function as a gamma-glutamyl acceptor.
Hypoxanthine
Hypoxanthine, also known as purine-6-ol or Hyp, belongs to the class of organic compounds known as purines. Purines are a bicyclic aromatic compound made up of a pyrimidine ring fused to an imidazole ring. Hypoxanthine is also classified as an oxopurine, Hypoxanthine is a naturally occurring purine derivative and a reaction intermediate in the metabolism of adenosine and in the formation of nucleic acids by the nucleotide salvage pathway. Hypoxanthine exists in all living species, ranging from bacteria to plants to humans. Hypoxanthine has been detected, but not quantified in, several different foods, such as radish (var.), mountain yams, welsh onions, greenthread tea, and common beets. Hypoxanthine is occasionally found as a constituent of nucleic acids, where it is present in the anticodon of tRNA in the form of its nucleoside inosine. Biologically, hypoxanthine can be formed a number of ways. For instance, it is one of the products of the action of xanthine oxidase on xanthine. However, more frequently xanthine is formed from oxidation of hypoxanthine by xanthine oxidoreductase. The enzyme hypoxanthine-guanine phosphoribosyltransferase converts hypoxanthine into IMP in the nucleotide salvage pathway. Hypoxanthine is also a spontaneous deamination product of adenine. Under normal circumstances hypoxanthine is readily converted to uric acid. In this process, hypoxanthine is first oxidized to xanthine, which is further oxidized to uric acid by xanthine oxidase. Molecular oxygen, the oxidant in both reactions, is reduced to H2O2 and other reactive oxygen species. In humans, uric acid is the final product of purine degradation and is excreted in the urine. Within humans, hypoxanthine participates in a number of other enzymatic reactions. In particular, hypoxanthine and ribose 1-phosphate can be biosynthesized from inosine through its interaction with the enzyme purine nucleoside phosphorylase. Hypoxanthine is also involved in the metabolic disorder called the purine nucleoside phosphorylase deficiency. Purine nucleoside phosphorylase (PNP) deficiency is a disorder of the immune system (primary immunodeficiency) characterized by recurrent infections, neurologic symptoms, and autoimmune disorders. PNP deficiency causes a shortage of white blood cells, called T-cells, that help fight infection. Affected individuals develop neurologic symptoms, such as stiff or rigid muscles (spasticity), uncoordinated movements (ataxia), developmental delay, and intellectual disability. PNP deficiency is associated with an increased risk to develop autoimmune disorders, such as autoimmune hemolytic anemia, idiopathic thrombocytopenic purpura (ITP), autoimmune neutropenia, thyroiditis, and lupus. [Spectral] Hypoxanthine (exact mass = 136.03851) and Adenine (exact mass = 135.0545) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Occurs widely in plant and animal tissue (CCD). Hypoxanthine is found in many foods, some of which are japanese chestnut, parsnip, okra, and horned melon. Hypoxanthine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=68-94-0 (retrieved 2024-07-02) (CAS RN: 68-94-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Hypoxanthine, a purine derivative, is a potential free radical generator and could be used as an indicator of hypoxia. Hypoxanthine, a purine derivative, is a potential free radical generator and could be used as an indicator of hypoxia. Hypoxanthine, a purine derivative, is a potential free radical generator and could be used as an indicator of hypoxia.
4-imidazoleacetate
Imidazol-4-ylacetic acid is a monocarboxylic acid that is acetic acid in which one of the methyl hydrogens has been replaced by an imidazol-4-yl group. It has a role as a mouse metabolite. It is a monocarboxylic acid and a member of imidazoles. It derives from an acetic acid. It is a conjugate acid of an imidazol-4-ylacetate. It is a tautomer of an imidazol-5-ylacetic acid and a 2H-imidazol-4-ylacetic acid. Imidazoleacetic acid, also known as 4(5)-imidazoleacetate or IAA, belongs to the class of organic compounds known as imidazolyl carboxylic acids and derivatives. These are organic compounds containing a carboxylic acid chain (of at least 2 carbon atoms) linked to an imidazole ring. Imidazoleacetic acid exists in all living organisms, ranging from bacteria to humans. imidazoleacetic acid can be biosynthesized from imidazole-4-acetaldehyde through its interaction with the enzyme aldehyde dehydrogenase, mitochondrial. In humans, imidazoleacetic acid is involved in histidine metabolism. Outside of the human body, Imidazoleacetic acid has been detected, but not quantified in several different foods, such as chinese cinnamons, jostaberries, vanilla, butternut squash, and red rices. Imidazoleacetic acid is a potentially toxic compound. Imidazoleacetic acid is a metabolite product of Histamine metabolism. Imidazoleacetic acid, also known as 4(5)-imidazoleacetate or imac, belongs to imidazolyl carboxylic acids and derivatives class of compounds. Those are organic compounds containing a carboxylic acid chain (of at least 2 carbon atoms) linked to an imidazole ring. Imidazoleacetic acid is soluble (in water) and a weakly acidic compound (based on its pKa). Imidazoleacetic acid can be found in a number of food items such as grapefruit, garden onion (variety), black crowberry, and yellow zucchini, which makes imidazoleacetic acid a potential biomarker for the consumption of these food products. Imidazoleacetic acid can be found primarily in blood, cerebrospinal fluid (CSF), feces, and urine. In humans, imidazoleacetic acid is involved in the histidine metabolism. Imidazoleacetic acid is also involved in histidinemia, which is a metabolic disorder. 1H-Imidazole-5-acetic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=645-65-8 (retrieved 2024-07-16) (CAS RN: 645-65-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Indoleacetic acid
Indoleacetic acid (IAA) is a breakdown product of tryptophan metabolism and is often produced by the action of bacteria in the mammalian gut. Higher levels of IAA are associated with bacteria from Clostridium species including C. stricklandii, C. lituseburense, C. subterminale, and C. putrefaciens (PMID: 12173102). IAA can be found in Agrobacterium, Azospirillum, Bacillus, Bradyrhizobium, Clostridium, Enterobacter, Pantoea, Pseudomonas, Rhizobium (PMID: 12173102, PMID: 17555270, PMID: 12147474, PMID: 19400643, PMID: 9450337, PMID: 21397014) (https://link.springer.com/chapter/10.1007/978-1-4612-3084-7_7) (https://escholarship.org/uc/item/1bf1b5m3). Some endogenous production of IAA in mammalian tissues also occurs. It may be produced by the decarboxylation of tryptamine or the oxidative deamination of tryptophan. IAA frequently occurs at low levels in urine and has been found in elevated levels in the urine of patients with phenylketonuria (PMID: 13610897). IAA has also been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID: 22626821). Using material extracted from human urine, it was discovered by Kogl in 1933 that indoleacetic acid is also an important plant hormone (PMID: 13610897). Specifically, IAA is a member of the group of phytohormones called auxins. IAA is generally considered to be the most important native auxin. Plant cells synthesize IAA from tryptophan (Wikipedia). IAA and some derivatives can be oxidized by horseradish peroxidase (HRP) into cytotoxic species. IAA is only toxic after oxidative decarboxylation; the effect of IAA/HRP is thought to be due in part to the formation of methylene-oxindole, which may conjugate with DNA bases and protein thiols. IAA/HRP could be used as the basis for targeted cancer, a potential new role for plant auxins in cancer therapy (PMID: 11163327). 1h-indol-3-ylacetic acid, also known as (indol-3-yl)acetate or heteroauxin, belongs to indole-3-acetic acid derivatives class of compounds. Those are compounds containing an acetic acid (or a derivative) linked to the C3 carbon atom of an indole. 1h-indol-3-ylacetic acid is slightly soluble (in water) and a weakly acidic compound (based on its pKa). 1h-indol-3-ylacetic acid is a mild, odorless, and sour tasting compound and can be found in a number of food items such as sweet bay, chinese bayberry, winter squash, and linden, which makes 1h-indol-3-ylacetic acid a potential biomarker for the consumption of these food products. 1h-indol-3-ylacetic acid can be found primarily in most biofluids, including blood, feces, saliva, and urine, as well as throughout most human tissues. 1h-indol-3-ylacetic acid exists in all living species, ranging from bacteria to humans. In humans, 1h-indol-3-ylacetic acid is involved in the tryptophan metabolism. Moreover, 1h-indol-3-ylacetic acid is found to be associated with appendicitis and irritable bowel syndrome. 1h-indol-3-ylacetic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Chronic Exposure: Kidney dialysis is usually needed to relieve the symptoms of uremic syndrome until normal kidney function can be restored. CONFIDENCE standard compound; INTERNAL_ID 190; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3375; ORIGINAL_PRECURSOR_SCAN_NO 3371 CONFIDENCE standard compound; INTERNAL_ID 190; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3366; ORIGINAL_PRECURSOR_SCAN_NO 3363 CONFIDENCE standard compound; INTERNAL_ID 190; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3365; ORIGINAL_PRECURSOR_SCAN_NO 3361 CONFIDENCE standard compound; INTERNAL_ID 190; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3395; ORIGINAL_PRECURSOR_SCAN_NO 3391 DATA_PROCESSING MERGING RMBmix ver. 0.2.7; CONFIDENCE standard compound; INTERNAL_ID 190; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3366; ORIGINAL_PRECURSOR_SCAN_NO 3363 CONFIDENCE standard compound; INTERNAL_ID 190; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3369; ORIGINAL_PRECURSOR_SCAN_NO 3366 CONFIDENCE standard compound; INTERNAL_ID 190; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3385; ORIGINAL_PRECURSOR_SCAN_NO 3380 D006133 - Growth Substances > D010937 - Plant Growth Regulators > D007210 - Indoleacetic Acids Acquisition and generation of the data is financially supported in part by CREST/JST. IPB_RECORD: 275; CONFIDENCE confident structure CONFIDENCE standard compound; INTERNAL_ID 2796 CONFIDENCE standard compound; INTERNAL_ID 166 COVID info from COVID-19 Disease Map Corona-virus KEIO_ID I038 Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 3-Indoleacetic acid (Indole-3-acetic acid) is the most common natural plant growth hormone of the auxin class. It can be added to cell culture medium to induce plant cell elongation and division. 3-Indoleacetic acid (Indole-3-acetic acid) is the most common natural plant growth hormone of the auxin class. It can be added to cell culture medium to induce plant cell elongation and division.
Indole-3-lactic acid
Indolelactic acid (CAS: 1821-52-9) is a tryptophan metabolite found in human plasma, serum, and urine. Tryptophan is metabolized by two major pathways in humans, either through kynurenine or via a series of indoles, and some of its metabolites are known to be biologically active. Indolelactic acid is present in various amounts, significantly higher in umbilical fetal plasma than in maternal plasma in the protein-bound form (PMID 2361979, 1400722, 3597614, 11060358, 1400722). Indolelactic acid is also a microbial metabolite; urinary indole-3-lactate is produced by Clostridium sporogenes (PMID: 29168502). Indolelactic acid is a tryptophan metabolite found in human plasma and serum and normal urine. Tryptophan is metabolized by two major pathways in humans, either through kynurenine or via a series of indoles, and some of its metabolites are known to be biologically active. Indolelactic acid is present in various amounts, significantly higher in umbilical foetal plasma than in maternal plasma in the protein-bound form. (PMID 2361979, 1400722, 3597614, 11060358, 1400722) [HMDB] Indolelactic acid (Indole-3-lactic acid) is a tryptophan (Trp) catabolite in Azotobacter vinelandii cultures. Indolelactic acid has anti-inflammation and potential anti-viral activity[1][3][4].
L-Aspartic acid
Aspartic acid (Asp), also known as L-aspartic acid or as aspartate, the name of its anion, is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. L-aspartic acid is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Aspartic acid is found in all organisms ranging from bacteria to plants to animals. It is classified as an acidic, charged (at physiological pH), aliphatic amino acid. In humans, aspartic acid is a nonessential amino acid derived from glutamic acid by enzymes using vitamin B6. However, in the human body, aspartate is most frequently synthesized through the transamination of oxaloacetate. A non-essential amino acid is an amino acid that can be synthesized from central metabolic pathway intermediates in humans and is not required in the diet. As its name indicates, aspartic acid is the carboxylic acid analog of asparagine. The D-isomer of aspartic acid (D-aspartic acid) is one of two D-amino acids commonly found in mammals. Aspartic acid was first discovered in 1827 by Auguste-Arthur Plisson and Étienne Ossian Henry by hydrolysis of asparagine, which had been isolated from asparagus juice in 1806. Aspartate has many biochemical roles. It is a neurotransmitter, a metabolite in the urea cycle and it participates in gluconeogenesis. It carries reducing equivalents in the malate-aspartate shuttle, which utilizes the ready interconversion of aspartate and oxaloacetate, which is the oxidized (dehydrogenated) derivative of malic acid. Aspartate donates one nitrogen atom in the biosynthesis of inosine, the precursor to the purine bases which are key to DNA biosynthesis. In addition, aspartic acid acts as a hydrogen acceptor in a chain of ATP synthase. Aspartic acid is a major excitatory neurotransmitter, which is sometimes found to be increased in epileptic and stroke patients. It is decreased in depressed patients and in patients with brain atrophy. As a neurotransmitter, aspartic acid may provide resistance to fatigue and thus lead to endurance, although the evidence to support this idea is not strong (Wikipedia). Aspartic acid supplements are being evaluated. Five grams can raise blood levels. Magnesium and zinc may be natural inhibitors of some of the actions of aspartic acid. Aspartic acid, when chemically coupled with the amino acid D-phenylalanine, is a part of a natural sweetener, aspartame. This sweetener is an advance in artificial sweeteners, and is probably safe in normal doses to all except phenylketonurics. Aspartic acid may be a significant immunostimulant of the thymus and can protect against some of the damaging effects of radiation. Aspartic acid is found in higher abundance in: oysters, luncheon meats, sausage meat, wild game, sprouting seeds, oat flakes, avocado, asparagus, young sugarcane, and molasses from sugar beets. [Spectral] L-Aspartate (exact mass = 133.03751) and Taurine (exact mass = 125.01466) and L-Asparagine (exact mass = 132.05349) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] L-Aspartate (exact mass = 133.03751) and L-Threonine (exact mass = 119.05824) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. L-Aspartic acid is is an amino acid, shown to be a suitable proagent for colon-specific agent deliverly. L-Aspartic acid is is an amino acid, shown to be a suitable proagent for colon-specific agent deliverly.
L-Homoserine
L-homoserine, also known as 2-amino-4-hydroxybutanoic acid or isothreonine, is a member of the class of compounds known as L-alpha-amino acids. L-alpha-amino acids are alpha amino acids which have the L-configuration of the alpha-carbon atom. L-homoserine is soluble (in water) and a moderately acidic compound (based on its pKa). L-homoserine can be found in common pea, which makes L-homoserine a potential biomarker for the consumption of this food product. L-homoserine can be found primarily in blood, feces, and urine, as well as in human prostate tissue. L-homoserine exists in all living species, ranging from bacteria to humans. In humans, L-homoserine is involved in the methionine metabolism. L-homoserine is also involved in several metabolic disorders, some of which include glycine n-methyltransferase deficiency, hypermethioninemia, cystathionine beta-synthase deficiency, and methylenetetrahydrofolate reductase deficiency (MTHFRD). Homoserine (also called isothreonine) is an α-amino acid with the chemical formula HO2CCH(NH2)CH2CH2OH. L-Homoserine is not one of the common amino acids encoded by DNA. It differs from the proteinogenic amino acid serine by insertion of an additional -CH2- unit into the backbone. Homoserine, or its lactone form, is the product of a cyanogen bromide cleavage of a peptide by degradation of methionine . Homoserine is a more reactive variant of the amino acid serine. In this variant, the hydroxyl side chain contains an additional CH2 group which brings the hydroxyl group closer to its own carboxyl group, allowing it to chemically react to form a five-membered ring. This occurs at the point that amino acids normally join to their neighbours in a peptide bond. Homoserine is therefore unsuitable for forming proteins and has been eliminated from the repertoire of amino acids used by living things. Homoserine is the final product on the C-terminal end of the N-terminal fragment following a cyanogen bromide cleavage. (wikipedia). Homoserine is also a microbial metabolite. L-Homoserine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=672-15-1 (retrieved 2024-07-02) (CAS RN: 672-15-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Homoserine is a non - protein amino acid, which is an important biosynthetic intermediate of threonine, methionine and lysine. L-Homoserine is a non - protein amino acid, which is an important biosynthetic intermediate of threonine, methionine and lysine.
L-Lysine
Lysine (Lys), also known as L-lysine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. Lysine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Lysine is found in all organisms ranging from bacteria to plants to animals. It is classified as an aliphatic, positively charged or basic amino acid. In humans, lysine is an essential amino acid, meaning the body cannot synthesize it, and it must be obtained from the diet. Lysine is high in foods such as wheat germ, cottage cheese and chicken. Of meat products, wild game and pork have the highest concentration of lysine. Fruits and vegetables contain little lysine, except avocados. Normal requirements for lysine have been found to be about 8 g per day or 12 mg/kg in adults. Children and infants need more, 44 mg/kg per day for an eleven to-twelve-year old, and 97 mg/kg per day for three-to six-month old. In organisms that synthesise lysine, it has two main biosynthetic pathways, the diaminopimelate and α-aminoadipate pathways, which employ distinct enzymes and substrates and are found in diverse organisms. Lysine catabolism occurs through one of several pathways, the most common of which is the saccharopine pathway. Lysine plays several roles in humans, most importantly proteinogenesis, but also in the crosslinking of collagen polypeptides, uptake of essential mineral nutrients, and in the production of carnitine, which is key in fatty acid metabolism. Lysine is also often involved in histone modifications, and thus, impacts the epigenome. Lysine is highly concentrated in muscle compared to most other amino acids. Normal lysine metabolism is dependent upon many nutrients including niacin, vitamin B6, riboflavin, vitamin C, glutamic acid and iron. Excess arginine antagonizes lysine. Several inborn errors of lysine metabolism are known, such as cystinuria, hyperdibasic aminoaciduria I, lysinuric protein intolerance, propionic acidemia, and tyrosinemia I. Most are marked by mental retardation with occasional diverse symptoms such as absence of secondary sex characteristics, undescended testes, abnormal facial structure, anemia, obesity, enlarged liver and spleen, and eye muscle imbalance. Lysine also may be a useful adjunct in the treatment of osteoporosis. Although high protein diets result in loss of large amounts of calcium in urine, so does lysine deficiency. Lysine may be an adjunct therapy because it reduces calcium losses in urine. Lysine deficiency also may result in immunodeficiency. Requirements for lysine are probably increased by stress. Lysine toxicity has not occurred with oral doses in humans. Lysine dosages are presently too small and may fail to reach the concentrations necessary to prove potential therapeutic applications. Lysine metabolites, amino caproic acid and carnitine have already shown their therapeutic potential. Thirty grams daily of amino caproic acid has been used as an initial daily dose in treating blood clotting disorders, indicating that the proper doses of lysine, its precursor, have yet to be used in medicine. Low lysine levels have been found in patients with Parkinsons, hypothyroidism, kidney disease, asthma and depression. The exact significance of these levels is unclear, yet lysine therapy can normalize the level and has been associated with improvement of some patients with these conditions. Abnormally elevated hydroxylysines have been found in virtually all chronic degenerative diseases and those treated with coumadin therapy. The levels of this stress marker may be improved by high doses of vitamin C. Lysine is particularly useful in therapy for marasmus (wasting) (http://www.dcnutrition.com). Lysine has also been sh... [Spectral] L-Lysine (exact mass = 146.10553) and Carnosine (exact mass = 226.10659) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Dietary supplement, nutrient. Found widely in protein hydrolysates, e.g. casein, egg albumen, fibrin, gelatin, beet molasses. Flavouring agent for a variety of foods L-Lysine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=56-87-1 (retrieved 2024-07-01) (CAS RN: 56-87-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-lysine is an essential amino acid[1][2] with important roles in connective tissues and carnitine synthesis, energy production, growth in children, and maintenance of immune functions[2]. L-lysine is an essential amino acid[1][2] with important roles in connective tissues and carnitine synthesis, energy production, growth in children, and maintenance of immune functions[2].
1,1-Dimethylbiguanide
1,1-Dimethylbiguanide, commonly known as metformin, is a member of the class of guanidines that is biguanide the carrying two methyl substituents at position 1. It has a role as a hypoglycemic agent, a xenobiotic and an environmental contaminant. It derives from a biguanide. It is a conjugate base of a metformin(1+). Metformin is a biguanide hypoglycemic agent used in the treatment of non-insulin-dependent diabetes mellitus not responding to dietary modification. Metformin improves glycemic control by improving insulin sensitivity and decreasing intestinal absorption of glucose. Metformin is the most popular anti-diabetic drug in the United States and one of the most prescribed drugs in the country overall, with nearly 35 million prescriptions filled in 2006 for generic metformin alone. It is also used in the treatment of polycystic ovary syndrome. It is not associated with weight gain and is taken by mouth. It is sometimes used as an off-label augment to attenuate the risk of weight gain in people who take antipsychotics as well as phenelzine. 1,1-Dimethylbiguanide or Metformin is a biguanide hypoglycemic agent used in the treatment of non-insulin-dependent diabetes mellitus not responding to dietary modification. Metformin improves glycemic control by improving insulin sensitivity and decreasing intestinal absorption of glucose. Metformin is the most popular anti-diabetic drug in the United States and one of the most prescribed drugs in the country overall, with nearly 35 million prescriptions filled in 2006 for generic metformin alone. [HMDB] A - Alimentary tract and metabolism > A10 - Drugs used in diabetes > A10B - Blood glucose lowering drugs, excl. insulins > A10BA - Biguanides C78276 - Agent Affecting Digestive System or Metabolism > C29711 - Anti-diabetic Agent > C98234 - Biguanide Antidiabetic Agent COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D007004 - Hypoglycemic Agents > D001645 - Biguanides CONFIDENCE standard compound; INTERNAL_ID 4124 CONFIDENCE standard compound; INTERNAL_ID 8678 CONFIDENCE standard compound; INTERNAL_ID 1127 C1892 - Chemopreventive Agent KEIO_ID M032 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Metformin (1,1-Dimethylbiguanide) inhibits the mitochondrial respiratory chain in the liver, leading to activation of AMPK, enhancing insulin sensitivity for type 2 diabetes research. Metformin can cross the blood-brain barrier and triggers autophagy[1].
Methyl indole-3-acetate
Indole-3-methyl acetate, also known as methyl indole-3-acetate (methyl-IAA), is a catabolite of tryptophan converted by the gut microbiota. After absorption through the intestinal epithelium, tryptophan catabolites enter the bloodstream and are later excreted in the urine (PMID: 30120222). Pediatric enthesitis-related arthritis (ERA) patients (i.e. spondyloarthropathy associated with inflammatory bowel disease) have intestinal inflammation and decreased gut microbial diversity. Such alterations in the gut microbiota resulted in the reduction of tryptophan metabolism and several tryptophan metabolites in pediatric ERA fecal samples, including indole-3-methyl acetate (PMID: 27786174). Indole-3-methyl acetate is found in apple, and has been isolated from immature seeds of beach pea (Lathyrus maritimus), Vicia amurensis, wild soybean (Glycine soja), lobiya (Vigna catiang var. sinensis) and hyacinth bean (Dolichos lablab). Isolated from immature seeds of beach pea (Lathyrus maritimus), Vicia amurensis, wild soybean (Glycine soja), lobiya (Vigna catiang variety sinensis) and hyacinth bean (Dolichos lablab). Indole-3-methyl acetate is found in many foods, some of which are gram bean, yellow wax bean, common bean, and sweet orange. Methyl 2-(1H-indol-3-yl)acetate is an endogenous metabolite.
1-methyl-4-imidazoleacetate
Methylimidazoleacetic acid is the main metabolite of histamine. This end product of histamine catabolism is formed by N-methylation in the imidazole ring to methylhistamine by histamine methyltransferase (EC 2.1.1.8) and a subsequent oxidative deamination in the side chain by type B monoamine oxidase (EC 1.4.3.4). Based on studies, it is known that as much as 70 to 80 percent of the histamine metabolized in the body is excreted in the urine as methylimidazoleacetic acid. Thus, urinary methylimidazoleacetic acid being the major and specific histamine metabolite is a clear marker of any changes in histamine metabolism in the body. The urinary excretion of methylimidazoleacetic acid is considered a reliable indicator of histamine turnover rate in the body. The excretion of methylimidazoleacetic acid is higher in men than in women. However, this gender difference is abolished when corrected for creatinine excretion. A possible explanation is that basal histamine turnover is related to body size. There is no significant difference in methylimidazoleacetic acid excretion between smokers and non-smokers when analyzing absolute values (mg/24 h). When using methylimidazoleacetic acid values corrected for creatinine excretion female smokers have significantly higher methylimidazoleacetic acid excretion compared to nonsmokers (PMID:11411609, 7130180, 10350179, 10202992). Methylimidazoleacetic acid is the main metabolite of histamine. This end product of histamine catabolism is formed by N-methylation in the imidazole ring to methylhistamine by histamine methyltransferase (EC 2.1.1.8) and a subsequent oxidative deamination in the side chain by type B monoamine oxidase (EC 1.4.3.4). From studies is known that as much as 70 to 80 percent of the histamine metabolized in the body is excreted in the urine as Methylimidazoleacetic acid. Thus, urinary Methylimidazoleacetic acid being the major and specific histamine metabolite is a clear marker of any changes in histamine metabolism in the body. The urinary excretion of methylimidazoleacetic acid is considered a reliable indicator of histamine turnover rate in the body. The excretion of Methylimidazoleacetic acid is higher in men than women however; this gender difference is abolished when corrected for creatinine excretion. A possible explanation is that basal histamine turnover is related to body size. There is no significant difference in Methylimidazoleacetic acid excretion between smokers and non-smokers when analysing absolute values (mg/24 h). When using Methylimidazoleacetic acid values corrected for creatinine excretion female smokers have significantly higher Methylimidazoleacetic acid excretion compared to nonsmokers. (PMID: 11411609, 7130180, 10350179, 10202992) [HMDB]
Nα-Acetyl-L-lysine
N-epsilon-Acetyl-L-lysine also known as Nepsilon-Acetyllysine or N6-Acetyllysine, belongs to the class of organic compounds known as N-acyl-alpha amino acids. N-acyl-alpha amino acids are compounds containing an alpha amino acid which bears an acyl group at one of its nitrogen atoms. N-epsilon-Acetyl-L-lysine can also be classified as an alpha amino acid or a derivatized alpha amino acid. Technically, N-epsilon-Acetyl-L-lysine is a biologically available sidechain, N-capped form of the proteinogenic alpha amino acid L-lysine. Unlike L-lysine, acetylated lysine derivatives such as N-epsilon-Acetyl-L-lysine are zwitterionic compounds. These are molecules that contains an equal number of positively- and negatively-charged functional groups. N-epsilon-Acetyl-L-lysine is found naturally in eukaryotes ranging from yeast to plants to humans. N-acetyl amino acids can be produced either via direct synthesis of specific N-acetyltransferases or via the proteolytic degradation of N-acetylated proteins (often histones) by specific hydrolases. N-epsilon-Acetyl-L-lysine can be biosynthesized from L-lysine and acetyl-CoA via the enzyme known as Lysine N-acetyltransferase. Post-translational lysine-acetylation is one of two major modifications of lysine residues in various proteins – either N-terminal or N-alpha acetylation or N6 (sidechain) acetylation. Side-chain acetylation of specific lysine residues in the N-terminal domains of core histones is a biochemical marker of active genes. Acetylation is now known to play a major role in eukaryotic transcription. Specifically, acetyltransferase enzymes that act on particular lysine side chains of histones and other proteins are intimately involved in transcriptional activation. By modifying chromatin proteins and transcription-related factors, these acetylases are believed to regulate the transcription of many genes. The best-characterized mechanism is acetylation, catalyzed by histone acetyltransferase (HAT) enzymes. HATs function enzymatically by transferring an acetyl group from acetyl-coenzyme A (acetyl-CoA) to the amino group of certain lysine side chains within a histones basic N-terminal tail region. Within a histone octamer, these regions extend out from the associated globular domains, and in the context of a nucleosome, they are believed to bind the DNA through charge interactions (positively charged histone tails associated with negatively charged DNA) or mediate interactions between nucleosomes. Lysine acetylation, which neutralizes part of a tail regions positive charge, is postulated to weaken histone-DNA or nucleosome-nucleosome interactions and/or signal a conformational change, thereby destabilizing nucleosome structure or arrangement and giving other nuclear factors, such as the transcription complex, more access to a genetic locus. In agreement with this is the fact that acetylated chromatin has long been associated with states of transcriptional activation. Specific recognition of N6-acetyl-L-lysine is a conserved function of all bromodomains found in different proteins, recognized as an emerging intracellular signalling mechanism that plays critical roles in regulating gene transcription, cell-cycle progression, apoptosis, DNA repair, and cytoskeletal organization (PMID: 9169194 , 10827952 , 17340003 , 16247734 , 9478947 , 10839822 ). N-acetylated amino acids, such as N-epsilon-Acetyl-L-lysine can be released by an N-acylpeptide hydrolase from histones going through proteolytic degradation (PMID: 16465618). Many N-acetylamino acids are classified as uremic toxins if present in high abundance in the serum or plasma (PMID: 26317986; PMID: 20613759). Uremic toxins are a diverse group of endogenously produced molecules that, if not properly cleared or eliminated by the kidneys, can cause kidney damage, cardiovascular disease and neurological deficits (PMID: 18287557). Isolated from sugarbeet (Beta vulgaris) KEIO_ID A174 Nepsilon-Acetyl-L-lysine is a derivative of the amino acid lysine.
N8-Acetylspermidine
N8-Acetylspermidine is a polyamine. The polyamines, found in virtually all living organisms, are a ubiquitous group of compounds that appear to play a vital role in many cellular processes involving nucleic acids including cell growth and differentiation. The polyamines, found in virtually all living organisms, are a ubiquitous group of compounds that appear to play a vital role in many cellular processes involving nucleic acids including cell growth and differentiation. Acetylation on the terminal nitrogen adjacent to the 4-carbon chain produces N8-acetylspermidine. This reaction is catalyzed by spermidine N8-acetyltransferase and does not result in the conversion of spermidine to putrescine but, instead, the product undergoes deacetylation. This acetyltransferase appears to be associated with chromatin in the cell nucleus and has been reported to be the same as (or related to) the enzyme(s) responsible for histone acetylation. N8-Acetylspermidine does not accumulate in tissues but rather appears to be rapidly deacetylated back to spermidine by a relatively specific cytosolic deacetylase, N8-acetylspermidine deacetylase. The function of this N8-acetylation/deacetylation pathway in cellular processes is not understood clearly, but several observations have suggested a role in cell growth and differentiation. (PMID: 12093478) [HMDB] N8-Acetylspermidine is a polyamine. The polyamines, found in virtually all living organisms, are a ubiquitous group of compounds that appear to play a vital role in many cellular processes involving nucleic acids including cell growth and differentiation. Acetylation on the terminal nitrogen adjacent to the 4-carbon chain produces N8-acetylspermidine. This reaction is catalyzed by spermidine N8-acetyltransferase and does not result in the conversion of spermidine to putrescine. Instead, the product undergoes deacetylation. This acetyltransferase appears to be associated with chromatin in the cell nucleus and has been reported to be the same as (or related to) the enzyme(s) responsible for histone acetylation. N8-Acetylspermidine does not accumulate in tissues but rather appears to be rapidly deacetylated back to spermidine by a relatively specific cytosolic deacetylase, N8-acetylspermidine deacetylase. The function of this N8-acetylation/deacetylation pathway in cellular processes is not understood clearly, but several observations have suggested a role in cell growth and differentiation (PMID: 12093478). KEIO_ID A112
N-acetylglutamate
N-Acetyl-L-glutamic acid or N-Acetylglutamate, belongs to the class of organic compounds known as N-acyl-alpha amino acids. N-acyl-alpha amino acids are compounds containing an alpha amino acid which bears an acyl group at its terminal nitrogen atom. N-Acetyl-L-glutamate can also be classified as an alpha amino acid or a derivatized alpha amino acid. Technically, N-Acetyl-L-glutamate is a biologically available N-terminal capped form of the proteinogenic alpha amino acid L-glutamic acid. N-Acetyl-L-glutamic acid is found in all organisms ranging from bacteria to plants to animals. N-acetyl amino acids can be produced either via direct synthesis of specific N-acetyltransferases or via the proteolytic degradation of N-acetylated proteins by specific hydrolases. N-terminal acetylation of proteins is a widespread and highly conserved process in eukaryotes that is involved in protection and stability of proteins (PMID: 16465618). About 85\\\\% of all human proteins and 68\\\\% of all yeast proteins are acetylated at their N-terminus (PMID: 21750686). Several proteins from prokaryotes and archaea are also modified by N-terminal acetylation. The majority of eukaryotic N-terminal-acetylation reactions occur through N-acetyltransferase enzymes or NAT’s (PMID: 30054468). These enzymes consist of three main oligomeric complexes NatA, NatB, and NatC, which are composed of at least a unique catalytic subunit and one unique ribosomal anchor. The substrate specificities of different NAT enzymes are mainly determined by the identities of the first two N-terminal residues of the target protein. The human NatA complex co-translationally acetylates N-termini that bear a small amino acid (A, S, T, C, and occasionally V and G) (PMID: 30054468). NatA also exists in a monomeric state and can post-translationally acetylate acidic N-termini residues (D-, E-). NatB and NatC acetylate N-terminal methionine with further specificity determined by the identity of the second amino acid. N-acetylated amino acids, such as N-acetylglutamate can be released by an N-acylpeptide hydrolase from peptides generated by proteolytic degradation (PMID: 16465618). In addition to the NAT enzymes and protein-based acetylation, N-acetylation of free glutamic acid can also occur. In particular, N-Acetyl-L-glutamic acid can be biosynthesized from glutamate and acetylornithine by ornithine acetyltransferase, and from glutamic acid and acetyl-CoA by the enzyme known as N-acetylglutamate synthase. N-Acetyl-L-glutamic acid is the first intermediate involved in the biosynthesis of arginine in prokaryotes and simple eukaryotes and a regulator of the urea cycle in vertebrates. In vertebrates, N-acetylglutamic acid is the allosteric activator molecule to mitochondrial carbamyl phosphate synthetase I (CPSI) which is the first enzyme in the urea cycle. It triggers the production of the first urea cycle intermediate, a compound known as carbamyl phosphate. Notably the CPSI enzyme is inactive when N-acetylglutamic acid is not present. A deficiency in N-acetyl glutamate synthase or a genetic mutation in the gene coding for the enzyme will lead to urea cycle failure in which ammonia is not converted to urea, but rather accumulated in the blood leading to the condition called Type I hyperammonemia. Excessive amounts N-acetyl amino acids can be detected in the urine with individuals with aminoacylase I deficiency, a genetic disorder (PMID: 16465618). These include N-acetylalanine (as well as N-acetylserine, N-acetylglutamine, N-acetylglutamate, N-acetylglycine, N-acetylmethionine and smaller amounts of N-acetylthreonine, N-acetylleucine, N-acetylvaline and N-acetylisoleucine. Aminoacylase I is a soluble homodimeric zinc binding enzyme that catalyzes the formation of free aliphatic amino acids from N-acetylated precursors. In humans, Aminoacylase I is encoded by the aminoacylase 1 gene (ACY1) on chromosome 3p21 that consists of 15 exons (OMIM 609924). Individuals with aminoacylase I deficiency w... N-acetyl-l-glutamate, also known as L-N-acetylglutamic acid or ac-glu-oh, belongs to glutamic acid and derivatives class of compounds. Those are compounds containing glutamic acid or a derivative thereof resulting from reaction of glutamic acid at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom. N-acetyl-l-glutamate is soluble (in water) and a weakly acidic compound (based on its pKa). N-acetyl-l-glutamate can be found in a number of food items such as cardoon, almond, butternut squash, and avocado, which makes N-acetyl-l-glutamate a potential biomarker for the consumption of these food products. N-acetyl-l-glutamate may be a unique S.cerevisiae (yeast) metabolite. Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID A031 N-Acetyl-L-glutamic acid, a glutamic acid, is a component of animal cell culturing media. N-Acetyl-L-glutamic acid is a metabolite of Saccharomyces cerevisiae and human[1]. N-Acetyl-L-glutamic acid, a glutamic acid, is a component of animal cell culturing media. N-Acetyl-L-glutamic acid is a metabolite of Saccharomyces cerevisiae and human[1].
N-alpha-acetylornithine
N2-Acetylornithine, also known as N(alpha)-acetylornithine, belongs to the class of organic compounds known as N-acyl-L-alpha-amino acids. These are N-acylated alpha-amino acids which have the L-configuration of the alpha-carbon atom. N-Acetylornithine is a minor component of the deproteinized blood plasma of human blood. Human blood plasma contains a variable amount of acetylornithine, averaging 1.1 +/- 0.4 umol/L (range 0.8-0.2 umol/L). Urine contains a very small amount of acetylornithine, approximately 1 nmol/mg creatinine (1 umol/day) (PMID:508804). Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 160 KEIO_ID A032 N-Acetylornithine is an intermediate in the enzymatic biosynthesis of the amino acid L-arginine from L-glutamate.
Salicyluric acid
Salicyluric acid is an aryl glycine conjugate formed by the body to eliminate excess salicylates, including aspirin. Aspirin is rapidly hydrolysed to salicylic acid which is further metabolized to various compounds, including salicyluric acid (SU) as well as various acyl and phenolic glucuronides, and hydroxylated metabolites. SU is the major metabolite of SA excreted in urine and it is present in the urine of people who have not taken salicylate drugs, although it has no anti-inflammatory effects in humans or in animals. More salicyluric acid (SU) is excreted in the urine of vegetarians than in non-vegetarians, primarily because fruits and vegetables are important sources of dietary salicylates. However, significantly less (10-15X) SU is excreted by vegetarians than individuals taking low-dose aspirin (PMID: 12944546). The induction of the salicyluric acid formation is one of the saturable pathways of salicylate elimination. The formation of the methyl ester of salicyluric acid is observed during the quantitation of salicyluric acid and other salicylate metabolites in urine by high-pressure liquid chromatography. This methyl ester formation causes artificially low values for salicyluric acid and high values for salicylic acid. (PMID: 6101164, 6857178). Salicyluric acid has been found to be a microbial metabolite. Constituent of milk KEIO_ID H028 Salicyluric acid is an endogenous metabolite.
L-Ornithine
Ornithine, also known as (S)-2,5-diaminopentanoic acid or ornithine, (L)-isomer, is a member of the class of compounds known as L-alpha-amino acids. L-alpha-amino acids are alpha amino acids which have the L-configuration of the alpha-carbon atom. Ornithine is soluble (in water) and a moderately acidic compound (based on its pKa). Ornithine can be found in a number of food items such as pine nut, lingonberry, turnip, and cassava, which makes ornithine a potential biomarker for the consumption of these food products. Ornithine can be found primarily in most biofluids, including urine, cerebrospinal fluid (CSF), feces, and saliva, as well as throughout most human tissues. Ornithine exists in all living species, ranging from bacteria to humans. In humans, ornithine is involved in few metabolic pathways, which include arginine and proline metabolism, glycine and serine metabolism, spermidine and spermine biosynthesis, and urea cycle. Ornithine is also involved in several metabolic disorders, some of which include ornithine transcarbamylase deficiency (OTC deficiency), prolidase deficiency (PD), citrullinemia type I, and arginine: glycine amidinotransferase deficiency (AGAT deficiency). Moreover, ornithine is found to be associated with cystinuria, alzheimers disease, leukemia, and uremia. Ornithine is a non-carcinogenic (not listed by IARC) potentially toxic compound. Ornithine is a drug which is used for nutritional supplementation, also for treating dietary shortage or imbalance. it has been claimed that ornithine improves athletic performance, has anabolic effects, has wound-healing effects, and is immuno-enhancing. Ornithine is a non-proteinogenic amino acid that plays a role in the urea cycle. Ornithine is abnormally accumulated in the body in ornithine transcarbamylase deficiency. The radical is ornithyl . L-Ornithine is metabolised to L-arginine. L-arginine stimulates the pituitary release of growth hormone. Burns or other injuries affect the state of L-arginine in tissues throughout the body. As De novo synthesis of L-arginine during these conditions is usually not sufficient for normal immune function, nor for normal protein synthesis, L-ornithine may have immunomodulatory and wound-healing activities under these conditions (by virtue of its metabolism to L-arginine) (DrugBank). Chronically high levels of ornithine are associated with at least 9 inborn errors of metabolism including: Cystathionine Beta-Synthase Deficiency, Hyperornithinemia with gyrate atrophy, Hyperornithinemia-hyperammonemia-homocitrullinuria syndrome, Hyperornithinemia-hyperammonemia-homocitrullinuria syndrome, Hyperprolinemia Type II, Lysinuric Protein Intolerance, Ornithine Aminotransferase Deficiency, Ornithine Transcarbamylase Deficiency and Prolinemia Type II (T3DB). Ornithine or L-ornithine, also known as (S)-2,5-diaminopentanoic acid is a member of the class of compounds known as L-alpha-amino acids. L-alpha-amino acids are alpha amino acids which have the L-configuration of the alpha-carbon atom. L-ornithine is soluble (in water) and a moderately basic compound. Ornithine is a non-proteinogenic amino acid that plays a role in the urea cycle. It is considered to be a non-essential amino acid. A non-essential amino acid is an amino acid that can be synthesized from central metabolic pathway intermediates in humans and is not required in the diet. L-Ornithine is one of the products of the action of the enzyme arginase on L-arginine, creating urea. Therefore, ornithine is a central part of the urea cycle, which allows for the disposal of excess nitrogen. Outside the human body, L-ornithine is abundant in a number of food items such as wild rice, brazil nuts, common oregano, and common grapes. L-ornithine can be found throughout most human tissues; and in most biofluids, some of which include blood, urine, cerebrospinal fluid (CSF), sweat, saliva, and feces. L-ornithine exists in all living species, from bacteria to plants to humans. L-Ornithine is also a precursor of citrulline and arginine. In order for ornithine that is produced in the cytosol to be converted to citrulline, it must first cross the inner mitochondrial membrane into the mitochondrial matrix where it is carbamylated by the enzyme known as ornithine transcarbamylase. This transfer is mediated by the mitochondrial ornithine transporter (SLC25A15; AF112968; ORNT1). Mutations in the mitochondrial ornithine transporter result in hyperammonemia, hyperornithinemia, homocitrullinuria (HHH) syndrome, a disorder of the urea cycle (PMID: 16256388). The pathophysiology of the disease may involve diminished ornithine transport into mitochondria, resulting in ornithine accumulation in the cytoplasm and reduced ability to clear carbamoyl phosphate and ammonia loads (OMIM 838970). In humans, L-ornithine is involved in a number of other metabolic disorders, some of which include, ornithine transcarbamylase deficiency (OTC deficiency), argininemia, and guanidinoacetate methyltransferase deficiency (GAMT deficiency). Ornithine is abnormally accumulated in the body in ornithine transcarbamylase deficiency. Moreover, Ornithine is found to be associated with cystinuria, hyperdibasic aminoaciduria I, and lysinuric protein intolerance, which are inborn errors of metabolism. It has been claimed that ornithine improves athletic performance, has anabolic effects, has wound-healing effects, and is immuno-enhancing. L-Ornithine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=70-26-8 (retrieved 2024-07-01) (CAS RN: 70-26-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Ornithine ((S)-2,5-Diaminopentanoic acid) is a non-proteinogenic amino acid, is mainly used in urea cycle removing excess nitrogen in vivo. L-Ornithine shows nephroprotective[1][2]. L-Ornithine ((S)-2,5-Diaminopentanoic acid) is a non-proteinogenic amino acid, is mainly used in urea cycle removing excess nitrogen in vivo. L-Ornithine shows nephroprotective[1][2].
Pipecolic acid
Pipecolic acid is a metabolite of lysine found in human physiological fluids such as urine, plasma and CSF. However, it is uncertain if pipecolic acid originates directly from food intake or from mammalian or intestinal bacterial enzyme metabolism. Recent studies suggest that plasma pipecolic acid, particularly the D-isomer, originates mainly from the catabolism of dietary lysine by intestinal bacteria rather than by direct food intake. In classic Zellweger syndrome (a cerebro-hepato-renal genetic disorder, OMIM 214100) pipecolic acid accumulate in the plasma of the patients. It is known that plasma pipecolic acid levels are also elevated in patients with chronic liver diseases. Pipecolic acid is moderately elevated in patients with pyridoxine-dependent seizures and might therefore be a possible biochemical marker for selecting candidates for pyridoxine therapy (Plecko et al 2000). Pipecolic acid was also elevated in CSF in these vitamin B6-responsive patients (PMID 12705501). Pipecolic acid is found to be associated with adrenoleukodystrophy, infantile Refsum disease, and peroxisomal biogenesis defect, which are also inborn errors of metabolism. Pipecolic acid is a biomarker for the consumption of dried and cooked beans. Pipecolic acid is a metabolite of lysine found in human physiological fluids such as urine, plasma and CSF. However, it is uncertain if pipecolic acid originates directly from food intake or from mammalian or intestinal bacterial enzyme metabolism. Recent studies suggest that plasma pipecolic acid, particularly the D-isomer, originates mainly from the catabolism of dietary lysine by intestinal bacteria rather than by direct food intake. In classic Zellweger syndrome (a cerebro-hepato-renal genetic disorder, OMIM 214100) pipecolic acid accumulate in the plasma of the patients. It is known that plasma pipecolic acid levels are also elevated in patients with chronic liver diseases. Pipecolic acid is moderately elevated in patients with pyridoxine-dependent seizures and might therefore be a possible biochemical marker for selecting candidates for pyridoxine therapy (Plecko et al 2000). Pipecolic acid was also elevated in CSF in these vitamin B6-responsive patients. (PMID 12705501) [HMDB]. Pipecolic acid is a biomarker for the consumption of dried and cooked beans. Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID P048 L-Pipecolic acid (H-HoPro-OH) is a breakdown product of lysine, accumulates in body fluids of infants with generalized genetic peroxisomal disorders, such as Zellweger syndrome, neonatal adrenoleukodystrophy. L-Pipecolic acid (H-HoPro-OH) is a breakdown product of lysine, accumulates in body fluids of infants with generalized genetic peroxisomal disorders, such as Zellweger syndrome, neonatal adrenoleukodystrophy. Pipecolic acid, a metabolite of Lysine, is an important precursor of many useful microbial secondary metabolites. Pipecolic acid can be used as a diagnostic marker of Pyridoxine-dependent epilepsy[1][2]. Pipecolic acid, a metabolite of Lysine, is an important precursor of many useful microbial secondary metabolites. Pipecolic acid can be used as a diagnostic marker of Pyridoxine-dependent epilepsy[1][2].
Pregnenolone
Pregnenolone is a derivative of cholesterol, the product of cytochrome P450 side-chain cleavage (EC 1.14.15.6, CYP11A1. This reaction consists of three consecutive monooxygenations, a 22-hydroxylation, a 20-hydroxylation, and the cleavage of the C20-C22 bond, yielding pregnenolone. Pregnenolone is the precursor to gonadal steroid hormones and the adrenal corticosteroids. This reaction occurs in steroid hormone-producing tissues such as the adrenal cortex, corpus luteum, and placenta. The most notable difference between the placenta and other steroidogenic tissues is that electron supply to CYP11A1 limits the rate at which cholesterol is converted into pregnenolone in the placenta. The limiting component for electron delivery to CYP11A1 is the concentration of adrenodoxin reductase in the mitochondrial matrix which is insufficient to maintain the adrenodoxin pool in a fully reduced state. Pregnenolone is also a neurosteroid, and is produced in the spinal cord; CYP11A1 is the key enzyme catalyzing the conversion of cholesterol into pregnenolone, the rate-limiting step in the biosynthesis of all classes of steroids, and has been localized in sensory networks of the spinal cord dorsal horn. In the adrenal glomerulosa cell, angiotensin II, one of the major physiological regulators of mineralocorticoid synthesis, appears to affect most of the cholesterol transfer to the mitochondrial outer membrane and many steps in the transport to the inner membrane. Thus, it exerts a powerful control over the use of cholesterol for aldosterone production (PMID: 17222962, 15823613, 16632873, 15134809). C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Pregnenolone (3β-Hydroxy-5-pregnen-20-one) is a powerful neurosteroid, the main precursor of various steroid hormones including steroid ketones. Pregnenolone acts as a signaling-specific inhibitor of cannabinoid CB1 receptor, inhibits the effects of tetrahydrocannabinol (THC) that are mediated by the CB1 receptors. Pregnenolone can protect the brain from cannabis intoxication[1][2]. Pregnenolone is also a TRPM3 channel activator, and also can weakly activate TRPM1 channels[3]. Pregnenolone (3β-Hydroxy-5-pregnen-20-one) is a powerful neurosteroid, the main precursor of various steroid hormones including steroid ketones. Pregnenolone acts as a signaling-specific inhibitor of cannabinoid CB1 receptor, inhibits the effects of tetrahydrocannabinol (THC) that are mediated by the CB1 receptors. Pregnenolone can protect the brain from cannabis intoxication[1][2]. Pregnenolone is also a TRPM3 channel activator, and also can weakly activate TRPM1 channels[3].
Progesterone
The major progestational steroid that is secreted primarily by the corpus luteum and the placenta. Progesterone acts on the uterus, the mammary glands and the brain. It is required in embryo implantation, pregnancy maintenance, and the development of mammary tissue for milk production. Progesterone, converted from pregnenolone, also serves as an intermediate in the biosynthesis of gonadal steroid hormones and adrenal corticosteroids. Progesterone is a C-21 steroid hormone involved in the female menstrual cycle, pregnancy (supports gestation) and embryogenesis of humans and other species. Progesterone belongs to a class of hormones called progestagens, and is the major naturally occurring human progestagen. During implantation and gestation, progesterone appears to decrease the maternal immune response to allow for the acceptance of the pregnancy. Progesterone decreases contractility of the uterine smooth muscle. The fetus metabolizes placental progesterone in the production of adrenal mineralo- and glucosteroids. A drop in progesterone levels is possibly one step that facilitates the onset of labor. In addition progesterone inhibits lactation during pregnancy. The fall in progesterone levels following delivery is one of the triggers for milk production. Progesterone is found to be associated with pregnene hydroxylation deficiency, which is an inborn error of metabolism. CONFIDENCE standard compound; INTERNAL_ID 550; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9779; ORIGINAL_PRECURSOR_SCAN_NO 9777 CONFIDENCE standard compound; INTERNAL_ID 550; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9837; ORIGINAL_PRECURSOR_SCAN_NO 9835 CONFIDENCE standard compound; INTERNAL_ID 550; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9731; ORIGINAL_PRECURSOR_SCAN_NO 9729 CONFIDENCE standard compound; INTERNAL_ID 550; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9824; ORIGINAL_PRECURSOR_SCAN_NO 9822 CONFIDENCE standard compound; INTERNAL_ID 550; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9851; ORIGINAL_PRECURSOR_SCAN_NO 9849 CONFIDENCE standard compound; INTERNAL_ID 550; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9793; ORIGINAL_PRECURSOR_SCAN_NO 9791 Progestational hormone secreted by corpus luteum during menstrual cycleand is also found in the gonads and haemolymph of crustaceans, e.g. Artemia, Euphosia, Homarus, Pandalus and Penaeus spp (CCD). G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03D - Progestogens > G03DA - Pregnen (4) derivatives D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D011372 - Progestins C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials CONFIDENCE standard compound; INTERNAL_ID 4151 CONFIDENCE standard compound; INTERNAL_ID 1077 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Progesterone is a steroid hormone that regulates the menstrual cycle and is crucial for pregnancy. Progesterone is a steroid hormone that regulates the menstrual cycle and is crucial for pregnancy.
Pyrrole-2-carboxylic acid
Pyrrole-2-carboxylic acid was synthesized over a century ago, but its history as a compound of biological origin is rather recent. It was first identified as a degradation product of sialic acids, then as a derivative of the oxidation of the D-hydroxyproline isomers by mammalian D-amino acid oxidase. The latter relationship results from the lability of the direct oxidation product, A-pyrroline-4-hydroxy-2-carboxylic acid, which loses water spontaneously to form the pyrrole. A similar reaction is catalyzed by the more specific allohydroxy-D-proline oxidase of Pseudomonas. In whole animal observations, pyrrole-2-carboxylate (PCA) was identified in rat or human urine after administration of the D-isomers of hydroxyproline, a finding ascribable to the action of D-amino acid oxidase. (PMID:4430715). Urinary excretion of N-(pyrrole-2-carboxyl) glycine has been reported in a 5-year-old affected with type II hyperprolinemia; The child has mild developmental delay, recurrent seizures of the grand mal type and EEG alterations. The urinary excretion of the conjugate is stressed, since it appears that only one previous report in the literature described this compound in the urine of two patients affected by this disturbance (PMID 2383933). Pyrrole-2-carboxylic acid was synthesized over a century ago, but its history as a compound of biological origin is rather recent. It was first identified as a degradation product of sialic acids, then as a derivative of the oxidation of the D-hydroxyproline isomers by mammalian D-amino acid oxidase. The latter relationship results from the lability of the direct oxidation product, A-pyrroline-4-hydroxy-2-carboxylic acid, which loses water spontaneously to form the pyrrole. A similar reaction is catalyzed by the more specific allohydroxy-D-proline oxidase of Pseudomonas. In whole animal observations, pyrrole-2-carboxylate (PCA) was identified in rat or human urine after administration of the D-isomers of hydroxyproline, a finding ascribable to the action of D-amino acid oxidase. (PMID: 4430715) KEIO_ID P112 Pyrrole-2-carboxylic acid is a natural alkaloid from the marine bacterium Pelomonas puraquae sp. Nov. Pyrrole-2-carboxylic acid is a natural alkaloid from the marine bacterium Pelomonas puraquae sp. Nov.
S-adenosylhomocysteine (SAH)
C14H20N6O5S (384.12158300000004)
S-Adenosyl-L-homocysteine (SAH) is formed by the demethylation of S-adenosyl-L-methionine. S-Adenosylhomocysteine (AdoHcy or SAH) is also the immediate precursor of all of the homocysteine produced in the body. The reaction is catalyzed by S-adenosylhomocysteine hydrolase and is reversible with the equilibrium favoring formation of SAH. In vivo, the reaction is driven in the direction of homocysteine formation by the action of the enzyme adenosine deaminase which converts the second product of the S-adenosylhomocysteine hydrolase reaction, adenosine, to inosine. Except for methyl transfer from betaine and from methylcobalamin in the methionine synthase reaction, SAH is the product of all methylation reactions that involve S-adenosylmethionine (SAM) as the methyl donor. Methylation is significant in epigenetic regulation of protein expression via DNA and histone methylation. The inhibition of these SAM-mediated processes by SAH is a proven mechanism for metabolic alteration. Because the conversion of SAH to homocysteine is reversible, with the equilibrium favoring the formation of SAH, increases in plasma homocysteine are accompanied by an elevation of SAH in most cases. Disturbances in the transmethylation pathway indicated by abnormal SAH, SAM, or their ratio have been reported in many neurodegenerative diseases, such as dementia, depression, and Parkinsons disease (PMID:18065573, 17892439). Therefore, when present in sufficiently high levels, S-adenosylhomocysteine can act as an immunotoxin and a metabotoxin. An immunotoxin disrupts, limits the function, or destroys immune cells. A metabotoxin is an endogenous metabolite that causes adverse health effects at chronically high levels. Chronically high levels of S-adenosylhomocysteine are associated with S-adenosylhomocysteine (SAH) hydrolase deficiency and adenosine deaminase deficiency. S-Adenosylhomocysteine forms when there are elevated levels of homocysteine and adenosine. S-Adenosyl-L-homocysteine is a potent inhibitor of S-adenosyl-L-methionine-dependent methylation reactions. It is toxic to immature lymphocytes and can lead to immunosuppression (PMID:221926). S-adenosylhomocysteine, also known as adohcy or sah, is a member of the class of compounds known as 5-deoxy-5-thionucleosides. 5-deoxy-5-thionucleosides are 5-deoxyribonucleosides in which the ribose is thio-substituted at the 5position by a S-alkyl group. S-adenosylhomocysteine is slightly soluble (in water) and a moderately acidic compound (based on its pKa). S-adenosylhomocysteine can be found in a number of food items such as rapini, european plum, rambutan, and pepper (c. pubescens), which makes S-adenosylhomocysteine a potential biomarker for the consumption of these food products. S-adenosylhomocysteine can be found primarily in blood, cerebrospinal fluid (CSF), feces, and urine, as well as throughout most human tissues. S-adenosylhomocysteine exists in all living species, ranging from bacteria to humans. In humans, S-adenosylhomocysteine is involved in several metabolic pathways, some of which include phosphatidylcholine biosynthesis PC(14:0/18:3(9Z,12Z,15Z)), phosphatidylcholine biosynthesis PC(22:4(7Z,10Z,13Z,16Z)/22:0), phosphatidylcholine biosynthesis PC(20:3(5Z,8Z,11Z)/22:2(13Z,16Z)), and phosphatidylcholine biosynthesis PC(18:3(6Z,9Z,12Z)/22:5(7Z,10Z,13Z,16Z,19Z)). S-adenosylhomocysteine is also involved in several metabolic disorders, some of which include 3-phosphoglycerate dehydrogenase deficiency, hawkinsinuria, non ketotic hyperglycinemia, and tyrosine hydroxylase deficiency. Moreover, S-adenosylhomocysteine is found to be associated with neurodegenerative disease and parkinsons disease. S-adenosylhomocysteine is a non-carcinogenic (not listed by IARC) potentially toxic compound. S-Adenosyl-L-homocysteine (SAH) is an amino acid derivative used in several metabolic pathways in most organisms. It is an intermediate in the synthesis of cysteine and adenosine . [Spectral] S-Adenosyl-L-homocysteine (exact mass = 384.12159) and Adenosine (exact mass = 267.09675) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] S-Adenosyl-L-homocysteine (exact mass = 384.12159) and Cytidine (exact mass = 243.08552) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from PDB, Protein Data Bank, WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS SAH (S-Adenosylhomocysteine) is an amino acid derivative and a modulartor in several metabolic pathways. It is an intermediate in the synthesis of cysteine and adenosine[1]. SAH is an inhibitor for METTL3-METTL14 heterodimer complex (METTL3-14) with an IC50 of 0.9 μM[2]. SAH (S-Adenosylhomocysteine) is an amino acid derivative and a modulartor in several metabolic pathways. It is an intermediate in the synthesis of cysteine and adenosine[1]. SAH is an inhibitor for METTL3-METTL14 heterodimer complex (METTL3-14) with an IC50 of 0.9 μM[2].
Daidzein
Daidzein is a member of the class of 7-hydroxyisoflavones that is 7-hydroxyisoflavone substituted by an additional hydroxy group at position 4. It has a role as an antineoplastic agent, a phytoestrogen, a plant metabolite, an EC 3.2.1.20 (alpha-glucosidase) inhibitor and an EC 2.7.7.7 (DNA-directed DNA polymerase) inhibitor. It is a conjugate acid of a daidzein(1-). Daidzein is a natural product found in Pericopsis elata, Thermopsis lanceolata, and other organisms with data available. Daidzein is an isoflavone extract from soy, which is an inactive analog of the tyrosine kinase inhibitor genistein. It has antioxidant and phytoestrogenic properties. (NCI) Daidzein is one of several known isoflavones. Isoflavones compounds are found in a number of plants, but soybeans and soy products like tofu and textured vegetable protein are the primary food source. Up until recently, daidzein was considered to be one of the most important and most studied isoflavones, however more recently attention has shifted to isoflavone metabolites. Equol represents the main active product of daidzein metabolism, produced via specific microflora in the gut. The clinical effectiveness of soy isoflavones may be a function of the ability to biotransform soy isoflavones to the more potent estrogenic metabolite, equol, which may enhance the actions of soy isoflavones, owing to its greater affinity for estrogen receptors, unique antiandrogenic properties, and superior antioxidant activity. However, not all individuals consuming daidzein produce equol. Only approximately one-third to one-half of the population is able to metabolize daidzein to equol. This high variability in equol production is presumably attributable to interindividual differences in the composition of the intestinal microflora, which may play an important role in the mechanisms of action of isoflavones. But, the specific bacterial species in the colon involved in the production of equol are yet to be discovered. (A3191, A3189). See also: Trifolium pratense flower (part of). Daidzein is one of several known isoflavones. Isoflavones compounds are found in a number of plants, but soybeans and soy products like tofu and textured vegetable protein are the primary food source. Up until recently, daidzein was considered to be one of the most important and most studied isoflavones, however more recently attention has shifted to isoflavone metabolites. Equol represents the main active product of daidzein metabolism, produced via specific microflora in the gut. The clinical effectiveness of soy isoflavones may be a function of the ability to biotransform soy isoflavones to the more potent estrogenic metabolite, equol, which may enhance the actions of soy isoflavones, owing to its greater affinity for estrogen receptors, unique antiandrogenic properties, and superior antioxidant activity. However, not all individuals consuming daidzein produce equol. Only approximately one-third to one-half of the population is able to metabolize daidzein to equol. This high variability in equol production is presumably attributable to interindividual differences in the composition of the intestinal microflora, which may play an important role in the mechanisms of action of isoflavones. But, the specific bacterial species in the colon involved in the production of equol are yet to be discovered. (PMID:18045128, 17579894). Daidzein is a biomarker for the consumption of soy beans and other soy products. Widespread isoflavone in the Leguminosae, especies Phaseolus subspecies (broad beans, lima beans); also found in soy and soy products (tofu, miso), chick peas (Cicer arietinum) and peanuts (Arachis hypogaea). Nutriceutical with anticancer and bone protective props. A member of the class of 7-hydroxyisoflavones that is 7-hydroxyisoflavone substituted by an additional hydroxy group at position 4. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C1967 - Tyrosine Kinase Inhibitor CONFIDENCE standard compound; INTERNAL_ID 937; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4894; ORIGINAL_PRECURSOR_SCAN_NO 4890 CONFIDENCE standard compound; INTERNAL_ID 937; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3575; ORIGINAL_PRECURSOR_SCAN_NO 3572 CONFIDENCE standard compound; INTERNAL_ID 937; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4858; ORIGINAL_PRECURSOR_SCAN_NO 4855 CONFIDENCE standard compound; INTERNAL_ID 937; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7978; ORIGINAL_PRECURSOR_SCAN_NO 7973 CONFIDENCE standard compound; INTERNAL_ID 937; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4898; ORIGINAL_PRECURSOR_SCAN_NO 4894 CONFIDENCE standard compound; INTERNAL_ID 937; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4884; ORIGINAL_PRECURSOR_SCAN_NO 4881 CONFIDENCE standard compound; INTERNAL_ID 937; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7989; ORIGINAL_PRECURSOR_SCAN_NO 7985 CONFIDENCE standard compound; INTERNAL_ID 937; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7952; ORIGINAL_PRECURSOR_SCAN_NO 7950 CONFIDENCE standard compound; INTERNAL_ID 937; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4852; ORIGINAL_PRECURSOR_SCAN_NO 4847 CONFIDENCE standard compound; INTERNAL_ID 937; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7907; ORIGINAL_PRECURSOR_SCAN_NO 7904 CONFIDENCE standard compound; INTERNAL_ID 937; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7956; ORIGINAL_PRECURSOR_SCAN_NO 7952 CONFIDENCE standard compound; INTERNAL_ID 937; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7917; ORIGINAL_PRECURSOR_SCAN_NO 7913 CONFIDENCE Reference Standard (Level 1); NaToxAq - Natural Toxins and Drinking Water Quality - From Source to Tap (https://natoxaq.ku.dk) Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2315 IPB_RECORD: 1801; CONFIDENCE confident structure IPB_RECORD: 421; CONFIDENCE confident structure CONFIDENCE standard compound; INTERNAL_ID 8828 CONFIDENCE standard compound; INTERNAL_ID 2874 CONFIDENCE standard compound; INTERNAL_ID 4239 CONFIDENCE standard compound; INTERNAL_ID 4163 CONFIDENCE standard compound; INTERNAL_ID 181 Daidzein is a soy isoflavone, which acts as a PPAR activator. Daidzein is a soy isoflavone, which acts as a PPAR activator. Daidzein is a soy isoflavone, which acts as a PPAR activator.
Ephedrine
Ephedrine is only found in individuals who have consumed this drug. Ephedrine is an alpha- and beta-adrenergic agonist that may also enhance release of norepinephrine. It has been used in the treatment of several disorders including asthma, heart failure, rhinitis, and urinary incontinence, and for its central nervous system stimulatory effects in the treatment of narcolepsy and depression. It has become less extensively used with the advent of more selective agonists. [PubChem] Ephedrine is similar in molecular structure to the well-known drugs phenylpropanolamine and methamphetamine, as well as to the important neurotransmitter epinephrine (adrenalin). Chemically, it is an alkaloid with a phenethylamine skeleton found in various plants in the genus Ephedra (family Ephedraceae). It works mainly by increasing the activity of norepinephrine (noradrenalin) on adrenergic receptors. It is most usually marketed as the hydrochloride or sulfate salt. R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use > R01AB - Sympathomimetics, combinations excl. corticosteroids R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03C - Adrenergics for systemic use > R03CA - Alpha- and beta-adrenoreceptor agonists R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use > R01AA - Sympathomimetics, plain C - Cardiovascular system > C01 - Cardiac therapy > C01C - Cardiac stimulants excl. cardiac glycosides > C01CA - Adrenergic and dopaminergic agents S - Sensory organs > S01 - Ophthalmologicals > S01F - Mydriatics and cycloplegics > S01FB - Sympathomimetics excl. antiglaucoma preparations D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 2758
Uric acid
Uric acid is a heterocyclic purine derivative that is the final oxidation product of purine metabolism. It is a weak acid distributed throughout the extracellular fluid as sodium urate. Uric acid is produced by the enzyme xanthine oxidase, which oxidizes oxypurines such as xanthine into uric acid. In most mammals, except humans and higher primates, the enzyme uricase further oxidizes uric acid to allantoin. Interestingly, during the Miocene epoch (~15-20 million years ago), two distinct mutations in the primate genome occurred that led to a nonfunctioning uricase gene. Consequently, humans, apes, and certain New World monkeys have much higher uric acid levels (>120 μM) compared with other mammals (<<120 uM). The loss of uricase in higher primates parallels the similar loss of the ability to synthesize ascorbic acid vitamin C. This may be because in higher primates uric acid partially replaces ascorbic acid. Like ascorbic acid, uric acid is an antioxidant. In fact, in primates, uric acid is the major antioxidant in serum and is thought to be a major factor in lengthening life-span and decreasing age-specific cancer rates in humans and other primates (PMID: 6947260). Uric acid is also the end product of nitrogen metabolism in birds and reptiles. In these animal species, it is excreted in feces as a dry mass. In humans and other mammals, the amount of urate in the blood depends on the dietary intake of purines, the level of endogenous urate biosynthesis, and the rate of urate excretion. Several kidney urate transporters are involved in the regulation of plasma urate levels. These include the urate transporter 1 (URAT1), which controls the reabsorption of urate as well as a number of organic ion transporters (OAT), such as OAT1 and OAT3, and the ATP-dependent urate export transporter MRP4. URAT1 is believed to be most critical in the regulation of plasma urate levels. (PMID: 17890445) High levels of plasma uric acid lead to a condition called hyperuricemia while low levels are associated with a condition called hypouricemia. Hyperuricemia has been defined as a uric acid concentration greater than 380 μM, while hypouricemia is generally defined as a urate concentration of less than 120 μM. Hyperuricemia can arise from a number of factors, including both acute and chronic causes. Acute causes of hyperuricemia include the intake of large amounts of alcohol, tumor lysis syndrome and a diet that is rich in purines or proteins. Chronic hyperuricemia can arise from a reduction in the kidney’s glomerular filtration rate, a decrease in the excretion of urate or an increase in overall tubular absorption in the kidneys. Hyperuricemia has been linked to a number of diseases and conditions, including gout, hypertension, cardiovascular disease, myocardial infarction, stroke, and renal disease. Uric acid has been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID: 22626821). Many of the causes of hyperuricemia are correctable either with lifestyle changes or drugs. Lifestyle changes include reducing weight and reducing the consumption of protein, purines, and alcohol. There are two kinds of drugs that can be used to treat chronic hyperuricemia. Xanthine oxidase inhibitors, such as allopurinol, inhibit the production of urate by blocking urate synthesis. Alternately, uricosuric drugs, such as probenecid, sulfinpyrazone, and benzpromarone, are used to reduce the serum urate concentration through the inhibition of the URAT1 transporter. (PMID: 17890445). Uric acid (especially crystalline uric acid) is also thought to be an essential initiator and amplifier of allergic inflammation for asthma and peanut allergies (PMID: 21474346). Uric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=69-93-2 (retrieved 2024-07-17) (CAS RN: 69-93-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Uric acid, scavenger of oxygen radical, is a very important antioxidant that help maintains the stability of blood pressure and antioxidant stress. Uric acid can remove reactive oxygen species (ROS) such as singlet oxygen and peroxynitrite, inhibiting lipid peroxidation[1][2]. Uric acid, scavenger of oxygen radical, is a very important antioxidant that help maintains the stability of blood pressure and antioxidant stress. Uric acid can remove reactive oxygen species (ROS) such as singlet oxygen and peroxynitrite, inhibiting lipid peroxidation[1][2].
Stearic acid
Stearic acid, also known as stearate or N-octadecanoic acid, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Thus, stearic acid is considered to be a fatty acid lipid molecule. Stearic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Stearic acid can be synthesized from octadecane. Stearic acid is also a parent compound for other transformation products, including but not limited to, 3-oxooctadecanoic acid, (9S,10S)-10-hydroxy-9-(phosphonooxy)octadecanoic acid, and 16-methyloctadecanoic acid. Stearic acid can be found in a number of food items such as green bell pepper, common oregano, ucuhuba, and babassu palm, which makes stearic acid a potential biomarker for the consumption of these food products. Stearic acid can be found primarily in most biofluids, including urine, feces, cerebrospinal fluid (CSF), and sweat, as well as throughout most human tissues. Stearic acid exists in all living species, ranging from bacteria to humans. In humans, stearic acid is involved in the plasmalogen synthesis. Stearic acid is also involved in mitochondrial beta-oxidation of long chain saturated fatty acids, which is a metabolic disorder. Moreover, stearic acid is found to be associated with schizophrenia. Stearic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Stearic acid ( STEER-ik, stee-ARR-ik) is a saturated fatty acid with an 18-carbon chain and has the IUPAC name octadecanoic acid. It is a waxy solid and its chemical formula is C17H35CO2H. Its name comes from the Greek word στέαρ "stéar", which means tallow. The salts and esters of stearic acid are called stearates. As its ester, stearic acid is one of the most common saturated fatty acids found in nature following palmitic acid. The triglyceride derived from three molecules of stearic acid is called stearin . Stearic acid, also known as octadecanoic acid or C18:0, belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Stearic acid (its ester is called stearate) is a saturated fatty acid that has 18 carbons and is therefore a very hydrophobic molecule that is practically insoluble in water. It exists as a waxy solid. In terms of its biosynthesis, stearic acid is produced from carbohydrates via the fatty acid synthesis machinery wherein acetyl-CoA contributes two-carbon building blocks, up to the 16-carbon palmitate, via the enzyme complex fatty acid synthase (FA synthase), at which point a fatty acid elongase is needed to further lengthen it. After synthesis, there are a variety of reactions it may undergo, including desaturation to oleate via stearoyl-CoA desaturase (PMID: 16477801). Stearic acid is found in all living organisms ranging from bacteria to plants to animals. It is one of the useful types of saturated fatty acids that comes from many animal and vegetable fats and oils. For example, it is a component of cocoa butter and shea butter. It is used as a food additive, in cleaning and personal care products, and in lubricants. Its name comes from the Greek word stear, which means ‚Äòtallow‚Äô or ‚Äòhard fat‚Äô. Stearic acid is a long chain dietary saturated fatty acid which exists in many animal and vegetable fats and oils. Stearic acid is a long chain dietary saturated fatty acid which exists in many animal and vegetable fats and oils.
Cortisone
A naturally occurring glucocorticoid. It has been used in replacement therapy for adrenal insufficiency and as an anti-inflammatory agent. Cortisone itself is inactive. It is converted in the liver to the active metabolite hydrocortisone. (From Martindale, The Extra Pharmacopoeia, 30th ed, p726) -- Pubchem; Cortisone is a hormone. Chemically it is a corticosteroid with formula C21H28O5 and IUPAC name 17-hydroxy-11-dehydrocorticosterone. It is closely related to corticosterone. -- Wikipedia; One of cortisones effects on the body, and a potentially harmful side effect when administered clinically, is the suppression of the immune system. This is an explanation for the apparent correlation between high stress and sickness. -- Wikipedia [HMDB] Cortisone is a naturally occurring glucocorticoid. It has been used in replacement therapy for adrenal insufficiency and as an anti-inflammatory agent. Cortisone itself is inactive. It is converted in the liver into the active metabolite cortisol. Cortisone is a corticosteroid hormone released by the adrenal gland in response to stress. One of cortisones effects on the body, and a potentially harmful side effect when administered clinically, is the suppression of the immune system. This is an explanation for the apparent correlation between high stress and sickness. Cortisone. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=53-06-5 (retrieved 2024-07-16) (CAS RN: 53-06-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Cortisone (17-Hydroxy-11-dehydrocorticosterone), an oxidized metabolite of Cortisol (a Glucocorticoid). Cortisone acts as an immunosuppressant and anti-inflammatory agent. Cortisone can partially intervene in binding of Glucocorticoid to Glucocorticoid-receptor at high concentrations[1][3][4].
Morphine
C17H19NO3 (285.13648639999997)
Morphine, also known as (-)-morphine or morphine sulfate, is a member of the class of compounds known as morphinans. Morphinans are polycyclic compounds with a four-ring skeleton with three condensed six-member rings forming a partially hydrogenated phenanthrene moiety, one of which is aromatic while the two others are alicyclic. Morphine is soluble (in water) and a very weakly acidic compound (based on its pKa). Morphine can be synthesized from morphinan. Morphine is also a parent compound for other transformation products, including but not limited to, myrophine, heroin, and codeine. Morphine can be found in a number of food items such as nanking cherry, eggplant, millet, and common hazelnut, which makes morphine a potential biomarker for the consumption of these food products. Morphine can be found primarily in blood and urine, as well as in human kidney and liver tissues. In humans, morphine is involved in several metabolic pathways, some of which include heroin action pathway, morphine metabolism pathway, heroin metabolism pathway, and codeine metabolism pathway. Morphine is a non-carcinogenic (not listed by IARC) potentially toxic compound. Morphine is a drug which is used for the relief and treatment of severe pain. The primary source of morphine is isolation from poppy straw of the opium poppy. In 2013, an estimated 523 000 kg of morphine were produced. About 45 000 kg were used directly for pain, a four-time increase over the last twenty years. Most use for this purpose was in the developed world. About 70\\% of morphine is used to make other opioids such as hydromorphone, oxymorphone, and heroin. It is a Schedule II drug in the United States, Class A in the United Kingdom, and Schedule I in Canada. It is on the World Health Organizations List of Essential Medicines, the most effective and safe medicines needed in a health system. Morphine is sold under many trade names . Primarily hepatic (90\\%), converted to dihydromorphinone and normorphineand is) also converted to morphine-3-glucuronide (M3G) and morphine-6-glucuronide. Virtually all morphine is converted to glucuronide metabolites; only a small fraction (less than 5\\%) of absorbed morphine is demethylated (DrugBank). In the treatment of morphine overdosage, primary attention should be given to the re- establishment of a patent airway and institution of assisted or controlled ventilation. Supportive measures (including oxygen, vasopressors) should be employed in the management of circulatory shock and pulmonary edema accompanying overdose as indicated. Cardiac arrest or arrhythmias may require cardiac massage or defibrillation. The pure opioid antagonists, such as naloxone, are specific antidotes against respiratory depression which results from opioid overdose. Naloxone should be administered intravenously; however, because its duration of action is relatively short, the patient must be carefully monitored until spontaneous respiration is reliably re-established. If the response to naloxone is suboptimal or not sustained, additional naloxone may be administered, as needed, or given by continuous infusion to maintain alertness and respiratory function; however, there is no information available about the cumulative dose of naloxone that may be safely administered (L1712) (T3DB). Morphine is the principal alkaloid in opium and the prototype opiate analgesic and narcotic. In 2017, morphine was the 155th most commonly prescribed medication in the United States, with more than four million prescriptions. Morphine is used primarily to treat both acute and chronic severe pain. Its duration of analgesia is about three to seven hours. A large overdose of morphine can cause asphyxia and death by respiratory depression if the person does not receive medical attention immediately. Morphine is naturally produced by several plants (such as the opium poppy) and animals (PMID: 22578954). Morphine was first isolated between 1803 and 1805 by Friedrich Sertürner. Sertürner originally named the substance morphium after the Greek god of dreams, Morpheus, as it has a tendency to cause sleep. The primary source of morphine is isolation from poppy straw of the opium poppy. Morphine is also endogenously produced by humans. In the mid 2000s it was found morphine can be synthesized by white blood cells (PMID 22578954). CYP2D6, a cytochrome P450 isoenzyme, catalyzes the biosynthesis of morphine from codeine and dopamine from tyramine. The morphine biosynthetic pathway in humans occurs as follows: L-tyrosine -> para-tyramine or L-DOPA -> dopamine -> (S)-norlaudanosoline -> (S)-reticuline -> 1,2-dehydroretinulinium -> (R)-reticuline -> salutaridine -> salutaridinol -> thebaine -> neopinone -> codeinone -> codeine -> morphine. (S)-Norlaudanosoline (also known as tetrahydropapaveroline) which is an important intermediate in the WBC biosynthesis of morphine can also be synthesized from 3,4-dihydroxyphenylacetaldehyde (DOPAL), a metabolite of L-DOPA and dopamine. Morphine has widespread effects in the central nervous system and on smooth muscle (PMID: 4582903). The precise mechanism of the analgesic action of morphine is not fully known. However, specific CNS opiate receptors have been identified and likely play a role in the induction of analgesic effects. Morphine first acts on the mu-opioid receptors. The mechanism of respiratory depression involves a reduction in the responsiveness of the brain stem respiratory centers to increases in carbon dioxide tension and electrical stimulation. It has been shown that morphine binds to and inhibits GABA inhibitory interneurons. These interneurons normally inhibit the descending pain inhibition pathway. So, without the inhibitory signals, pain modulation can proceed downstream. When the dose of morphine is reduced after long-term use, opioid withdrawal symptoms such as drowsiness, vomiting, and constipation may also occur (PMID: 23244430). Morphine is only found in easily detectable quantities in individuals that have used or taken this drug. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist > C1657 - Opiate N - Nervous system > N02 - Analgesics > N02A - Opioids > N02AA - Natural opium alkaloids relative retention time with respect to 9-anthracene Carboxylic Acid is 0.056 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.054 D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics CONFIDENCE standard compound; EAWAG_UCHEM_ID 2744 CONFIDENCE standard compound; INTERNAL_ID 1580
all-trans-Retinoic acid
all-trans-Retinoic acid is an isomer of retinoic acid, the oxidized form of vitamin A. Retinoic acid functions in determining position along embryonic anterior/posterior axis in chordates. It acts through Hox genes, which ultimately controls anterior/posterior patterning in early developmental stages (PMID:17495912). It is an important regulator of gene expression during growth and development, and in neoplasms. As a drug, all-trans-retinoic acid is known as tretinoin. Tretinoin is derived from maternal vitamin A and is essential for normal growth and embryonic development. An excess of tretinoin can be teratogenic. Tretinoin is used in the treatment of psoriasis, acne vulgaris, and several other skin diseases. It has also been approved for use in promyelocytic leukemia (leukemia, promyelocytic, acute). Retinoic acid is the oxidized form of Vitamin A. It functions in determining position along embryonic anterior/posterior axis in chordates. It acts through Hox genes, which ultimately controls anterior/posterior patterning in early developmental stages (PMID: 17495912). It is an important regulator of gene expression during growth and development, and in neoplasms. Tretinoin, also known as retinoic acid and derived from maternal vitamin A, is essential for normal growth and embryonic development. An excess of tretinoin can be teratogenic. It is used in the treatment of psoriasis; acne vulgaris; and several other skin diseases. It has also been approved for use in promyelocytic leukemia (leukemia, promyelocytic, acute). [HMDB] L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01X - Other antineoplastic agents > L01XF - Retinoids for cancer treatment D - Dermatologicals > D10 - Anti-acne preparations > D10A - Anti-acne preparations for topical use > D10AD - Retinoids for topical use in acne C274 - Antineoplastic Agent > C2122 - Cell Differentiating Agent > C1934 - Differentiation Inducer C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C804 - Retinoic Acid Agent Acquisition and generation of the data is financially supported in part by CREST/JST. C308 - Immunotherapeutic Agent > C129820 - Antineoplastic Immunomodulating Agent D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids D003879 - Dermatologic Agents > D007641 - Keratolytic Agents D000970 - Antineoplastic Agents Retinoic acid is a metabolite of vitamin A that plays important roles in cell growth, differentiation, and organogenesis. Retinoic acid is a natural agonist of RAR nuclear receptors, with IC50s of 14 nM for RARα/β/γ. Retinoic acid bind to PPARβ/δ with Kd of 17 nM. Retinoic acid acts as an inhibitor of transcription factor Nrf2 through activation of retinoic acid receptor alpha. Retinoic acid is a metabolite of vitamin A that plays important roles in cell growth, differentiation, and organogenesis. Retinoic acid is a natural agonist of RAR nuclear receptors, with IC50s of 14 nM for RARα/β/γ. Retinoic acid bind to PPARβ/δ with Kd of 17 nM. Retinoic acid acts as an inhibitor of transcription factor Nrf2 through activation of retinoic acid receptor alpha. Retinoic acid is a metabolite of vitamin A that plays important roles in cell growth, differentiation, and organogenesis. Retinoic acid is a natural agonist of RAR nuclear receptors, with IC50s of 14 nM for RARα/β/γ. Retinoic acid bind to PPARβ/δ with Kd of 17 nM. Retinoic acid acts as an inhibitor of transcription factor Nrf2 through activation of retinoic acid receptor alpha.
1-Methyladenine
1-Methyladenine is the product of reaction between 1-methyladenosine and water which is catalyzed by 1-methyladenosine nucleosidase (EC:3.2.2.13). 1-Methyladenine is a product of alkylation damage in DNA which can be repaired by damage reversal by oxidative demethylation, a reaction requiring ferrous iron and 2-oxoglutarate as cofactor and co-substrate, respectively (PMID:15576352). 1-Methyladenine is found to be associated with adenosine deaminase (ADA) deficiency, which is an inborn error of metabolism. 1-Methyladenine is the product of reaction between 1-methyladenosine and water which is catalyzed by 1-methyladenosine nucleosidase. (EC:3.2.2.13) KEIO_ID M074
Dodecanedioic acid
Dodecanedioic acid is an aliphatic dicarboxylic acid containing 12 carbon atoms. More formally it is an alpha,omega-dicarboxylic acid with both the first and last carbons of the aliphatic chain having carboxylic acids. Dodecanedioic acid is water soluble. It can be produced in yeast and fungi through the oxidation of dodecane via fungal peroxygenases (PMID: 27573441). High levels of dodecanedioic acid is an indicator of hepatic carnitine palmitoyltransferase I (CPT IA) deficiency (PMID: 16146704). CPT IA deficiency is characterized by hypoketotic dicarboxylic aciduria with high urinary levels of dodecanedioic acid. It is thought that carnitine palmitoyltransferase I may play a role in the uptake of long-chain dicarboxylic acids by mitochondria after their initial shortening by beta-oxidation in peroxisomes (PMID: 16146704). CPT IA deficiency is characterized by acute encephalopathy with hypoglycemia and hepatomegaly. Dodecanedioic acid is a dicarboxylic acid which is water soluble and involves in a metabolic pathway intermediate to those of lipids and carbohydrates. (PMID 9591306). Dodecanedioid acid is an indicator of hepatic carnitine palmitoyltransferase I (CPT IA) deficiency. CPT IA deficiency is characterized by hypoketotic dicarboxylic aciduria with high urinary levels of dodecanedioic acid. This C12 dicarboxylic aciduria suggests that carnitine palmitoyltransferase I may play a role in the uptake of long-chain dicarboxylic acids by mitochondria after their initial shortening by beta-oxidation in peroxisomes. (PMID: 16146704) [HMDB] Dodecanedioic acid (C12) is a dicarboxylic acid with a metabolic pathway intermediate to those of lipids and carbohydrates.
Diaminopimelic acid
Diaminopimelic acid or DAPA is a lysine-like amino acid derivative that is a key component of the bacterial cell wall. DAPA is incorporated or integrated into peptidoglycan of gram negative bacteria and is the attachment point for Brauns lipoprotein (BLP or Murein Lipoprotein). BLP is found in gram-negative cell walls and is one of the most abundant membrane proteins. BLP is bound at its C-terminal end (a lysine) by a covalent bond to the peptidoglycan layer (specifically to diaminopimelic acid molecules) and is embedded in the outer membrane by its hydrophobic head (a cysteine with lipids attached). BLP tightly links the two layers and provides structural integrity to the bacterial outer membrane. Diaminopimelic acid can be found in human urine or feces due to the lysis or enzymatic breakdown of gram negative gut microbes. Acquisition and generation of the data is financially supported in part by CREST/JST. 2,6-Diaminoheptanedioic acid is an endogenous metabolite.
Deoxyinosine
C10H12N4O4 (252.08585119999998)
Deoxyinosine is a nucleoside that is formed when hypoxanthine is attached to a deoxyribose ring (also known as a ribofuranose) via a beta-N9-glycosidic bond. Deoxyinosine is found in DNA while inosine is found in RNA. Inosine is a nucleic acid important for RNA editing. Adenosine deaminase (ADA) catalyzes the conversion of adenosine and deoxyadenosine to inosine and deoxyinosine, respectively. ADA-deficient individuals suffer from severe combined immunodeficiency (SCID) and are unable to produce significant numbers of mature T or B lymphocytes. This occurs as a consequence of the accumulation of ADA substrates or their metabolites. Inosine is also an intermediate in a chain of purine nucleotides reactions required for muscle movements. Moreover, deoxyinosine is found to be associated with purine nucleoside phosphorylase (PNP) deficiency, which is an inborn error of metabolism. Isolated from Phaseolus vulgaris (kidney bean). 2-Deoxyinosine is found in pulses, yellow wax bean, and green bean. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 2’-deoxyadenosine inhibits the growth of human colon-carcinoma cell lines and is found to be associated with purine nucleoside phosphorylase (PNP) deficiency. 2’-deoxyadenosine inhibits the growth of human colon-carcinoma cell lines and is found to be associated with purine nucleoside phosphorylase (PNP) deficiency.
Estrone
Estrone is a major mammalian estrogen. The conversion of the natural C19 steroids, testosterone and androstenedione into estrone is dependent on a complex key reaction catalyzed by the cytochrome P450 aromatase (EC 1.14.14.1, unspecific monooxygenase), which is expressed in many tissues of the adult human (e.g. ovary, fat tissue), but not in the liver. The ovaries after menopause continue to produce androstenedione and testosterone in significant amounts and these androgens are converted in fat, muscle, and skin into estrone. When women between the ages of 45 and 64 years have prophylactic oophorectomy (when hysterectomy is performed for benign disease to prevent the development of ovarian cancer), evidence suggests that oophorectomy increases the subsequent risk of coronary heart disease (CHD) and osteoporosis. Whereas 14,000 women die of ovarian cancer every year nearly 490,000 women die of heart disease and 48,000 women die within 1 year after hip fracture. Therefore, the decision to perform prophylactic oophorectomy should be approached with great caution for the majority of women who are at low risk of developing ovarian cancer. Steroid sulfatase (EC 3.1.6.2, STS) hydrolyzes steroid sulfates, such as estrone sulfate to estrone which can be converted to steroids with potent estrogenic properties, that is, estradiol; STS activity is much higher in breast tumors and high levels of STS mRNA expression in tumors are associated with a poor prognosis. The biological roles of estrogens in tumorigenesis are certainly different between the endometrium and breast, although both are considered "estrogen-dependent tissues". 17beta-hydroxysteroid dehydrogenases (EC 1.1.1.62, 17-HSDs) are enzymes involved in the formation of active sex steroids. estrone is interconverted by two enzymes 17-HSD types. Type 1 converts estrone to estradiol and Type 2 catalyzes the reverse reaction. (PMID: 17653961, 17513923, 17470679, 17464097). CONFIDENCE standard compound; INTERNAL_ID 859; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8887; ORIGINAL_PRECURSOR_SCAN_NO 8882 CONFIDENCE standard compound; INTERNAL_ID 859; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8944; ORIGINAL_PRECURSOR_SCAN_NO 8942 CONFIDENCE standard compound; INTERNAL_ID 859; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8923; ORIGINAL_PRECURSOR_SCAN_NO 8921 CONFIDENCE standard compound; INTERNAL_ID 859; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8903; ORIGINAL_PRECURSOR_SCAN_NO 8901 CONFIDENCE standard compound; INTERNAL_ID 859; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4817; ORIGINAL_PRECURSOR_SCAN_NO 4815 CONFIDENCE standard compound; INTERNAL_ID 859; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4834; ORIGINAL_PRECURSOR_SCAN_NO 4832 CONFIDENCE standard compound; INTERNAL_ID 859; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4774; ORIGINAL_PRECURSOR_SCAN_NO 4772 CONFIDENCE standard compound; INTERNAL_ID 859; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4796; ORIGINAL_PRECURSOR_SCAN_NO 4794 CONFIDENCE standard compound; INTERNAL_ID 859; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8953; ORIGINAL_PRECURSOR_SCAN_NO 8951 CONFIDENCE standard compound; INTERNAL_ID 859; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4804; ORIGINAL_PRECURSOR_SCAN_NO 4803 CONFIDENCE standard compound; INTERNAL_ID 859; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8970; ORIGINAL_PRECURSOR_SCAN_NO 8969 A trace constituent of plant tissues, e.g. seeds of date (Phoenix dactylifera) and pomegranate (Punica granatum). Estrone is found in many foods, some of which are cauliflower, sweet rowanberry, carrot, and coconut. G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03C - Estrogens > G03CA - Natural and semisynthetic estrogens, plain G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03C - Estrogens > G03CC - Estrogens, combinations with other drugs D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen CONFIDENCE standard compound; INTERNAL_ID 2391 COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Estrone (E1) is a natural estrogenic hormone. Estrone is the main representative of the endogenous estrogens and is produced by several tissues, especially adipose tissue. Estrone is the result of the process of aromatization of androstenedione that occurs in fat cells[1][2]. Estrone (E1) is a natural estrogenic hormone. Estrone is the main representative of the endogenous estrogens and is produced by several tissues, especially adipose tissue. Estrone is the result of the process of aromatization of androstenedione that occurs in fat cells[1][2].
D-Ribose 5-phosphate
Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Gluconic acid
Gluconic acid, also known as D-gluconic acid, D-gluconate or (2R,3S,4R,5R)-2,3,4,5,6-pentahydroxyhexanoic acid (also named dextronic acid), is the C1-oxidized form of D-glucose where the aldehyde group has become oxidized to the corresponding carboxylic acid. Gluconic acid belongs to the class of organic compounds known as sugar acids and derivatives. Sugar acids and derivatives are compounds containing a saccharide unit which bears a carboxylic acid group. In aqueous solution, gluconic acid exists in equilibrium with the cyclic ester glucono delta-lactone. Gluconic acid occurs naturally in fruit, honey, kombucha tea and wine. The salts of gluconic acid are known as "gluconates". Gluconic acid, gluconate salts, and gluconate esters occur widely in nature because such species arise from the oxidation of glucose. Gluconic acid exists in all living species, ranging from bacteria to plants to humans. The metabolism of gluconate is well characterized in prokaryotes where it is known to be degraded following phosphorylation by gluconokinase. Glucokinase activity has also been detected in mammals, including humans (PMID: 24896608). Gluconic acid is produced in the gluconate shunt pathway. In the gluconate shunt, glucose is oxidized by glucose dehydrogenase (also called glucose oxidase) to furnish gluconate, the form in which D-gluconic acid is present at physiological pH. Subsequently, gluconate is phosphorylated by the action of gluconate kinase to produce 6-phosphogluconate, which is the second intermediate of the pentose phosphate pathway. This gluconate shunt is mainly found in plants, algae, cyanobacteria and some bacteria, which all use the Entner–Doudoroff pathway to degrade glucose or gluconate; this generates 2-keto-3-deoxygluconate-6-phosphate, which is then cleaved to generate pyruvate and glyceraldehyde 3-phosphate. Glucose dehydrogenase and gluconate kinase activities are also present in mammals, fission yeast, and flies. Gluconic acid has many industrial uses. It is used as a drug as part of electrolyte supplementation in total parenteral nutrition. It is also used in cleaning products where it helps cleaning up mineral deposits. Gluconic acid or Gluconic acid is used to maintain the cation-anion balance on electrolyte solutions. In humans, gluconic acid is involved in the metabolic disorder called the transaldolase deficiency. Gluconic acid has been found to be a metabolite in Aspergillus (Hugo Vanden Bossche, D.W.R. Mackenzie and G. Cauwenbergh. Aspergillus and Aspergillosis, 1987). [Spectral] D-Gluconic acid (exact mass = 196.0583) and Guanine (exact mass = 151.04941) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Dietary supplement, acidity regulator approved in Japan. Component of bottle rinsing formulations Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID G031
Glutaric acid
Glutaric acid is a simple five-carbon linear dicarboxylic acid. Glutaric acid is naturally produced in the body during the metabolism of some amino acids, including lysine and tryptophan. Glutaric acid may cause irritation to the skin and eyes. When present in sufficiently high levels, glutaric acid can act as an acidogen and a metabotoxin. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of glutaric acid are associated with at least three inborn errors of metabolism, including glutaric aciduria type I, malonyl-CoA decarboxylase deficiency, and glutaric aciduria type III. Glutaric aciduria type I (glutaric acidemia type I, glutaryl-CoA dehydrogenase deficiency, GA1, or GAT1) is an inherited disorder in which the body is unable to completely break down the amino acids lysine, hydroxylysine, and tryptophan due to a deficiency of mitochondrial glutaryl-CoA dehydrogenase (EC 1.3.99.7, GCDH). Excessive levels of their intermediate breakdown products (e.g. glutaric acid, glutaryl-CoA, 3-hydroxyglutaric acid, glutaconic acid) can accumulate and cause damage to the brain (and also other organs). Babies with glutaric acidemia type I are often born with unusually large heads (macrocephaly). Macrocephaly is amongst the earliest signs of GA1. GA1 also causes secondary carnitine deficiency because glutaric acid, like other organic acids, is detoxified by carnitine. Abnormally high levels of organic acids in the blood (organic acidemia), urine (organic aciduria), the brain, and other tissues lead to general metabolic acidosis. Acidosis typically occurs when arterial pH falls below 7.35. In infants with acidosis, the initial symptoms include poor feeding, vomiting, loss of appetite, weak muscle tone (hypotonia), and lack of energy (lethargy). These can progress to heart, liver, and kidney abnormalities, seizures, coma, and possibly death. These are also the characteristic symptoms of untreated glutaric aciduria. Many affected children with organic acidemias experience intellectual disability or delayed development. In adults, acidosis or acidemia is characterized by headaches, confusion, feeling tired, tremors, sleepiness, and seizures. Treatment of glutaric aciduria is mainly based on the restriction of lysine intake, supplementation of carnitine, and an intensification of therapy during intercurrent illnesses. The major principle of dietary treatment is to reduce the production of glutaric acid and 3-hydroxyglutaric acid by restriction of natural protein, in general, and of lysine, in particular (PMID: 17465389, 15505398). Glutaric acid has also been found in Escherichia (PMID: 30143200). Isolated from basidiomycete fungi and fruits of Prunus cerasus (CCD). Glutaric acid is found in many foods, some of which are red beetroot, common beet, soy bean, and tamarind. Glutaric acid, C5 dicarboxylic acid, is an intermediate during the catabolic pathways of lysine and tryptophan. Glutaric acid affects pericyte contractility and migration. Glutaric acid is an indicator of glutaric aciduria type I[1][2][3]. Glutaric acid, C5 dicarboxylic acid, is an intermediate during the catabolic pathways of lysine and tryptophan. Glutaric acid affects pericyte contractility and migration. Glutaric acid is an indicator of glutaric aciduria type I[1][2][3].
Isoniazid
Isoniazid (also called isonicotinyl hydrazine or INH; sold as Laniazid, Nydrazid) is an organic compound that is the first-line antituberculosis medication in prevention and treatment. First discovered in 1912 as an inhibitor of the MAO enzyme, it was first used as an antidepressant, but discontinued due to side effects. In 1951, it was later discovered that isoniazid was effective against TB. Isoniazid is never used on its own to treat active tuberculosis because resistance quickly develops.; Isoniazid is a bactericidal agent active against organisms of the genus Mycobacterium, specifically M. tuberculosis, M. bovis and M. kansasii. It is a highly specific agent, ineffective against other microorganisms. Isoniazid is bactericidal to rapidly-dividing mycobacteria, but is bacteriostatic if the mycobacterium is slow-growing.; Isoniazid is a prodrug and must be activated by bacterial catalase. It is activated by catalase-peroxidase enzyme KatG which couples the isonicotinic acyl with NADH to form isonicotinic acyl-NADH complex. This complex binds tightly to ketoenoylreductase known as InhA, thereby blocking the natural enoyl-AcpM substrate and the action of fatty acid synthase. This process inhibits the synthesis of mycolic acid required for the mycobacterial cell wall. A range of radicals are produced by KatG activation of Isoniazid, including nitric oxide, that has also been shown to be important in the action of another antimycobacterial prodrug PA824. [HMDB] Isoniazid is only found in individuals that have used or taken this drug. It is an antibacterial agent used primarily as a tuberculostatic. It remains the treatment of choice for tuberculosis. [PubChem]Isoniazid is a prodrug and must be activated by bacterial catalase. Specficially, activation is associated with reduction of the mycobacterial ferric KatG catalase-peroxidase by hydrazine and reaction with oxygen to form an oxyferrous enzyme complex. Once activated, isoniazid inhibits the synthesis of mycoloic acids, an essential component of the bacterial cell wall. At therapeutic levels isoniazid is bacteriocidal against actively growing intracellular and extracellular Mycobacterium tuberculosis organisms. Specifically isoniazid inhibits InhA, the enoyl reductase from Mycobacterium tuberculosis, by forming a covalent adduct with the NAD cofactor. It is the INH-NAD adduct that acts as a slow, tight-binding competitive inhibitor of InhA. J - Antiinfectives for systemic use > J04 - Antimycobacterials > J04A - Drugs for treatment of tuberculosis > J04AC - Hydrazides D000963 - Antimetabolites > D000960 - Hypolipidemic Agents > D054872 - Fatty Acid Synthesis Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D000995 - Antitubercular Agents C254 - Anti-Infective Agent > C52588 - Antibacterial Agent > C280 - Antitubercular Agent D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites KEIO_ID I066
Maltotriose
Maltotriose is a trisaccharide (three-part sugar) consisting of three glucose molecules linked with α-1,4 glycosidic bonds. It is most commonly produced by the digestive enzyme alpha-amylase (a common enzyme in human saliva) on amylose in starch. The creation of both maltotriose and maltose during this process is due to the random manner in which alpha amylase hydrolyses α-1,4 glycosidic bonds. It is the shortest chain oligosaccharide that can be classified as maltodextrin. Maltotriose belongs to the class of organic compounds known as oligosaccharides. These are carbohydrates made up of 3 to 10 monosaccharide units linked to each other through glycosidic bonds. Maltotriose is a common oligosaccharide metabolite found in human urine after maltose ingestion or infusion (PMID:6645121). Maltotriose is increased in glycogen storage disease II (OMIM: 232300) due to a mutation of the enzyme alpha-1,4-glucosidase (EC 3.2.1.20) (PMID:4286143). Constituent of corn syrup. Amylolysis production from starch. Maltooligosaccharide mixtures are important food additives (sweeteners, gelling agents and viscosity modifiers) Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Maltotriose, the second most abundant sugar present in brewing, is an inducer of the maltose regulon of Escherichia coli. Maltotriose can induce beta-galactosidase synthesis[1][2]. Maltotriose, the second most abundant sugar present in brewing, is an inducer of the maltose regulon of Escherichia coli. Maltotriose can induce beta-galactosidase synthesis[1][2].
Paclitaxel
Taxol appears as needles (from aqueous methanol) or fine white powder. An anti-cancer drug. Paclitaxel is a tetracyclic diterpenoid isolated originally from the bark of the Pacific yew tree, Taxus brevifolia. It is a mitotic inhibitor used in cancer chemotherapy. Note that the use of the former generic name taxol is now limited, as Taxol is a registered trade mark. It has a role as a microtubule-stabilising agent, a metabolite, a human metabolite and an antineoplastic agent. It is a tetracyclic diterpenoid and a taxane diterpenoid. It is functionally related to a baccatin III. Paclitaxel is a chemotherapeutic agent marketed under the brand name Taxol among others. Used as a treatment for various cancers, paclitaxel is a mitotic inhibitor that was first isolated in 1971 from the bark of the Pacific yew tree which contains endophytic fungi that synthesize paclitaxel. It is available as an intravenous solution for injection and the newer formulation contains albumin-bound paclitaxel marketed under the brand name Abraxane. Paclitaxel is a Microtubule Inhibitor. The physiologic effect of paclitaxel is by means of Microtubule Inhibition. Paclitaxel is an antineoplastic agent which acts by inhibitor of cellular mitosis and which currently plays a central role in the therapy of ovarian, breast, and lung cancer. Therapy with paclitaxel has been associated with a low rate of serum enzyme elevations, but has not been clearly linked to cases of clinically apparent acute liver injury. Paclitaxel is a natural product found in Taxomyces andreanae, Penicillium aurantiacobrunneum, and other organisms with data available. Paclitaxel is a compound extracted from the Pacific yew tree Taxus brevifolia with antineoplastic activity. Paclitaxel binds to tubulin and inhibits the disassembly of microtubules, thereby resulting in the inhibition of cell division. This agent also induces apoptosis by binding to and blocking the function of the apoptosis inhibitor protein Bcl-2 (B-cell Leukemia 2). (NCI04) A cyclodecane isolated from the bark of the Pacific yew tree, TAXUS brevifolia. It stabilizes microtubules in their polymerized form leading to cell death. ABI-007 (Abraxane) is the latest attempt to improve upon paclitaxel, one of the leading chemotherapy treatments. Both drugs contain the same active agent, but Abraxane is delivered by a nanoparticle technology that binds to albumin, a natural protein, rather than the toxic solvent known as Cremophor. It is thought that delivering paclitaxel with this technology will cause fewer hypersensitivity reactions and possibly lead to greater drug uptake in tumors. Paclitaxel is a mitotic inhibitor used in cancer chemotherapy. It was discovered in a US National Cancer Institute program at the Research Triangle Institute in 1967 when Monroe E. Wall and Mansukh C. Wani isolated it from the bark of the Pacific yew tree, Taxus brevifolia and named it taxol. Later it was discovered that endophytic fungi in the bark synthesize paclitaxel. See also: Paclitaxel Poliglumex (is active moiety of). A cyclodecane isolated from the bark of the Pacific yew tree, TAXUS brevifolia. It stabilizes microtubules in their polymerized form leading to cell death. [PubChem] ABI-007 (Abraxane) is the latest attempt to improve upon paclitaxel, one of the leading chemotherapy treatments. Both drugs contain the same active agent, but Abraxane is delivered by a nanoparticle technology that binds to albumin, a natural protein, rather than the toxic solvent known as Cremophor. It is thought that delivering paclitaxel with this technology will cause fewer hypersensitivity reactions and possibly lead to greater drug uptake in tumors. A tetracyclic diterpenoid isolated originally from the bark of the Pacific yew tree, Taxus brevifolia. It is a mitotic inhibitor used in cancer chemotherapy. Note that the use of the former generic name taxol is now limited, as Taxol is a registered trade mark. L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01C - Plant alkaloids and other natural products > L01CD - Taxanes C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C273 - Antimitotic Agent [Raw Data] CB246_Paclitaxel_pos_20eV_CB000085.txt [Raw Data] CB246_Paclitaxel_pos_10eV_CB000085.txt [Raw Data] CB246_Paclitaxel_pos_30eV_CB000085.txt [Raw Data] CB246_Paclitaxel_pos_40eV_CB000085.txt [Raw Data] CB246_Paclitaxel_pos_50eV_CB000085.txt Paclitaxel is a naturally occurring antineoplastic agent and stabilizes tubulin polymerization. Paclitaxel can cause both mitotic arrest and apoptotic cell death. Paclitaxel also induces autophagy[1][2]. Paclitaxel is a naturally occurring antineoplastic agent and stabilizes tubulin polymerization. Paclitaxel can cause both mitotic arrest and apoptotic cell death. Paclitaxel also induces autophagy[1][2].
Palmitoleic acid
Cis-9-palmitoleic acid, also known as palmitoleate or (Z)-9-hexadecenoic acid, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Thus, cis-9-palmitoleic acid is considered to be a fatty acid lipid molecule. Cis-9-palmitoleic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Cis-9-palmitoleic acid can be found in a number of food items such as mixed nuts, carrot, hedge mustard, and chanterelle, which makes cis-9-palmitoleic acid a potential biomarker for the consumption of these food products. Cis-9-palmitoleic acid can be found primarily in most biofluids, including urine, blood, saliva, and feces, as well as in human adipose tissue, prostate and skeletal muscle tissues. Cis-9-palmitoleic acid exists in all living species, ranging from bacteria to humans. Moreover, cis-9-palmitoleic acid is found to be associated with isovaleric acidemia. Palmitoleic acid, or (9Z)-hexadec-9-enoic acid, is an omega-7 monounsaturated fatty acid (16:1n-7) with the formula CH3(CH2)5CH=CH(CH2)7COOH that is a common constituent of the glycerides of human adipose tissue. Present in all tissues, it is generally found in higher concentrations in the liver. Macadamia oil (Macadamia integrifolia) and sea buckthorn oil (Hippophae rhamnoides) are botanical sources of palmitoleic acid, containing 22 and 40\\\\\% respectively. Palmitoleic acid is found to be associated with isovaleric acidemia, which is an inborn error of metabolism. Palmitoleic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=373-49-9 (retrieved 2024-07-15) (CAS RN: 373-49-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Palmitoleic acid, a composition of fatty acid, is implicated in the prevention of death from cerebrovascular disorders in SHRSP rats. Palmitoleic acid, a composition of fatty acid, is implicated in the prevention of death from cerebrovascular disorders in SHRSP rats.
Quinolinic acid
Quinolinic acid, also known as quinolinate, belongs to the class of organic compounds known as pyridinecarboxylic acids. Pyridinecarboxylic acids are compounds containing a pyridine ring bearing a carboxylic acid group. It is also classified as a pyridine-2,3-dicarboxylic acid, which is a dicarboxylic acid with a pyridine backbone. Quinolinic acid is a colorless solid. In plants, it is the biosynthetic precursor to nicotine. Quinolinic acid is found in all organisms, from microbes to plants to animals. Quinolinic acid can be biosynthesized via aspartic acid in plants. Oxidation of aspartate by the enzyme aspartate oxidase gives iminosuccinate, containing the two carboxylic acid groups that are found in quinolinic acid. Condensation of iminosuccinate with glyceraldehyde-3-phosphate, mediated by quinolinate synthase, affords quinolinic acid Quinolinic acid is also a downstream product of the kynurenine pathway, which metabolizes the amino acid tryptophan ((PMID: 22678511). The kynurenine/tryptophan degradation pathway is important for its production of the coenzyme nicotinamide adenine dinucleotide (NAD+) and produces several neuroactive intermediates including quinolinic acid, kynurenine (KYN), kynurenic acid (KYNA), 3-hydroxykynurenine (3-HK), and 3-hydroxyanthranilic acid (3-HANA). In animals quinolinic acid acts as an NMDA receptor agonist and has a possible role in neurodegenerative disorders (PMID: 22678511). It also acts as a neurotoxin, gliotoxin, proinflammatory mediator, and pro-oxidant molecule (PMID: 22248144). Quinolinic acid can act as an endogenous brain excitotoxin when released by activated macrophages (PMID: 15013955). Within the brain, quinolinic acid is only produced by activated microglia and macrophages. Quinolinic acid is unable to pass through the blood-brain barrier (BBB) and must be produced within the brain by microglial cells or macrophages that have passed the BBB (PMID: 22248144). While quinolinic acid cannot pass through the BBB, kynurenic acid, tryptophan and 3-hydroxykynurenine can and can subsequently act as precursors to the production of quinolinic acid in the brain (PMID: 22248144). Quinolinic acid has potent neurotoxic effects. Studies have demonstrated that quinolinic acid may be involved in many psychiatric disorders and neurodegenerative diseases in the brain including ALS, Alzheimer’s disease, brain ischemia, Parkinson’s disease, Huntington’s disease and AIDS-dementia. Elevated CSF levels of quinolinic acid are correlated with the severity of neuropsychological deficits in patients who have AIDS. Indeed, levels of quinolinic acid in the CSF of AIDS patients suffering from AIDS-dementia can be up to twenty times higher than normal (PMID: 10936623). Quinolinic acid levels are increased in the brains of children infected with a range of bacterial infections of the central nervous system (CNS), of poliovirus patients, and of Lyme disease with CNS involvement patients. In addition, raised quinolinic acid levels have been found in traumatic CNS injury patients, patients suffering from cognitive decline with ageing, hyperammonaemia patients, hypoglycaemia patients, and systemic lupus erythematosus patients. Quinolinic acid has also been detected, but not quantified in, several different foods, such as Ceylon cinnamons, pitanga, Oregon yampahs, red bell peppers, and durians. This could make quinolinic acid a potential biomarker for the consumption of these foods. Quinolinic acid, also known as pyridine-2,3-dicarboxylate or 2,3-pyridinedicarboxylic acid, is a member of the class of compounds known as pyridinecarboxylic acids. Pyridinecarboxylic acids are compounds containing a pyridine ring bearing a carboxylic acid group. Quinolinic acid is slightly soluble (in water) and an extremely strong acidic compound (based on its pKa). Quinolinic acid can be found in a number of food items such as coconut, pistachio, chinese chives, and common bean, which makes quinolinic acid a potential biomarker for the consumption of these food products. Quinolinic acid can be found primarily in blood, cerebrospinal fluid (CSF), and urine, as well as throughout most human tissues. Quinolinic acid exists in all living species, ranging from bacteria to humans. In humans, quinolinic acid is involved in a couple of metabolic pathways, which include nicotinate and nicotinamide metabolism and tryptophan metabolism. Moreover, quinolinic acid is found to be associated with malaria, anemia, cNS tumors, and aIDS. Quinolinic acid has a potent neurotoxic effect. Studies have demonstrated that quinolinic acid may be involved in many psychiatric disorders, neurodegenerative processes in the brain, as well as other disorders. Within the brain, quinolinic acid is only produced by activated microglia and macrophages . Quinolinic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=89-00-9 (retrieved 2024-07-09) (CAS RN: 89-00-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Quinolinic acid is an endogenous N-methyl-D-aspartate (NMDA) receptor agonist synthesized from L-tryptophan via the kynurenine pathway and thereby has the potential of mediating N-methyl-D-aspartate neuronal damage and dysfunction[1][2]. Quinolinic acid is an endogenous N-methyl-D-aspartate (NMDA) receptor agonist synthesized from L-tryptophan via the kynurenine pathway and thereby has the potential of mediating N-methyl-D-aspartate neuronal damage and dysfunction[1][2].
Pyridoxal 5'-phosphate
Pyridoxal phosphate, also known as PLP, pyridoxal 5-phosphate or P5P, is the active form of vitamin B6. It is a coenzyme in a variety of enzymatic reactions. Pyridoxal 5-phosphate belongs to the class of organic compounds known as pyridoxals and derivatives. Pyridoxals and derivatives are compounds containing a pyridoxal moiety, which consists of a pyridine ring substituted at positions 2,3,4, and 5 by a methyl group, a hydroxyl group, a carbaldehyde group, and a hydroxymethyl group, respectively. Pyridoxal 5-phosphate is a drug which is used for nutritional supplementation and for treating dietary shortage or imbalance. Pyridoxal 5-phosphate exists in all living species, ranging from bacteria to humans. In humans, pyridoxal 5-phosphate is involved in glycine and serine metabolism. Outside of the human body, pyridoxal 5-phosphate is found, on average, in the highest concentration within cow milk. Pyridoxal 5-phosphate has also been detected, but not quantified in several different foods, such as soursops, italian sweet red peppers, muscadine grapes, european plums, and blackcurrants. Pyridoxal 5-phosphate, with regard to humans, has been found to be associated with several diseases such as epilepsy, early-onset, vitamin B6-dependent, odontohypophosphatasia, pyridoxamine 5-prime-phosphate oxidase deficiency, and hypophosphatasia. Pyridoxal 5-phosphate has also been linked to the inborn metabolic disorder celiac disease. This is the active form of vitamin B6 serving as a coenzyme for synthesis of amino acids, neurotransmitters (serotonin, norepinephrine), sphingolipids, aminolevulinic acid. During transamination of amino acids, pyridoxal phosphate is transiently converted into pyridoxamine phosphate (pyridoxamine). -- Pubchem; Pyridoxal-phosphate (PLP, pyridoxal-5-phosphate) is a cofactor of many enzymatic reactions. It is the active form of vitamin B6 which comprises three natural organic compounds, pyridoxal, pyridoxamine and pyridoxine. -- Wikipedia [HMDB]. Pyridoxal 5-phosphate is found in many foods, some of which are linden, kai-lan, nance, and rose hip. Acquisition and generation of the data is financially supported in part by CREST/JST. A - Alimentary tract and metabolism > A11 - Vitamins D018977 - Micronutrients > D014815 - Vitamins KEIO_ID P038 Pyridoxal phosphate is the active form of vitamin B6, acts as an inhibitor of reverse transcriptases, and is used for the treatment of tardive dyskinesia.
4-Hydroxyphenylpyruvic acid
3-(4-hydroxy-phenyl)pyruvic acid, also known as 4-hydroxy a-oxobenzenepropanoate or 3-(p-hydroxyphenyl)-2-oxopropanoate, belongs to phenylpyruvic acid derivatives class of compounds. Those are compounds containing a phenylpyruvic acid moiety, which consists of a phenyl group substituted at the second position by an pyruvic acid. 3-(4-hydroxy-phenyl)pyruvic acid is slightly soluble (in water) and a moderately acidic compound (based on its pKa). 3-(4-hydroxy-phenyl)pyruvic acid can be synthesized from pyruvic acid. 3-(4-hydroxy-phenyl)pyruvic acid can also be synthesized into 4-hydroxyphenylpyruvic acid oxime. 3-(4-hydroxy-phenyl)pyruvic acid can be found in a number of food items such as garden onion (variety), rose hip, sourdough, and horseradish tree, which makes 3-(4-hydroxy-phenyl)pyruvic acid a potential biomarker for the consumption of these food products. 3-(4-hydroxy-phenyl)pyruvic acid can be found primarily in blood and urine, as well as in human prostate tissue. 3-(4-hydroxy-phenyl)pyruvic acid exists in all eukaryotes, ranging from yeast to humans. In humans, 3-(4-hydroxy-phenyl)pyruvic acid is involved in few metabolic pathways, which include disulfiram action pathway, phenylalanine and tyrosine metabolism, and tyrosine metabolism. 3-(4-hydroxy-phenyl)pyruvic acid is also involved in several metabolic disorders, some of which include tyrosinemia type I, phenylketonuria, tyrosinemia, transient, of the newborn, and alkaptonuria. Moreover, 3-(4-hydroxy-phenyl)pyruvic acid is found to be associated with hawkinsinuria and phenylketonuria. 4-Hydroxyphenylpyruvic acid (4-HPPA) is a keto acid that is involved in the tyrosine catabolism pathway. It is a product of the enzyme (R)-4-hydroxyphenyllactate dehydrogenase (EC 1.1.1.222) and is formed during tyrosine metabolism. The conversion from tyrosine to 4-HPPA is catalyzed by tyrosine aminotransferase. Additionally, 4-HPPA can be converted to homogentisic acid which is one of the precursors to ochronotic pigment. The enzyme 4-hydroxyphenylpyruvic acid dioxygenase (HPD) catalyzes the reaction that converts 4-hydroxyphenylpyruvic acid to homogentisic acid. A deficiency in the catalytic activity of HPD is known to lead to tyrosinemia type III, an autosomal recessive disorder characterized by elevated levels of blood tyrosine and massive excretion of tyrosine derivatives into urine. It has been shown that hawkinsinuria, an autosomal dominant disorder characterized by the excretion of hawkinsin, may also be a result of HPD deficiency (PMID: 11073718). Moreover, 4-hydroxyphenylpyruvic acid is also found to be associated in phenylketonuria, which is also an inborn error of metabolism. There are two isomers of HPPA, specifically 4HPPA and 3HPPA, of which 4HPPA is the most common. 4-HPPA has been found to be a microbial metabolite in Escherichia (ECMDB). KEIO_ID H007 4-Hydroxyphenylpyruvic acid is an intermediate in the metabolism of the amino acid phenylalanine. 4-Hydroxyphenylpyruvic acid is an intermediate in the metabolism of the amino acid phenylalanine.
DL-Malic acid
Malic acid (CAS: 6915-15-7) is a tart-tasting organic dicarboxylic acid that plays a role in many sour or tart foods. Apples contain malic acid, which contributes to the sourness of a green apple. Malic acid can make a wine taste tart, although the amount decreases with increasing fruit ripeness (Wikipedia). In its ionized form, malic acid is called malate. Malate is an intermediate of the TCA cycle along with fumarate. It can also be formed from pyruvate as one of the anaplerotic reactions. In humans, malic acid is both derived from food sources and synthesized in the body through the citric acid cycle or Krebs cycle which takes place in the mitochondria. Malates importance to the production of energy in the body during both aerobic and anaerobic conditions is well established. Under aerobic conditions, the oxidation of malate to oxaloacetate provides reducing equivalents to the mitochondria through the malate-aspartate redox shuttle. During anaerobic conditions, where a buildup of excess reducing equivalents inhibits glycolysis, malic acids simultaneous reduction to succinate and oxidation to oxaloacetate is capable of removing the accumulating reducing equivalents. This allows malic acid to reverse hypoxias inhibition of glycolysis and energy production. In studies on rats, it has been found that only tissue malate is depleted following exhaustive physical activity. Other key metabolites from the citric acid cycle needed for energy production were found to be unchanged. Because of this, a deficiency of malic acid has been hypothesized to be a major cause of physical exhaustion. Notably, the administration of malic acid to rats has been shown to elevate mitochondrial malate and increase mitochondrial respiration and energy production. Malic acid has been found to be a metabolite in Aspergillus (Hugo Vanden Bossche, D.W.R. Mackenzie and G. Cauwenbergh. Aspergillus and Aspergillosis, 1987). Acidulant, antioxidant, flavouring agent, flavour enhancer. Not for use in baby foods (GRAS) Malic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=617-48-1 (retrieved 2024-07-01) (CAS RN: 6915-15-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). (S)-Malic acid ((S)-2-Hydroxysuccinic acid) is a dicarboxylic acid in naturally occurring form, contributes to the pleasantly sour taste of fruits and is used as a food additive. (S)-Malic acid ((S)-2-Hydroxysuccinic acid) is a dicarboxylic acid in naturally occurring form, contributes to the pleasantly sour taste of fruits and is used as a food additive. Malic acid (Hydroxybutanedioic acid) is a dicarboxylic acid that is naturally found in fruits such as apples and pears. It plays a role in many sour or tart foods. Malic acid (Hydroxybutanedioic acid) is a dicarboxylic acid that is naturally found in fruits such as apples and pears. It plays a role in many sour or tart foods.
Threonic acid
Threonic acid, also known as threonate, belongs to the class of organic compounds known as sugar acids and derivatives. Sugar acids and derivatives are compounds containing a saccharide unit which bears a carboxylic acid group. Threonic acid is a sugar acid derived from threose. The L-isomer is a metabolite of ascorbic acid (vitamin C). One study suggested that because L-threonate inhibits DKK1 expression in vitro, it may have potential in the treatment of androgenic alopecia (PMID:21034532). Threonic acid is probably derived from glycated proteins or from degradation of ascorbic acid. It is a normal component in aqueous humour and blood (PMID:10420182). Threonic acid is a substrate of L-threonate 3-dehydrogenase (EC 1.1.1.129) in the ascorbate and aldarate metabolism pathway (KEGG). It has been found to be a microbial metabolite (PMID:20615997). L-threonic acid, also known as L-threonate or L-threonic acid magnesium salt, belongs to sugar acids and derivatives class of compounds. Those are compounds containing a saccharide unit which bears a carboxylic acid group. L-threonic acid is soluble (in water) and a weakly acidic compound (based on its pKa). L-threonic acid can be found in a number of food items such as buffalo currant, yam, purslane, and bayberry, which makes L-threonic acid a potential biomarker for the consumption of these food products. L-threonic acid can be found primarily in blood. Threonic acid is a sugar acid derived from threose. The L-isomer is a metabolite of ascorbic acid (vitamin C). One study suggested that because L-threonate inhibits DKK1 expression in vitro, it may have potential in treatment of androgenic alopecia .
Porphobilinogen
Porphobilinogen (PBG) is a pyrrole-containing intermediate in the biosynthesis of porphyrins. It is generated from aminolevulinate (ALA) by the enzyme ALA dehydratase. Porphobilinogen is then converted into hydroxymethylbilane by the enzyme porphobilinogen deaminase (also known as hydroxymethylbilane synthase). Under certain conditions, porphobilinogen can act as a phototoxin, a neurotoxin, and a metabotoxin. A phototoxin leads to cell damage upon exposure to light. A neurotoxin causes damage to nerve cells and nerve tissues. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of porphyrins are associated with porphyrias such as porphyria variegate, acute intermittent porphyria, and hereditary coproporphyria (HCP). There are several types of porphyrias (most are inherited). Hepatic porphyrias are characterized by acute neurological attacks (seizures, psychosis, extreme back and abdominal pain, and an acute polyneuropathy), while the erythropoietic forms present with skin problems (usually a light-sensitive blistering rash and increased hair growth). The neurotoxicity of porphyrins may be due to their selective interactions with tubulin, which disrupt microtubule formation and cause neural malformations (PMID: 3441503). Porphobilinogen is a pyrrole involved in porphyrin metabolism. -- Wikipedia; It consists of a pyrrole ring with acetyl, propionyl, and aminomethyl side chains; It is a key monopyrrolic intermediate in porphyrin, chlorophyll and vitamin B12 biosynthesis. Porphobilinogen is generated by the enzyme ALA dehydratase by combining two molecules of dALA together, and converted into hydroxymethyl bilane by the enzyme porphobilinogen deaminase. 4 molecules of porphobilinogen are condensed to form one molecule of uroporphyrinogen III, which is then converted successively to coproporphyrinogen III, protoporphyrin IX, and heme. Porphobilinogen is produced in excess and excreted in the urine in acute intermittent porphyria and several other porphyrias. [HMDB]. Porphobilinogen is found in many foods, some of which are strawberry guava, amaranth, parsnip, and ostrich fern.
Diethylphosphate
Diethylphosphate is product of metabolism and of environmental degradation of Chlorpyrifos (CPF; a commonly used diethylphosphorothionate organophosphorus (OP) insecticide) and are routinely measured in urine as biomarkers of exposure. (PMID: 17590257). [HMDB] Diethylphosphate is product of metabolism and of environmental degradation of Chlorpyrifos (CPF; a commonly used diethylphosphorothionate organophosphorus (OP) insecticide) and are routinely measured in urine as biomarkers of exposure. (PMID: 17590257). KEIO_ID D141 Diethylphosphate (DEP) is product of metabolism and of environmental degradation of a commonly used insecticide Chlorpyrifos.
Mevalonic acid
Mevalonic acid, also known as MVA, mevalonate, or hiochic acid, belongs to the class of organic compounds known as hydroxy fatty acids. These are fatty acids in which the chain bears a hydroxyl group. Mevalonic acid is a key organic compound in biochemistry. It is found in most higher organisms ranging from plants to animals. Mevalonic acid is a precursor in the biosynthetic pathway known as the mevalonate pathway that produces terpenes (in plants) and steroids (in animals). Mevalonic acid is the primary precursor of isopentenyl pyrophosphate (IPP), that is in turn the basis for all terpenoids. The production of mevalonic acid by the enzyme 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, is the rate-limiting step in the biosynthesis of cholesterol (PMID: 12872277). The cholesterol biosynthetic pathway has three major steps: (1) acetate to mevalonate, (2) mevalonate to squalene, and (3) squalene to cholesterol. In the first step, which catalyzed by thiolase, two acetyl-CoA molecules form acetoacetyl-CoA and one CoA molecule is released, then the acetoacetyl-CoA reacts with another molecule of acetyl-CoA and generates 3-hydroxy-3-methylglutaryl-CoA (HMGCoA). The enzyme responsible for this reaction is 3-hydroxy-3-methylglutaryl-CoA synthase (HMG-CoA synthase): In the pathway to synthesize cholesterol, one of the HMG-CoA carboxyl groups undergoes reduction to an alcohol, releasing CoA, leading to the formation of mevalonate, a six carbon compound. This reaction is catalyzed by hydroxy-methylglutaryl-CoA reductase, In the second step (mevalonate to squalene) mevalonate receives a phosphoryl group from ATP to form 5-phosphomevalonate. This compound accepts another phosphate to generate mevalonate-5-pyrophosphate. After a third phosphorylation, the compound is decarboxylated, loses water, and generates isopentenyl pyrophosphate (IPP). Then through successive condensations, IPP forms squalene, a terpene hydrocarbon that contains 30 carbon atoms. By cyclization and other changes, this compound will finally result in cholesterol. Mevalonic acid is found, on average, in the highest concentration within a few different foods, such as apples, corns, and wild carrots and in a lower concentration in garden tomato (var.), pepper (C. frutescens), and cucumbers. Mevalonic acid has also been detected, but not quantified in, several different foods, such as sweet oranges, potato, milk (cow), cabbages, and white cabbages. This could make mevalonic acid a potential biomarker for the consumption of these foods. Plasma concentrations and urinary excretion of MVA are decreased by HMG-CoA reductase inhibitor drugs such as pravastatin, simvastatin, and atorvastatin (PMID: 8808497). Mevalonic acid (MVA) is a key organic compound in biochemistry. The anion of mevalonic acid, the predominant form in biological media, is known as mevalonate. This compound is of major pharmaceutical importance. Drugs, such as the statins, stop the production of mevalonate by inhibiting HMG-CoA reductase. [Wikipedia]. Mevalonic acid is found in many foods, some of which are pepper (c. frutescens), cabbage, wild carrot, and white cabbage.
Ellagic acid
Ellagic acid appears as cream-colored needles (from pyridine) or yellow powder. Odorless. (NTP, 1992) Ellagic acid is an organic heterotetracyclic compound resulting from the formal dimerisation of gallic acid by oxidative aromatic coupling with intramolecular lactonisation of both carboxylic acid groups of the resulting biaryl. It is found in many fruits and vegetables, including raspberries, strawberries, cranberries, and pomegranates. It has a role as an antioxidant, a food additive, a plant metabolite, an EC 5.99.1.2 (DNA topoisomerase) inhibitor, an EC 5.99.1.3 [DNA topoisomerase (ATP-hydrolysing)] inhibitor, an EC 1.14.18.1 (tyrosinase) inhibitor, an EC 2.3.1.5 (arylamine N-acetyltransferase) inhibitor, an EC 2.4.1.1 (glycogen phosphorylase) inhibitor, an EC 2.5.1.18 (glutathione transferase) inhibitor, an EC 2.7.1.127 (inositol-trisphosphate 3-kinase) inhibitor, an EC 2.7.1.151 (inositol-polyphosphate multikinase) inhibitor, an EC 2.7.4.6 (nucleoside-diphosphate kinase) inhibitor, a skin lightening agent, a fungal metabolite, an EC 2.7.7.7 (DNA-directed DNA polymerase) inhibitor and a geroprotector. It is an organic heterotetracyclic compound, a cyclic ketone, a lactone, a member of catechols and a polyphenol. It is functionally related to a gallic acid. Ellagic acid is present in several fruits such as cranberries, strawberries, raspberries, and pomegranates. In pomegranates, there are several therapeutic compounds but ellagic acid is the most active and abundant. Ellagic acid is also present in vegetables. Ellagic acid is an investigational drug studied for treatment of Follicular Lymphoma (phase 2 trial), protection from brain injury of intrauterine growth restricted babies (phase 1 and 2 trial), improvement of cardiovascular function in adolescents who are obese (phase 2 trial), and topical treatment of solar lentigines. Ellagic acids therapeutic action mostly involves antioxidant and anti-proliferative effects. Ellagic acid is a natural product found in Fragaria chiloensis, Metrosideros perforata, and other organisms with data available. Ellagic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A fused four ring compound occurring free or combined in galls. Isolated from the kino of Eucalyptus maculata Hook and E. Hemipholia F. Muell. Activates Factor XII of the blood clotting system which also causes kinin release; used in research and as a dye. Ellagic acid is an organic heterotetracyclic compound resulting from the formal dimerisation of gallic acid by oxidative aromatic coupling with intramolecular lactonisation of both carboxylic acid groups of the resulting biaryl. It is found in many fruits and vegetables, including raspberries, strawberries, cranberries, and pomegranates. It has a role as an antioxidant, a food additive, a plant metabolite, an EC 5.99.1.2 (DNA topoisomerase) inhibitor, an EC 5.99.1.3 [DNA topoisomerase (ATP-hydrolysing)] inhibitor, an EC 1.14.18.1 (tyrosinase) inhibitor, an EC 2.3.1.5 (arylamine N-acetyltransferase) inhibitor, an EC 2.4.1.1 (glycogen phosphorylase) inhibitor, an EC 2.5.1.18 (glutathione transferase) inhibitor, an EC 2.7.1.127 (inositol-trisphosphate 3-kinase) inhibitor, an EC 2.7.1.151 (inositol-polyphosphate multikinase) inhibitor, an EC 2.7.4.6 (nucleoside-diphosphate kinase) inhibitor, a skin lightening agent, a fungal metabolite and an EC 2.7.7.7 (DNA-directed DNA polymerase) inhibitor. It is an organic heterotetracyclic compound, a cyclic ketone, a lactone, a member of catechols and a polyphenol. It derives from a gallic acid. Ellagic acid, also known as ellagate, belongs to the class of organic compounds known as hydrolyzable tannins. These are tannins with a structure characterized by either of the following models. In model 1, the structure contains galloyl units (in some cases, shikimic acid units) that are linked to diverse polyol carbohydrate-, catechin-, or triterpenoid units. In model 2, contains at least two galloyl units C-C coupled to each other, and do not contain a glycosidically linked catechin unit. The antiproliferative and antioxidant properties of ellagic acid have spurred preliminary research into the potential health benefits of ellagic acid consumption. Ellagic acids therapeutic action mostly involves antioxidant and anti-proliferative/anti-cancer effects. Ellagic acid is found, on average, in the highest concentration within a few different foods, such as chestnuts, common walnuts, and japanese walnuts and in a lower concentration in whiskies, arctic blackberries, and cloudberries. Ellagic acid has also been detected, but not quantified in several different foods, such as lowbush blueberries, bilberries, guava, strawberry guava, and bog bilberries. An organic heterotetracyclic compound resulting from the formal dimerisation of gallic acid by oxidative aromatic coupling with intramolecular lactonisation of both carboxylic acid groups of the resulting biaryl. It is found in many fruits and vegetables, including raspberries, strawberries, cranberries, and pomegranates. Widely distributed in higher plants especies dicotyledons. Intestinal astringent, dietary role disputed. Nutriceutical with anticancer and antioxidation props. Ellagic acid is a natural antioxidant, and acts as a potent and ATP-competitive CK2 inhibitor, with an IC50 of 40 nM and a Ki of 20 nM. Ellagic acid is a natural antioxidant, and acts as a potent and ATP-competitive CK2 inhibitor, with an IC50 of 40 nM and a Ki of 20 nM.
2-Methylbenzoic acid
o-Toluic acid, also 2-methylbenzoic acid, is an aromatic carboxylic acid, with formula (CH3)C6H4(COOH). -- Wikipedia; It is an isomer of p-toluic acid and m-toluic acid. -- Wikipedia KEIO_ID T038 o-Toluic acid (2-Methylbenzoic acid) is a benzoic acid?substituted by a?methyl?group at position 2. O-Toluic acid plays a role as a xenobiotic metabolite.
Equol
Equol is a metabolite of daidzein, a phytoestrogen common in the human diet and abundant in soy. Intestinal bacteria in humans can reduce daidzein to equol, and can be found in normal human urine. The clinical effectiveness of soy isoflavones may be a function of the ability to biotransform soy isoflavones to the more potent estrogenic metabolite, equol, which may enhance the actions of soy isoflavones, owing to its greater affinity for estrogen receptors, unique antiandrogenic properties, and superior antioxidant activity. However, not all individuals consuming daidzein produce equol. Only approximately one-third to one-half of the population is able to metabolize daidzein to equol. This high variability in equol production is presumably attributable to interindividual differences in the composition of the intestinal microflora, which may play an important role in the mechanisms of action of isoflavones. (PMID: 17579895, 17579894). Equol can be found in Bacteroides, Bifidobacterium, Enterococcus, Lactobacillus and Eggerthella (PMID: 20519412; PMID: 18838805). Equol is a metabolite of daidzein, a phytoestrogen common in the human diet and abundant in soy. Intestinal bacteria in humans can reduce daidzein to equol, and can be found in normal human urine. The clinical effectiveness of soy isoflavones may be a function of the ability to biotransform soy isoflavones to the more potent estrogenic metabolite, equol, which may enhance the actions of soy isoflavones, owing to its greater affinity for estrogen receptors, unique antiandrogenic properties, and superior antioxidant activity. However, not all individuals consuming daidzein produce equol. Only approximately one-third to one-half of the population is able to metabolize daidzein to equol. This high variability in equol production is presumably attributable to interindividual differences in the composition of the intestinal microflora, which may play an important role in the mechanisms of action of isoflavones. (PMID: 17579895, 17579894) [HMDB] D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen (-)-(S)-Equol is a high affinity ligand for estrogen receptor β with a Ki of 0.73 nM. (-)-(S)-Equol is a high affinity ligand for estrogen receptor β with a Ki of 0.73 nM. (-)-(S)-Equol is a high affinity ligand for estrogen receptor β with a Ki of 0.73 nM. (-)-(S)-Equol is a high affinity ligand for estrogen receptor β with a Ki of 0.73 nM. (±)-Equol is the racemate of equol. (±)-equol exhibits EC50s of 200 and 74 nM for human ERα and ERβ, respectively. Equol is a metabolite of the soy isoflavones, daidzin and daidzein.
N-acetylaspartate (NAA)
N-Acetyl-L-Aspartic acid (NAA) or N-Acetylaspartic acid, belongs to the class of organic compounds known as N-acyl-alpha amino acids. N-acyl-alpha amino acids are compounds containing an alpha amino acid which bears an acyl group at its terminal nitrogen atom. N-alpha-Acetyl-L-aspartic acid can also be classified as an alpha amino acid or a derivatized alpha amino acid. Technically, N-Acetyl-L-aspartic acid is a biologically available N-terminal capped form of the proteinogenic alpha amino acid L-aspartic acid. N-acetyl amino acids can be produced either via direct synthesis of specific N-acetyltransferases or via the proteolytic degradation of N-acetylated proteins by specific hydrolases. N-terminal acetylation of proteins is a widespread and highly conserved process in eukaryotes that is involved in protection and stability of proteins (PMID: 16465618). About 85\\\% of all human proteins and 68\\\% of all yeast proteins are acetylated at their N-terminus (PMID: 21750686). Several proteins from prokaryotes and archaea are also modified by N-terminal acetylation. The majority of eukaryotic N-terminal-acetylation reactions occur through N-acetyltransferase enzymes or NAT’s (PMID: 30054468). These enzymes consist of three main oligomeric complexes NatA, NatB, and NatC, which are composed of at least a unique catalytic subunit and one unique ribosomal anchor. The substrate specificities of different NAT enzymes are mainly determined by the identities of the first two N-terminal residues of the target protein. The human NatA complex co-translationally acetylates N-termini that bear a small amino acid (A, S, T, C, and occasionally V and G) (PMID: 30054468). NatA also exists in a monomeric state and can post-translationally acetylate acidic N-termini residues (D-, E-). NatB and NatC acetylate N-terminal methionine with further specificity determined by the identity of the second amino acid. N-acetylated amino acids, such as N-acetylaspartate can be released by an N-acylpeptide hydrolase from peptides generated by proteolytic degradation (PMID: 16465618). In addition to the NAT enzymes and protein-based acetylation, N-acetylation of free aspartic acid can also occur. In particular, N-Acetyl-L-aspartic acid can be synthesized in neurons from the amino acid aspartate and acetyl coenzyme A (acetyl CoA). Specifically, the enzyme known as aspartate N-acetyltransferase (EC 2.3.1.17) catalyzes the transfer of the acetyl group of acetyl CoA to the amino group of aspartate. N-Acetyl-L-aspartic acid is the second most concentrated molecule in the brain after the amino acid glutamate. The various functions served by N-acetylaspartic acid are still under investigation, but the primary proposed functions include (1) acting as a neuronal osmolyte that is involved in fluid balance in the brain, (2) serving as a source of acetate for lipid and myelin synthesis in oligodendrocytes (the glial cells that myelinate neuronal axons), (3) serving as a precursor for the synthesis of the important dipeptide neurotransmitter N-acetylaspartylglutamate (NAAG), and (4) playing a potential role in energy production from the amino acid glutamate in neuronal mitochondria. High neurotransmitter (i.e. N-acetylaspartic acid) levels can lead to abnormal neural signaling, delayed or arrested intellectual development, and difficulties with general motor skills. When present in sufficiently high levels, N-acetylaspartic acid can be a neurotoxin, an acidogen, and a metabotoxin. A neurotoxin is a compound that disrupts or attacks neural tissue. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of N-acetylaspartic acid are associated with Canavan disease. Because N-acetylaspartic acid functions as an organic acid and high levels of organic acids can lead to a condition known... N-Acetylaspartic acid is a derivative of aspartic acid. It is the second most concentrated molecule in the brain after the amino acid glutamate. It is synthesized in neurons from the amino acid aspartate and acetyl coenzyme A. The various functions served by N-acetylaspartic acid are still under investigation, but the primary proposed functions include: Acquisition and generation of the data is financially supported in part by CREST/JST. D018377 - Neurotransmitter Agents > D018846 - Excitatory Amino Acids KEIO_ID A142 N-Acetyl-L-aspartic acid is a derivative of aspartic acid.
Phenylpyruvate
Phenylpyruvic acid is a keto-acid that is an intermediate or catabolic byproduct of phenylalanine metabolism. It has a slight honey-like odor. Levels of phenylpyruvate are normally very low in blood or urine. High levels of phenylpyruvic acid can be found in the urine of individuals with phenylketonuria (PKU), an inborn error of metabolism. PKU is due to lack of the enzyme phenylalanine hydroxylase (PAH), so that phenylalanine is converted not to tyrosine but to phenylpyruvic acid. In particular, excessive phenylalanine can be metabolized into phenylketones through, a transaminase pathway route involving glutamate. Metabolites of this transamination reaction include phenylacetate, phenylpyruvate and phenethylamine. In persons with PKU, dietary phenylalanine either accumulates in the body or some of it is converted to phenylpyruvic acid. Individuals with PKU tend to excrete large quantities of phenylpyruvate, phenylacetate and phenyllactate, along with phenylalanine, in their urine. If untreated, mental retardation effects and microcephaly are evident by the first year along with other symptoms which include: unusual irritability, epileptic seizures and skin lesions. Hyperactivity, EEG abnormalities and seizures, and severe learning disabilities are major clinical problems later in life. A "musty or mousy" odor of skin, hair, sweat and urine (due to phenylacetate accumulation); and a tendency to hypopigmentation and eczema are also observed. The neural-development effects of PKU are primarily due to the disruption of neurotransmitter synthesis. In particular, phenylalanine is a large, neutral amino acid which moves across the blood-brain barrier (BBB) via the large neutral amino acid transporter (LNAAT). Excessive phenylalanine in the blood saturates the transporter. Thus, excessive levels of phenylalanine significantly decrease the levels of other LNAAs in the brain. But since these amino acids are required for protein and neurotransmitter synthesis, phenylalanine accumulation disrupts brain development, leading to mental retardation. Phenylpyruvic acid is also a microbial metabolite, it can be produced by Lactobacillus plantarum (PMID: 9687465). Flavouring ingredient Phenylpyruvic acid is used in the synthesis of 3-phenyllactic acid (PLA) by lactate dehydrogenase[1]. Phenylpyruvic acid is used in the synthesis of 3-phenyllactic acid (PLA) by lactate dehydrogenase[1].
Deoxyguanosine
C10H13N5O4 (267.09674980000005)
Deoxyguanosine, also known as dG, belongs to the class of organic compounds known as purine 2-deoxyribonucleosides. Purine 2-deoxyribonucleosides are compounds consisting of a purine linked to a ribose which lacks a hydroxyl group at position 2‚Äô. Deoxyguanosine is a nucleoside consisting of the base guanine and the sugar deoxyribose. Deoxyguanosine is one of the four deoxyribonucleosides that make up DNA. Deoxyguanosine exists in all living species, ranging from bacteria to plants to humans. Deoxyguanosine participates in a number of enzymatic reactions. In particular, deoxyguanosine can be biosynthesized from 2-deoxyguanosine 5-monophosphate through the enzyme known as cytosolic purine 5-nucleotidase. In addition, deoxyguanosine can be converted into 2-deoxyguanosine 5-monophosphate (dGMP); which is mediated by the enzyme deoxyguanosine kinase. Deoxyguanosine is involved in the rare, inherited metabolic disorder called the purine nucleoside phosphorylase deficiency (PNP deficiency). In particular PNP deficiency is characterized by elevated levels of dGTP (deoxyguanosine triphosphate). PNP accounts for approximately 4\\\\% of patients with severe combined immunodeficiency (PMID: 1931007). PNP-deficient patients suffer from recurrent infections, usually beginning in the first year of life. Two thirds of patients have evidence of neurologic disorders with spasticity, developmental delay and mental retardation. Deoxyguanosine can be converted to 8-hydroxy-deoxyguanosine (8-OHdG) due to hydroxyl radical attack at the C8 of guanine. 8-hydroxy-deoxyguanosine is a sensitive marker of the DNA damage This damage, if left unrepaired, has been proposed to contribute to mutagenicity and cancer promotion. Isolated from plants, e.g. Phaseolus vulgaris (kidney bean) COVID info from COVID-19 Disease Map KEIO_ID D057; [MS2] KO008942 KEIO_ID D057 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 2’-Deoxyguanosine (Deoxyguanosine) is a purine nucleoside with a variety of biological activities. 2’-Deoxyguanosine can induce DNA division in mouse thymus cells. 2’-Deoxyguanosine is a potent cell division inhibitor in plant cells[1][2][3]. 2'-Deoxyguanosine (Deoxyguanosine) is deoxyguanosine.
Bisphenol A
Bisphenol A, commonly abbreviated as BPA, is an organic compound with two phenol functional groups. It is a difunctional building block of several important plastics and plastic additives. With an annual production of 2–3 million metric tonnes, it is an important monomer in the production of polycarbonate. It is a potential food contaminant arising from its use in reusable polycarbonate food containers such as water carboys, baby bottles and kitchen utensils D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens D004785 - Environmental Pollutants > D000393 - Air Pollutants D000975 - Antioxidants > D016166 - Free Radical Scavengers D020011 - Protective Agents > D000975 - Antioxidants CONFIDENCE standard compound; EAWAG_UCHEM_ID 163 Bisphenol A is a phenolic, organic synthetic compound widely used in the production of polycarbonate plastics and epoxy resins. Bisphenol A is a reproductive, developmental, and systemic toxicant, often classified as an endocrine-disrupting compound (EDC). Bisphenol A is associated with many diseases, including cardiovascular diseases, respiratory diseases, diabetes, kidney diseases, obesity, and reproductivedisorders[1][2][3].
Glycerol 3-phosphate
Glycerol 3-phosphate, also known as glycerophosphoric acid or alpha-glycerophosphorate, is a member of the class of compounds known as glycerophosphates. Glycerophosphates are compounds containing a glycerol linked to a phosphate group. Glycerol 3-phosphate is soluble (in water) and a moderately acidic compound (based on its pKa). Glycerol 3-phosphate can be found in a number of food items such as sacred lotus, common oregano, mixed nuts, and yautia, which makes glycerol 3-phosphate a potential biomarker for the consumption of these food products. Glycerol 3-phosphate can be found primarily in blood, feces, saliva, and urine, as well as in human prostate tissue. Glycerol 3-phosphate exists in all living species, ranging from bacteria to humans. In humans, glycerol 3-phosphate is involved in several metabolic pathways, some of which include cardiolipin biosynthesis cl(i-12:0/i-21:0/a-21:0/i-21:0), cardiolipin biosynthesis cl(i-12:0/a-25:0/i-13:0/i-12:0), cardiolipin biosynthesis cl(i-13:0/i-21:0/i-21:0/a-25:0), and cardiolipin biosynthesis cl(i-13:0/a-25:0/i-18:0/a-13:0). Glycerol 3-phosphate is also involved in several metabolic disorders, some of which include de novo triacylglycerol biosynthesis tg(i-24:0/19:0/16:0), de novo triacylglycerol biosynthesis TG(16:0/22:4(7Z,10Z,13Z,16Z)/16:1(9Z)), de novo triacylglycerol biosynthesis TG(18:0/18:3(9Z,12Z,15Z)/14:1(9Z)), and de novo triacylglycerol biosynthesis TG(18:3(6Z,9Z,12Z)/22:5(4Z,7Z,10Z,13Z,16Z)/20:2(11Z,14Z)). Glycerol 3-phosphate is a chemical intermediate in the glycolysis metabolic pathway. It is commonly confused with the similarly named glycerate 3-phosphate or glyceraldehyde 3-phosphate. Glycerol 3-phosphate is produced from glycerol, the triose sugar backbone of triglycerides and glycerophospholipids, by the enzyme glycerol kinase. Glycerol 3-phospate may then be converted by dehydrogenation to dihydroxyacetone phosphate (DHAP) by the enzyme glycerol-3-phosphate dehydrogenase. DHAP can then be rearranged into glyceraldehyde 3-phosphate (GA3P) by triose phosphate isomerase (TIM), and feed into glycolysis. The glycerol 3-phosphate shuttle is used to rapidly regenerate NAD+ in the brain and skeletal muscle cells of mammals (wikipedia). Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID G072
D-Glucuronate
Glucuronic acid (CAS: 6556-12-3) is a carboxylic acid that has the structure of a glucose molecule that has had its sixth carbon atom (of six total) oxidized. The salts of glucuronic acid are known as glucuronates. Glucuronic acid is highly soluble in water. In humans, glucuronic acid is often linked to toxic or poisonous substances to allow for subsequent elimination, and to hormones to allow for easier transport. These linkages involve O-glycosidic bonds. The process is known as glucuronidation, and the resulting substances are known as glucuronides (or glucuronosides). Glucuronidation uses UDP-glucuronic acid (glucuronic acid linked via a glycosidic bond to uridine diphosphate) as an intermediate. UDP-glucuronic acid is formed in the liver of all animals. D-Glucuronic acid is an important intermediate isolated from many gums. D-Glucuronic acid and its derivative glucuronolactone are as a liver antidote in the prophylaxis of human health. D-Glucuronic acid has an anti-inflammatory effect for the skin[1]. D-Glucuronic acid is an important intermediate isolated from many gums. D-Glucuronic acid and its derivative glucuronolactone are as a liver antidote in the prophylaxis of human health. D-Glucuronic acid has an anti-inflammatory effect for the skin[1].
Terephthalic acid
Terephthalic acid is a benzenedicarboxylic acid carrying carboxy groups at positions 1 and 4. One of three possible isomers of benzenedicarboxylic acid, the others being phthalic and isophthalic acids. It is a conjugate acid of a terephthalate(1-). Terephthalic acid is one isomer of the three phthalic acids. It finds important use as a commodity chemical, principally as a starting compound for the manufacture of polyester (specifically PET), used in clothing and to make plastic bottles. It is also known as 1,4-benzenedicarboxylic acid, and it has the chemical formula C6H4(COOH)2. Terephthalic acid is one isomer of the three phthalic acids. It finds important use as a commodity chemical, principally as a starting compound for the manufacture of polyester (specifically PET), used in clothing and to make plastic bottles. It is also known as 1,4-benzenedicarboxylic acid, and it has the chemical formula C6H4(COOH)2. -- Wikipedia [HMDB] CONFIDENCE standard compound; INTERNAL_ID 889; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3335; ORIGINAL_PRECURSOR_SCAN_NO 3333 CONFIDENCE standard compound; INTERNAL_ID 889; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3324; ORIGINAL_PRECURSOR_SCAN_NO 3322 CONFIDENCE standard compound; INTERNAL_ID 889; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3316; ORIGINAL_PRECURSOR_SCAN_NO 3314 CONFIDENCE standard compound; INTERNAL_ID 889; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3300; ORIGINAL_PRECURSOR_SCAN_NO 3298 CONFIDENCE standard compound; INTERNAL_ID 889; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3319; ORIGINAL_PRECURSOR_SCAN_NO 3316 D000975 - Antioxidants > D016166 - Free Radical Scavengers D020011 - Protective Agents > D000975 - Antioxidants KEIO_ID T100 Terephthalic acid is one isomer of the three phthalic, a precursor to the polyester PET, used to make clothing and plastic bottles. Terephthalic acid is one isomer of the three phthalic, a precursor to the polyester PET, used to make clothing and plastic bottles.
Sedoheptulose 7-phosphate
KEIO_ID S083
3-Hydroxyl kyneurenine
Hydroxykynurenine is a free radical generator and a bioprecursor quinolinic acid which is a endogenous excitotoxin (PMID 16697652). It is a product of enzyme kynurenine 3-monooxygenase in the tryptophan catabolism pathway (Reactome http://www.reactome.org). [HMDB] Hydroxykynurenine is a free radical generator and a bioprecursor quinolinic acid which is a endogenous excitotoxin (PMID 16697652). It is a product of enzyme kynurenine 3-monooxygenase in the tryptophan catabolism pathway (Reactome http://www.reactome.org). Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CBA12_3-OH-kynurenine_pos_20eV_1-4_01_802.txt [Raw Data] CBA12_3-OH-kynurenine_pos_10eV_1-4_01_801.txt [Raw Data] CBA12_3-OH-kynurenine_pos_50eV_1-4_01_805.txt [Raw Data] CBA12_3-OH-kynurenine_pos_40eV_1-4_01_804.txt [Raw Data] CBA12_3-OH-kynurenine_pos_30eV_1-4_01_803.txt C26170 - Protective Agent > C275 - Antioxidant KEIO_ID H050; [MS3] KO009001 KEIO_ID H050; [MS2] KO009000 KEIO_ID H050
Glucose 6-phosphate
Glucose 6 phosphate (alpha-D-glucose 6 phosphate or G6P) is the alpha-anomer of glucose-6-phosphate. There are two anomers of glucose 6 phosphate, the alpha anomer and the beta anomer. Glucose 6 phosphate is an ester of glucose with phosphoric acid, made in the course of glucose metabolism by mammalian and other cells. It is a normal constituent of resting muscle and probably is in constant equilibrium with fructose-6-phosphate. (Stedman, 26th ed). Glucose-6-phosphate is a phosphorylated glucose molecule on carbon 6. When glucose enters a cell, it is immediately phosphorylated to G6P. This is catalyzed with hexokinase enzymes, thus consuming one ATP. A major reason for immediate phosphorylation of the glucose is so that it cannot diffuse out of the cell. The phosphorylation adds a charged group so the G6P cannot easily cross cell membranes. G6P can travel down two metabolic pathways, glycolysis and the pentose phosphate pathway. In addition to the metabolic pathways, G6P can also be stored as glycogen in the liver if blood glucose levels are high. If the body needs energy or carbon skeletons for syntheses, G6P can be isomerized to Fructose-6-phosphate and then phosphorylated to Fructose-1,6-bisphosphate. Note, the molecule now has 2 phosphoryl groups attached. The addition of the 2nd phosphoryl group is an irreversible step, so once this happens G6P will enter glycolysis and be turned into pyruvate (ATP production occurs). If blood glucose levels are high, the body needs a way to store the excess glucose. After being converted to G6P, phosphoglucose mutase (isomerase) can turn the molecule into glucose-1-phosphate. Glucose-1-phosphate can then be combined with uridine triphosphate (UTP) to form UDP-glucose. This reaction is driven by the hydrolysis of pyrophosphate that is released in the reaction. Now, the activated UDP-glucose can add to a growing glycogen molecule with the help of glycogen synthase. This is a very efficient storage mechanism for glucose since it costs the body only 1 ATP to store the 1 glucose molecule and virtually no energy to remove it from storage. It is important to note that glucose-6-phosphate is an allosteric activator of glycogen synthase, which makes sense because when the level of glucose is high the body should store the excess glucose as glycogen. On the other hand, glycogen synthase is inhibited when it is phosphorylated by protein kinase a during times of high stress or low blood glucose levels. -- Wikipedia [HMDB] Glucose 6-phosphate (G6P, sometimes called the Robison ester) is a glucose sugar phosphorylated at the hydroxy group on carbon 6. Glucose 6-phosphate (G6P) has two anomers: the alpha anomer and the beta anomer. Glucose 6-phosphate is an ester of glucose with phosphoric acid, made in the course of glucose metabolism by mammalian and other cells. It is a normal constituent of resting muscle and probably is in constant equilibrium with fructose 6-phosphate (Stedman, 26th ed). When glucose enters a cell, it is immediately phosphorylated to G6P. This is catalyzed with hexokinase enzymes, thus consuming one ATP. A major reason for immediate phosphorylation of the glucose is so that it cannot diffuse out of the cell. The phosphorylation adds a charged group so the G6P cannot easily cross cell membranes. G6P can travel down two metabolic pathways: glycolysis and the pentose phosphate pathway. In addition to the metabolic pathways, G6P can also be stored as glycogen in the liver if blood glucose levels are high. If the body needs energy or carbon skeletons for syntheses, G6P can be isomerized to fructose 6-phosphate and then phosphorylated to fructose 1,6-bisphosphate. Note, the molecule now has 2 phosphoryl groups attached. The addition of the 2nd phosphoryl group is an irreversible step, so once this happens G6P will enter glycolysis and be turned into pyruvate (ATP production occurs). If blood glucose levels are high, the body needs a way to store the excess glucose. After being converted to G6P, phosphoglucose mutase (an isomerase) can turn the molecule into glucose 1-phosphate. Glucose 1-phosphate can then be combined with uridine triphosphate (UTP) to form UDP-glucose. This reaction is driven by the hydrolysis of pyrophosphate that is released in the reaction. Now, the activated UDP-glucose can add to a growing glycogen molecule with the help of glycogen synthase. This is a very efficient storage mechanism for glucose since it costs the body only 1 ATP to store the 1 glucose molecule and virtually no energy to remove it from storage. It is important to note that glucose 6-phosphate is an allosteric activator of glycogen synthase, which makes sense because when the level of glucose is high the body should store the excess glucose as glycogen. On the other hand, glycogen synthase is inhibited when it is phosphorylated by protein kinase during times of high stress or low blood glucose levels. Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 237 KEIO_ID G003; [MS2] KO009109 KEIO_ID G003
Glucosamine
Glucosamine (C6H13NO5) is an amino sugar and a prominent precursor in the biochemical synthesis of glycosylated proteins and lipids. Glucosamine is part of the structure of two polysaccharides, chitosan and chitin. Glucosamine is one of the most abundant monosaccharides. Produced commercially by the hydrolysis of shellfish exoskeletons or, less commonly, by fermentation of a grain such as corn or wheat, glucosamine has many names depending on country. Although a common dietary supplement, there is little evidence that it is effective for relief of arthritis or pain, and is not an approved prescription drug. In the United States, glucosamine is not approved by the Food and Drug Administration for medical use in humans. Since glucosamine is classified as a dietary supplement, evidence of safety and efficacy is not required as long as it is not advertised as a treatment for a medical condition. Nevertheless, glucosamine is a popular alternative medicine used by consumers for the treatment of osteoarthritis. Glucosamine is also extensively used in veterinary medicine as an unregulated but widely accepted supplement. Treatment with oral glucosamine is commonly used for the treatment of osteoarthritis. Since glucosamine is a precursor for glycosaminoglycans, and glycosaminoglycans are a major component of joint cartilage, supplemental glucosamine may help to rebuild cartilage and treat arthritis. However, there is little evidence that any clinical effect of glucosamine works this way. Its use as a therapy for osteoarthritis appears safe but there is conflicting evidence as to its effectiveness. Glucosamine is naturally present in the shells of shellfish, animal bones, bone marrow, and fungi. D-Glucosamine is made naturally in the form of glucosamine-6-phosphate, and is the biochemical precursor of all nitrogen-containing sugars. Specifically in humans, glucosamine-6-phosphate is synthesized from fructose 6-phosphate and glutamine by glutamine—fructose-6-phosphate transaminase as the first step of the hexosamine biosynthesis pathway. The end-product of this pathway is uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), which is then used for making glycosaminoglycans, proteoglycans, and glycolipids. As the formation of glucosamine-6-phosphate is the first step for the synthesis of these products, glucosamine may be important in regulating their production; however, the way that the hexosamine biosynthesis pathway is actually regulated, and whether this could be involved in contributing to human disease remains unclear. Present in mucopolysaccharides and in polysaccharides found in bacteria, fungi, higher plants, invertebrates, vertebrates, antibiotics and UDP complexes. Obt. comly. by hydrol. of seashells [CCD] M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID G051 Glucosamine (D-Glucosamine) is an amino sugar and a prominent precursor in the biochemical synthesis of glycosylated proteins and lipids, is used as a dietary supplement. Glucosamine also is a natural constituent of glycosaminoglycans in the cartilage matrix and synovial fluid, which when administered exogenously, exerts pharmacological effects on osteoarthritic cartilage and chondrocytes[1]. Glucosamine (D-Glucosamine) is an amino sugar and a prominent precursor in the biochemical synthesis of glycosylated proteins and lipids, is used as a dietary supplement. Glucosamine also is a natural constituent of glycosaminoglycans in the cartilage matrix and synovial fluid, which when administered exogenously, exerts pharmacological effects on osteoarthritic cartilage and chondrocytes[1]. Glucosamine (D-Glucosamine) is an amino sugar and a prominent precursor in the biochemical synthesis of glycosylated proteins and lipids, is used as a dietary supplement. Glucosamine also is a natural constituent of glycosaminoglycans in the cartilage matrix and synovial fluid, which when administered exogenously, exerts pharmacological effects on osteoarthritic cartilage and chondrocytes[1].
L-Norleucine
L-Norleucine, also known as L-aminohexanoate or caprine, belongs to the class of organic compounds known as l-alpha-amino acids. These are alpha amino acids which have the L-configuration of the alpha-carbon atom. Thus, L-norleucine is considered to be a fatty acid lipid molecule. An unnatural amino acid that is used experimentally to study protein structure and function. L-Norleucine is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. L-Norleucine exists in all eukaryotes, ranging from yeast to humans. Outside of the human body, L-Norleucine has been detected, but not quantified in cow milk. This could make L-norleucine a potential biomarker for the consumption of these foods. It binds reversibly to the kringle domain of plasminogen and blocks the binding of plasminogen to fibrin and its activation to plasmin. An unnatural amino acid that is used experimentally to study protein structure and function. It is structurally similar to methionine, however it does not contain sulfur. Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 22 KEIO_ID N014 L-Norleucine ((S)-2-Aminohexanoic acid) is an isomer of leucine, specifically affects protein synthesis in skeletal muscle, and has antivirus activity.
Pyroglutamic acid
Pyroglutamic acid (5-oxoproline) is a cyclized derivative of L-glutamic acid. It is an uncommon amino acid derivative in which the free amino group of glutamic acid cyclizes to form a lactam. It is formed nonenzymatically from glutamate, glutamine, and gamma-glutamylated peptides, but it can also be produced by the action of gamma-glutamylcyclotransferase on an L-amino acid. Elevated blood levels may be associated with problems of glutamine or glutathione metabolism. This compound is found in substantial amounts in brain tissue and other tissues in bound form, especially skin. It is also present in plant tissues. It is sold, over the counter, as a "smart drug" for improving blood circulation in the brain. Pyroglutamate in the urine is a biomarker for the consumption of cheese. When present in sufficiently high levels, pyroglutamic acid can act as an acidogen and a metabotoxin. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of pyroglutamic acid are associated with at least five inborn errors of metabolism including 5-oxoprolinuria, 5-oxoprolinase deficiency, glutathione synthetase deficiency, hawkinsinuria, and propionic acidemia. Pyroglutamic acid is an organic acid. Abnormally high levels of organic acids in the blood (organic acidemia), urine (organic aciduria), the brain, and other tissues lead to general metabolic acidosis. Acidosis typically occurs when arterial pH falls below 7.35. In infants with acidosis, the initial symptoms include poor feeding, vomiting, loss of appetite, weak muscle tone (hypotonia), and lack of energy (lethargy). These can progress to heart, liver, and kidney abnormalities, seizures, coma, and possibly death. These are also the characteristic symptoms of the untreated IEMs mentioned above. Many affected children with organic acidemias experience intellectual disability or delayed development. In adults, acidosis or acidemia is characterized by headaches, confusion, feeling tired, tremors, sleepiness, and seizures. It has been shown that pyroglutamic acid releases GABA from the cerebral cortex and displays anti-anxiety effects in a simple approach-avoidance conflict situation in the rat. In clinical pharmacology experiments, pyroglutamic acid significantly shortens the plasma half-life of ethanol during acute intoxication. Found in vegetables, fruits and molasses. A cyclized derivative of L-glutamic acid. It is an uncommon amino acid derivative in which the free amino group of glutamic acid cyclizes to form a lactam. Pyroglutamate in the urine is a biomarker for the consumption of cheese C78276 - Agent Affecting Digestive System or Metabolism > C29703 - Antilipidemic Agent
Retinal
A carotenoid constituent of visual pigments. It is the oxidized form of retinol which functions as the active component of the visual cycle. It is bound to the protein opsin forming the complex rhodopsin. When stimulated by visible light, the retinal component of the rhodopsin complex undergoes isomerization at the 11-position of the double bond to the cis-form; this is reversed in "dark" reactions to return to the native trans-configuration. [HMDB]. Retinal is found in many foods, some of which are flaxseed, pepper (c. baccatum), climbing bean, and other soy product. Retinal is a carotenoid constituent of visual pigments. It is the oxidized form of retinol which functions as the active component of the visual cycle. It is bound to the protein opsin forming the complex rhodopsin. When stimulated by visible light, the retinal component of the rhodopsin complex undergoes isomerization at the 11-position of the double bond to the cis-form; this is reversed in "dark" reactions to return to the native trans-configuration. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids CONFIDENCE standard compound; INTERNAL_ID 142
Oleic acid
Oleic acid (or 9Z)-Octadecenoic acid) is an unsaturated C-18 or an omega-9 fatty acid that is the most widely distributed and abundant fatty acid in nature. It occurs naturally in various animal and vegetable fats and oils. It is an odorless, colorless oil, although commercial samples may be yellowish. The name derives from the Latin word oleum, which means oil. Oleic acid is the most abundant fatty acid in human adipose tissue, and the second most abundant in human tissues overall, following palmitic acid. Oleic acid is a component of the normal human diet, being a part of animal fats and vegetable oils. Triglycerides of oleic acid represent the majority of olive oil (about 70\\\\%). Oleic acid triglycerides also make up 59–75\\\\% of pecan oil, 61\\\\% of canola oil, 36–67\\\\% of peanut oil, 60\\\\% of macadamia oil, 20–80\\\\% of sunflower oil, 15–20\\\\% of grape seed oil, sea buckthorn oil, 40\\\\% of sesame oil, and 14\\\\% of poppyseed oil. High oleic variants of plant sources such as sunflower (~80\\\\%) and canola oil (70\\\\%) also have been developed. consumption has been associated with decreased low-density lipoprotein (LDL) cholesterol, and possibly with increased high-density lipoprotein (HDL) cholesterol, however, the ability of oleic acid to raise HDL is still debated. Oleic acid may be responsible for the hypotensive (blood pressure reducing) effects of olive oil that is considered a health benefit. Oleic acid is used in manufacturing of surfactants, soaps, plasticizers. It is also used as an emulsifying agent in foods and pharmaceuticals. Oleic acid is used commercially in the preparation of oleates and lotions, and as a pharmaceutical solvent. Major constituent of plant oils e.g. olive oil (ca. 80\\\\%), almond oil (ca. 80\\\\%) and many others, mainly as glyceride. Constituent of tall oiland is also present in apple, melon, raspberry oil, tomato, banana, roasted peanuts, black tea, rice bran, cardamon, plum brandy, peated malt, dairy products and various animal fats. Component of citrus fruit coatings. Emulsifying agent in foods CONFIDENCE standard compound; INTERNAL_ID 290 COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2]. Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2].
Fluorouracil
Fluorouracil is only found in individuals that have used or taken this drug. It is a pyrimidine analog that is an antineoplastic antimetabolite. It interferes with DNA synthesis by blocking the thymidylate synthetase conversion of deoxyuridylic acid to thymidylic acid. [PubChem]The precise mechanism of action has not been fully determined, but the main mechanism of fluorouracil is thought to be the binding of the deoxyribonucleotide of the drug (FdUMP) and the folate cofactor, N5–10-methylenetetrahydrofolate, to thymidylate synthase (TS) to form a covalently bound ternary complex. This results in the inhibition of the formation of thymidylate from uracil, which leads to the inhibition of DNA and RNA synthesis and cell death. Fluorouracil can also be incorporated into RNA in place of uridine triphosphate (UTP), producing a fraudulent RNA and interfering with RNA processing and protein synthesis. L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01B - Antimetabolites > L01BC - Pyrimidine analogues C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents C471 - Enzyme Inhibitor > C2021 - Thymidylate Synthase Inhibitor CONFIDENCE standard compound; EAWAG_UCHEM_ID 2566 D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents 5-Fluorouracil (5-FU) is an analogue of uracil and a potent antitumor agent. 5-Fluorouracil affects pyrimidine synthesis by inhibiting thymidylate synthetase thus depleting intracellular dTTP pools. 5-Fluorouracil induces apoptosis and can be used as a chemical sensitizer[1][2]. 5-Fluorouracil also inhibits HIV[3].
Linoleic acid
Linoleic acid is a doubly unsaturated fatty acid, also known as an omega-6 fatty acid, occurring widely in plant glycosides. In this particular polyunsaturated fatty acid (PUFA), the first double bond is located between the sixth and seventh carbon atom from the methyl end of the fatty acid (n-6). Linoleic acid is an essential fatty acid in human nutrition because it cannot be synthesized by humans. It is used in the biosynthesis of prostaglandins (via arachidonic acid) and cell membranes (From Stedman, 26th ed). Linoleic acid is found to be associated with isovaleric acidemia, which is an inborn error of metabolism. Linoleic acid (LA) is an organic compound with the formula HOOC(CH2)7CH=CHCH2CH=CH(CH2)4CH3. Both alkene groups (−CH=CH−) are cis. It is a fatty acid sometimes denoted 18:2 (n-6) or 18:2 cis-9,12. A linoleate is a salt or ester of this acid.[5] Linoleic acid is a polyunsaturated, omega-6 fatty acid. It is a colorless liquid that is virtually insoluble in water but soluble in many organic solvents.[2] It typically occurs in nature as a triglyceride (ester of glycerin) rather than as a free fatty acid.[6] It is one of two essential fatty acids for humans, who must obtain it through their diet,[7] and the most essential, because the body uses it as a base to make the others. The word "linoleic" derives from Latin linum 'flax', and oleum 'oil', reflecting the fact that it was first isolated from linseed oil.
Monoethylhexyl phthalic acid
Monoethylhexyl phthalic acid (MEHP) is an active metabolite of Bis(2-ethylhexyl)phthalate (DEHP). DEHP measured from the blood of pregnant women have been significantly associated with the decreased penis width, shorter anogenital distance, and the incomplete descent of testes of their newborn sons, replicating effects identified in animals(Wikipedia). DEHP hydrolyzes to MEHP via the enzyme Bis(2-ethylhexyl)phthalate acylhydrolase(3.1.1.60)and subsequently to phthalate salts. The released alcohol is susceptible to oxidation to the aldehyde and carboxylic acid. Monoethylhexyl phthalic acid (MEHP) is an active metabolite of Bis(2-ethylhexyl)phthalate (DEHP). DEHP measured from the blood of pregnant women have been significantly associated with the decreased penis width, shorter anogenital distance, and the incomplete descent of testes of their newborn sons, replicating effects identified in animals. DEHP hydrolyzes to MEHP via the enzyme Bis(2-ethylhexyl)phthalate acylhydrolase(3.1.1.60)and subsequently to phthalate salts. The released alcohol is susceptible to oxidation to the aldehyde and carboxylic acid. [HMDB] CONFIDENCE standard compound; INTERNAL_ID 1238; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10026; ORIGINAL_PRECURSOR_SCAN_NO 10023 CONFIDENCE standard compound; INTERNAL_ID 1238; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4968; ORIGINAL_PRECURSOR_SCAN_NO 4967 CONFIDENCE standard compound; INTERNAL_ID 1238; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4980; ORIGINAL_PRECURSOR_SCAN_NO 4979 CONFIDENCE standard compound; INTERNAL_ID 1238; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4973; ORIGINAL_PRECURSOR_SCAN_NO 4971 CONFIDENCE standard compound; INTERNAL_ID 1238; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9948; ORIGINAL_PRECURSOR_SCAN_NO 9944 CONFIDENCE standard compound; INTERNAL_ID 1238; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9960; ORIGINAL_PRECURSOR_SCAN_NO 9957 CONFIDENCE standard compound; INTERNAL_ID 1238; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9947; ORIGINAL_PRECURSOR_SCAN_NO 9946 CONFIDENCE standard compound; INTERNAL_ID 1238; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9930; ORIGINAL_PRECURSOR_SCAN_NO 9925 CONFIDENCE standard compound; INTERNAL_ID 1238; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4975; ORIGINAL_PRECURSOR_SCAN_NO 4972 CONFIDENCE standard compound; INTERNAL_ID 1238; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4995; ORIGINAL_PRECURSOR_SCAN_NO 4994 CONFIDENCE standard compound; INTERNAL_ID 1238; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4973; ORIGINAL_PRECURSOR_SCAN_NO 4969 Phthalic acid mono-2-ethylhexyl ester (MEHP) is a major bioactive metabolite of diethylhexyl phthalate (DEHP), which inhibits the 17, 20 lyase activity of CYP17[1]. Phthalic acid mono-2-ethylhexyl ester (MEHP) is a major bioactive metabolite of diethylhexyl phthalate (DEHP), which inhibits the 17, 20 lyase activity of CYP17[1].
Dodecanoic acid
Dodecanoic acid, also known as dodecanoate or lauric acid, belongs to the class of organic compounds known as medium-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 4 and 12 carbon atoms. Dodecanoic acid is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Dodecanoic acid is the main fatty acid in coconut oil and in palm kernel oil, and is believed to have antimicrobial properties. It is a white, powdery solid with a faint odour of bay oil. Dodecanoic acid, although slightly irritating to mucous membranes, has a very low toxicity and so is used in many soaps and shampoos. Defoamer, lubricant. It is used in fruit coatings. Occurs as glyceride in coconut oil and palm kernel oil. Simple esters are flavour ingredients Lauric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=143-07-7 (retrieved 2024-07-01) (CAS RN: 143-07-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Lauric acid is a middle chain-free fatty acid with strong bactericidal properties. The EC50s for P. acnes, S.aureus, S. epidermidis, are 2, 6, 4 μg/mL, respectively. Lauric acid is a middle chain-free fatty acid with strong bactericidal properties. The EC50s for P. acnes, S.aureus, S. epidermidis, are 2, 6, 4 μg/mL, respectively.
Pentadecanoic acid
Pentadecanoic acid, also known as pentadecylic acid or C15:0, belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Pentadecanoic acid (its ester is called pentadecanoate) is a saturated fatty acid that has 15 carbons and is therefore a very hydrophobic molecule that is practically insoluble in water. Pentadecanoic acid is found in plants and ruminants. Many "odd" length long-chain fatty acids, such as pentadecanoic acid, are derived from the consumption of cattle fats (milk and meat). Pentadecanoic acid constitutes 1.05\\\\% of milk fat and 0.43\\\\% of ruminant meat fat. The content of pentadecanoic acid in the subcutaneous adipose tissue of humans appears to be a good biological marker of long-term milk fat intake in free-living individuals in populations with high consumption of dairy products. (PMID: 9701185; PMID: 11238766). A fatty acid of exogenous (primarily ruminant) origin. Many "odd" length long chain amino acids are derived from the consumption of dairy fats (milk and meat). Pentadecanoic acid constitutes 1.05\\\\% of milk fat and 0.43\\\\% of ruminant meat fat. The content of heptadecanoic acid in the subcutaneous adipose tissue of humans appears to be a good biological marker of long-term milk fat intake in free-living individuals in populations with high consumption of dairy products. (PMID 9701185; PMID 11238766). Pentadecanoic acid is found in many foods, some of which are common bean, coriander, pepper (c. annuum), and hamburger. CONFIDENCE standard compound; INTERNAL_ID 248 Pentadecylic acid is a saturated fatty acid with a 15-carbon backbone. Pentadecylic acid is a saturated fatty acid with a 15-carbon backbone.
D-Xylose
Xylose or wood sugar is an aldopentose - a monosaccharide containing five carbon atoms and an aldehyde functional group. It has chemical formula C5H10O5 and is 40\\\\% as sweet as sucrose. Xylose is found in the embryos of most edible plants. The polysaccharide xylan, which is closely associated with cellulose, consists practically entirely of d-xylose. Corncobs, cottonseed hulls, pecan shells, and straw contain considerable amounts of this sugar. Xylose is also found in mucopolysaccharides of connective tissue and sometimes in the urine. Xylose is the first sugar added to serine or threonine residues during proteoglycan type O-glycosylation. Therefore xylose is involved in the biosythetic pathways of most anionic polysaccharides such as heparan sulphate and chondroitin sulphate. In medicine, xylose is used to test for malabsorption by administering a xylose solution to the patient after fasting. If xylose is detected in the blood and/or urine within the next few hours, it has been absorbed by the intestines. Xylose is said to be one of eight sugars which are essential for human nutrition, the others being galactose, glucose, mannose, N-acetylglucosamine, N-acetylgalactosamine, fucose, and sialic acid. (Wikipedia). Xylose in the urine is a biomarker for the consumption of apples and other fruits. Xylose is a sugar first isolated from wood, and named for it. Xylose is classified as a monosaccharide of the aldopentose type, which means that it contains five carbon atoms and includes an aldehyde functional group. It is the precursor to hemicellulose, one of the main constituents of biomass. D-Xylopyranose is found in flaxseed. D-(+)-xylose (Xylose) is a natural compound that is catalyzed by xylose isomerase to form xylulose, which is a key step in the anaerobic ethanol fermentation of xylose. D-(+)-xylose (Xylose) is a natural compound that is catalyzed by xylose isomerase to form xylulose, which is a key step in the anaerobic ethanol fermentation of xylose.
Anandamide
Anandamide, also known as arachidonoylethanolamide (AEA), is a highly potent endogenous agonist of the cannabinoid CB1 and CB2 receptors. CB1 receptors are predominantly found in the central nervous system (CNS) where they mainly mediate the psychotropic effects of tetrahydrocannabinol (THC) and endocannabinoids, whereas the expression of the CB2 receptor is thought to be restricted to cells of the immune system. It was suggested that AEA might inhibit tumour cell proliferation or induce apoptosis independently of CB1 and CB2 receptors, via interaction with the type 1 vanilloid receptor (VR1). VR1 is an ion channel expressed almost exclusively by sensory neurons, activated by pH, noxious heat (> 48-degree centigrade), and plant toxins and is thought to play an important role in nociception. Cervical cancer cells are sensitive to AEA-induced apoptosis via VR1 that is aberrantly expressed in vitro and in vivo while CB1 and CB2 receptors play a protective role. (PMID: 15047233). Novel prostaglandins (prostaglandin glycerol esters and prostaglandin ethanolamides) are COX-2 oxidative metabolites of endogenous cannabinoids (such as anandamide). Recent evidence suggests that these new types of prostaglandins are likely novel signalling mediators involved in synaptic transmission and plasticity (PMID: 16957004). Anandamide is a highly potent endogenous agonist of the cannabinoid CB1 and CB2 receptors. CB1 receptors are predominantly found in the central nervous system (CNS) where they mainly mediate the psychotropic effects of Tetrahydrocannabinol (THC) and endocannabinoids, whereas the expression of the CB2 receptor is thought to be restricted to cells of the immune system. It was suggested that AEA might inhibit tumor cell proliferation or induce apoptosis independently of CB1 and CB2 receptors, via interaction with the type 1 vanilloid receptor (VR1). VR1 is an ion channel expressed almost exclusively by sensory neurons, activated by pH, noxious heat (>48 degree centigrade) and plant toxins and is thought to play an important role in nociception. Cervical cancer cells are sensitive to AEA-induced apoptosis via VR1 that is aberrantly expressed in vitro and in vivo while CB1 and CB2 receptors play a protective role. (PMID 15047233) D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D063385 - Cannabinoid Receptor Modulators D018377 - Neurotransmitter Agents > D063385 - Cannabinoid Receptor Modulators > D063386 - Cannabinoid Receptor Agonists D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D000077264 - Calcium-Regulating Hormones and Agents CONFIDENCE standard compound; INTERNAL_ID 41 D049990 - Membrane Transport Modulators
Phthalic acid
Phthalic acid is an aromatic dicarboxylic acid, with formula C6H4(COOH)2. Phthalic acid is used mainly in the form of the anhydride to produce other chemicals such as dyes, perfumes, saccharin, phthalates and many other useful products. Phthalic acid, when found in tissues or biofluids arises from exposure to these phthalate products. Phthalate is an environmental chemical of heightened public concern because reports of its potential risk to male reproductive health (PMID 16804814), being significantly associated with reduced sperm concentration to pesticide concentration in mens urine (PMID 16804812). Within the reproductive tract, the male is exquisitely vulnerable to the effects of anti-androgens during development due the reliance on the synthesis and action of androgens for the masculinization of the male reproductive tract. The ability of phthalates to suppress androgen synthesis during development and to induce testicular dysgenesis together with cryptorchidism and hypospadias has raised considerable concern. (PMID 15016950) [HMDB]. Phthalic acid is an aromatic dicarboxylic acid, with formula C6H4(COOH)2. Phthalic acid is used mainly in the form of the anhydride to produce other chemicals such as dyes, perfumes, saccharin, phthalates and many other useful products. Phthalic acid, when found in tissues or biofluids arises from exposure to these phthalate products. Phthalate is an environmental chemical of heightened public concern because reports of its potential risk to male reproductive health (PMID 16804814), being significantly associated with reduced sperm concentration to pesticide concentration in mens urine (PMID 16804812). Within the reproductive tract, the male is exquisitely vulnerable to the effects of anti-androgens during development due the reliance on the synthesis and action of androgens for the masculinization of the male reproductive tract. The ability of phthalates to suppress androgen synthesis during development and to induce testicular dysgenesis together with cryptorchidism and hypospadias has raised considerable concern. (PMID 15016950). CONFIDENCE standard compound; INTERNAL_ID 1055; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3319; ORIGINAL_PRECURSOR_SCAN_NO 3316 CONFIDENCE standard compound; INTERNAL_ID 1055; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3316; ORIGINAL_PRECURSOR_SCAN_NO 3314 CONFIDENCE standard compound; INTERNAL_ID 1055; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3335; ORIGINAL_PRECURSOR_SCAN_NO 3333 CONFIDENCE standard compound; INTERNAL_ID 1055; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3324; ORIGINAL_PRECURSOR_SCAN_NO 3322 CONFIDENCE standard compound; INTERNAL_ID 1055; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3300; ORIGINAL_PRECURSOR_SCAN_NO 3298 KEIO_ID P080
Sebacic acid
Sebacic acid is a saturated, straight-chain naturally occurring dicarboxylic acid with 10 carbon atoms. Sebacic acid is a normal urinary acid. In patients with multiple acyl-CoA-dehydrogenase deficiency (MADD), also known as glutaric aciduria type II (GAII), a group of metabolic disorders due to deficiency of either electron transfer flavoprotein or electron transfer flavoprotein ubiquinone oxidoreductase, biochemical data shows an increase in urine sebacic acid excretion. Sebacic acid is found to be associated with carnitine-acylcarnitine translocase deficiency and medium chain acyl-CoA dehydrogenase deficiency, which are inborn errors of metabolism. Sebacic acid is a white flake or powdered crystal slightly soluble in water that has been proposed as an alternative energy substrate in total parenteral nutrition. Sebacic Acid was named from the Latin sebaceus (tallow candle) or sebum (tallow) in reference to its use in the manufacture of candles. Sebacic acid and its derivatives such as azelaic acid have a variety of industrial uses as plasticizers, lubricants, hydraulic fluids, cosmetics, candles, etc. It is used in the synthesis of polyamide and alkyd resins. It is also used as an intermediate for aromatics, antiseptics and painting materials (PMID: 10556649, 1738216, 8442769, 12706375). Sebacic acid is a saturated, straight-chain naturally occurring dicarboxylic acid with 10 carbon atoms. Sebacic acid is a normal urinary acid. In patients with multiple acyl-CoA-dehydrogenase deficiency (MADD) or glutaric aciduria type II (GAII) are a group of metabolic disorders due to deficiency of either electron transfer flavoprotein or electron transfer flavoprotein ubiquinone oxidoreductase, biochemical data shows an increase in urine sebacic acid excretion. CONFIDENCE standard compound; INTERNAL_ID 671; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4109; ORIGINAL_PRECURSOR_SCAN_NO 4104 CONFIDENCE standard compound; INTERNAL_ID 671; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4132; ORIGINAL_PRECURSOR_SCAN_NO 4130 CONFIDENCE standard compound; INTERNAL_ID 671; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4118; ORIGINAL_PRECURSOR_SCAN_NO 4114 CONFIDENCE standard compound; INTERNAL_ID 671; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4132; ORIGINAL_PRECURSOR_SCAN_NO 4129 CONFIDENCE standard compound; INTERNAL_ID 671; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4099; ORIGINAL_PRECURSOR_SCAN_NO 4095 CONFIDENCE standard compound; INTERNAL_ID 671; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4127; ORIGINAL_PRECURSOR_SCAN_NO 4123 Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID S017 Decanedioic acid, a normal urinary acid, is found to be associated with carnitine-acylcarnitine translocase deficiency and medium chain acyl-CoA dehydrogenase deficiency. Decanedioic acid, a normal urinary acid, is found to be associated with carnitine-acylcarnitine translocase deficiency and medium chain acyl-CoA dehydrogenase deficiency.
Taurocholate
Taurocholic acid is a bile acid and is the product of the conjugation of cholic acid with taurine. Its sodium salt is the chief ingredient of the bile of carnivorous animals. Bile acids are steroid acids found predominantly in the bile of mammals. The distinction between different bile acids is minute, depending only on the presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine, and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH, and consequently require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g. membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487, 16037564, 12576301, 11907135). Taurocholic acid, as with all bile acids, acts as a detergent to solubilize fats for absorption and is itself absorbed. It is used as a cholagogue and choleretic (a bile purging agent). Hydrolysis of taurocholic acid yields taurine, a nonessential amino acid. Taurocholic acid is one of the main components of urinary nonsulfated bile acids in biliary atresia. Raised levels of taurocholate in fetal serum in obstetric cholestasis may result in the development of a fetal dysrhythmia and sudden intra-uterine death (PMID: 3944741, 11256973). Taurocholic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=81-24-3 (retrieved 2024-07-01) (CAS RN: 81-24-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Taurocholic acid (N-Choloyltaurine) is a bile acid involved in the emulsification of fats. Taurocholic acid (N-Choloyltaurine) is a bile acid involved in the emulsification of fats.
Tetrahydrocorticosterone
Tetrahydrocorticosterone belongs to the class of organic compounds known as 21-hydroxysteroids. These are steroids carrying a hydroxyl group at the 21-position of the steroid backbone. Thus, tetrahydrocorticosterone is considered to be a steroid lipid molecule. Tetrahydrocorticosterone is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Tetrahydrocorticosterone is one of the major urinary metabolites from corticosterone. Premenopausal patients with early breast cancer excrete subnormal amounts of tetrahydrocorticosterone as compared with the normal subjects of corresponding ages (PMID: 1133844). D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones