Methyl 2-hydroxybenzoate (BioDeep_00000002724)

 

Secondary id: BioDeep_00000400484, BioDeep_00000858338, BioDeep_00000859895

natural product human metabolite PANOMIX_OTCML-2023 BioNovoGene_Lab2019


代谢物信息卡片


Methyl salicylate, Pharmaceutical Secondary Standard; Certified Reference Material

化学式: C8H8O3 (152.0473)
中文名称: 水杨酸甲酯, 冬青油, 水杨酸甲脂
谱图信息: 最多检出来源 Viridiplantae(plant) 19.67%

分子结构信息

SMILES: c1ccc(c(c1)C(=O)OC)O
InChI: InChI=1/C8H8O3/c1-11-8(10)6-4-2-3-5-7(6)9/h2-5,9H,1H3

描述信息

Methyl salicylate appears as colorless yellowish or reddish liquid with odor of wintergreen. (USCG, 1999)
Methyl salicylate is a benzoate ester that is the methyl ester of salicylic acid. It has a role as a flavouring agent, a metabolite and an insect attractant. It is a benzoate ester, a member of salicylates and a methyl ester. It is functionally related to a salicylic acid.
Methyl salicylate (oil of wintergreen or wintergreen oil) is an organic ester naturally produced by many species of plants, particularly wintergreens. The compound was first extracted and isolated from plant species Gaultheria procumbens in 1843. It can be manufactured synthetically and it used as a fragrance, in foods, beverages, and liniments. It forms a colorless to yellow or reddish liquid and exhibits a characteristic odor and taste of wintergreen. For acute joint and muscular pain, methyl salicylate is used as a rubefacient and analgesic in deep heating liniments. It is used as a flavoring agent in chewing gums and mints in small concentrations and added as antiseptic in mouthwash solutions.
Methyl Salicylate is a natural product found in Nepeta nepetella, Eupatorium cannabinum, and other organisms with data available.
Methyl 2-hydroxybenzoate is found in beverages. Methyl 2-hydroxybenzoate is present in white wine, tea, porcini mushroom Boletus edulis, Bourbon vanilla, clary sage, red sage and fruits including cherry, apple, raspberry, papaya and plum. Methyl 2-hydroxybenzoate is found in leaves of Gaultheria procumbens (wintergreen). Methyl 2-hydroxybenzoate is a flavouring agent.
Methyl 2-hydroxy benzoate is a metabolite found in or produced by Saccharomyces cerevisiae.
See also: Salicylic Acid (has active moiety); Clove Oil (part of); LIDOCAINE; MENTHOL; Methyl Salicylate (component of) ... View More ...
Methyl 2-hydroxybenzoate, also known as methyl salicylate, 2-(methoxycarbonyl)phenol or 2-carbomethoxyphenol, belongs to the class of organic compounds known as o-hydroxybenzoic acid esters. These are benzoic acid esters where the benzene ring is ortho-substituted with a hydroxy group. Methyl 2-hydroxybenzoate is a mint, peppermint, and wintergreen tasting compound. Methyl 2-hydroxybenzoate is found, on average, in the highest concentration within hyssops and bilberries. Methyl 2-hydroxybenzoate has also been detected, but not quantified, in several different foods, such as chinese cinnamons, tamarinds, tea, mushrooms, and roselles. Minor metabolism may occur in various tissues but hepatic metabolism constitutes the majority of metabolic processes of absorbed methyl salicylate. Methyl 2-hydroxybenzoate is a potentially toxic compound. Present in white wine, tea, porcini mushroom Boletus edulis, Bourbon vanilla, clary sage, red sage and fruits including cherry, apple, raspberry, papaya and plum. For acute joint and muscular pain, Methyl 2-hydroxybenzoate is used as a rubefacient and analgesic in deep heating liniments. This is thought to mask the underlying musculoskeletal pain and discomfort. Severe toxicity can result in acute lung injury, lethargy, coma, seizures, cerebral edema, and death. Counter-irritation is believed to cause a soothing sensation of warmth. Methyl salicylate plays a role as a signaling molecule in plants.
Present in white wine, tea, porcini mushroom Boletus edulis, Bourbon vanilla, clary sage, red sage and fruits including cherry, apple, raspberry, papaya and plum. Found in leaves of Gaultheria procumbens (wintergreen). Flavouring agent.
D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates
C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic
A benzoate ester that is the methyl ester of salicylic acid.
D018501 - Antirheumatic Agents
D005404 - Fixatives
Same as: D01087
Acquisition and generation of the data is financially supported in part by CREST/JST.
Methyl Salicylate (Wintergreen oil) is a topical analgesic and anti-inflammatory agent. Also used as a pesticide, a denaturant, a fragrance ingredient, and a flavoring agent in food and tobacco products[1]. A systemic acquired resistance (SAR) signal in tobacco[2]. A topical nonsteroidal anti-inflammatory agent (NSAID). Methyl salicylate lactoside is a COX inhibitor[4].
Methyl Salicylate (Wintergreen oil) is a topical analgesic and anti-inflammatory agent. Also used as a pesticide, a denaturant, a fragrance ingredient, and a flavoring agent in food and tobacco products[1]. A systemic acquired resistance (SAR) signal in tobacco[2]. A topical nonsteroidal anti-inflammatory agent (NSAID). Methyl salicylate lactoside is a COX inhibitor[4].

同义名列表

164 个代谢物同义名

Methyl salicylate, Pharmaceutical Secondary Standard; Certified Reference Material; Methyl salicylate, United States Pharmacopeia (USP) Reference Standard; 2,4-Cyclohexadien-1-one,6-(hydroxymethoxymethylene)-(9CI); InChI=1/C8H8O3/c1-11-8(10)6-4-2-3-5-7(6)9/h2-5,9H,1H; Methyl salicylate, Vetec(TM) reagent grade, 99\\%; Methyl salicylate, tested according to Ph.Eur.; Methyl salicylate, ReagentPlus(R), >=99\\% (GC); 4-10-00-00143 (Beilstein Handbook Reference); Methyl salicylate, SAJ first grade, >=98.0\\%; Methyl salicylate, natural, 98\\%, FCC, FG; foot worksarthritis achy foot and muscle; Methyl salicylate, puriss., 99.0-100.5\\%; METHYL SALICYLATE COMPONENT OF SALONPAS; Methylester kyseliny salicylove [Czech]; Metylester kyseliny salicylove [Czech]; Methyl salicylate, analytical standard; Methyl ester of 2-hydroxy benzoic acid; Benzoic acid, 2-hydroxy-, methyl ester; Methyl ester of 2-hydroxy-benzoic acid; Veneno de AbejaAceite De Vibora Brand; Neuro Max Pain and Muscle Relief Gel; SALONPAS COMPONENT METHYL SALICYLATE; Benzoic acid, hydroxy-, methyl ester; Germa Linimento Ubre Plus (Roll-On); Methyl ester 2-hydroxy-benzoic acid; o-Hydroxybenzoic acid, methyl ester; 2-Hydroxy-benzoic acid methyl ester; Methyl ester 2-hydroxy benzoic acid; METHYL SALICYLATE,SYNTHETIC [VANDF]; 2-Hydroxybenzoic acid, methyl ester; O-hydroxybenzoic acid methyl ester; 2-Hydroxybenzoic acid methyl ester; Methyl salicylate, >=98\\%, FCC, FG; Flexitol Foot and Knee Pain Relief; SUNSET PAIN RELIEF-HEATING RELIEF; METHYL SALICYLATE (EP MONOGRAPH); METHYL SALICYLATE [EP MONOGRAPH]; Germa Manteca Ubre Plus (YELLOW); METHYL SALICYLATE [EP IMPURITY]; Methylester kyseliny salicylove; METHYL SALICYLATE (EP IMPURITY); METHYL SALICYLATE [ORANGE BOOK]; Metylester kyseliny salicylove; Herb Street Sore Muscle Relief; 2-Hydroxybenzoate methyl ester; Germa Manteca Ubre Plus (TIN); Germa Manteca Ubre Plus (RED); methyl salicylate sodium salt; Salicylic acid, methyl ester; Methyl O-hydroxybenzoic acid; Methyl 2-hydroxybenzoic acid; Methyl 2-Hydroxybenzoate--d4; Methyl salicylate (JP17/NF); salicylic-acid methyl ester; Salicylic Acid Methyl Ester; Methyl salicylate (natural); Methyl salicylate,synthetic; METHYL SALICYLATE [WHO-DD]; Methyl salicylate, BioXtra; METHYL SALICYLATE (USP-RS); METHYL SALICYLATE [USP-RS]; Methyl salicylate [JAN:NF]; METHYL SALICYLATE (MART.); METHYL SALICYLATE [VANDF]; METHYL SALICYLATE [MART.]; Germa Linimento Ubre Plus; 2-(Methoxycarbonyl)phenol; METHYL SALICYLATE [HSDB]; Dermaline 3 in 1 Roll On; Methyl o-hydroxybenzoate; METHYL SALICYLATE [FHFI]; methyl-2-hydroxybenzoate; Methyl 2-hydroxybenzoate; METHYL SALICYLATE [INCI]; Abejas y Viboras Roll On; HYSAN HUA TUO MEDICATED; East Coast Joint Relief; Natural wintergreen oil; salicylate methyl ester; teds topical pain cream; METHYL SALICYLATE [FCC]; Methyl salicylate, 98\\%; METHYL SALICYLATE, ALOE; XCEPTOR CBD PAINMENTHOL; Methyl-d3 salicylate-OD; Methyl2-Hydroxybenzoate; Balsamo de Vaca Mascura; Methyl salicylate [JAN]; Methyl Salicylate 10\\%; METHYL SALICYLATE [MI]; Methyl salicylate, 8CI; Balsamo de UbreMascura; METHYL SALICYLATE [II]; METHYL SALICYLATE (II); Methyl salicylate (TN); Methyl Salicylate,(S); Methyl Salicylate 2\\%; Natralia Cramp Relief; Methyl salicylic acid; Aspi-RubPain Reliever; ReLeaf Arthritis Balm; Theragesic (Salt/Mix); 1-O-methylsalicylate; Mascura la Vaca Plus; COATS ALOE ANALGESIC; 2-Carbomethoxyphenol; Germa Ubre Mastitis; MethylSalicylate-d3; Salonpas (Salt/Mix); WINTERGREEN [VANDF]; La Flecha Japonesa; KRONA WART REMOVER; Flavor,wintergreen; Oil OF wintergreen; Koong Yick Hung Fa; Hyundai Moolpas F; Methyl Salicylate; methyl-salicylate; FlexSport Roll On; Ling Nam Hung Far; methylsalicylate; Oils,wintergreen; Metsal Liniment; Sweet birch oil; UNII-LAV5U5022Y; Gaultheria oil; Wintergruenoel; Kofal Original; Anthrapole ND; Gaultheriaoel; Spicewood oil; Betula Lenta; XCEPTOR PAIN; WLN: QR BVO1; Teaberry oil; Kofal Fuerte; Tox21_111081; Tox21_201543; Tox21_300137; Wintergreen; Ted s Pain; Betula oil; Theragesic; LAV5U5022Y; Panalgesic; Zenol Cool; FEMA 2745; AI3-00090; Flucarmit; Bumooly-S; Rheumabal; Hewedolor; Milagroso; PredaLure; birch-me; Analgit; Exagien; Ubredol; Ben Gay; Betula; Linsal; Kofal; Methyl salicylate; Methyl salicylate



数据库引用编号

34 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(1)

PlantCyc(2)

代谢反应

345 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(2)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(343)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

80 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 11 ALB, CAT, DCX, ENO2, GFAP, MAPK14, NES, PTGS1, PTGS2, RBFOX3, VIM
Peripheral membrane protein 4 ACHE, GORASP1, PTGS1, PTGS2
Endoplasmic reticulum membrane 2 PTGS1, PTGS2
Nucleus 4 ACHE, ALB, MAPK14, RBFOX3
cytosol 8 ALB, CAT, DCX, ENO2, GFAP, LIPE, MAPK14, VIM
phagocytic vesicle 1 VIM
centrosome 1 ALB
nucleoplasm 1 MAPK14
Cell membrane 5 ACHE, ENO2, LIPE, TNF, VIM
Cytoplasmic side 1 GORASP1
Golgi apparatus membrane 1 GORASP1
Synapse 1 ACHE
cell surface 3 ACHE, TNF, TNR
glutamatergic synapse 3 DCX, MAPK14, TNR
Golgi apparatus 5 ACHE, ALB, ATRN, GORASP1, PTGS1
Golgi membrane 1 GORASP1
neuromuscular junction 1 ACHE
neuronal cell body 1 TNF
Cytoplasm, cytosol 1 LIPE
plasma membrane 5 ACHE, ATRN, ENO2, TNF, VIM
Membrane 4 ACHE, CAT, ENO2, LIPE
axon 1 VIM
caveola 2 LIPE, PTGS2
extracellular exosome 6 ALB, ATRN, CAT, ENO2, PTGS1, VIM
endoplasmic reticulum 2 ALB, PTGS2
extracellular space 9 ACHE, ALB, ATRN, CXCL8, ENO2, IL4, IL6, TNF, TNR
perinuclear region of cytoplasm 1 ACHE
Schaffer collateral - CA1 synapse 1 TNR
mitochondrion 2 CAT, MAPK14
protein-containing complex 3 ALB, CAT, PTGS2
intracellular membrane-bounded organelle 2 CAT, PTGS1
Microsome membrane 2 PTGS1, PTGS2
Single-pass type I membrane protein 1 ATRN
Secreted 5 ACHE, ALB, CXCL8, IL4, IL6
extracellular region 9 ACHE, ALB, CAT, CXCL8, IL4, IL6, MAPK14, TNF, TNR
astrocyte end-foot 1 GFAP
[Isoform 2]: Secreted 1 ATRN
mitochondrial matrix 1 CAT
Extracellular side 1 ACHE
anchoring junction 1 ALB
photoreceptor inner segment 1 ENO2
photoreceptor outer segment 1 PTGS1
external side of plasma membrane 1 TNF
Secreted, extracellular space, extracellular matrix 1 TNR
perikaryon 2 ENO2, RBFOX3
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
Membrane raft 2 TNF, TNR
Cytoplasm, cytoskeleton 1 VIM
focal adhesion 2 CAT, VIM
microtubule 1 DCX
cis-Golgi network 1 GORASP1
Peroxisome 2 CAT, VIM
basement membrane 1 ACHE
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
collagen-containing extracellular matrix 1 TNR
intermediate filament 3 GFAP, NES, VIM
nuclear speck 1 MAPK14
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
Cell projection, neuron projection 1 DCX
neuron projection 4 DCX, PTGS1, PTGS2, VIM
ciliary basal body 1 ALB
cell leading edge 1 VIM
microtubule associated complex 1 DCX
cell projection 1 GFAP
phagocytic cup 1 TNF
cytoskeleton 2 DCX, VIM
centriole 1 ALB
spindle pole 2 ALB, MAPK14
blood microparticle 1 ALB
Lipid-anchor, GPI-anchor 1 ACHE
[Isoform 3]: Secreted 1 ATRN
Endomembrane system 1 PTGS1
Lipid droplet 1 LIPE
Membrane, caveola 1 LIPE
microtubule organizing center 1 VIM
cell body 1 GFAP
side of membrane 1 ACHE
intermediate filament cytoskeleton 3 GFAP, NES, VIM
ficolin-1-rich granule lumen 2 CAT, MAPK14
secretory granule lumen 2 CAT, MAPK14
endoplasmic reticulum lumen 3 ALB, IL6, PTGS2
nuclear matrix 1 VIM
platelet alpha granule lumen 1 ALB
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 GORASP1
perineuronal net 1 TNR
Golgi apparatus, cis-Golgi network membrane 1 GORASP1
Nucleus matrix 1 VIM
synaptic cleft 1 ACHE
[Isoform 1]: Cell membrane 1 ATRN
cytoplasmic side of lysosomal membrane 1 GFAP
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
catalase complex 1 CAT
interleukin-6 receptor complex 1 IL6
phosphopyruvate hydratase complex 1 ENO2
tenascin complex 1 TNR
[Isoform H]: Cell membrane 1 ACHE
ciliary transition fiber 1 ALB
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Ruimin Jia, Keyan Xing, Lin Tian, Xiaomin Dong, Ligang Yu, Xihui Shen, Yang Wang. Analysis of Methylesterase Gene Family in Fragaria vesca Unveils Novel Insights into the Role of FvMES2 in Methyl Salicylate-Mediated Resistance against Strawberry Gray Mold. Journal of agricultural and food chemistry. 2024 May; 72(20):11392-11404. doi: 10.1021/acs.jafc.4c01447. [PMID: 38717972]
  • Jingyu Lin, Weijiao Wang, Mitra Mazarei, Nan Zhao, Xinlu Chen, Vincent R Pantalone, Tarek Hewezi, Charles Neal Stewart, Feng Chen. GmSABP2-1 encodes methyl salicylate esterase and functions in soybean defense against soybean cyst nematode. Plant cell reports. 2024 May; 43(6):138. doi: 10.1007/s00299-024-03224-9. [PMID: 38733408]
  • Muhammad Arslan Mahmood, Muhammad Jawad Akbar Awan, Rubab Zahra Naqvi, Shahid Mansoor. Methyl-salicylate (MeSA)-mediated airborne defence. Trends in plant science. 2024 Apr; 29(4):391-393. doi: 10.1016/j.tplants.2023.12.001. [PMID: 38135604]
  • Saumya Jaiswal, Durgesh Kumar Tripathi, Ravi Gupta, Jing He, Zhong-Hua Chen, Vijay Pratap Singh. Methyl-salicylate: A surveillance system for triggering immunity in neighboring plants. Journal of integrative plant biology. 2024 Feb; 66(2):163-165. doi: 10.1111/jipb.13621. [PMID: 38314644]
  • Shan Liu, Faisal Islam, Jianping Chen, Zongtao Sun, Jian Chen. Attention, neighbors: Methyl salicylate mediates plant airborne defense. Plant communications. 2024 Jan; 5(1):100746. doi: 10.1016/j.xplc.2023.100746. [PMID: 37950442]
  • Piotr Michel, Monika Anna Olszewska. Phytochemistry and Biological Profile of Gaultheria procumbens L. and Wintergreen Essential Oil: From Traditional Application to Molecular Mechanisms and Therapeutic Targets. International journal of molecular sciences. 2024 Jan; 25(1):. doi: 10.3390/ijms25010565. [PMID: 38203735]
  • Shanshan Shen, Jixin Zhang, Haoran Sun, Zhongqi Zu, Jialin Fu, Ranqin Fan, Qi Chen, Yu Wang, Pengxiang Yue, Jingming Ning, Liang Zhang, Xueling Gao. Sensomics-Assisted Characterization of Fungal-Flowery Aroma Components in Fermented Tea Using Eurotium cristatum. Journal of agricultural and food chemistry. 2023 Nov; ?(?):. doi: 10.1021/acs.jafc.3c05273. [PMID: 37962281]
  • Qian Gong, Yunjing Wang, Linfang He, Fan Huang, Danfeng Zhang, Yan Wang, Xiang Wei, Meng Han, Haiteng Deng, Lan Luo, Feng Cui, Yiguo Hong, Yule Liu. Molecular basis of methyl-salicylate-mediated plant airborne defence. Nature. 2023 Oct; 622(7981):139-148. doi: 10.1038/s41586-023-06533-3. [PMID: 37704724]
  • Babita Patni, Malini Bhattacharyya, Anshika Pokhriyal. The role of signaling compounds in enhancing rice allelochemicals for sustainable agriculture: an overview. Planta. 2023 Sep; 258(5):90. doi: 10.1007/s00425-023-04241-w. [PMID: 37775539]
  • Baoping Cheng, Le Xu, Muhammad Saqib Bilal, Qing Huang, Dongdong Niu, Hongyu Ma, Shaoxia Zhou, Aitian Peng, Guo Wei, Feng Chen, Liang Zeng, Hong Lin, Ayesha Baig, Xuefeng Wang, Xiuping Zou, Hongwei Zhao. Small RNAs contribute to citrus Huanglongbing tolerance by manipulating methyl salicylate signaling and exogenous methyl salicylate primes citrus groves from emerging infection. The Plant journal : for cell and molecular biology. 2023 Aug; ?(?):. doi: 10.1111/tpj.16426. [PMID: 37614043]
  • Ying Dong, Xiao Li, Yicheng Zhao, Xueyang Ren, Yuan Zheng, Ruolan Song, Xiangjian Zhong, Dongjie Shan, Fang Lv, Qingyue Deng, Xianxian Li, Yingyu He, Keyan Chai, Xiuhuan Wang, Gaimei She. Biotransformation and metabolism of three methyl salicylate glycosides by gut microbiota in vitro. Journal of pharmaceutical and biomedical analysis. 2023 May; 233(?):115474. doi: 10.1016/j.jpba.2023.115474. [PMID: 37229798]
  • Manoj Sapkota, Lara Pereira, Yanbing Wang, Lei Zhang, Yasin Topcu, Denise Tieman, Esther van der Knaap. Structural variation underlies functional diversity at methyl salicylate loci in tomato. PLoS genetics. 2023 May; 19(5):e1010751. doi: 10.1371/journal.pgen.1010751. [PMID: 37141297]
  • A M Ashrafi, Z Bytešníková, C Cané, L Richtera, S Vallejos. New trends in methyl salicylate sensing and their implications in agriculture. Biosensors & bioelectronics. 2023 Mar; 223(?):115008. doi: 10.1016/j.bios.2022.115008. [PMID: 36577177]
  • Zhao-Kai Yang, Cheng Qu, Shi-Xiang Pan, Yan Liu, Zhuo Shi, Chen Luo, Yao-Guo Qin, Xin-Ling Yang. Aphid-repellent, ladybug-attraction activities, and binding mechanism of methyl salicylate derivatives containing geraniol moiety. Pest management science. 2023 Feb; 79(2):760-770. doi: 10.1002/ps.7245. [PMID: 36259292]
  • ZhiHao Dong, XiaoDong Liu, Anoop Kumar Srivastava, QiLing Tan, Wei Low, Xiang Yan, SongWei Wu, XueCheng Sun, ChengXiao Hu. Boron deficiency mediates plant-insect (Diaphorima citri) interaction by disturbing leaf volatile organic compounds and cell wall functions. Tree physiology. 2023 Jan; ?(?):. doi: 10.1093/treephys/tpac140. [PMID: 36611002]
  • Elizabeth M Frick, Manoj Sapkota, Lara Pereira, Yanbing Wang, Anna Hermanns, James J Giovannoni, Esther van der Knaap, Denise M Tieman, Harry J Klee. A family of methyl esterases converts methyl salicylate to salicylic acid in ripening tomato fruit. Plant physiology. 2023 01; 191(1):110-124. doi: 10.1093/plphys/kiac509. [PMID: 36315067]
  • Vahideh Ilbeigi, Younes Valadbeigi, L'udmila Slováková, Štefan Matejčík. Solid Phase Microextraction-Multicapillary Column-Ion Mobility Spectrometry (SPME-MCC-IMS) for Detection of Methyl Salicylate in Tomato Leaves. Journal of agricultural and food chemistry. 2022 Dec; 70(49):15593-15601. doi: 10.1021/acs.jafc.2c05570. [PMID: 36459422]
  • Orsolya Kinga Gondor, Magda Pál, Tibor Janda, Gabriella Szalai. The role of methyl salicylate in plant growth under stress conditions. Journal of plant physiology. 2022 Oct; 277(?):153809. doi: 10.1016/j.jplph.2022.153809. [PMID: 36099699]
  • Robert J Brosnan, Kimberly Ramos, Antonio Jose de Araujo Aguiar, Alessia Cenani, Heather K Knych. Anesthetic Pharmacology of the Mint Extracts L-Carvone and Methyl Salicylate. Pharmacology. 2022; 107(3-4):167-178. doi: 10.1159/000520762. [PMID: 35100605]
  • Xavier Poitou, Pascaline Redon, Alexandre Pons, Emilie Bruez, Laurent Delière, Axel Marchal, Céline Cholet, Laurence Geny-Denis, Philippe Darriet. Methyl salicylate, a grape and wine chemical marker and sensory contributor in wines elaborated from grapes affected or not by cryptogamic diseases. Food chemistry. 2021 Oct; 360(?):130120. doi: 10.1016/j.foodchem.2021.130120. [PMID: 34034050]
  • Muhammad Aamir Manzoor, Muhammad Mudassar Manzoor, Guohui Li, Muhammad Abdullah, Wang Han, Han Wenlong, Awais Shakoor, Muhammad Waheed Riaz, Shamsur Rehman, Yongping Cai. Genome-wide identification and characterization of bZIP transcription factors and their expression profile under abiotic stresses in Chinese pear (Pyrus bretschneideri). BMC plant biology. 2021 Sep; 21(1):413. doi: 10.1186/s12870-021-03191-3. [PMID: 34503442]
  • Jessica P Yactayo-Chang, Jorrel Mendoza, Steven D Willms, Caitlin C Rering, John J Beck, Anna K Block. Zea mays Volatiles that Influence Oviposition and Feeding Behaviors of Spodoptera frugiperda. Journal of chemical ecology. 2021 Sep; 47(8-9):799-809. doi: 10.1007/s10886-021-01302-w. [PMID: 34347233]
  • H-S Wei, J-H Qin, Y-Z Cao, K-B Li, J Yin. Two classic OBPs modulate the responses of female Holotrichia oblita to three major ester host plant volatiles. Insect molecular biology. 2021 08; 30(4):390-399. doi: 10.1111/imb.12703. [PMID: 33822423]
  • Jiahui Liu, Xiaojing Zhao, Yidi Zhan, Kang Wang, Frederic Francis, Yong Liu. New slow release mixture of (E)-β-farnesene with methyl salicylate to enhance aphid biocontrol efficacy in wheat ecosystem. Pest management science. 2021 Jul; 77(7):3341-3348. doi: 10.1002/ps.6378. [PMID: 33773020]
  • Jun-Nan Yang, Jia-Ning Wei, Le Kang. Feeding of pea leafminer larvae simultaneously activates jasmonic and salicylic acid pathways in plants to release a terpenoid for indirect defense. Insect science. 2021 Jun; 28(3):811-824. doi: 10.1111/1744-7917.12820. [PMID: 32432392]
  • Steven E Naranjo, James R Hagler, John A Byers. Methyl Salicylate Fails to Enhance Arthropod Predator Abundance or Predator to Pest Ratios in Cotton. Environmental entomology. 2021 04; 50(2):293-305. doi: 10.1093/ee/nvaa175. [PMID: 33399185]
  • Binsheng Luo, Ertan Kastrat, Taylan Morcol, Haiping Cheng, Edward Kennelly, Chunlin Long. Gaultheria longibracteolata, an alternative source of wintergreen oil. Food chemistry. 2021 Apr; 342(?):128244. doi: 10.1016/j.foodchem.2020.128244. [PMID: 33097325]
  • Hem C Joshi, Liudmil Antonov. Excited-State Intramolecular Proton Transfer: A Short Introductory Review. Molecules (Basel, Switzerland). 2021 Mar; 26(5):. doi: 10.3390/molecules26051475. [PMID: 33803102]
  • Suguru Komatsuzaki, Narisara Piyasaengthong, Shigeru Matsuyama, Yooichi Kainoh. Effect of Leaf Maturity on Host Habitat Location by the Egg-Larval Parasitoid Ascogaster reticulata. Journal of chemical ecology. 2021 Mar; 47(3):294-302. doi: 10.1007/s10886-021-01250-5. [PMID: 33523390]
  • Tiffany Chien, Drew R Jones, Tal Danino. Engineered Bacterial Production of Volatile Methyl Salicylate. ACS synthetic biology. 2021 01; 10(1):204-208. doi: 10.1021/acssynbio.0c00497. [PMID: 33331760]
  • Kandasamy Kalaivani, Marimuthu Maruthi-Kalaiselvi, Sengottayan Senthil-Nathan. Seed treatment and foliar application of methyl salicylate (MeSA) as a defense mechanism in rice plants against the pathogenic bacterium, Xanthomonas oryzae pv. oryzae. Pesticide biochemistry and physiology. 2021 Jan; 171(?):104718. doi: 10.1016/j.pestbp.2020.104718. [PMID: 33357540]
  • María Emma García-Pastor, María José Giménez, Pedro J Zapata, Fabián Guillén, Juan Miguel Valverde, María Serrano, Daniel Valero. Preharvest application of methyl salicylate, acetyl salicylic acid and salicylic acid alleviated disease caused by Botrytis cinerea through stimulation of antioxidant system in table grapes. International journal of food microbiology. 2020 Dec; 334(?):108807. doi: 10.1016/j.ijfoodmicro.2020.108807. [PMID: 32835997]
  • Srinivas Agurla, Vaidya Sunitha, Agepati S Raghavendra. Methyl salicylate is the most effective natural salicylic acid ester to close stomata while raising reactive oxygen species and nitric oxide in Arabidopsis guard cells. Plant physiology and biochemistry : PPB. 2020 Dec; 157(?):276-283. doi: 10.1016/j.plaphy.2020.10.026. [PMID: 33152646]
  • Niall J A Conboy, Thomas McDaniel, David George, Adam Ormerod, Martin Edwards, Paul Donohoe, Angharad M R Gatehouse, Colin R Tosh. Volatile Organic Compounds as Insect Repellents and Plant Elicitors: an Integrated Pest Management (IPM) Strategy for Glasshouse Whitefly (Trialeurodes vaporariorum). Journal of chemical ecology. 2020 Dec; 46(11-12):1090-1104. doi: 10.1007/s10886-020-01229-8. [PMID: 33106972]
  • Samuel Collins, Thomas James, Felicity Southworth, Louise Davidson, Natalie Williams, Emily Orchard, Tim Marczylo, Richard Amlôt. Human volunteer study of the decontamination of chemically contaminated hair and the consequences for systemic exposure. Scientific reports. 2020 11; 10(1):20822. doi: 10.1038/s41598-020-77930-1. [PMID: 33257756]
  • Laura M Gómez, Natália S Teixeira-Silva, Raquel Caserta, Marco A Takita, Márcia O M Marques, Alessandra A de Souza. Overexpression of Citrus reticulata SAMT in Nicotiana tabacum increases MeSA volatilization and decreases Xylella fastidiosa symptoms. Planta. 2020 Nov; 252(6):103. doi: 10.1007/s00425-020-03511-1. [PMID: 33185761]
  • Thomas James, Samuel Collins, Richard Amlôt, Tim Marczylo. Analysis of Chemical Simulants in Urine: A Useful Tool for Assessing Emergency Decontamination Efficacy in Human Volunteer Studies. Prehospital and disaster medicine. 2020 Oct; 35(5):482-487. doi: 10.1017/s1049023x20000825. [PMID: 32600477]
  • Mingyue Zhao, Lu Wang, Jingming Wang, Jieyang Jin, Na Zhang, Lei Lei, Ting Gao, Tingting Jing, Shangrui Zhang, Yi Wu, Bin Wu, Yunqing Hu, Xiaochun Wan, Wilfried Schwab, Chuankui Song. Induction of priming by cold stress via inducible volatile cues in neighboring tea plants. Journal of integrative plant biology. 2020 Oct; 62(10):1461-1468. doi: 10.1111/jipb.12937. [PMID: 32275096]
  • Jungwook Park, Hee Won Jeon, Hyejung Jung, Hyun-Hee Lee, Junheon Kim, Ae Ran Park, Namgyu Kim, Gil Han, Jin-Cheol Kim, Young-Su Seo. Comparative Transcriptome Analysis of Pine Trees Treated with Resistance-Inducing Substances against the Nematode Bursaphelenchus xylophilus. Genes. 2020 08; 11(9):. doi: 10.3390/genes11091000. [PMID: 32858932]
  • Jérôme Gilleron, Cindy Meziat, André Sulen, Stoyan Ivanov, Jennifer Jager, David Estève, Catherine Muller, Jean-Francois Tanti, Mireille Cormont. Exploring Adipose Tissue Structure by Methylsalicylate Clearing and 3D Imaging. Journal of visualized experiments : JoVE. 2020 08; ?(162):. doi: 10.3791/61640. [PMID: 32894273]
  • Michael J Moss. Salicylate toxicity from ingestion of an oil of wintergreen containing insecticide. Clinical toxicology (Philadelphia, Pa.). 2020 03; 58(3):219-220. doi: 10.1080/15563650.2019.1635254. [PMID: 31267790]
  • Monique J Rivera, Xavier Martini, Derrick Conover, Agenor Mafra-Neto, Daniel Carrillo, Lukasz L Stelinski. Evaluation of semiochemical based push-pull strategy for population suppression of ambrosia beetle vectors of laurel wilt disease in avocado. Scientific reports. 2020 02; 10(1):2670. doi: 10.1038/s41598-020-59569-0. [PMID: 32060382]
  • Kiran Singewar, Christian R Moschner, Eberhard Hartung, Matthias Fladung. Identification and analysis of key genes involved in methyl salicylate biosynthesis in different birch species. PloS one. 2020; 15(10):e0240246. doi: 10.1371/journal.pone.0240246. [PMID: 33031447]
  • Felicity Southworth, Thomas James, Louise Davidson, Natalie Williams, Thomas Finnie, Tim Marczylo, Samuel Collins, Richard Amlôt. A controlled cross-over study to evaluate the efficacy of improvised dry and wet emergency decontamination protocols for chemical incidents. PloS one. 2020; 15(11):e0239845. doi: 10.1371/journal.pone.0239845. [PMID: 33147217]
  • Tobie D Lee, Olivia W Lee, Kyle R Brimacombe, Lu Chen, Rajarshi Guha, Sabrina Lusvarghi, Bethilehem G Tebase, Carleen Klumpp-Thomas, Robert W Robey, Suresh V Ambudkar, Min Shen, Michael M Gottesman, Matthew D Hall. A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein. Molecular pharmacology. 2019 11; 96(5):629-640. doi: 10.1124/mol.119.115964. [PMID: 31515284]
  • Fariborz Habibi, Asghar Ramezanian, Majid Rahemi, Saeid Eshghi, Fabián Guillén, María Serrano, Daniel Valero. Postharvest treatments with γ-aminobutyric acid, methyl jasmonate, or methyl salicylate enhance chilling tolerance of blood orange fruit at prolonged cold storage. Journal of the science of food and agriculture. 2019 Nov; 99(14):6408-6417. doi: 10.1002/jsfa.9920. [PMID: 31283020]
  • Ming Wen, Ertao Li, Qi Chen, Hui Kang, Shuai Zhang, Kebin Li, Yinliang Wang, Yin Jiao, Bingzhong Ren. A herbivore-induced plant volatile of the host plant acts as a collective foraging signal to the larvae of the meadow moth, Loxostege sticticalis (Lepidoptera: Pyralidae). Journal of insect physiology. 2019 10; 118(?):103941. doi: 10.1016/j.jinsphys.2019.103941. [PMID: 31499032]
  • Silvia Carlin, Domenico Masuero, Graziano Guella, Urska Vrhovsek, Fulvio Mattivi. Methyl Salicylate Glycosides in Some Italian Varietal Wines. Molecules (Basel, Switzerland). 2019 Sep; 24(18):. doi: 10.3390/molecules24183260. [PMID: 31500198]
  • Huaiyu Zhang, Rui Wang, Tian Wang, Chunxia Fang, Junjie Wang. Methyl salicylate delays peel yellowing of 'Zaosu' pear (Pyrus bretschneideri) during storage by regulating chlorophyll metabolism and maintaining chloroplast ultrastructure. Journal of the science of food and agriculture. 2019 Aug; 99(10):4816-4824. doi: 10.1002/jsfa.9737. [PMID: 30980406]
  • Amna Mhamdi. Keep Sugar Away to Stay Active: Glycosylation of Methyl Salicylate Shuts Down Systemic Signaling. Plant physiology. 2019 08; 180(4):1784-1785. doi: 10.1104/pp.19.00747. [PMID: 31366701]
  • Lu Chen, Wen-Shuai Wang, Ting Wang, Xia-Fei Meng, Ting-Ting Chen, Xu-Xu Huang, Yan-Jie Li, Bing-Kai Hou. Methyl Salicylate Glucosylation Regulates Plant Defense Signaling and Systemic Acquired Resistance. Plant physiology. 2019 08; 180(4):2167-2181. doi: 10.1104/pp.19.00091. [PMID: 30962291]
  • Liang Xu, Haiping Liu, Yucui Ma, Cui Wu, Ruiqi Li, Zhimao Chao. Comparative study of volatile components from male and female flower buds of Populus × tomentosa by HS-SPME-GC-MS. Natural product research. 2019 Jul; 33(14):2105-2108. doi: 10.1080/14786419.2018.1483929. [PMID: 29897251]
  • Vishal R Patel, Hardik K Soni, Vikram B Trivedi, Jigna B Patel, Suresh Jain. Development and Validation of Analytical Method for Simultaneous Estimation of Active Constituents in a Polyherbal Ointment by Gas Chromatography. Journal of AOAC International. 2019 Jul; 102(4):1027-1032. doi: 10.5740/jaoacint.18-0383. [PMID: 30563584]
  • Anupam Kujur, Amrita Yadav, Akshay Kumar, Prem Pratap Singh, Bhanu Prakash. Nanoencapsulated methyl salicylate as a biorational alternative of synthetic antifungal and aflatoxin B1 suppressive agents. Environmental science and pollution research international. 2019 Jun; 26(18):18440-18450. doi: 10.1007/s11356-019-05171-5. [PMID: 31049858]
  • Caio Cesar de Lima Silva, Hugo Massayoshi Shimo, Rafael de Felício, Gustavo Fernando Mercaldi, Silvana Aparecida Rocco, Celso Eduardo Benedetti. Structure-function relationship of a citrus salicylate methylesterase and role of salicylic acid in citrus canker resistance. Scientific reports. 2019 03; 9(1):3901. doi: 10.1038/s41598-019-40552-3. [PMID: 30846791]
  • Thais F Stella de Freitas, Michael J Stout, Josué Sant'Ana. Effects of exogenous methyl jasmonate and salicylic acid on rice resistance to Oebalus pugnax. Pest management science. 2019 Mar; 75(3):744-752. doi: 10.1002/ps.5174. [PMID: 30101427]
  • Kang Wang, Jiahui Liu, Yidi Zhan, Yong Liu. A new slow-release formulation of methyl salicylate optimizes the alternative control of Sitobion avenae (Fabricius) (Hemiptera: Aphididae) in wheat fields. Pest management science. 2019 Mar; 75(3):676-682. doi: 10.1002/ps.5164. [PMID: 30073745]
  • Xin Li, Li-Ping Zhang, Lan Zhang, Peng Yan, Golam Jalal Ahammed, Wen-Yan Han. Methyl Salicylate Enhances Flavonoid Biosynthesis in Tea Leaves by Stimulating the Phenylpropanoid Pathway. Molecules (Basel, Switzerland). 2019 Jan; 24(2):. doi: 10.3390/molecules24020362. [PMID: 30669582]
  • Bin Liu, Eve Kaurilind, Yifan Jiang, Ülo Niinemets. Methyl salicylate differently affects benzenoid and terpenoid volatile emissions in Betula pendula. Tree physiology. 2018 10; 38(10):1513-1525. doi: 10.1093/treephys/tpy050. [PMID: 29931321]
  • Yong-Xia Li, Wei Zhang, Hui-Xia Dong, Zhen-Yu Liu, Jian Ma, Xing-Yao Zhang. Salicylic acid in Populus tomentosa is a remote signalling molecule induced by Botryosphaeria dothidea infection. Scientific reports. 2018 09; 8(1):14059. doi: 10.1038/s41598-018-32204-9. [PMID: 30232461]
  • Geun Cheol Song, Choong-Min Ryu. Evidence for Volatile Memory in Plants: Boosting Defence Priming through the Recurrent Application of Plant Volatiles. Molecules and cells. 2018 Aug; 41(8):724-732. doi: 10.14348/molcells.2018.0104. [PMID: 29991670]
  • Dedong Min, Fujun Li, Xinhua Zhang, Pan Shu, Xixi Cui, Lulu Dong, Chuntao Ren, Demei Meng, Jian Li. Effect of methyl salicylate in combination with 1-methylcyclopropene on postharvest quality and decay caused by Botrytis cinerea in tomato fruit. Journal of the science of food and agriculture. 2018 Aug; 98(10):3815-3822. doi: 10.1002/jsfa.8895. [PMID: 29352462]
  • Xin Xu, Zhen M Ou, Christine D Wu. Growth Media Affect Assessment of Antimicrobial Activity of Plant-Derived Polyphenols. BioMed research international. 2018; 2018(?):8308640. doi: 10.1155/2018/8308640. [PMID: 29854796]
  • Wei-Wei Deng, Rongxiu Wang, Tianyuan Yang, Li'na Jiang, Zheng-Zhu Zhang. Functional Characterization of Salicylic Acid Carboxyl Methyltransferase from Camellia sinensis, Providing the Aroma Compound of Methyl Salicylate during the Withering Process of White Tea. Journal of agricultural and food chemistry. 2017 Dec; 65(50):11036-11045. doi: 10.1021/acs.jafc.7b04575. [PMID: 29160698]
  • Marcin Glowacz, Nico Roets, Dharini Sivakumar. Control of anthracnose disease via increased activity of defence related enzymes in 'Hass' avocado fruit treated with methyl jasmonate and methyl salicylate. Food chemistry. 2017 Nov; 234(?):163-167. doi: 10.1016/j.foodchem.2017.04.063. [PMID: 28551220]
  • Y J Dong, S Y Hwang. Cucumber Plants Baited with Methyl Salicylate Accelerates Scymnus (Pullus) sodalis (Coleoptera: Coccinellidae) Visiting to Reduce Cotton Aphid (Hemiptera: Aphididae) Infestation. Journal of economic entomology. 2017 10; 110(5):2092-2099. doi: 10.1093/jee/tox240. [PMID: 28961975]
  • Mônica F Kersch-Becker, André Kessler, Jennifer S Thaler. Plant defences limit herbivore population growth by changing predator-prey interactions. Proceedings. Biological sciences. 2017 Sep; 284(1862):. doi: 10.1098/rspb.2017.1120. [PMID: 28878062]
  • Alejandra Martínez-Esplá, María Serrano, Daniel Valero, Domingo Martínez-Romero, Salvador Castillo, Pedro J Zapata. Enhancement of Antioxidant Systems and Storability of Two Plum Cultivars by Preharvest Treatments with Salicylates. International journal of molecular sciences. 2017 Sep; 18(9):. doi: 10.3390/ijms18091911. [PMID: 28878169]
  • Shuai Li, Peter C Harley, Ülo Niinemets. Ozone-induced foliar damage and release of stress volatiles is highly dependent on stomatal openness and priming by low-level ozone exposure in Phaseolus vulgaris. Plant, cell & environment. 2017 Sep; 40(9):1984-2003. doi: 10.1111/pce.13003. [PMID: 28623868]
  • Xinhua Zhang, Dedong Min, Fujun Li, Nana Ji, Demei Meng, Ling Li. Synergistic Effects of l-Arginine and Methyl Salicylate on Alleviating Postharvest Disease Caused by Botrysis cinerea in Tomato Fruit. Journal of agricultural and food chemistry. 2017 Jun; 65(24):4890-4896. doi: 10.1021/acs.jafc.7b00395. [PMID: 28535671]
  • Elizabeth Rowen, Michael Gutensohn, Natalia Dudareva, Ian Kaplan. Carnivore Attractant or Plant Elicitor? Multifunctional Roles of Methyl Salicylate Lures in Tomato Defense. Journal of chemical ecology. 2017 Jun; 43(6):573-585. doi: 10.1007/s10886-017-0856-6. [PMID: 28600687]
  • Yongwen Lin, Muhammad Qasim, Mubasher Hussain, Komivi Senyo Akutse, Pasco Bruce Avery, Chandra Kanta Dash, Liande Wang. The Herbivore-Induced Plant Volatiles Methyl Salicylate and Menthol Positively affect Growth and Pathogenicity of Entomopathogenic Fungi. Scientific reports. 2017 01; 7(?):40494. doi: 10.1038/srep40494. [PMID: 28079180]
  • Daniil N Olennikov, Nina I Kashchenko, Nadezhda K Chirikova. Meadowsweet Teas as New Functional Beverages: Comparative Analysis of Nutrients, Phytochemicals and Biological Effects of Four Filipendula Species. Molecules (Basel, Switzerland). 2016 Dec; 22(1):. doi: 10.3390/molecules22010016. [PMID: 28035976]
  • João D Martins, Elisabete A Maciel, Ana Silva, Isabel Ferreira, Fernando Ricardo, Pedro Domingues, Bruno M Neves, Maria Rosário M Domingues, Maria Teresa Cruz. Phospholipidomic Profile Variation on THP-1 Cells Exposed to Skin or Respiratory Sensitizers and Respiratory Irritant. Journal of cellular physiology. 2016 12; 231(12):2639-51. doi: 10.1002/jcp.25365. [PMID: 26946329]
  • Yi Fang, Hannah Bullock, Sarah A Lee, Narendran Sekar, Mark A Eiteman, William B Whitman, Ramaraja P Ramasamy. Detection of methyl salicylate using bi-enzyme electrochemical sensor consisting salicylate hydroxylase and tyrosinase. Biosensors & bioelectronics. 2016 Nov; 85(?):603-610. doi: 10.1016/j.bios.2016.05.060. [PMID: 27236726]
  • Camila Cramer Filgueiras, Denis S Willett, Ramom Vasconcelos Pereira, Alcides Moino Junior, Martin Pareja, Larry W Duncan. Eliciting maize defense pathways aboveground attracts belowground biocontrol agents. Scientific reports. 2016 11; 6(?):36484. doi: 10.1038/srep36484. [PMID: 27811992]
  • Kandaswamy Kalaivani, Marimuthu Maruthi Kalaiselvi, Sengottayan Senthil-Nathan. Effect of methyl salicylate (MeSA), an elicitor on growth, physiology and pathology of resistant and susceptible rice varieties. Scientific reports. 2016 10; 6(?):34498. doi: 10.1038/srep34498. [PMID: 27725719]
  • Yi Fang, Yogeswaran Umasankar, Ramaraja P Ramasamy. A novel bi-enzyme electrochemical biosensor for selective and sensitive determination of methyl salicylate. Biosensors & bioelectronics. 2016 Jul; 81(?):39-45. doi: 10.1016/j.bios.2016.01.095. [PMID: 26918616]
  • Yifan Jiang, Jiayan Ye, Linda-Liisa Veromann, Ülo Niinemets. Scaling of photosynthesis and constitutive and induced volatile emissions with severity of leaf infection by rust fungus (Melampsora larici-populina) in Populus balsamifera var. suaveolens. Tree physiology. 2016 07; 36(7):856-72. doi: 10.1093/treephys/tpw035. [PMID: 27225874]
  • Ranjith Kumar Manoharan, Ashokraj Shanmugam, Indeok Hwang, Jong-In Park, Ill-Sup Nou. Expression of salicylic acid-related genes in Brassica oleracea var. capitata during Plasmodiophora brassicae infection. Genome. 2016 Jun; 59(6):379-91. doi: 10.1139/gen-2016-0018. [PMID: 27171821]
  • Xavier Martini, Denis S Willett, Emily H Kuhns, Lukasz L Stelinski. Disruption of Vector Host Preference with Plant Volatiles May Reduce Spread of Insect-Transmitted Plant Pathogens. Journal of chemical ecology. 2016 May; 42(5):357-67. doi: 10.1007/s10886-016-0695-x. [PMID: 27193763]
  • Nan Zhao, Hong Lin, Suque Lan, Qidong Jia, Xinlu Chen, Hong Guo, Feng Chen. VvMJE1 of the grapevine (Vitis vinifera) VvMES methylesterase family encodes for methyl jasmonate esterase and has a role in stress response. Plant physiology and biochemistry : PPB. 2016 May; 102(?):125-32. doi: 10.1016/j.plaphy.2016.02.027. [PMID: 26934101]
  • Camila Cramer Filgueiras, Denis S Willett, Alcides Moino Junior, Martin Pareja, Fahiem El Borai, Donald W Dickson, Lukasz L Stelinski, Larry W Duncan. Stimulation of the Salicylic Acid Pathway Aboveground Recruits Entomopathogenic Nematodes Belowground. PloS one. 2016; 11(5):e0154712. doi: 10.1371/journal.pone.0154712. [PMID: 27136916]
  • Yang-Yang He, Yu Yan, Hui-Fang Zhang, Yi-Huang Lin, Yu-Cai Chen, Yi Yan, Ping Wu, Jian-Song Fang, Shu-Hui Yang, Guan-Hua Du. Methyl salicylate 2-O-β-d-lactoside alleviates the pathological progression of pristane-induced systemic lupus erythematosus-like disease in mice via suppression of inflammatory response and signal transduction. Drug design, development and therapy. 2016; 10(?):3183-3196. doi: 10.2147/dddt.s114501. [PMID: 27729775]
  • Jianzhuang Yao, Haobo Guo, Minta Chaiprasongsuk, Nan Zhao, Feng Chen, Xiaohan Yang, Hong Guo. Substrate-Assisted Catalysis in the Reaction Catalyzed by Salicylic Acid Binding Protein 2 (SABP2), a Potential Mechanism of Substrate Discrimination for Some Promiscuous Enzymes. Biochemistry. 2015 Sep; 54(34):5366-75. doi: 10.1021/acs.biochem.5b00638. [PMID: 26244568]
  • Jia Fan, Yong Zhang, Frédéric Francis, Dengfa Cheng, Jingrun Sun, Julian Chen. Orco mediates olfactory behaviors and winged morph differentiation induced by alarm pheromone in the grain aphid, Sitobion avenae. Insect biochemistry and molecular biology. 2015 Sep; 64(?):16-24. doi: 10.1016/j.ibmb.2015.07.006. [PMID: 26187252]
  • M P Seneviratne, S Karunarathne, A H de Alwis, A H N Fernando, R Fernando. Accidental methyl salicylate poisoning in two adults. The Ceylon medical journal. 2015 Jun; 60(2):65. doi: 10.4038/cmj.v60i2.8154. [PMID: 26132187]
  • Kazuo Kobayashi. Plant methyl salicylate induces defense responses in the rhizobacterium Bacillus subtilis. Environmental microbiology. 2015 Apr; 17(4):1365-76. doi: 10.1111/1462-2920.12613. [PMID: 25181478]
  • Jintao Luo, Zhaofa Xu, Zhiping Tan, Zhuohua Zhang, Long Ma. Neuropeptide receptors NPR-1 and NPR-2 regulate Caenorhabditis elegans avoidance response to the plant stress hormone methyl salicylate. Genetics. 2015 Feb; 199(2):523-31. doi: 10.1534/genetics.114.172239. [PMID: 25527285]
  • Pasquale Cascone, Luigi Iodice, Massimo E Maffei, Simone Bossi, Gen-Ichiro Arimura, Emilio Guerrieri. Tobacco overexpressing β-ocimene induces direct and indirect responses against aphids in receiver tomato plants. Journal of plant physiology. 2015 Jan; 173(?):28-32. doi: 10.1016/j.jplph.2014.08.011. [PMID: 25462075]
  • Nicole K Richards-Henderson, Andrew T Pham, Benjamin B Kirk, Cort Anastasio. Secondary organic aerosol from aqueous reactions of green leaf volatiles with organic triplet excited states and singlet molecular oxygen. Environmental science & technology. 2015 Jan; 49(1):268-76. doi: 10.1021/es503656m. [PMID: 25426693]
  • Raphaël Groux, Olivier Hilfiker, Caroline Gouhier-Darimont, Maria Fernanda Gomes Villalba Peñaflor, Matthias Erb, Philippe Reymond. Role of methyl salicylate on oviposition deterrence in Arabidopsis thaliana. Journal of chemical ecology. 2014 Jul; 40(7):754-9. doi: 10.1007/s10886-014-0470-9. [PMID: 24973956]
  • Feng Zhu, De-Hui Xi, Shu Yuan, Fei Xu, Da-Wei Zhang, Hong-Hui Lin. Salicylic acid and jasmonic acid are essential for systemic resistance against tobacco mosaic virus in Nicotiana benthamiana. Molecular plant-microbe interactions : MPMI. 2014 Jun; 27(6):567-77. doi: 10.1094/mpmi-11-13-0349-r. [PMID: 24450774]
  • Vyacheslav Kalchenko, Yuri Kuznetsov, Dina Preise, Igor Meglinski, Alon Harmelin. Ear swelling test by using laser speckle imaging with a long exposure time. Journal of biomedical optics. 2014 Jun; 19(6):060502. doi: 10.1117/1.jbo.19.6.060502. [PMID: 24967913]
  • Kevin P Pfeuffer, Steven J Ray, Gary M Hieftje. Measurement and visualization of mass transport for the flowing atmospheric pressure afterglow (FAPA) ambient mass-spectrometry source. Journal of the American Society for Mass Spectrometry. 2014 May; 25(5):800-8. doi: 10.1007/s13361-014-0843-x. [PMID: 24658804]
  • József Vuts, Lorenzo Furlan, Éva Bálintné Csonka, Christine M Woodcock, John C Caulfield, Patrick Mayon, John A Pickett, Michael A Birkett, Miklós Tóth. Development of a female attractant for the click beetle pest Agriotes brevis. Pest management science. 2014 Apr; 70(4):610-4. doi: 10.1002/ps.3589. [PMID: 23749439]
  • Hong Cheng, Ran Liang, Rui-Min Han, Jian-Ping Zhang, Leif H Skibsted. Efficient scavenging of β-carotene radical cations by antiinflammatory salicylates. Food & function. 2014 Feb; 5(2):291-4. doi: 10.1039/c3fo60519a. [PMID: 24336797]
  • Yogeswaran Umasankar, Ramaraja P Ramasamy. Highly sensitive electrochemical detection of methyl salicylate using electroactive gold nanoparticles. The Analyst. 2013 Nov; 138(21):6623-31. doi: 10.1039/c3an01295f. [PMID: 24040645]
  • Joshua Pezet, Joseph Elkinton, Sara Gomez, E Alexa McKenzie, Michael Lavine, Evan Preisser. Hemlock woolly adelgid and elongate hemlock scale induce changes in foliar and twig volatiles of eastern hemlock. Journal of chemical ecology. 2013 Aug; 39(8):1090-100. doi: 10.1007/s10886-013-0300-5. [PMID: 23900803]