D-Glucose (BioDeep_00000014321)
Secondary id: BioDeep_00000002160, BioDeep_00000014485, BioDeep_00000229627, BioDeep_00000271269, BioDeep_00000405203, BioDeep_00000405557, BioDeep_00000784081, BioDeep_00000859908, BioDeep_00001867891, BioDeep_00001892810
natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite BioNovoGene_Lab2019 Volatile Flavor Compounds
代谢物信息卡片
化学式: C6H12O6 (180.0633852)
中文名称: BETA-D-葡萄糖, α-D-葡萄糖, D-葡萄糖, D-无水葡萄糖, β-D-葡萄糖, 酵母多糖, 葡萄糖, β-D-葡萄糖(含α-D-葡萄糖)
谱图信息:
最多检出来源 Homo sapiens(blood) 0.04%
分子结构信息
SMILES: C(C1C(C(C(C(O1)O)O)O)O)O
InChI: InChI=1/C6H12O6/c7-1-2-3(8)4(9)5(10)6(11)12-2/h2-11H,1H2/t2-,3-,4+,5-,6-/m1/s1
描述信息
Glucose is a monosaccharide containing six carbon atoms and an aldehyde group. It is referred to as an aldohexose. The glucose molecule can exist in an open-chain (acyclic) and ring (cyclic) form, the latter being the result of an intramolecular reaction between the aldehyde C atom and the C-5 hydroxyl group to form an intramolecular hemiacetal. In aqueous solution, both forms are in equilibrium and at pH 7 the cyclic one is predominant. Glucose is a primary source of energy for all living organisms. It is a fundamental metabolite found in all organisms, ranging from bacteria to plants to humans. Most of the world’s glucose is made by plants and algae during photosynthesis from water and carbon dioxide, where it is used to make cellulose (and other polymeric forms of glucose called polysaccharides) that stabilize plant cell walls. Glucose is also found in fruits and other parts of plants in its free state. In animals, glucose can be generated from the breakdown of glycogen in a process known as glycogenolysis. Glucose can also be synthesized de novo in animals. In particular it can be synthesized in the liver and kidneys from non-carbohydrate intermediates, such as pyruvate and glycerol, by a process known as gluconeogenesis. Humans also consume large amounts of glucose as part of their regular diet. Ingested glucose initially binds to the receptor for sweet taste on the tongue in humans. This complex of the proteins T1R2 and T1R3 makes it possible to identify glucose-containing food sources. Glucose in the body mainly comes from food - about 300 g per day for the average adult. In humans, the breakdown of glucose-containing polysaccharides happens partly during chewing by means of the enzyme known as amylase, which is contained in saliva, as well as by other enzymes such as maltase, lactase and sucrase on the brush border of the small intestine. The blood sugar content of a healthy person in the short-time fasting state, e.g. after overnight fasting, is about 70 to 100 mg/dL of blood (4 to 5.5 mM). In blood plasma, the measured values are about 10–15\\\\% higher. Dysregulated metabolism of glucose can lead to a number of diseases including diabetes. Diabetes is a metabolic disorder where the body is unable to regulate levels of glucose in the blood either because of a lack of insulin in the body or the failure, by cells in the body, to respond properly to insulin. Each of these situations can be caused by persistently high elevations of blood glucose levels, through pancreatic burnout and insulin resistance.
A glucoside is a glycoside that is derived from glucose. Glucosides are common in plants, but rare in animals. Glucose is produced when a glucoside is hydrolysed by purely chemical means, or decomposed by fermentation or enzymes.
COVID info from WikiPathways
Corona-virus
Coronavirus
SARS-CoV-2
COVID-19
SARS-CoV
COVID19
SARS2
SARS
alpha-D-glucose is an endogenous metabolite.
alpha-D-glucose is an endogenous metabolite.
同义名列表
36 个代谢物同义名
(2R,3R,4S,5S,6R)-6-(hydroxymethyl)oxane-2,3,4,5-tetrol; BETA-D-GLUCOSE (CONTAINS ALPHA-D-GLUCOSE); Glucose, (beta-D)-isomer; beta-D-Glucopyranoside; Glucose, (DL)-isomer; beta-D-Glucopyranose; β-D-Glucopyranoside; b-D-Glucopyranose; β-D-Glucopyranose; D-Glucopyranoside; beta-D(+)Glucose; alpha-D-Glucose; D-Glucopyranose; beta-D-Glucose; beta-Dextrose; beta-Glucose; b-D-Glucose; β-D-glucose; β-Dextrose; b-Dextrose; β-Glucose; D-Glucose; D Glucose; b-Glucose; glucoside; ZYMOSAN A; dextrose; Glucose; D-GLCP; GLC-OH; D-GLC; beta-D-Glucose; D-Glucose; alpha-D-Glucose; beta-D-Glucose; Hexose
数据库引用编号
40 个数据库交叉引用编号
- ChEBI: CHEBI:27380
- ChEBI: CHEBI:37671
- ChEBI: CHEBI:27517
- ChEBI: CHEBI:18246
- ChEBI: CHEBI:15903
- KEGG: C00221
- KEGGdrug: D90709
- PubChem: 64689
- HMDB: HMDB0000122
- Metlin: METLIN3755
- DrugBank: DB02379
- ChEMBL: CHEMBL1614854
- Wikipedia: Glucose
- MetaCyc: GLC
- KNApSAcK: C00001122
- foodb: FDB011824
- chemspider: 58238
- CAS: 136760-05-9
- CAS: 128009-02-9
- CAS: 133947-06-5
- CAS: 28905-12-6
- CAS: 54724-00-4
- CAS: 50986-29-3
- CAS: 9010-72-4
- CAS: 492-62-6
- CAS: 492-61-5
- MoNA: PS038202
- PubChem: 3521
- PDB-CCD: BGC
- 3DMET: B01193
- NIKKAJI: J44.213E
- medchemexpress: HY-128417
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-544
- KEGG: C00267
- PubChem: 3565
- KNApSAcK: 17925
- KNApSAcK: 15903
- LOTUS: LTS0222199
- wikidata: Q335208
- LOTUS: LTS0107522
分类词条
相关代谢途径
BioCyc(9)
- chitin biosynthesis
- trehalose degradation II (cytosolic)
- glycogen degradation I
- protein N-glycosylation processing phase (mammalian)
- protein N-glycosylation processing phase (plants and animals)
- trehalose degradation
- trehalose degradation VI (periplasmic)
- trehalose degradation I (low osmolarity)
- trehalose degradation II (trehalase)
PlantCyc(33)
- superpathway of betalain biosynthesis
- aromatic glucosinolate activation
- fructan biosynthesis
- rutin degradation (plants)
- indole-3-acetate activation II
- superpathway of indole-3-acetate conjugate biosynthesis
- indole-3-acetate inactivation IX
- indole glucosinolate activation (herbivore attack)
- ajmaline and sarpagine biosynthesis
- vindoline, vindorosine and vinblastine biosynthesis
- linustatin bioactivation
- linamarin degradation
- esculetin modification
- superpathway of scopolin and esculin biosynthesis
- superpathway of formononetin derivative biosynthesis
- afrormosin conjugates interconversion
- amygdalin and prunasin degradation
- podophyllotoxin glucosides metabolism
- violdelphin biosynthesis
- sucrose biosynthesis II
- emetine biosynthesis
- starch degradation II
- daidzein conjugates interconversion
- coniferin metabolism
- trehalose degradation II (cytosolic)
- superpathway of hydrolyzable tannin biosynthesis
- pentagalloylglucose biosynthesis
- daphnin interconversion
- crocetin biosynthesis
- camptothecin biosynthesis
- proanthocyanidins biosynthesis from flavanols
- starch degradation I
- galloylated catechin biosynthesis
代谢反应
1109 个相关的代谢反应过程信息。
Reactome(35)
- Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Innate Immune System:
TLR4:TLR6 + oxLDL:CD36 ⟶ TLR4:TLR6:CD36:oxLDL
- C-type lectin receptors (CLRs):
CLEC7A + zymosan ⟶ CLEC7A:1,3-beta-D-glucan
- CLEC7A (Dectin-1) signaling:
CLEC7A + zymosan ⟶ CLEC7A:1,3-beta-D-glucan
- Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Innate Immune System:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- C-type lectin receptors (CLRs):
ATP + CLEC7A:1,3-beta-D-glucan ⟶ 1,3-beta-D-glucan:p-Y15-CLEC7A + ADP
- CLEC7A (Dectin-1) signaling:
ATP + CLEC7A:1,3-beta-D-glucan ⟶ 1,3-beta-D-glucan:p-Y15-CLEC7A + ADP
- Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Innate Immune System:
TLR4:TLR6 + oxLDL:CD36 ⟶ TLR4:TLR6:CD36:oxLDL
- C-type lectin receptors (CLRs):
ATP + CLEC7A:1,3-beta-D-glucan ⟶ 1,3-beta-D-glucan:p-Y15-CLEC7A + ADP
- CLEC7A (Dectin-1) signaling:
ATP + CLEC7A:1,3-beta-D-glucan ⟶ 1,3-beta-D-glucan:p-Y15-CLEC7A + ADP
- Disease:
ADORA2B + Ade-Rib ⟶ ADORA2B:Ade-Rib
- Infectious disease:
ADORA2B + Ade-Rib ⟶ ADORA2B:Ade-Rib
- Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Innate Immune System:
TLR4:TLR6 + oxLDL:CD36 ⟶ TLR4:TLR6:CD36:oxLDL
- C-type lectin receptors (CLRs):
ATP + CLEC7A:1,3-beta-D-glucan ⟶ 1,3-beta-D-glucan:p-Y15-CLEC7A + ADP
- CLEC7A (Dectin-1) signaling:
ATP + CLEC7A:1,3-beta-D-glucan ⟶ 1,3-beta-D-glucan:p-Y15-CLEC7A + ADP
- Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Innate Immune System:
TLR4:TLR6 + oxLDL:CD36 ⟶ TLR4:TLR6:CD36:oxLDL
- C-type lectin receptors (CLRs):
ATP + CLEC7A:1,3-beta-D-glucan ⟶ 1,3-beta-D-glucan:p-Y15-CLEC7A + ADP
- CLEC7A (Dectin-1) signaling:
ATP + CLEC7A:1,3-beta-D-glucan ⟶ 1,3-beta-D-glucan:p-Y15-CLEC7A + ADP
- Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Innate Immune System:
TLR4:TLR6 + oxLDL:CD36 ⟶ TLR4:TLR6:CD36:oxLDL
- C-type lectin receptors (CLRs):
ATP + CLEC7A:1,3-beta-D-glucan ⟶ 1,3-beta-D-glucan:p-Y15-CLEC7A + ADP
- CLEC7A (Dectin-1) signaling:
ATP + CLEC7A:1,3-beta-D-glucan ⟶ 1,3-beta-D-glucan:p-Y15-CLEC7A + ADP
- SARS-CoV Infections:
H2O + N-glycan Spike ⟶ beta-D-glucose + trimmed unfolded N-glycan Spike
- SARS-CoV-1 Infection:
H2O + N-glycan Spike ⟶ beta-D-glucose + trimmed unfolded N-glycan Spike
- Translation of Structural Proteins:
H2O + N-glycan Spike ⟶ beta-D-glucose + trimmed unfolded N-glycan Spike
- Maturation of spike protein:
H2O + N-glycan Spike ⟶ beta-D-glucose + trimmed unfolded N-glycan Spike
- SARS-CoV-2 Infection:
14-sugar N-glycan unfolded Spike + H2O ⟶ Man(9) N-glycan unfolded Spike + beta-D-glucose
- Translation of Structural Proteins:
14-sugar N-glycan unfolded Spike + H2O ⟶ Man(9) N-glycan unfolded Spike + beta-D-glucose
- Maturation of spike protein:
14-sugar N-glycan unfolded Spike + H2O ⟶ Man(9) N-glycan unfolded Spike + beta-D-glucose
- Late SARS-CoV-2 Infection Events:
NAD + p-11S,2T-metR95,177-N ⟶ ADPr-p-11S,2T-metR95,177-N + H+ + NAM
- Viral Infection Pathways:
NAD + p-S177-N ⟶ ADPr-p-S177-N + H+ + NAM
BioCyc(163)
- taxiphyllin bioactivation:
H2O + taxiphyllin ⟶ β-D-glucose + 4-hydroxybenzaldehyde + hydrogen cyanide
- taxiphyllin bioactivation:
H2O + taxiphyllin ⟶ β-D-glucose + 4-hydroxybenzaldehyde + hydrogen cyanide
- melibiose degradation:
H2O + melibiose ⟶ α-D-galactose + β-D-glucose
- melibiose degradation:
H2O + melibiose ⟶ α-D-galactose + β-D-glucose
- melibiose degradation:
H2O + melibiose ⟶ α-D-galactose + β-D-glucose
- melibiose degradation:
H2O + melibiose ⟶ α-D-galactose + β-D-glucose
- melibiose degradation:
H2O + melibiose ⟶ β-D-galactose + β-D-glucose
- melibiose degradation:
H2O + melibiose ⟶ α-D-galactose + β-D-glucose
- melibiose degradation:
H2O + melibiose ⟶ α-D-galactose + β-D-glucose
- melibiose degradation:
H2O + melibiose ⟶ α-D-galactose + β-D-glucose
- melibiose degradation:
H2O + melibiose ⟶ α-D-galactose + β-D-glucose
- melibiose degradation:
H2O + melibiose ⟶ α-D-galactose + β-D-glucose
- glycogen degradation I:
maltose + maltotriose ⟶ β-D-glucose + maltotetraose
- lactose degradation III:
α-lactose + H2O ⟶ β-D-galactose + β-D-glucose
- lactose degradation III:
α-lactose + H2O ⟶ β-D-galactose + β-D-glucose
- lactose degradation III:
α-lactose + H2O ⟶ β-D-galactose + β-D-glucose
- lactose degradation III:
α-lactose + H2O ⟶ β-D-galactose + β-D-glucose
- lactose degradation III:
H2O + lactose ⟶ β-D-galactose + β-D-glucose
- lactose degradation III:
H2O + lactose ⟶ β-D-galactose + β-D-glucose
- lactose degradation III:
α-lactose + H2O ⟶ β-D-galactose + β-D-glucose
- trehalose degradation II (trehalase):
H2O + trehalose ⟶ β-D-glucose
- Bifidobacterium shunt:
ATP + acetate ⟶ ADP + H+ + acetylphosphate
- glycolysis III:
β-D-glucose + ATP ⟶ β-D-glucose-6-phosphate + ADP + H+
- heterolactic fermentation:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- xyloglucan degradation II (exoglucanase):
H2O + XXXG xyloglucan oligosaccharide ⟶ β-D-glucose + isoprimeverose
- xyloglucan degradation I (endoglucanase):
H2O + XXXG xyloglucan oligosaccharide ⟶ β-D-glucose + isoprimeverose
- glucose and glucose-1-phosphate degradation:
β-D-glucose + UQ ⟶ D-glucono-1,5-lactone + UQH2
- glucose and glucose-1-phosphate degradation:
β-D-glucose + ATP ⟶ β-D-glucose-6-phosphate + ADP + H+
- glucose and glucose-1-phosphate degradation:
α-D-glucose 1-phosphate + H2O ⟶ D-glucose + phosphate
- glucose and glucose-1-phosphate degradation:
α-D-glucose 1-phosphate + H2O ⟶ D-glucose + phosphate
- glucose and glucose-1-phosphate degradation:
β-D-glucose + UQ ⟶ D-glucono-1,5-lactone + UQH2
- glucose and glucose-1-phosphate degradation:
β-D-glucose + UQ ⟶ D-glucono-1,5-lactone + UQH2
- glucose and glucose-1-phosphate degradation:
β-D-glucose + ATP ⟶ β-D-glucose 6-phosphate + ADP + H+
- sorbitol biosynthesis II:
β-D-glucose + D-fructose ⟶ D-sorbitol + glucono-δ-lactone
- lactose degradation III:
H2O + lactose ⟶ β-D-galactose + β-D-glucose
- lactose degradation III:
H2O + lactose ⟶ β-D-galactose + β-D-glucose
- lactose degradation III:
H2O + lactose ⟶ β-D-galactose + β-D-glucose
- trehalose degradation II (trehalase):
β-D-glucose + ATP ⟶ β-D-glucose-6-phosphate + ADP + H+
- trehalose degradation II (trehalase):
β-D-glucose + ATP ⟶ β-D-glucose-6-phosphate + ADP + H+
- cyclobis-(1→6)-α-nigerosyl degradation:
H2O + cyclobis-(1→6)-α-nigerosyl ⟶ α-isomaltosyl-(1→3)-isomaltose
- trehalose degradation:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- chitin biosynthesis:
UDP-N-acetyl-α-D-glucosamine + chitin ⟶ UDP + chitin
- trehalose degradation VI (periplasmic):
α-D-glucopyranose ⟶ β-D-glucopyranose
- trehalose degradation II (cytosolic):
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- trehalose degradation II (cytosolic):
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- trehalose degradation VI (periplasmic):
α-D-glucopyranose ⟶ β-D-glucopyranose
- trehalose degradation II (cytosolic):
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- trehalose degradation VI (periplasmic):
α-D-glucopyranose ⟶ β-D-glucopyranose
- chitin biosynthesis:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- trehalose degradation II (trehalase):
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- Entner-Doudoroff pathway III (semi-phosphorylative):
α-D-glucose ⟶ β-D-glucose
- trehalose degradation II (trehalase):
α,α-trehalose + H2O ⟶ α-D-glucose + β-D-glucose
- trehalose degradation VI (periplasmic):
α,α-trehalose + H2O ⟶ α-D-glucose + β-D-glucose
- trehalose degradation II (cytosolic):
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- trehalose degradation VI (periplasmic):
α,α-trehalose + H2O ⟶ α-D-glucopyranose + β-D-glucopyranose
- trehalose degradation II (trehalase):
β-D-glucose + ATP ⟶ β-D-glucose 6-phosphate + ADP + H+
- trehalose degradation II (trehalase):
α,α-trehalose + H2O ⟶ α-D-glucose + β-D-glucose
- sucrose degradation V (mammalian):
α-D-glucose ⟶ β-D-glucose
- trehalose degradation II (trehalase):
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- trehalose degradation V:
β-D-glucose + ATP ⟶ β-D-glucose-6-phosphate + ADP + H+
- trehalose degradation II (trehalase):
β-D-glucose + ATP ⟶ β-D-glucose 6-phosphate + ADP + H+
- trehalose degradation VI (periplasmic):
α-D-glucose ⟶ β-D-glucose
- trehalose degradation II (trehalase):
β-D-glucose + ATP ⟶ β-D-glucose 6-phosphate + ADP + H+
- trehalose degradation VI (periplasmic):
α-D-glucose ⟶ β-D-glucose
- sucrose degradation V (mammalian):
α-D-glucose ⟶ β-D-glucose
- Entner-Doudoroff pathway III (semi-phosphorylative):
α-D-glucose ⟶ β-D-glucose
- Entner-Doudoroff pathway II (non-phosphorylative):
α-D-glucose ⟶ β-D-glucose
- starch degradation V:
α-D-glucose ⟶ β-D-glucose
- starch degradation V:
H2O + starch ⟶ D-glucopyranose + a maltodextrin + maltose
- DIMBOA-glucoside degradation:
DIMBOA-Glc + H2O ⟶ β-D-glucose + DIMBOA
- lactose and galactose degradation I:
H2O + lactose 6-phosphate ⟶ β-D-glucose + D-galactose 6-phosphate
- glycogen degradation I:
maltose + maltotriose ⟶ β-D-glucose + maltotetraose
- glycogen degradation I:
β-D-glucose + ATP ⟶ β-D-glucose 6-phosphate + ADP + H+
- glycogen degradation I:
β-D-glucose + ATP ⟶ β-D-glucose-6-phosphate + ADP + H+
- glycogen degradation I:
β-D-glucose + ATP ⟶ β-D-glucose 6-phosphate + ADP + H+
- trehalose degradation IV:
phosphate + trehalose ⟶ β-D-glucose + β-D-glucose 1-phosphate
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- Chrysolaminaran biosynthesis:
UDP-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- protein N-glycosylation processing phase (mammalian):
Glc3Man9GlcNAc2-[protein] + H2O ⟶ β-D-glucopyranose + Glc2Man9GlcNAc2-[protein]
- protein N-glycosylation processing phase (yeast):
GlcMan9GlcNAc2-[protein] + H2O ⟶ α-D-glucopyranose + Man9GlcNAc2-[protein] (isomer 9A1,2,3B1,2,3)
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- protein N-glycosylation processing phase (plants and animals):
GlcMan9GlcNAc2-[protein] + H2O ⟶ α-D-glucopyranose + Man9GlcNAc2-[protein] (isomer 9A1,2,3B1,2,3)
- protein N-glycosylation (yeast) processing in the ER:
Glc3Man9GlcNAc2-[protein] + H2O ⟶ β-D-glucopyranose + Glc2Man9GlcNAc2-[protein]
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- glucose and glucose-1-phosphate degradation:
D-glucopyranose + UQ ⟶ D-glucono-1,5-lactone + UQH2
- glycolysis III (from glucose):
β-D-glucose + ATP ⟶ β-D-glucose 6-phosphate + ADP + H+
- homolactic fermentation:
β-D-glucose + ATP ⟶ β-D-glucose 6-phosphate + ADP + H+
- glycogenolysis II:
H2O + a α-limit dextrin with short branches ⟶ β-D-glucose + a debranched α-limit dextrin
- glycogen degradation I:
D-glucopyranose + maltotetraose ⟶ maltose + maltotriose
- Bifidobacterium shunt:
β-D-glucose + ATP ⟶ β-D-glucose-6-phosphate + ADP + H+
- heterolactic fermentation:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- glucose and glucose-1-phosphate degradation:
D-glucopyranose + UQ ⟶ D-glucono-1,5-lactone + UQH2
- glycolysis III (from glucose):
β-D-glucose + ATP ⟶ β-D-glucose 6-phosphate + ADP + H+
- homolactic fermentation:
β-D-glucose + ATP ⟶ β-D-glucose 6-phosphate + ADP + H+
- glycogen degradation I:
H2O + maltotriose ⟶ D-glucopyranose + maltose
- glycogen degradation II:
H2O + a α-limit dextrin with short branches ⟶ β-D-glucose + a debranched α-limit dextrin
- glycogen degradation II:
H2O + a α-limit dextrin with short branches ⟶ β-D-glucose + a debranched α-limit dextrin
- glycogen degradation I:
H2O + maltotriose ⟶ D-glucopyranose + maltose
- glucose and glucose-1-phosphate degradation:
α-D-glucose 1-phosphate + H2O ⟶ D-glucopyranose + phosphate
- lactose degradation II:
3'-ketolactose + H2O ⟶ β-D-glucose + 3-keto-β-D-galactose
- homolactic fermentation:
β-D-glucose + ATP ⟶ β-D-glucose 6-phosphate + ADP + H+
- glucose and glucose-1-phosphate degradation:
α-D-glucose 1-phosphate + H2O ⟶ D-glucopyranose + phosphate
- glycogen degradation I:
H2O + maltotriose ⟶ D-glucopyranose + maltose
- glycogen degradation II:
H2O + a α-limit dextrin with short branches ⟶ β-D-glucose + a debranched α-limit dextrin
- glycolysis III (from glucose):
β-D-glucose + ATP ⟶ β-D-glucose 6-phosphate + ADP + H+
- glycogen degradation III:
H2O + a debranched α-limit dextrin ⟶ β-D-glucose
- GDP-glucose biosynthesis:
β-D-glucose + ATP ⟶ β-D-glucose-6-phosphate + ADP + H+
- glycolysis III:
β-D-glucose + ATP ⟶ β-D-glucose-6-phosphate + ADP + H+
- glycogen degradation II:
H2O + a α-limit dextrin with short branches ⟶ β-D-glucose + a debranched α-limit dextrin
- glycolysis V (Pyrococcus):
β-D-glucose + ADP ⟶ β-D-glucose-6-phosphate + AMP + H+
- GDP-glucose biosynthesis:
β-D-glucose + ATP ⟶ β-D-glucose-6-phosphate + ADP + H+
- glycolysis III:
β-D-glucose + ATP ⟶ β-D-glucose-6-phosphate + ADP + H+
- glycogen degradation III:
H2O + a α-limit dextrin with short branches ⟶ β-D-glucose + a debranched α-limit dextrin
- DIMBOA-glucoside degradation:
DIMBOA-Glc + H2O ⟶ β-D-glucose + DIMBOA
- glycogen degradation II:
H2O + a α-limit dextrin with short branches ⟶ β-D-glucose + a debranched α-limit dextrin
- GDP-glucose biosynthesis:
β-D-glucose + ATP ⟶ β-D-glucose-6-phosphate + ADP + H+
- glycogen degradation I:
H2O + maltotriose ⟶ D-glucopyranose + maltose
- glucose and glucose-1-phosphate degradation:
α-D-glucose 1-phosphate + H2O ⟶ D-glucopyranose + phosphate
- glucose and glucose-1-phosphate degradation:
α-D-glucose 1-phosphate + H2O ⟶ D-glucopyranose + phosphate
- glycogen degradation I:
H2O + maltotriose ⟶ D-glucopyranose + maltose
- lactose degradation III:
H2O + lactose ⟶ β-D-galactose + β-D-glucose
- lactose degradation II:
3'-ketolactose + H2O ⟶ β-D-glucose + 3-keto-β-D-galactose
- glycolysis III:
β-D-glucose + ATP ⟶ β-D-glucose-6-phosphate + ADP + H+
- glycogen degradation I:
maltose + maltotriose ⟶ β-D-glucose + maltotetraose
- GDP-glucose biosynthesis:
β-D-glucose + ATP ⟶ β-D-glucose-6-phosphate + ADP + H+
- glucose and glucose-1-phosphate degradation:
β-D-glucose + ATP ⟶ β-D-glucose-6-phosphate + ADP + H+
- glycolysis III:
β-D-glucose + ATP ⟶ β-D-glucose-6-phosphate + ADP + H+
- homolactic fermentation:
β-D-glucose + ATP ⟶ β-D-glucose-6-phosphate + ADP + H+
- glycogen degradation II:
H2O + a α-limit dextrin with short branches ⟶ β-D-glucose + a debranched α-limit dextrin
- maltose degradation:
maltose + phosphate ⟶ β-D-glucose + β-D-glucose 1-phosphate
- cellulose degradation I (cellulosome):
H2O + a cellodextrin ⟶ cellobiose
- heterolactic fermentation:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- DIMBOA-glucoside activation:
DIMBOA-β-D-glucoside + H2O ⟶ β-D-glucose + DIMBOA + H+
- glycolysis III (glucokinase):
β-D-glucose + ATP ⟶ β-D-glucose 6-phosphate + ADP + H+
- trehalose degradation I (low osmolarity):
H2O + trehalose 6-phosphate ⟶ β-D-glucose + β-D-glucose 6-phosphate
- lactose and galactose degradation I:
H2O + lactose 6-phosphate ⟶ β-D-glucose + D-galactose 6-phosphate
- homolactic fermentation:
β-D-glucose + ATP ⟶ β-D-glucose 6-phosphate + ADP + H+
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ β-D-glucose + coumarinate
- glycolysis III (glucokinase):
β-D-glucose + ATP ⟶ β-D-glucose-6-phosphate + ADP + H+
- lactose degradation II:
3'-ketolactose + H2O ⟶ β-D-glucose + 3-keto-β-D-galactose
- linamarin degradation:
H2O + linamarin ⟶ β-D-glucose + acetone cyanohydrin
- lactose and galactose degradation I:
H2O + lactose 6-phosphate ⟶ β-D-glucose + D-galactose 6-phosphate
- heterolactic fermentation:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- cellulose degradation II (fungi):
H2O + cellobiose ⟶ β-D-glucose
- lotaustralin degradation:
H2O + lotaustralin ⟶ β-D-glucose + (2R)-2-hydroxy-2-methylbutanenitrile
- glycogen degradation II:
H2O + a α-limit dextrin with short branches ⟶ β-D-glucose + a debranched α-limit dextrin
- lactose and galactose degradation I:
H2O + lactose 6-phosphate ⟶ β-D-glucose + D-galactose 6-phosphate
- glycolysis III (glucokinase):
β-D-glucose + ATP ⟶ β-D-glucose 6-phosphate + ADP + H+
- heterolactic fermentation:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- homolactic fermentation:
β-D-glucose + ATP ⟶ β-D-glucose 6-phosphate + ADP + H+
- cellulose degradation I (cellulosome):
cellobiose + phosphate ⟶ α-D-glucose 1-phosphate + β-D-glucose
- cellulose degradation II (fungi):
H2O + a cellodextrin ⟶ cellobiose
- trehalose degradation I (low osmolarity):
β-D-glucose + ATP ⟶ β-D-glucose 6-phosphate + ADP + H+
- superpathway of cellulose and hemicellulose degradation (cellulolosome):
cellobiose + phosphate ⟶ α-D-glucose 1-phosphate + β-D-glucose
- glycolysis III (from glucose):
β-D-glucose + ATP ⟶ β-D-glucose 6-phosphate + ADP + H+
- glucose and glucose-1-phosphate degradation:
α-D-glucose 1-phosphate + H2O ⟶ D-glucopyranose + phosphate
- glycolysis III (from glucose):
β-D-glucose + ATP ⟶ β-D-glucose 6-phosphate + ADP + H+
- glycogenolysis II:
H2O + a α-limit dextrin with short branches ⟶ β-D-glucose + a debranched α-limit dextrin
- glycogen degradation I:
D-glucopyranose + maltotetraose ⟶ maltose + maltotriose
WikiPathways(8)
- Glucose sensing and signaling:
D-Glucose ⟶ G6P
- Glycolysis:
glucose ⟶ glucose 6-phosphate
- Hexoses metabolism in proximal tubules:
Glucose ⟶ Sorbitol
- Polyol pathway:
D-Glucose ⟶ D-Sorbitol
- Glycolysis and gluconeogenesis:
Aspartate ⟶ Oxaloacetate
- Trehalose anabolism:
trehalose ⟶ beta-D-Glucose
- Glycogen synthesis and degradation:
D-Glucose ⟶ Glucose-6-phosphate (2-)
- Metabolic Epileptic Disorders:
P-enolpyruvate ⟶ Pyruvate
Plant Reactome(304)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Cellulose biosynthesis:
(1,4-beta-D-glucan) + UDP-Glc ⟶ (1,4-beta-D-glucan) + UDP
- Xyloglucan biosynthesis:
(1->4)-beta-D-glucan + UDP-Xyl ⟶ GXGG xyloglucan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Cellulose biosynthesis:
(1,4-beta-D-glucan) + UDP-Glc ⟶ (1,4-beta-D-glucan) + UDP
- Xyloglucan biosynthesis:
(1->4)-beta-D-glucan + UDP-Xyl ⟶ GXGG xyloglucan + UDP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Cellulose biosynthesis:
(1,4-beta-D-glucan) + UDP-Glc ⟶ (1,4-beta-D-glucan) + UDP
- Xyloglucan biosynthesis:
(1->4)-beta-D-glucan + UDP-Xyl ⟶ GXGG xyloglucan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Cellulose biosynthesis:
(1,4-beta-D-glucan) + UDP-Glc ⟶ (1,4-beta-D-glucan) + UDP
- Xyloglucan biosynthesis:
(1->4)-beta-D-glucan + UDP-Xyl ⟶ GXGG xyloglucan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Cellulose biosynthesis:
(1,4-beta-D-glucan) + UDP-Glc ⟶ (1,4-beta-D-glucan) + UDP
- Xyloglucan biosynthesis:
(1->4)-beta-D-glucan + UDP-Xyl ⟶ GXGG xyloglucan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Cellulose biosynthesis:
(1,4-beta-D-glucan) + UDP-Glc ⟶ (1,4-beta-D-glucan) + UDP
- Xyloglucan biosynthesis:
(1->4)-beta-D-glucan + UDP-Xyl ⟶ GXGG xyloglucan + UDP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Cellulose biosynthesis:
(1,4-beta-D-glucan) + UDP-Glc ⟶ (1,4-beta-D-glucan) + UDP
- Xyloglucan biosynthesis:
(1->4)-beta-D-glucan + UDP-Xyl ⟶ GXGG xyloglucan + UDP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Cellulose biosynthesis:
(1,4-beta-D-glucan) + UDP-Glc ⟶ (1,4-beta-D-glucan) + UDP
- Xyloglucan biosynthesis:
(1->4)-beta-D-glucan + UDP-Xyl ⟶ GXGG xyloglucan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Cellulose biosynthesis:
(1,4-beta-D-glucan) + UDP-Glc ⟶ (1,4-beta-D-glucan) + UDP
- Xyloglucan biosynthesis:
(1->4)-beta-D-glucan + UDP-Xyl ⟶ GXGG xyloglucan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Cellulose biosynthesis:
(1,4-beta-D-glucan) + UDP-Glc ⟶ (1,4-beta-D-glucan) + UDP
- Xyloglucan biosynthesis:
(1->4)-beta-D-glucan + UDP-Xyl ⟶ GXGG xyloglucan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Cellulose biosynthesis:
(1,4-beta-D-glucan) + UDP-Glc ⟶ (1,4-beta-D-glucan) + UDP
- Xyloglucan biosynthesis:
(1->4)-beta-D-glucan + UDP-Xyl ⟶ GXGG xyloglucan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Cellulose biosynthesis:
(1,4-beta-D-glucan) + UDP-Glc ⟶ (1,4-beta-D-glucan) + UDP
- Xyloglucan biosynthesis:
(1->4)-beta-D-glucan + UDP-Xyl ⟶ GXGG xyloglucan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Cellulose biosynthesis:
(1,4-beta-D-glucan) + UDP-Glc ⟶ (1,4-beta-D-glucan) + UDP
- Xyloglucan biosynthesis:
(1->4)-beta-D-glucan + UDP-Xyl ⟶ GXGG xyloglucan + UDP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Cellulose biosynthesis:
(1,4-beta-D-glucan) + UDP-Glc ⟶ (1,4-beta-D-glucan) + UDP
- Xyloglucan biosynthesis:
(1->4)-beta-D-glucan + UDP-Xyl ⟶ GXGG xyloglucan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Cellulose biosynthesis:
(1,4-beta-D-glucan) + UDP-Glc ⟶ (1,4-beta-D-glucan) + UDP
- Xyloglucan biosynthesis:
(1->4)-beta-D-glucan + UDP-Xyl ⟶ GXGG xyloglucan + UDP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Cellulose biosynthesis:
(1,4-beta-D-glucan) + UDP-Glc ⟶ (1,4-beta-D-glucan) + UDP
- Xyloglucan biosynthesis:
(1->4)-beta-D-glucan + UDP-Xyl ⟶ GXGG xyloglucan + UDP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
ATP + beta-D-glucose ⟶ ADP + H+ + beta-D-glucose-6-phosphate
- Cellulose biosynthesis:
(1,4-beta-D-glucan) + UDP-Glc ⟶ (1,4-beta-D-glucan) + UDP
- Xyloglucan biosynthesis:
(1->4)-beta-D-glucan + UDP-Xyl ⟶ GXGG xyloglucan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Cellulose biosynthesis:
(1,4-beta-D-glucan) + UDP-Glc ⟶ (1,4-beta-D-glucan) + UDP
- Xyloglucan biosynthesis:
(1->4)-beta-D-glucan + UDP-Xyl ⟶ GXGG xyloglucan + UDP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Cellulose biosynthesis:
(1,4-beta-D-glucan) + UDP-Glc ⟶ (1,4-beta-D-glucan) + UDP
- Xyloglucan biosynthesis:
(1->4)-beta-D-glucan + UDP-Xyl ⟶ GXGG xyloglucan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Cellulose biosynthesis:
(1,4-beta-D-glucan) + UDP-Glc ⟶ (1,4-beta-D-glucan) + UDP
- Xyloglucan biosynthesis:
(1->4)-beta-D-glucan + UDP-Xyl ⟶ GXGG xyloglucan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Cellulose biosynthesis:
(1,4-beta-D-glucan) + UDP-Glc ⟶ (1,4-beta-D-glucan) + UDP
- Xyloglucan biosynthesis:
(1->4)-beta-D-glucan + UDP-Xyl ⟶ GXGG xyloglucan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Cellulose biosynthesis:
(1,4-beta-D-glucan) + UDP-Glc ⟶ (1,4-beta-D-glucan) + UDP
- Xyloglucan biosynthesis:
(1->4)-beta-D-glucan + UDP-Xyl ⟶ GXGG xyloglucan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Cellulose biosynthesis:
(1,4-beta-D-glucan) + UDP-Glc ⟶ (1,4-beta-D-glucan) + UDP
- Xyloglucan biosynthesis:
(1->4)-beta-D-glucan + UDP-Xyl ⟶ GXGG xyloglucan + UDP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Cellulose biosynthesis:
(1,4-beta-D-glucan) + UDP-Glc ⟶ (1,4-beta-D-glucan) + UDP
- Xyloglucan biosynthesis:
(1->4)-beta-D-glucan + UDP-Xyl ⟶ GXGG xyloglucan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Cellulose biosynthesis:
(1,4-beta-D-glucan) + UDP-Glc ⟶ (1,4-beta-D-glucan) + UDP
- Xyloglucan biosynthesis:
(1->4)-beta-D-glucan + UDP-Xyl ⟶ GXGG xyloglucan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Cellulose biosynthesis:
(1,4-beta-D-glucan) + UDP-Glc ⟶ (1,4-beta-D-glucan) + UDP
- Xyloglucan biosynthesis:
(1->4)-beta-D-glucan + UDP-Xyl ⟶ GXGG xyloglucan + UDP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Cellulose biosynthesis:
(1,4-beta-D-glucan) + UDP-Glc ⟶ (1,4-beta-D-glucan) + UDP
- Xyloglucan biosynthesis:
(1->4)-beta-D-glucan + UDP-Xyl ⟶ GXGG xyloglucan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Cellulose biosynthesis:
(1,4-beta-D-glucan) + UDP-Glc ⟶ (1,4-beta-D-glucan) + UDP
- Xyloglucan biosynthesis:
(1->4)-beta-D-glucan + UDP-Xyl ⟶ GXGG xyloglucan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Cellulose biosynthesis:
(1,4-beta-D-glucan) + UDP-Glc ⟶ (1,4-beta-D-glucan) + UDP
- Xyloglucan biosynthesis:
(1->4)-beta-D-glucan + UDP-Xyl ⟶ GXGG xyloglucan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Cellulose biosynthesis:
(1,4-beta-D-glucan) + UDP-Glc ⟶ (1,4-beta-D-glucan) + UDP
- Xyloglucan biosynthesis:
(1->4)-beta-D-glucan + UDP-Xyl ⟶ GXGG xyloglucan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Cellulose biosynthesis:
(1,4-beta-D-glucan) + UDP-Glc ⟶ (1,4-beta-D-glucan) + UDP
- Xyloglucan biosynthesis:
(1->4)-beta-D-glucan + UDP-Xyl ⟶ GXGG xyloglucan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Cellulose biosynthesis:
(1,4-beta-D-glucan) + UDP-Glc ⟶ (1,4-beta-D-glucan) + UDP
- Xyloglucan biosynthesis:
(1->4)-beta-D-glucan + UDP-Xyl ⟶ GXGG xyloglucan + UDP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Cellulose biosynthesis:
(1,4-beta-D-glucan) + UDP-Glc ⟶ (1,4-beta-D-glucan) + UDP
- Xyloglucan biosynthesis:
(1->4)-beta-D-glucan + UDP-Xyl ⟶ GXGG xyloglucan + UDP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Cellulose biosynthesis:
(1,4-beta-D-glucan) + UDP-Glc ⟶ (1,4-beta-D-glucan) + UDP
- Xyloglucan biosynthesis:
(1->4)-beta-D-glucan + UDP-Xyl ⟶ GXGG xyloglucan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Cellulose biosynthesis:
(1,4-beta-D-glucan) + UDP-Glc ⟶ (1,4-beta-D-glucan) + UDP
- Xyloglucan biosynthesis:
(1->4)-beta-D-glucan + UDP-Xyl ⟶ GXGG xyloglucan + UDP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Cellulose biosynthesis:
(1,4-beta-D-glucan) + UDP-Glc ⟶ (1,4-beta-D-glucan) + UDP
- Xyloglucan biosynthesis:
(1->4)-beta-D-glucan + UDP-Xyl ⟶ GXGG xyloglucan + UDP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Cellulose biosynthesis:
(1,4-beta-D-glucan) + UDP-Glc ⟶ (1,4-beta-D-glucan) + UDP
- Xyloglucan biosynthesis:
(1->4)-beta-D-glucan + UDP-Xyl ⟶ GXGG xyloglucan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Cellulose biosynthesis:
(1,4-beta-D-glucan) + UDP-Glc ⟶ (1,4-beta-D-glucan) + UDP
- Xyloglucan biosynthesis:
(1->4)-beta-D-glucan + UDP-Xyl ⟶ GXGG xyloglucan + UDP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Cellulose biosynthesis:
(1,4-beta-D-glucan) + UDP-Glc ⟶ (1,4-beta-D-glucan) + UDP
- Xyloglucan biosynthesis:
(1->4)-beta-D-glucan + UDP-Xyl ⟶ GXGG xyloglucan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Cellulose biosynthesis:
(1,4-beta-D-glucan) + UDP-Glc ⟶ (1,4-beta-D-glucan) + UDP
- Xyloglucan biosynthesis:
(1->4)-beta-D-glucan + UDP-Xyl ⟶ GXGG xyloglucan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Cellulose biosynthesis:
(1,4-beta-D-glucan) + UDP-Glc ⟶ (1,4-beta-D-glucan) + UDP
- Xyloglucan biosynthesis:
(1->4)-beta-D-glucan + UDP-Xyl ⟶ GXGG xyloglucan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Cellulose biosynthesis:
(1,4-beta-D-glucan) + UDP-Glc ⟶ (1,4-beta-D-glucan) + UDP
- Xyloglucan biosynthesis:
(1->4)-beta-D-glucan + UDP-Xyl ⟶ GXGG xyloglucan + UDP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Cellulose biosynthesis:
(1,4-beta-D-glucan) + UDP-Glc ⟶ (1,4-beta-D-glucan) + UDP
- Xyloglucan biosynthesis:
(1->4)-beta-D-glucan + UDP-Xyl ⟶ GXGG xyloglucan + UDP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Cellulose biosynthesis:
(1,4-beta-D-glucan) + UDP-Glc ⟶ (1,4-beta-D-glucan) + UDP
- Xyloglucan biosynthesis:
(1->4)-beta-D-glucan + UDP-Xyl ⟶ GXGG xyloglucan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Cellulose biosynthesis:
(1,4-beta-D-glucan) + UDP-Glc ⟶ (1,4-beta-D-glucan) + UDP
- Xyloglucan biosynthesis:
(1->4)-beta-D-glucan + UDP-Xyl ⟶ GXGG xyloglucan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Cellulose biosynthesis:
(1,4-beta-D-glucan) + UDP-Glc ⟶ (1,4-beta-D-glucan) + UDP
- Xyloglucan biosynthesis:
(1->4)-beta-D-glucan + UDP-Xyl ⟶ GXGG xyloglucan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Cellulose biosynthesis:
(1,4-beta-D-glucan) + UDP-Glc ⟶ (1,4-beta-D-glucan) + UDP
- Xyloglucan biosynthesis:
(1->4)-beta-D-glucan + UDP-Xyl ⟶ GXGG xyloglucan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Cellulose biosynthesis:
(1,4-beta-D-glucan) + UDP-Glc ⟶ (1,4-beta-D-glucan) + UDP
- Xyloglucan biosynthesis:
(1->4)-beta-D-glucan + UDP-Xyl ⟶ GXGG xyloglucan + UDP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Cellulose biosynthesis:
(1,4-beta-D-glucan) + UDP-Glc ⟶ (1,4-beta-D-glucan) + UDP
- Xyloglucan biosynthesis:
(1->4)-beta-D-glucan + UDP-Xyl ⟶ GXGG xyloglucan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Cellulose biosynthesis:
(1,4-beta-D-glucan) + UDP-Glc ⟶ (1,4-beta-D-glucan) + UDP
- Xyloglucan biosynthesis:
(1->4)-beta-D-glucan + UDP-Xyl ⟶ GXGG xyloglucan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Cellulose biosynthesis:
(1,4-beta-D-glucan) + UDP-Glc ⟶ (1,4-beta-D-glucan) + UDP
- Xyloglucan biosynthesis:
(1->4)-beta-D-glucan + UDP-Xyl ⟶ GXGG xyloglucan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Cellulose biosynthesis:
(1,4-beta-D-glucan) + UDP-Glc ⟶ (1,4-beta-D-glucan) + UDP
- Xyloglucan biosynthesis:
(1->4)-beta-D-glucan + UDP-Xyl ⟶ GXGG xyloglucan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Cellulose biosynthesis:
(1,4-beta-D-glucan) + UDP-Glc ⟶ (1,4-beta-D-glucan) + UDP
- Xyloglucan biosynthesis:
(1->4)-beta-D-glucan + UDP-Xyl ⟶ GXGG xyloglucan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Cellulose biosynthesis:
(1,4-beta-D-glucan) + UDP-Glc ⟶ (1,4-beta-D-glucan) + UDP
- Xyloglucan biosynthesis:
(1->4)-beta-D-glucan + UDP-Xyl ⟶ GXGG xyloglucan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Cellulose biosynthesis:
(1,4-beta-D-glucan) + UDP-Glc ⟶ (1,4-beta-D-glucan) + UDP
- Xyloglucan biosynthesis:
(1->4)-beta-D-glucan + UDP-Xyl ⟶ GXGG xyloglucan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Cellulose biosynthesis:
(1,4-beta-D-glucan) + UDP-Glc ⟶ (1,4-beta-D-glucan) + UDP
- Xyloglucan biosynthesis:
(1->4)-beta-D-glucan + UDP-Xyl ⟶ GXGG xyloglucan + UDP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
ATP + beta-D-glucose ⟶ ADP + H+ + beta-D-glucose-6-phosphate
- Cellulose biosynthesis:
(1,4-beta-D-glucan) + UDP-Glc ⟶ (1,4-beta-D-glucan) + UDP
- Xyloglucan biosynthesis:
(1->4)-beta-D-glucan + UDP-Xyl ⟶ GXGG xyloglucan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Cellulose biosynthesis:
(1,4-beta-D-glucan) + UDP-Glc ⟶ (1,4-beta-D-glucan) + UDP
- Xyloglucan biosynthesis:
(1->4)-beta-D-glucan + UDP-Xyl ⟶ GXGG xyloglucan + UDP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Cellulose biosynthesis:
(1,4-beta-D-glucan) + UDP-Glc ⟶ (1,4-beta-D-glucan) + UDP
- Xyloglucan biosynthesis:
(1->4)-beta-D-glucan + UDP-Xyl ⟶ GXGG xyloglucan + UDP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Cellulose biosynthesis:
(1,4-beta-D-glucan) + UDP-Glc ⟶ (1,4-beta-D-glucan) + UDP
- Xyloglucan biosynthesis:
(1->4)-beta-D-glucan + UDP-Xyl ⟶ GXGG xyloglucan + UDP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Cellulose biosynthesis:
(1,4-beta-D-glucan) + UDP-Glc ⟶ (1,4-beta-D-glucan) + UDP
- Xyloglucan biosynthesis:
(1->4)-beta-D-glucan + UDP-Xyl ⟶ GXGG xyloglucan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Cellulose biosynthesis:
(1,4-beta-D-glucan) + UDP-Glc ⟶ (1,4-beta-D-glucan) + UDP
- Xyloglucan biosynthesis:
(1->4)-beta-D-glucan + UDP-Xyl ⟶ GXGG xyloglucan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Cellulose biosynthesis:
(1,4-beta-D-glucan) + UDP-Glc ⟶ (1,4-beta-D-glucan) + UDP
- Xyloglucan biosynthesis:
(1->4)-beta-D-glucan + UDP-Xyl ⟶ GXGG xyloglucan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Cellulose biosynthesis:
(1,4-beta-D-glucan) + UDP-Glc ⟶ (1,4-beta-D-glucan) + UDP
- Xyloglucan biosynthesis:
(1->4)-beta-D-glucan + UDP-Xyl ⟶ GXGG xyloglucan + UDP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Cellulose biosynthesis:
(1,4-beta-D-glucan) + UDP-Glc ⟶ (1,4-beta-D-glucan) + UDP
- Xyloglucan biosynthesis:
(1->4)-beta-D-glucan + UDP-Xyl ⟶ GXGG xyloglucan + UDP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Cellulose biosynthesis:
(1,4-beta-D-glucan) + UDP-Glc ⟶ (1,4-beta-D-glucan) + UDP
- Xyloglucan biosynthesis:
(1->4)-beta-D-glucan + UDP-Xyl ⟶ GXGG xyloglucan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Cellulose biosynthesis:
(1,4-beta-D-glucan) + UDP-Glc ⟶ (1,4-beta-D-glucan) + UDP
- Xyloglucan biosynthesis:
(1->4)-beta-D-glucan + UDP-Xyl ⟶ GXGG xyloglucan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Cellulose biosynthesis:
(1,4-beta-D-glucan) + UDP-Glc ⟶ (1,4-beta-D-glucan) + UDP
- Xyloglucan biosynthesis:
(1->4)-beta-D-glucan + UDP-Xyl ⟶ GXGG xyloglucan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Cellulose biosynthesis:
(1,4-beta-D-glucan) + UDP-Glc ⟶ (1,4-beta-D-glucan) + UDP
- Xyloglucan biosynthesis:
(1->4)-beta-D-glucan + UDP-Xyl ⟶ GXGG xyloglucan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Cellulose biosynthesis:
(1,4-beta-D-glucan) + UDP-Glc ⟶ (1,4-beta-D-glucan) + UDP
- Xyloglucan biosynthesis:
(1->4)-beta-D-glucan + UDP-Xyl ⟶ GXGG xyloglucan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Cellulose biosynthesis:
(1,4-beta-D-glucan) + UDP-Glc ⟶ (1,4-beta-D-glucan) + UDP
- Xyloglucan biosynthesis:
(1->4)-beta-D-glucan + UDP-Xyl ⟶ GXGG xyloglucan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Cellulose biosynthesis:
(1,4-beta-D-glucan) + UDP-Glc ⟶ (1,4-beta-D-glucan) + UDP
- Xyloglucan biosynthesis:
(1->4)-beta-D-glucan + UDP-Xyl ⟶ GXGG xyloglucan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Cellulose biosynthesis:
(1,4-beta-D-glucan) + UDP-Glc ⟶ (1,4-beta-D-glucan) + UDP
- Xyloglucan biosynthesis:
(1->4)-beta-D-glucan + UDP-Xyl ⟶ GXGG xyloglucan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Cellulose biosynthesis:
(1,4-beta-D-glucan) + UDP-Glc ⟶ (1,4-beta-D-glucan) + UDP
- Xyloglucan biosynthesis:
(1->4)-beta-D-glucan + UDP-Xyl ⟶ GXGG xyloglucan + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Cellulose biosynthesis:
(1,4-beta-D-glucan) + UDP-Glc ⟶ (1,4-beta-D-glucan) + UDP
- Xyloglucan biosynthesis:
(1->4)-beta-D-glucan + UDP-Xyl ⟶ GXGG xyloglucan + UDP
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Cellulose biosynthesis:
(1,4-beta-D-glucan) + UDP-Glc ⟶ (1,4-beta-D-glucan) + UDP
- Xyloglucan biosynthesis:
UDP-Glc + UDP-Xyl ⟶ (1->4)-beta-D-glucan + UDP
INOH(0)
PlantCyc(535)
- daphnetin modification:
D-glucopyranose + daphnetin ⟶ H2O + daphnetin-8-glucoside
- daphnetin modification:
D-glucopyranose + daphnetin ⟶ H2O + daphnetin-8-glucoside
- daphnin interconversion:
H2O + daphnin ⟶ D-glucopyranose + daphnetin
- daphnetin modification:
UDP-α-D-glucose + daphnetin ⟶ 3-O-β-D-glucosyl-daphnetin + H+ + UDP
- daphnetin modification:
D-glucopyranose + daphnetin ⟶ H2O + daphnetin-8-glucoside
- sinapate ester biosynthesis:
(S)-malate + 1-O-sinapoyl-β-D-glucose ⟶ D-glucopyranose + sinapoyl-(S)-malate
- sinapate ester biosynthesis:
(S)-malate + 1-O-sinapoyl-β-D-glucose ⟶ D-glucopyranose + sinapoyl-(S)-malate
- sinapate ester biosynthesis:
O-sinapoylcholine + H2O ⟶ H+ + choline + sinapate
- ginsenoside degradation III:
(20S)-ginsenoside Rg3 + H2O ⟶ (20S)-ginsenoside Rh2 + D-glucopyranose
- taxiphyllin bioactivation:
H2O + taxiphyllin ⟶ 4-hydroxybenzaldehyde + D-glucopyranose + hydrogen cyanide
- camptothecin biosynthesis:
deoxypumiloside ⟶ D-glucopyranose + camptothecin
- coniferin metabolism:
H2O + coniferin ⟶ D-glucopyranose + coniferyl alcohol
- coniferin metabolism:
H2O + coniferin ⟶ D-glucopyranose + coniferyl alcohol
- coniferin metabolism:
H2O + coniferin ⟶ D-glucopyranose + coniferyl alcohol
- coniferin metabolism:
H2O + coniferin ⟶ D-glucopyranose + coniferyl alcohol
- coniferin metabolism:
H2O + coniferin ⟶ D-glucopyranose + coniferyl alcohol
- coniferin metabolism:
H2O + coniferin ⟶ D-glucopyranose + coniferyl alcohol
- coniferin metabolism:
H2O + coniferin ⟶ D-glucopyranose + coniferyl alcohol
- coniferin metabolism:
H2O + coniferin ⟶ D-glucopyranose + coniferyl alcohol
- coniferin metabolism:
H2O + coniferin ⟶ D-glucopyranose + coniferyl alcohol
- fructan biosynthesis:
sucrose ⟶ 1-kestotriose + D-glucopyranose
- fructan biosynthesis:
sucrose ⟶ 1-kestotriose + D-glucopyranose
- superpathway of hydrolyzable tannin biosynthesis:
1,2,3,6-tetrakis-O-galloyl-β-D-glucose + 1-O-galloyl-β-D-glucose ⟶ 1,2,3,4,6-pentagalloylglucose + D-glucopyranose
- gallotannin biosynthesis:
1,2,3,4,6-pentagalloylglucose + 1-O-galloyl-β-D-glucose ⟶ 3-O-digalloyl-1,2,4,6-tetra-O-β-D-galloylglucose + D-glucopyranose
- pentagalloylglucose biosynthesis:
1,2,3,6-tetrakis-O-galloyl-β-D-glucose + 1-O-galloyl-β-D-glucose ⟶ 1,2,3,4,6-pentagalloylglucose + D-glucopyranose
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- cichoriin interconversion:
UDP-α-D-glucose + esculetin ⟶ H+ + UDP + cichoriin
- esculetin modification:
SAM + esculetin ⟶ H+ + SAH + scopoletin
- superpathway of scopolin and esculin biosynthesis:
(Z)-6'-hydroxyferulate ⟶ scopoletin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- sucrose biosynthesis II:
D-glucopyranose + a plant soluble heteroglycan ⟶ a plant soluble heteroglycan + maltose
- starch degradation I:
H2O + maltose ⟶ D-glucopyranose
- amygdalin and prunasin degradation:
(R)-mandelonitrile ⟶ benzaldehyde + hydrogen cyanide
- podophyllotoxin glucosides metabolism:
UDP-α-D-glucose + podophyllotoxin ⟶ H+ + UDP + podophyllotoxin 7-glucoside
- daidzein conjugates interconversion:
daidzin + malonyl-CoA ⟶ coenzyme A + malonyldaidzin
- genistein conjugates interconversion:
genistin + malonyl-CoA ⟶ coenzyme A + malonylgenistin
- DIMBOA-glucoside activation:
DIMBOA-β-D-glucoside + H2O ⟶ D-glucopyranose + DIMBOA + H+
- DIMBOA-glucoside activation:
DIMBOA-β-D-glucoside + H2O ⟶ D-glucopyranose + DIMBOA + H+
- DIMBOA-glucoside activation:
DIMBOA-β-D-glucoside + H2O ⟶ D-glucopyranose + DIMBOA + H+
- DIMBOA-glucoside activation:
DIMBOA-β-D-glucoside + H2O ⟶ D-glucopyranose + DIMBOA + H+
- DIMBOA-glucoside activation:
DIMBOA-β-D-glucoside + H2O ⟶ D-glucopyranose + DIMBOA + H+
- anthocyanidin 3-malylglucoside biosynthesis (acyl-glucose dependent):
1-O-malyl-β-D-glucose + H+ + pelargonidin-3-O-β-D-glucoside ⟶ D-glucopyranose + pelargonidin 3-O-(6'-O-malyl-β-D-glucoside)
- lampranthin biosynthesis:
1-O-feruloyl-β-D-glucose + H+ + betanin ⟶ D-glucopyranose + lampranthin II
- glucose and glucose-1-phosphate degradation:
α-D-glucopyranose 1-phosphate + H2O ⟶ D-glucopyranose + phosphate
- glucose and glucose-1-phosphate degradation:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- glucose and glucose-1-phosphate degradation:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- glucose and glucose-1-phosphate degradation:
α-D-glucopyranose 1-phosphate + H2O ⟶ D-glucopyranose + phosphate
- glucose and glucose-1-phosphate degradation:
α-D-glucopyranose 1-phosphate + H2O ⟶ D-glucopyranose + phosphate
- glucose and glucose-1-phosphate degradation:
D-glucopyranose + UQ ⟶ D-glucono-1,5-lactone + UQH2
- glucose and glucose-1-phosphate degradation:
D-glucopyranose + UQ ⟶ D-glucono-1,5-lactone + UQH2
- glucose and glucose-1-phosphate degradation:
D-glucono-1,5-lactone + H2O ⟶ D-gluconate + H+
- glucose and glucose-1-phosphate degradation:
D-glucono-1,5-lactone + H2O ⟶ D-gluconate + H+
- superpathway of formononetin derivative biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + formononetin ⟶ 2-hydroxyformononetin + H2O + an oxidized [NADPH-hemoprotein reductase]
- formononetin conjugates interconversion:
H2O + ononin ⟶ D-glucopyranose + formononetin
- crocetin biosynthesis:
8',8-diapocarotene-8',8-dial + A + H2O ⟶ A(H2) + H+ + crocetin
- galloylated catechin biosynthesis:
(-)-epicatechin + 1-O-galloyl-β-D-glucose ⟶ (-)-epicatechin-3-O-gallate + D-glucopyranose
- medicarpin conjugates interconversion:
(-)-medicarpin-3-O-glucoside + H2O ⟶ (-)-medicarpin + D-glucopyranose
- superpathway of indole-3-acetate conjugate biosynthesis:
1-O-(indol-3-ylacetyl)-β-D-glucose + myo-inositol ⟶ 1D-1-O-(indol-3-yl)acetyl-myo-inositol + D-glucopyranose
- indole-3-acetate inactivation IX:
1-O-(indol-3-ylacetyl)-β-D-glucose + myo-inositol ⟶ 1D-1-O-(indol-3-yl)acetyl-myo-inositol + D-glucopyranose
- sucrose degradation III (sucrose invertase):
H2O + sucrose ⟶ β-D-fructofuranose + D-glucopyranose
- sucrose degradation III (sucrose invertase):
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- sucrose degradation III (sucrose invertase):
H2O + sucrose ⟶ β-D-fructofuranose + D-glucopyranose
- sucrose degradation III (sucrose invertase):
H2O + sucrose ⟶ β-D-fructofuranose + D-glucopyranose
- sucrose degradation III (sucrose invertase):
H2O + sucrose ⟶ β-D-fructofuranose + D-glucopyranose
- sucrose degradation III (sucrose invertase):
H2O + sucrose ⟶ β-D-fructofuranose + D-glucopyranose
- sucrose degradation III (sucrose invertase):
H2O + sucrose ⟶ β-D-fructofuranose + D-glucopyranose
- superpathway of sucrose and starch metabolism I (non-photosynthetic tissue):
α-amylose ⟶ amylopectin
- sucrose degradation III (sucrose invertase):
β-D-fructofuranose + ATP ⟶ ADP + F6P + H+
- sucrose degradation III (sucrose invertase):
H2O + sucrose ⟶ β-D-fructofuranose + D-glucopyranose
- sucrose degradation III (sucrose invertase):
H2O + sucrose ⟶ β-D-fructofuranose + D-glucopyranose
- linustatin bioactivation:
2-hydroxy-2-methylpropanenitrile ⟶ acetone + hydrogen cyanide
- superpathway of betalain biosynthesis:
UDP-α-D-glucose + leucodopachrome ⟶ H+ + UDP + cyclo-dopa 5-O-glucoside
- amaranthin biosynthesis:
H+ + betalamate + cyclo-dopa glucuronosyl glucoside ⟶ H2O + amaranthin
- neolinustatin bioactivation:
(2R)-2-hydroxy-2-methylbutanenitrile ⟶ butan-2-one + hydrogen cyanide
- maackiain conjugates interconversion:
(-)-maackiain-3-O-glucoside + malonyl-CoA ⟶ (-)-maackiain-3-O-glucoside-6''-malonate + coenzyme A
- lotaustralin degradation:
(2R)-2-hydroxy-2-methylbutanenitrile ⟶ butan-2-one + hydrogen cyanide
- glucosinolate activation:
H2O + an aliphatic glucosinolate ⟶ D-glucopyranose + a thiohydroximate-O-sulfate
- acylated cyanidin galactoside biosynthesis:
1-O-feruloyl-β-D-glucose + cyanidin 3-O-(6-O-β-D-glucosyl-2-O-β-D-xylosyl-β-D-galactoside) ⟶ D-glucopyranose + H+ + cyanidin O-O-[6-O-(6-O-feruloyl-β-D-glucosyl)-2-O-β-D-xylosyl-β-D-galactoside]
- indole-3-acetate activation II:
1D-1-O-(indol-3-yl)acetyl-myo-inositol + H2O ⟶ (indol-3-yl)acetate + myo-inositol + H+
- trehalose degradation II (cytosolic):
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- trehalose degradation II (cytosolic):
α,α-trehalose + H2O ⟶ α-D-glucopyranose + β-D-glucopyranose
- trehalose degradation II (cytosolic):
α,α-trehalose + H2O ⟶ α-D-glucopyranose + β-D-glucopyranose
- anthocyanidin modification (Arabidopsis):
1-O-sinapoyl-β-D-glucose + cyanidin 3-O-[2'-O-(xylosyl)-6'-O-(p-coumaroyl) glucoside] 5-O-malonylglucoside ⟶ D-glucopyranose + cyanidin 3-O-[2'-O-(2''-O-(sinapoyl) xylosyl) 6'-O-(p-coumaroyl) glucoside] 5-O-[6''-O-(malonyl) glucoside
- anthocyanidin modification (Arabidopsis):
1-O-sinapoyl-β-D-glucose + cyanidin 3-O-[2'-O-(xylosyl)-6'-O-(p-coumaroyl) glucoside] 5-O-malonylglucoside ⟶ D-glucopyranose + cyanidin 3-O-[2'-O-(2''-O-(sinapoyl) xylosyl) 6'-O-(p-coumaroyl) glucoside] 5-O-[6''-O-(malonyl) glucoside
- anthocyanidin modification (Arabidopsis):
1-O-sinapoyl-β-D-glucose + cyanidin 3-O-[2'-O-(xylosyl)-6'-O-(p-coumaroyl) glucoside] 5-O-malonylglucoside ⟶ D-glucopyranose + cyanidin 3-O-[2'-O-(2''-O-(sinapoyl) xylosyl) 6'-O-(p-coumaroyl) glucoside] 5-O-[6''-O-(malonyl) glucoside
- anthocyanidin modification (Arabidopsis):
1-O-sinapoyl-β-D-glucose + cyanidin 3-O-[2'-O-(xylosyl)-6'-O-(p-coumaroyl) glucoside] 5-O-malonylglucoside ⟶ D-glucopyranose + cyanidin 3-O-[2'-O-(2''-O-(sinapoyl) xylosyl) 6'-O-(p-coumaroyl) glucoside] 5-O-[6''-O-(malonyl) glucoside
- hydroxycinnamate sugar acid ester biosynthesis:
1-O-sinapoyl-β-D-glucose + D-glucarate ⟶ D-glucopyranose + O-sinapoylglucarate
- anthocyanidin modification (Arabidopsis):
UDP-α-D-xylose + cyanidin-3-O-β-D-glucoside ⟶ H+ + UDP + cyanidin 3-O-β-D-sambubioside
- superpathway of avenacin A biosynthesis:
β-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + maniladiol
- avenacin A-1 biosynthesis:
β-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + maniladiol
- phenylethanol glycoconjugate biosynthesis:
2-phenylethanol + UDP-α-D-glucose ⟶ 2-phenylethyl β-D-glucopyranoside + H+ + UDP
- avenacin A-2 biosynthesis:
benzoyl-β-D-glucopyranose + des-acyl avenacin A ⟶ D-glucopyranose + avenacin A-2
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- melibiose degradation:
H2O + melibiose ⟶ D-galactopyranose + D-glucopyranose
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
GDP-β-L-fucose + an XLLG xylogulcan ⟶ GDP + H+ + an XLFG xylogulcan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
GDP-β-L-fucose + an XLLG xylogulcan ⟶ GDP + H+ + an XLFG xylogulcan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
GDP-β-L-fucose + an XLLG xylogulcan ⟶ GDP + H+ + an XLFG xylogulcan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- cellulose biosynthesis:
UDP-α-D-glucose + cellulose ⟶ UDP + cellulose
- 1,3-β-D-glucan biosynthesis:
UDP-α-D-glucose + a 1,3-β-D-glucan ⟶ UDP + a 1,3-β-D-glucan
- xyloglucan biosynthesis:
UDP-α-D-glucose + a 1,4-β-D-glucan ⟶ UDP + a 1,4-β-D-glucan
- proanthocyanidins biosynthesis from flavanols:
2-oxoglutarate + O2 + a (2R,3S,4S)-leucoanthocyanidin ⟶ CO2 + H2O + a (4S)- 2,3-dehydroflavan-3,4-diol + succinate
- proanthocyanidins biosynthesis from flavanols:
2-oxoglutarate + O2 + a (2R,3S,4S)-leucoanthocyanidin ⟶ CO2 + H2O + a (4S)- 2,3-dehydroflavan-3,4-diol + succinate
- proanthocyanidins biosynthesis from flavanols:
2-oxoglutarate + O2 + a (2R,3S,4S)-leucoanthocyanidin ⟶ CO2 + H2O + a (4S)- 2,3-dehydroflavan-3,4-diol + succinate
- proanthocyanidins biosynthesis from flavanols:
2-oxoglutarate + O2 + a (2R,3S,4S)-leucoanthocyanidin ⟶ CO2 + H2O + a (4S)- 2,3-dehydroflavan-3,4-diol + succinate
- proanthocyanidins biosynthesis from flavanols:
2-oxoglutarate + O2 + a (2R,3S,4S)-leucoanthocyanidin ⟶ CO2 + H2O + a (4S)- 2,3-dehydroflavan-3,4-diol + succinate
- proanthocyanidins biosynthesis from flavanols:
UDP-α-D-glucose + a (2R,3R)-flavan-3-ol ⟶ H+ + UDP + a (2R,3R)-flavan-3-ol-3'-O-glucoside
- proanthocyanidins biosynthesis from flavanols:
2-oxoglutarate + O2 + a (2R,3S,4S)-leucoanthocyanidin ⟶ CO2 + H2O + a (4S)- 2,3-dehydroflavan-3,4-diol + succinate
- proanthocyanidins biosynthesis from flavanols:
2-oxoglutarate + O2 + a (2R,3S,4S)-leucoanthocyanidin ⟶ CO2 + H2O + a (4S)- 2,3-dehydroflavan-3,4-diol + succinate
- proanthocyanidins biosynthesis from flavanols:
2-oxoglutarate + O2 + a (2R,3S,4S)-leucoanthocyanidin ⟶ CO2 + H2O + a (4S)- 2,3-dehydroflavan-3,4-diol + succinate
- proanthocyanidins biosynthesis from flavanols:
2-oxoglutarate + O2 + a (2R,3S,4S)-leucoanthocyanidin ⟶ CO2 + H2O + a (4S)- 2,3-dehydroflavan-3,4-diol + succinate
- proanthocyanidins biosynthesis from flavanols:
2-oxoglutarate + O2 + a (2R,3S,4S)-leucoanthocyanidin ⟶ CO2 + H2O + a (4S)- 2,3-dehydroflavan-3,4-diol + succinate
- proanthocyanidins biosynthesis from flavanols:
2-oxoglutarate + O2 + a (2R,3S,4S)-leucoanthocyanidin ⟶ CO2 + H2O + a (4S)- 2,3-dehydroflavan-3,4-diol + succinate
- proanthocyanidins biosynthesis from flavanols:
2-oxoglutarate + O2 + a (2R,3S,4S)-leucoanthocyanidin ⟶ CO2 + H2O + a (4S)- 2,3-dehydroflavan-3,4-diol + succinate
- proanthocyanidins biosynthesis from flavanols:
2-oxoglutarate + O2 + a (2R,3S,4S)-leucoanthocyanidin ⟶ CO2 + H2O + a (4S)- 2,3-dehydroflavan-3,4-diol + succinate
- ternatin C3 biosynthesis:
1-O-(4-coumaroyl)-β-D-glucose + ternatin C5 ⟶ D-glucopyranose + ternatin C3
- abscisic acid degradation by glucosylation:
β-D-glucopyranosyl abscisate + H2O ⟶ 2-cis-abscisate + D-glucopyranose + H+
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- proanthocyanidins biosynthesis from flavanols:
2-oxoglutarate + O2 + a (2R,3S,4S)-leucoanthocyanidin ⟶ CO2 + H2O + a (4S)- 2,3-dehydroflavan-3,4-diol + succinate
- proanthocyanidins biosynthesis from flavanols:
2-oxoglutarate + O2 + a (2R,3S,4S)-leucoanthocyanidin ⟶ CO2 + H2O + a (4S)- 2,3-dehydroflavan-3,4-diol + succinate
- proanthocyanidins biosynthesis from flavanols:
2-oxoglutarate + O2 + a (2R,3S,4S)-leucoanthocyanidin ⟶ CO2 + H2O + a (4S)- 2,3-dehydroflavan-3,4-diol + succinate
- proanthocyanidins biosynthesis from flavanols:
2-oxoglutarate + O2 + a (2R,3S,4S)-leucoanthocyanidin ⟶ CO2 + H2O + a (4S)- 2,3-dehydroflavan-3,4-diol + succinate
- proanthocyanidins biosynthesis from flavanols:
2-oxoglutarate + O2 + a (2R,3S,4S)-leucoanthocyanidin ⟶ CO2 + H2O + a (4S)- 2,3-dehydroflavan-3,4-diol + succinate
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- proanthocyanidins biosynthesis from flavanols:
2-oxoglutarate + O2 + a (2R,3S,4S)-leucoanthocyanidin ⟶ CO2 + H2O + a (4S)- 2,3-dehydroflavan-3,4-diol + succinate
- ternatin C3 biosynthesis:
1-O-(4-coumaroyl)-β-D-glucose + ternatin C5 ⟶ D-glucopyranose + ternatin C3
- abscisic acid degradation by glucosylation:
β-D-glucopyranosyl abscisate + H2O ⟶ 2-cis-abscisate + D-glucopyranose + H+
- gluconeogenesis III:
D-glucopyranose 6-phosphate + H2O ⟶ D-glucopyranose + phosphate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- proanthocyanidins biosynthesis from flavanols:
2-oxoglutarate + O2 + a (2R,3S,4S)-leucoanthocyanidin ⟶ CO2 + H2O + a (4S)- 2,3-dehydroflavan-3,4-diol + succinate
- proanthocyanidins biosynthesis from flavanols:
2-oxoglutarate + O2 + a (2R,3S,4S)-leucoanthocyanidin ⟶ CO2 + H2O + a (4S)- 2,3-dehydroflavan-3,4-diol + succinate
- proanthocyanidins biosynthesis from flavanols:
2-oxoglutarate + O2 + a (2R,3S,4S)-leucoanthocyanidin ⟶ CO2 + H2O + a (4S)- 2,3-dehydroflavan-3,4-diol + succinate
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- abscisic acid degradation by glucosylation:
β-D-glucopyranosyl abscisate + H2O ⟶ 2-cis-abscisate + D-glucopyranose + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- abscisic acid degradation by glucosylation:
β-D-glucopyranosyl abscisate + H2O ⟶ 2-cis-abscisate + D-glucopyranose + H+
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- ternatin C3 biosynthesis:
1-O-(4-coumaroyl)-β-D-glucose + ternatin C5 ⟶ D-glucopyranose + ternatin C3
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- dhurrin degradation:
H2O + dhurrin ⟶ (S)-4-hydroxymandelonitrile + D-glucopyranose
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- ternatin C3 biosynthesis:
1-O-(4-coumaroyl)-β-D-glucose + ternatin C5 ⟶ D-glucopyranose + ternatin C3
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- abscisic acid degradation by glucosylation:
β-D-glucopyranosyl abscisate + H2O ⟶ 2-cis-abscisate + D-glucopyranose + H+
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- gluconeogenesis III:
D-glucopyranose 6-phosphate + H2O ⟶ D-glucopyranose + phosphate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- glucosinolate activation:
H2O + a glucosinolate ⟶ D-glucopyranose + a thiohydroximate-O-sulfate
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- 2-O-acetyl-3-O-trans-coutarate biosynthesis:
1-O-(4-coumaroyl)-β-D-glucose + meso-tartrate ⟶ trans-coutarate + D-glucopyranose
- des-methyl avenacin A-1 biosynthesis:
anthraniloyl-O-glucopyranose + des-acyl avenacin A ⟶ D-glucopyranose + des-methyl avenacin A-1
- dalcochinin biosynthesis:
H2O + dalcochinin-8'-O-β-glucoside ⟶ D-glucopyranose + dalcochinin
- aromatic glucosinolate activation:
2-benzyl-thiohydroximate-O-sulfate ⟶ benzylisothiocyanate + sulfate
- dhurrin degradation:
(S)-4-hydroxymandelonitrile ⟶ 4-hydroxybenzaldehyde + hydrogen cyanide
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3,7-di-O-β-D-glucoside ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(p-hydroxybenzoyl)-glucoside)
- salicortin biosynthesis:
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- linamarin degradation:
2-hydroxy-2-methylpropanenitrile ⟶ acetone + hydrogen cyanide
- cyanidin diglucoside biosynthesis (acyl-glucose dependent):
1-O-feruloyl-β-D-glucose + cyanidin-3-O-β-D-glucoside ⟶ cyanidin 3,7-di-O-β-D-glucoside + ferulate
- violdelphin biosynthesis:
UDP-β-L-rhamnose + delphinidin-3-O-β-D-glucoside ⟶ UDP + delphinidin 3-O-rutinoside
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- glucosinolate activation:
an N-(sulfonatooxy)alkanimidothioic acid ⟶ H+ + an isothiocyanate + sulfate
- GDP-glucose biosynthesis:
α-D-glucopyranose 1-phosphate + GTP + H+ ⟶ GDP-α-D-glucose + diphosphate
- ajmaline and sarpagine biosynthesis:
H2O + polyneuridine aldehyde ⟶ 16-epivellosimine + CO2 + MeOH
- coumarin biosynthesis (via 2-coumarate):
H+ + coumarinate ⟶ H2O + coumarin
- ternatin C3 biosynthesis:
1-O-(4-coumaroyl)-β-D-glucose + ternatin C5 ⟶ D-glucopyranose + ternatin C3
- abscisic acid degradation by glucosylation:
β-D-glucopyranosyl abscisate + H2O ⟶ 2-cis-abscisate + D-glucopyranose + H+
- quercetin glucoside degradation (Allium):
H2O + quercetin 4'-O-glucoside ⟶ D-glucopyranose + quercetin
- biochanin A conjugates interconversion:
H2O + biochanin A-7-O-glucoside ⟶ D-glucopyranose + H+ + biochanin-A
- rutin degradation (plants):
H2O + rutin ⟶ β-L-rhamnopyranose + H+ + quercetin-3-glucoside
- proanthocyanidins biosynthesis from flavanols:
UDP-α-D-glucose + a (2R,3R)-flavan-3-ol ⟶ H+ + UDP + a (2R,3R)-flavan-3-ol-3'-O-glucoside
- indole glucosinolate activation (intact plant cell):
4-methoxy-3-indolylmethyl glucosinolate aglycone ⟶ 4-methoxy-3-indolylmethylisothiocyanate + sulfate
- emetine biosynthesis:
SAM + cephaeline ⟶ H+ + SAH + emetine
- aloesone biosynthesis II:
D-glucopyranose + aloesone ⟶ H+ + H2O + aloesin
- afrormosin conjugates interconversion:
H2O + afrormosin-7-O-glucoside ⟶ D-glucopyranose + afrormosin
- indole glucosinolate activation (herbivore attack):
indole-3-carbinol ⟶ 3,3'-di(indol-3-yl)methane + H2O + formaldehyde
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- ternatin C3 biosynthesis:
1-O-(4-coumaroyl)-β-D-glucose + ternatin C5 ⟶ D-glucopyranose + ternatin C3
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- dhurrin degradation:
H2O + dhurrin ⟶ (S)-4-hydroxymandelonitrile + D-glucopyranose
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- vindoline, vindorosine and vinblastine biosynthesis:
catharanthine + hydrogen peroxide + vindoline ⟶ α-3',4'-anhydrovinblastine radical + H2O
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- aromatic glucosinolate activation:
H2O + glucotropaeolin ⟶ 2-benzyl-thiohydroximate-O-sulfate + D-glucopyranose + H+
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- proanthocyanidins biosynthesis from flavanols:
UDP-α-D-glucose + a (2R,3R)-flavan-3-ol ⟶ H+ + UDP + a (2R,3R)-flavan-3-ol-3'-O-glucoside
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- aromatic glucosinolate activation:
H2O + glucotropaeolin ⟶ 2-benzyl-thiohydroximate-O-sulfate + D-glucopyranose + H+
- ternatin C3 biosynthesis:
1-O-(4-coumaroyl)-β-D-glucose + ternatin C5 ⟶ D-glucopyranose + ternatin C3
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- dhurrin degradation:
H2O + dhurrin ⟶ (S)-4-hydroxymandelonitrile + D-glucopyranose
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- proanthocyanidins biosynthesis from flavanols:
NAD(P)+ + a (2R,3R)-flavan-3-ol ⟶ H+ + NAD(P)H + an anthocyanidin with a 3-hydroxy group
- protein N-glycosylation processing phase (plants and animals):
H2O + Man7(GlcNAc)2-protein (isomer 7A1,2,3B1) ⟶ β-D-mannopyranose + Man6(GlcNAc)2-[protein] (isomer 6A1,2,3)
COVID-19 Disease Map(0)
PathBank(64)
- Tryptophan Metabolism:
Phosphoadenosine phosphosulfate + indolylmethyl-desulfoglucosinolate ⟶ Adenosine 3',5'-diphosphate + Glucobrassicin + Hydrogen Ion
- Galactose Metabolism:
-D-Glucose + Phosphocarrier protein HPr ⟶ -D-Glucose 6-phosphate + Phosphocarrier protein HPr
- Galactose Degradation/Leloir Pathway:
-D-Glucose + Phosphocarrier protein HPr ⟶ -D-Glucose 6-phosphate + Phosphocarrier protein HPr
- Glycolysis:
Adenosine triphosphate + D-Glucose ⟶ Adenosine diphosphate + Glucose 6-phosphate
- Gluconeogenesis:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Trehalose Degradation:
Trehalose + Water ⟶ -D-Glucose
- Glycogen Storage Disease Type 1A (GSD1A) or Von Gierke Disease:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Glycogenosis, Type VII. Tarui Disease:
Adenosine triphosphate + D-Glucose ⟶ Adenosine diphosphate + Glucose 6-phosphate
- Phosphoenolpyruvate Carboxykinase Deficiency 1 (PEPCK1):
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Fructose-1,6-diphosphatase Deficiency:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Triosephosphate Isomerase Deficiency:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Fanconi-Bickel Syndrome:
Adenosine triphosphate + D-Glucose ⟶ Adenosine diphosphate + Glucose 6-phosphate
- Glycogenosis, Type IB:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Glycogenosis, Type IC:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Glycogenosis, Type IA. Von Gierke Disease:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Glycolysis and Pyruvate Dehydrogenase:
Adenosine monophosphate + Hydrogen Ion + Phosphate + Phosphoenolpyruvic acid ⟶ Adenosine triphosphate + Pyruvic acid + Water
- Glycolysis:
Adenosine triphosphate + D-Glucose ⟶ Adenosine diphosphate + Glucose 6-phosphate
- Glycerol Metabolism:
Adenosine monophosphate + Hydrogen Ion + Phosphate + Phosphoenolpyruvic acid ⟶ Adenosine triphosphate + Pyruvic acid + Water
- Glycerol Metabolism II:
Adenosine monophosphate + Hydrogen Ion + Phosphate + Phosphoenolpyruvic acid ⟶ Adenosine triphosphate + Pyruvic acid + Water
- Glycerol Metabolism III (sn-Glycero-3-Phosphoethanolamine):
Adenosine monophosphate + Hydrogen Ion + Phosphate + Phosphoenolpyruvic acid ⟶ Adenosine triphosphate + Pyruvic acid + Water
- Glycerol Metabolism IV (Glycerophosphoglycerol):
Adenosine monophosphate + Hydrogen Ion + Phosphate + Phosphoenolpyruvic acid ⟶ Adenosine triphosphate + Pyruvic acid + Water
- Glycerol Metabolism V (Glycerophosphoserine):
Adenosine monophosphate + Hydrogen Ion + Phosphate + Phosphoenolpyruvic acid ⟶ Adenosine triphosphate + Pyruvic acid + Water
- Starch and Sucrose Metabolism:
D-Glucose + [PTS enzyme I]-N -phospho-L-histidine ⟶ -D-glucose 1-phosphate + [PTS enzyme I]-L-histidine
- Colanic Acid Building Blocks Biosynthesis:
-D-Glucose + Phosphocarrier protein HPr ⟶ -D-Glucose 6-phosphate + Phosphocarrier protein HPr
- Secondary Metabolites: Trehalose Biosynthesis and Metabolism:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate + Hydrogen ion
- Glycolysis I:
Adenosine triphosphate + D-Glucose ⟶ Adenosine diphosphate + Glucose 6-phosphate
- Amino Sugar and Nucleotide Sugar Metabolism:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Ethanol Fermentation:
Adenosine triphosphate + D-Glucose ⟶ Adenosine diphosphate + Glucose 6-phosphate
- Glycolysis:
Adenosine triphosphate + D-Glucose ⟶ Adenosine diphosphate + Glucose 6-phosphate
- Gluconeogenesis:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Trehalose Degradation:
Trehalose + Water ⟶ -D-Glucose
- Glycogen Storage Disease Type 1A (GSD1A) or Von Gierke Disease:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Glycogenosis, Type VII. Tarui Disease:
Adenosine triphosphate + D-Glucose ⟶ Adenosine diphosphate + Glucose 6-phosphate
- Phosphoenolpyruvate Carboxykinase Deficiency 1 (PEPCK1):
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Fructose-1,6-diphosphatase Deficiency:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Triosephosphate Isomerase Deficiency:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Fanconi-Bickel Syndrome:
Adenosine triphosphate + D-Glucose ⟶ Adenosine diphosphate + Glucose 6-phosphate
- Glycogenosis, Type IB:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Glycogenosis, Type IC:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Glycogenosis, Type IA. Von Gierke Disease:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Glycolysis:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Gluconeogenesis:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Trehalose Degradation:
Trehalose + Water ⟶ -D-Glucose
- Glycolysis:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Gluconeogenesis:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Trehalose Degradation:
Trehalose + Water ⟶ -D-Glucose
- Glycolysis:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Glycolysis:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Glycogen Storage Disease Type 1A (GSD1A) or Von Gierke Disease:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Glycogenosis, Type VII. Tarui Disease:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Phosphoenolpyruvate Carboxykinase Deficiency 1 (PEPCK1):
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Fructose-1,6-diphosphatase Deficiency:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Triosephosphate Isomerase Deficiency:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Fanconi-Bickel Syndrome:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Glycogenosis, Type IB:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Glycogenosis, Type IC:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Glycogenosis, Type IA. Von Gierke Disease:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Glycerol Metabolism:
Adenosine monophosphate + Hydrogen Ion + Phosphate + Phosphoenolpyruvic acid ⟶ Adenosine triphosphate + Pyruvic acid + Water
- Glycerol Metabolism II:
Adenosine monophosphate + Hydrogen Ion + Phosphate + Phosphoenolpyruvic acid ⟶ Adenosine triphosphate + Pyruvic acid + Water
- Glycerol Metabolism III (sn-Glycero-3-Phosphoethanolamine):
Adenosine monophosphate + Hydrogen Ion + Phosphate + Phosphoenolpyruvic acid ⟶ Adenosine triphosphate + Pyruvic acid + Water
- Glycerol Metabolism IV (Glycerophosphoglycerol):
Adenosine monophosphate + Hydrogen Ion + Phosphate + Phosphoenolpyruvic acid ⟶ Adenosine triphosphate + Pyruvic acid + Water
- Glycerol Metabolism V (Glycerophosphoserine):
Adenosine monophosphate + Hydrogen Ion + Phosphate + Phosphoenolpyruvic acid ⟶ Adenosine triphosphate + Pyruvic acid + Water
- Starch and Sucrose Metabolism:
-D-Glucose + Unknown ⟶ -D-Glucose 6-phosphate + Unknown
- Secondary Metabolites: Trehalose Biosynthesis and Metabolism:
, -trehalose + Water ⟶ -D-Glucose
PharmGKB(0)
93 个相关的物种来源信息
- 4185 - Acanthaceae: LTS0107522
- 4056 - Apocynaceae: LTS0107522
- 4710 - Arecaceae: LTS0107522
- 6656 - Arthropoda: LTS0107522
- 4890 - Ascomycota: LTS0107522
- 4210 - Asteraceae: LTS0107522
- 21571 - Boraginaceae: LTS0107522
- 6658 - Branchiopoda: LTS0107522
- 3593 - Cactaceae: LTS0107522
- 3481 - Cannabaceae: LTS0107522
- 3482 - Cannabis: LTS0107522
- 3483 - Cannabis sativa: 10.1021/NP50008A001
- 3483 - Cannabis sativa: LTS0107522
- 7711 - Chordata: LTS0107522
- 13432 - Clerodendrum: LTS0107522
- 54221 - Clerodendrum mandarinorum: 10.1055/S-2006-957923
- 54221 - Clerodendrum mandarinorum: LTS0107522
- 6668 - Daphnia: LTS0107522
- 35525 - Daphnia magna: 10.1016/J.ENVINT.2009.12.006
- 35525 - Daphnia magna: LTS0107522
- 6669 - Daphnia pulex: 10.1038/SREP25125
- 6669 - Daphnia pulex: LTS0107522
- 77658 - Daphniidae: LTS0107522
- 162738 - Detarium: LTS0107522
- 327901 - Detarium microcarpum: 10.1016/S0008-6215(02)00025-3
- 327901 - Detarium microcarpum: LTS0107522
- 2759 - Eukaryota: LTS0107522
- 3990 - Euphorbia: LTS0107522
- 212961 - Euphorbia plumerioides: 10.1016/0031-9422(91)84139-J
- 212961 - Euphorbia plumerioides: LTS0107522
- 3977 - Euphorbiaceae: LTS0107522
- 3803 - Fabaceae: LTS0107522
- 4751 - Fungi: LTS0107522
- 41579 - Galactites: LTS0107522
- 92911 - Galactites tomentosa: LTS0107522
- 92911 - Galactites tomentosus: 10.1007/S10600-017-2003-6
- 9606 - Homo sapiens: -
- 165307 - Lagotis: LTS0107522
- 495256 - Lagotis brevituba: 10.1055/S-2006-959389
- 495256 - Lagotis brevituba: LTS0107522
- 4136 - Lamiaceae: LTS0107522
- 4447 - Liliopsida: LTS0107522
- 3496 - Maclura pomifera: 10.1007/BF02859211
- 3398 - Magnoliopsida: LTS0107522
- 40674 - Mammalia: LTS0107522
- 33208 - Metazoa: LTS0107522
- 10066 - Muridae: LTS0107522
- 10088 - Mus: LTS0107522
- 10090 - Mus musculus: LTS0107522
- 10090 - Mus musculus: NA
- 56627 - Ochnaceae: LTS0107522
- 106975 - Opuntia: LTS0107522
- 446152 - Opuntia humifusa: LTS0107522
- 58891 - Ouratea: LTS0107522
- 2699671 - Ouratea semiserrata: 10.1002/PCA.656
- 2699671 - Ouratea semiserrata: LTS0107522
- 1822464 - Paraburkholderia: 10.1128/AEM.01851-20
- 316257 - Phlomis: LTS0107522
- 1006602 - Phlomoides: LTS0107522
- 572115 - Phlomoides rotata: 10.1002/PCA.2557
- 572115 - Phlomoides rotata: LTS0107522
- 4719 - Phoenix: LTS0107522
- 42345 - Phoenix dactylifera: 10.1016/B978-0-08-028853-6.50009-7
- 42345 - Phoenix dactylifera: LTS0107522
- 156152 - Plantaginaceae: LTS0107522
- 3754 - Prunus: LTS0107522
- 122119 - Prunus angustifolia: 10.1021/JF00017A016
- 3758 - Prunus domestica: 10.1021/JF00017A016
- 3758 - Prunus domestica: LTS0107522
- 4059 - Rauvolfia: LTS0107522
- 4060 - Rauvolfia serpentina: 10.1002/HLCA.19940770809
- 4060 - Rauvolfia serpentina: LTS0107522
- 3745 - Rosaceae: LTS0107522
- 13659 - Ruellia: LTS0107522
- 441006 - Ruellia patula: 10.3109/13880209309082928
- 441006 - Ruellia patula: LTS0107522
- 4930 - Saccharomyces: LTS0107522
- 4932 - Saccharomyces cerevisiae: LTS0107522
- 4893 - Saccharomycetaceae: LTS0107522
- 4891 - Saccharomycetes: LTS0107522
- 21880 - Salvia: LTS0107522
- 2026527 - Salvia rhyacophila: 10.1016/S0031-9422(00)90671-X
- 2026527 - Salvia rhyacophila: LTS0107522
- 4070 - Solanaceae: LTS0107522
- 35493 - Streptophyta: LTS0107522
- 192327 - Symphytum: LTS0107522
- 256504 - Symphytum tuberosum: 10.1016/S0031-9422(00)94343-7
- 256504 - Symphytum tuberosum: LTS0107522
- 58023 - Tracheophyta: LTS0107522
- 33090 - Viridiplantae: LTS0107522
- 126908 - Withania: LTS0107522
- 126910 - Withania somnifera: 10.1016/J.PHYTOCHEM.2010.04.001
- 126910 - Withania somnifera: LTS0107522
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Lu Sun, Hao Yin, Yu-Ting Li, Yun-Xiao Qiao, Jie Wang, Qing-Yi He, Zhen-Wei Xiao, Le Kuai, Yan-Wei Xiang. Shengjihuayu formula ameliorates the oxidative injury in human keratinocytes via blocking JNK/c-Jun/MMPs signaling pathway.
Journal of ethnopharmacology.
2024 May; 326(?):117938. doi:
10.1016/j.jep.2024.117938
. [PMID: 38395178] - Yingshan Jin, Jianxing Lin, Haiqing Shi, Yinzhe Jin, Qingchao Cao, Yuting Chen, Yihong Zou, Yuanyue Tang, Qiuchun Li. The active ingredients in Chinese peony pods synergize with antibiotics to inhibit MRSA growth and biofilm formation.
Microbiological research.
2024 Jan; 281(?):127625. doi:
10.1016/j.micres.2024.127625
. [PMID: 38280369] - Xiangru Zhou, Fushuai Gong, Jiawei Dong, Xiaoru Lin, Kun Cao, Hongwei Xu, Xiaofu Zhou. Abscisic Acid Affects Phenolic Acid Content to Increase Tolerance to UV-B Stress in Rhododendron chrysanthum Pall.
International journal of molecular sciences.
2024 Jan; 25(2):. doi:
10.3390/ijms25021234
. [PMID: 38279235] - Zelin Yang, Xin Huang, Wenfang Lai, Yuheng Tang, Junjie Liu, Yingzheng Wang, Kedan Chu, John Brown, Guizhu Hong. Synthesis and identification of a novel derivative of salidroside as a selective, competitive inhibitor of monoamine oxidase B with enhanced neuroprotective properties.
European journal of medicinal chemistry.
2021 Jan; 209(?):112935. doi:
10.1016/j.ejmech.2020.112935
. [PMID: 33097301] - Dorottya Nagy-Szakal, Dinesh K Barupal, Bohyun Lee, Xiaoyu Che, Brent L Williams, Ellie J R Kahn, Joy E Ukaigwe, Lucinda Bateman, Nancy G Klimas, Anthony L Komaroff, Susan Levine, Jose G Montoya, Daniel L Peterson, Bruce Levin, Mady Hornig, Oliver Fiehn, W Ian Lipkin. Insights into myalgic encephalomyelitis/chronic fatigue syndrome phenotypes through comprehensive metabolomics.
Scientific reports.
2018 07; 8(1):10056. doi:
10.1038/s41598-018-28477-9
. [PMID: 29968805] - Sani Ismaila Muhammad, Ismail Maznah, Rozi Mahmud, Abu Bakar Zakaria Zuki, Mustapha Umar Imam. Upregulation of genes related to bone formation by γ-amino butyric acid and γ-oryzanol in germinated brown rice is via the activation of GABAB-receptors and reduction of serum IL-6 in rats.
Clinical interventions in aging.
2013; 8(?):1259-71. doi:
10.2147/cia.s45943
. [PMID: 24098073] - Xin Han, Shuang Ling, Woting Gan, Li Sun, Ju Duan, Jin-Wen Xu. 2,3,5,4'-tetrahydroxystilbene-2-O-β-d-glucoside ameliorates vascular senescence and improves blood flow involving a mechanism of p53 deacetylation.
Atherosclerosis.
2012 Nov; 225(1):76-82. doi:
10.1016/j.atherosclerosis.2012.08.011
. [PMID: 22981429] - Luigi Bavaresco, Fulvio Mattivi, Mirko De Rosso, Riccardo Flamini. Effects of elicitors, viticultural factors, and enological practices on resveratrol and stilbenes in grapevine and wine.
Mini reviews in medicinal chemistry.
2012 Nov; 12(13):1366-81. doi:
10.2174/13895575112091366
. [PMID: 22303949] - Mahdi Moridi Farimani, Firouz Matloubi Moghaddam, Mohammad Ali Esmaeili, Gholamreza Amin. A lupane triterpenoid and other constituents of Salvia eremophila.
Natural product research.
2012 Nov; 26(21):2045-9. doi:
10.1080/14786419.2011.635345
. [PMID: 22103318] - Hangyuan Guo, Haitao Lv, Weiliang Tang, Jufang Chi, Longbin Liu, Fukang Xu, Zheng Ji, Xiaoya Zhai, Fang Peng. Rosuvastatin may modulate insulin signaling and inhibit atherogenesis beyond its plasma cholesterol-lowering effect in insulin-resistant mice.
Cardiovascular drugs and therapy.
2012 Oct; 26(5):375-82. doi:
10.1007/s10557-012-6406-0
. [PMID: 22918601] - Sanghyun Shin, Juan Antonio Torres-Acosta, Shane J Heinen, Susan McCormick, Marc Lemmens, Maria Paula Kovalsky Paris, Franz Berthiller, Gerhard Adam, Gary J Muehlbauer. Transgenic Arabidopsis thaliana expressing a barley UDP-glucosyltransferase exhibit resistance to the mycotoxin deoxynivalenol.
Journal of experimental botany.
2012 Aug; 63(13):4731-40. doi:
10.1093/jxb/ers141
. [PMID: 22922639] - Fuyou Du, Guihua Ruan, Shenghua Liang, Fuwei Xie, Huwei Liu. Monolithic molecularly imprinted solid-phase extraction for the selective determination of trace cytokinins in plant samples with liquid chromatography-electrospray tandem mass spectrometry.
Analytical and bioanalytical chemistry.
2012 Aug; 404(2):489-501. doi:
10.1007/s00216-012-6131-3
. [PMID: 22684864] - Sadiqa Firdous, Nida Hassan Ansari, Itrat Fatima, Abdul Malik, Nighat Afza, Lubna Iqbal, Mehreen Lateef. Ophiamides A-B, new potent urease inhibitory sphingolipids from Heliotropium ophioglossum.
Archives of pharmacal research.
2012 Jul; 35(7):1133-7. doi:
10.1007/s12272-012-0702-x
. [PMID: 22864734] - Claudia Cervellati, Christian Paetz, Luca Dondini, Stefano Tartarini, Daniele Bassi, Bernd Schneider, Andrea Masia. A qNMR approach for bitterness phenotyping and QTL identification in an F1 apricot progeny.
Journal of biotechnology.
2012 Jun; 159(4):312-9. doi:
10.1016/j.jbiotec.2011.09.004
. [PMID: 21939695] - Mariana Silvia Cretoiu, Anna Maria Kielak, Waleed Abu Al-Soud, Søren J Sørensen, Jan Dirk van Elsas. Mining of unexplored habitats for novel chitinases--chiA as a helper gene proxy in metagenomics.
Applied microbiology and biotechnology.
2012 Jun; 94(5):1347-58. doi:
10.1007/s00253-012-4057-5
. [PMID: 22526805] - Leslie Dutartre, Frédérique Hilliou, René Feyereisen. Phylogenomics of the benzoxazinoid biosynthetic pathway of Poaceae: gene duplications and origin of the Bx cluster.
BMC evolutionary biology.
2012 May; 12(?):64. doi:
10.1186/1471-2148-12-64
. [PMID: 22577841] - Cletus P Kurtzman, Christie J Robnett. Saitoella coloradoensis sp. nov., a new species of the Ascomycota, subphylum Taphrinomycotina.
Antonie van Leeuwenhoek.
2012 May; 101(4):795-802. doi:
10.1007/s10482-011-9694-7
. [PMID: 22246589] - Jing-Yu Chen, Hua-Xun Wu, Yin Chen, Ling-Ling Zhang, Qing-Tong Wang, Wu-Yi Sun, Wei Wei. Paeoniflorin inhibits proliferation of fibroblast-like synoviocytes through suppressing G-protein-coupled receptor kinase 2.
Planta medica.
2012 May; 78(7):665-71. doi:
10.1055/s-0031-1298327
. [PMID: 22411721] - Shigeki Saito, Mohammed Saddik Motawia, Carl Erik Olsen, Birger Lindberg Møller, Søren Bak. Biosynthesis of rhodiocyanosides in Lotus japonicus: rhodiocyanoside A is synthesized from (Z)-2-methylbutanaloxime via 2-methyl-2-butenenitrile.
Phytochemistry.
2012 May; 77(?):260-7. doi:
10.1016/j.phytochem.2012.01.020
. [PMID: 22385904] - Adam Jurgoński, Jerzy Juśkiewicz, Karolina Kowalska, Zenon Zduńczyk. Does dietary inulin affect biological activity of a grapefruit flavonoid-rich extract?.
Nutrition & metabolism.
2012 Apr; 9(1):31. doi:
10.1186/1743-7075-9-31
. [PMID: 22495063] - Simplice D Karou, Tchadjobo Tchacondo, Micheline Agassounon Djikpo Tchibozo, Kokou Anani, Lassina Ouattara, Jacques Simpore, Comlan de Souza. Screening Togolese medicinal plants for few pharmacological properties.
Pharmacognosy research.
2012 Apr; 4(2):116-22. doi:
10.4103/0974-8490.94737
. [PMID: 22518084] - A Dutta, S Verma, S Sankhwar, S J S Flora, M L Gupta. Bioavailability, antioxidant and non toxic properties of a radioprotective formulation prepared from isolated compounds of Podophyllum hexandrum: a study in mouse model.
Cellular and molecular biology (Noisy-le-Grand, France).
2012 Mar; 58 Suppl(?):OL1646-53. doi:
NULL
. [PMID: 22455981] - Anita Zamboni, Laura Zanin, Nicola Tomasi, Mario Pezzotti, Roberto Pinton, Zeno Varanini, Stefano Cesco. Genome-wide microarray analysis of tomato roots showed defined responses to iron deficiency.
BMC genomics.
2012 Mar; 13(?):101. doi:
10.1186/1471-2164-13-101
. [PMID: 22433273] - Mikael Brosché, Jaakko Kangasjärvi. Low antioxidant concentrations impact on multiple signalling pathways in Arabidopsis thaliana partly through NPR1.
Journal of experimental botany.
2012 Mar; 63(5):1849-61. doi:
10.1093/jxb/err358
. [PMID: 22213815] - Sybilla M Zajdel, Konstantia Graikou, Kazimierz Głowniak, Ioanna Chinou. Chemical analysis of Penstemon campanulatus (Cav.) Willd.--antimicrobial activities.
Fitoterapia.
2012 Mar; 83(2):373-6. doi:
10.1016/j.fitote.2011.11.021
. [PMID: 22155592] - Shin-ichi Ozaki, Hiroya Imai, Tomoya Iwakiri, Takehiro Sato, Kei Shimoda, Toru Nakayama, Hiroki Hamada. Regioselective glucosidation of trans-resveratrol in Escherichia coli expressing glucosyltransferase from Phytolacca americana.
Biotechnology letters.
2012 Mar; 34(3):475-81. doi:
10.1007/s10529-011-0784-4
. [PMID: 22048846] - Nur Faezah Omar, Siti Aishah Hassan, Umi Kalsom Yusoff, Nur Ashikin Psyquay Abdullah, Puteri Edaroyati Megat Wahab, Umarani Sinniah. Phenolics, flavonoids, antioxidant activity and cyanogenic glycosides of organic and mineral-base fertilized cassava tubers.
Molecules (Basel, Switzerland).
2012 Feb; 17(3):2378-87. doi:
10.3390/molecules17032378
. [PMID: 22370524] - Bo Yuan, Huijuan Zhen, Yi Jin, Li Xu, Xue Jiang, Shuaiting Sun, Chibing Li, Haiyan Xu. Absorption and plasma disposition of genistin differ from those of genistein in healthy women.
Journal of agricultural and food chemistry.
2012 Feb; 60(6):1428-36. doi:
10.1021/jf204421c
. [PMID: 22256777] - F Khater, D Fournand, S Vialet, E Meudec, V Cheynier, N Terrier. Identification and functional characterization of cDNAs coding for hydroxybenzoate/hydroxycinnamate glucosyltransferases co-expressed with genes related to proanthocyanidin biosynthesis.
Journal of experimental botany.
2012 Feb; 63(3):1201-14. doi:
10.1093/jxb/err340
. [PMID: 22090445] - Seitaro Matsumoto, Masaharu Mizutani, Kanzo Sakata, Bun-Ichi Shimizu. Molecular cloning and functional analysis of the ortho-hydroxylases of p-coumaroyl coenzyme A/feruloyl coenzyme A involved in formation of umbelliferone and scopoletin in sweet potato, Ipomoea batatas (L.) Lam.
Phytochemistry.
2012 Feb; 74(?):49-57. doi:
10.1016/j.phytochem.2011.11.009
. [PMID: 22169019] - Antoine Lévèques, Lucas Actis-Goretta, Maarit J Rein, Gary Williamson, Fabiola Dionisi, Francesca Giuffrida. UPLC-MS/MS quantification of total hesperetin and hesperetin enantiomers in biological matrices.
Journal of pharmaceutical and biomedical analysis.
2012 Jan; 57(?):1-6. doi:
10.1016/j.jpba.2011.08.031
. [PMID: 21920690] - Mahendra Thapa, Yunjeong Kim, John Desper, Kyeong-Ok Chang, Duy H Hua. Synthesis and antiviral activity of substituted quercetins.
Bioorganic & medicinal chemistry letters.
2012 Jan; 22(1):353-6. doi:
10.1016/j.bmcl.2011.10.119
. [PMID: 22115591] - Philippe Jeandet, Bertrand Delaunois, Aziz Aziz, David Donnez, Yann Vasserot, Sylvain Cordelier, Eric Courot. Metabolic engineering of yeast and plants for the production of the biologically active hydroxystilbene, resveratrol.
Journal of biomedicine & biotechnology.
2012; 2012(?):579089. doi:
10.1155/2012/579089
. [PMID: 22654481] - Rahele Ghanbari, Farooq Anwar, Khalid M Alkharfy, Anwarul-Hassan Gilani, Nazamid Saari. Valuable nutrients and functional bioactives in different parts of olive (Olea europaea L.)-a review.
International journal of molecular sciences.
2012; 13(3):3291-3340. doi:
10.3390/ijms13033291
. [PMID: 22489153] - An Sook Lee, Yun Jung Lee, So Min Lee, Jung Joo Yoon, Jin Sook Kim, Dae Gill Kang, Ho Sub Lee. Portulaca oleracea Ameliorates Diabetic Vascular Inflammation and Endothelial Dysfunction in db/db Mice.
Evidence-based complementary and alternative medicine : eCAM.
2012; 2012(?):741824. doi:
10.1155/2012/741824
. [PMID: 22474522] - Einar J Stauber, Petrissa Kuczka, Maike van Ohlen, Birgit Vogt, Tim Janowitz, Markus Piotrowski, Till Beuerle, Ute Wittstock. Turning the 'mustard oil bomb' into a 'cyanide bomb': aromatic glucosinolate metabolism in a specialist insect herbivore.
PloS one.
2012; 7(4):e35545. doi:
10.1371/journal.pone.0035545
. [PMID: 22536404] - Sebastian E W Opitz, Jean-Luc Boevé, Zoltán Tamás Nagy, Gontran Sonet, Frank Koch, Caroline Müller. Host shifts from Lamiales to Brassicaceae in the sawfly genus Athalia.
PloS one.
2012; 7(4):e33649. doi:
10.1371/journal.pone.0033649
. [PMID: 22485146] - Kateřina Podlešáková, David Zalabák, Mária Cudejková, Ondřej Plíhal, Lucie Szüčová, Karel Doležal, Lukáš Spíchal, Miroslav Strnad, Petr Galuszka. Novel cytokinin derivatives do not show negative effects on root growth and proliferation in submicromolar range.
PloS one.
2012; 7(6):e39293. doi:
10.1371/journal.pone.0039293
. [PMID: 22723989] - Manlan Zhu, Xuchen Zheng, Qingyan Shu, Hui Li, Peixing Zhong, Huijin Zhang, Yanjun Xu, Lijin Wang, Liangsheng Wang. Relationship between the composition of flavonoids and flower colors variation in tropical water lily (Nymphaea) cultivars.
PloS one.
2012; 7(4):e34335. doi:
10.1371/journal.pone.0034335
. [PMID: 22485167] - Cristiana T Argueso, Fernando J Ferreira, Petra Epple, Jennifer P C To, Claire E Hutchison, G Eric Schaller, Jeffery L Dangl, Joseph J Kieber. Two-component elements mediate interactions between cytokinin and salicylic acid in plant immunity.
PLoS genetics.
2012 Jan; 8(1):e1002448. doi:
10.1371/journal.pgen.1002448
. [PMID: 22291601] - Ramar Perumal Samy, Ponnampalam Gopalakrishnakone, Vincent Tk Chow. Therapeutic application of natural inhibitors against snake venom phospholipase A(2).
Bioinformation.
2012; 8(1):48-57. doi:
10.6026/97320630008048
. [PMID: 22359435] - Sujatha Ramasamy, Norhanom Abdul Wahab, Nurhayati Zainal Abidin, Sugumaran Manickam, Zubaidah Zakaria. Growth inhibition of human gynecologic and colon cancer cells by Phyllanthus watsonii through apoptosis induction.
PloS one.
2012; 7(4):e34793. doi:
10.1371/journal.pone.0034793
. [PMID: 22536331] - Anke Reinders, Alicia B Sivitz, John M Ward. Evolution of plant sucrose uptake transporters.
Frontiers in plant science.
2012; 3(?):22. doi:
10.3389/fpls.2012.00022
. [PMID: 22639641] - Shu Sun, Hong Xu, Lawrence Ngeh. The evaluation of chinese therapeutic food for the treatment of moderate dyslipidemia.
Evidence-based complementary and alternative medicine : eCAM.
2012; 2012(?):508683. doi:
10.1155/2012/508683
. [PMID: 22474507] - Kathrin Schrick, Seth Debolt, Vincent Bulone. Deciphering the molecular functions of sterols in cellulose biosynthesis.
Frontiers in plant science.
2012; 3(?):84. doi:
10.3389/fpls.2012.00084
. [PMID: 22639668] - Tapan Kumar Mohanta, Andrea Occhipinti, Simon Atsbaha Zebelo, Maria Foti, Judith Fliegmann, Simone Bossi, Massimo E Maffei, Cinzia M Bertea. Ginkgo biloba responds to herbivory by activating early signaling and direct defenses.
PloS one.
2012; 7(3):e32822. doi:
10.1371/journal.pone.0032822
. [PMID: 22448229] - S Mohd Joffry, N J Yob, M S Rofiee, M M R Meor Mohd Affandi, Z Suhaili, F Othman, A Md Akim, M N M Desa, Z A Zakaria. Melastoma malabathricum (L.) Smith Ethnomedicinal Uses, Chemical Constituents, and Pharmacological Properties: A Review.
Evidence-based complementary and alternative medicine : eCAM.
2012; 2012(?):258434. doi:
10.1155/2012/258434
. [PMID: 22242040] - Keivan Zandi, Boon-Teong Teoh, Sing-Sin Sam, Pooi-Fong Wong, Mohd Rais Mustafa, Sazaly Abubakar. Antiviral activity of four types of bioflavonoid against dengue virus type-2.
Virology journal.
2011 Dec; 8(?):560. doi:
10.1186/1743-422x-8-560
. [PMID: 22201648] - Lena Håglin, Lennart Bäckman, Birgitta Törnkvist. A structural equation model for assessment of links between changes in serum triglycerides, -urate, and -glucose and changes in serum calcium, -magnesium and -phosphate in type 2 diabetes and non-diabetes metabolism.
Cardiovascular diabetology.
2011 Dec; 10(?):116. doi:
10.1186/1475-2840-10-116
. [PMID: 22192330] - Alicia Didsbury, Carol Wang, Daniel Verdon, Mary A Sewell, Julie D McIntosh, John A Taylor. Rotavirus NSP4 is secreted from infected cells as an oligomeric lipoprotein and binds to glycosaminoglycans on the surface of non-infected cells.
Virology journal.
2011 Dec; 8(?):551. doi:
10.1186/1743-422x-8-551
. [PMID: 22185400] - Elizabeth H Neilson, Jason Q D Goodger, Mohammed Saddik Motawia, Nanna Bjarnholt, Tina Frisch, Carl Erik Olsen, Birger Lindberg Møller, Ian E Woodrow. Phenylalanine derived cyanogenic diglucosides from Eucalyptus camphora and their abundances in relation to ontogeny and tissue type.
Phytochemistry.
2011 Dec; 72(18):2325-34. doi:
10.1016/j.phytochem.2011.08.022
. [PMID: 21945721] - Marie Danielsson, Karl Lundén, Malin Elfstrand, Jiang Hu, Tao Zhao, Jenny Arnerup, Katarina Ihrmark, Gunilla Swedjemark, Anna-Karin Borg-Karlson, Jan Stenlid. Chemical and transcriptional responses of Norway spruce genotypes with different susceptibility to Heterobasidion spp. infection.
BMC plant biology.
2011 Nov; 11(?):154. doi:
10.1186/1471-2229-11-154
. [PMID: 22067529] - Yong Zhou, Hu-biao Chen, Bin Wang, Hong Liang, Yu-ying Zhao, Qing-ying Zhang. Sesquiterpenoid and phenolic glucoside gallates from Lagerstroemia balansae.
Planta medica.
2011 Nov; 77(17):1944-6. doi:
10.1055/s-0031-1280093
. [PMID: 21800279] - Shifeng Zhu, Rae-Dong Jeong, Srivathsa C Venugopal, Ludmila Lapchyk, DuRoy Navarre, Aardra Kachroo, Pradeep Kachroo. SAG101 forms a ternary complex with EDS1 and PAD4 and is required for resistance signaling against turnip crinkle virus.
PLoS pathogens.
2011 Nov; 7(11):e1002318. doi:
10.1371/journal.ppat.1002318
. [PMID: 22072959] - Franz Berthiller, Rudolf Krska, Konrad J Domig, Wolfgang Kneifel, Nathalie Juge, Rainer Schuhmacher, Gerhard Adam. Hydrolytic fate of deoxynivalenol-3-glucoside during digestion.
Toxicology letters.
2011 Oct; 206(3):264-7. doi:
10.1016/j.toxlet.2011.08.006
. [PMID: 21878373] - Hai Ming Zhang, Gang Li Wang, Chun Qi Bai, Peng Liu, Zi Mu Liu, Qi Zhi Liu, Yong Yan Wang, Zhi Long Liu, Shu Shan Du, Zhi Wei Deng. A new eudesmane sesquiterpene glucoside from Liriope muscari fibrous roots.
Molecules (Basel, Switzerland).
2011 Oct; 16(11):9017-24. doi:
10.3390/molecules16119017
. [PMID: 22031065] - Diana V Dugas, Marcela K Monaco, Andrew Olsen, Robert R Klein, Sunita Kumari, Doreen Ware, Patricia E Klein. Functional annotation of the transcriptome of Sorghum bicolor in response to osmotic stress and abscisic acid.
BMC genomics.
2011 Oct; 12(?):514. doi:
10.1186/1471-2164-12-514
. [PMID: 22008187] - Weicheng Hu, Ting Shen, Myeong-Hyeon Wang. Cell cycle arrest and apoptosis induced by methyl 3,5-dicaffeoyl quinate in human colon cancer cells: Involvement of the PI3K/Akt and MAP kinase pathways.
Chemico-biological interactions.
2011 Oct; 194(1):48-57. doi:
10.1016/j.cbi.2011.08.006
. [PMID: 21872580] - Alexander Weinhold, Kamel Shaker, Michael Wenzler, Bernd Schneider, Ian T Baldwin. Phaseoloidin, a homogentisic acid glucoside from Nicotiana attenuata trichomes, contributes to the plant's resistance against lepidopteran herbivores.
Journal of chemical ecology.
2011 Oct; 37(10):1091-8. doi:
10.1007/s10886-011-0012-7
. [PMID: 21904938] - Glen E Kisby, Peter S Spencer. Is neurodegenerative disease a long-latency response to early-life genotoxin exposure?.
International journal of environmental research and public health.
2011 10; 8(10):3889-921. doi:
10.3390/ijerph8103889
. [PMID: 22073019] - Patricia N Sidharta, Paul L M van Giersbergen, Atef Halabi, Jasper Dingemanse. Macitentan: entry-into-humans study with a new endothelin receptor antagonist.
European journal of clinical pharmacology.
2011 Oct; 67(10):977-84. doi:
10.1007/s00228-011-1043-2
. [PMID: 21541781] - Seung-Joon Ahn, Francisco R Badenes-Pérez, Michael Reichelt, Aleš Svatoš, Bernd Schneider, Jonathan Gershenzon, David G Heckel. Metabolic detoxification of capsaicin by UDP-glycosyltransferase in three Helicoverpa species.
Archives of insect biochemistry and physiology.
2011 Oct; 78(2):104-18. doi:
10.1002/arch.20444
. [PMID: 21928395] - Roger Ibbett, Sanyasi Gaddipati, Scott Davies, Sandra Hill, Greg Tucker. The mechanisms of hydrothermal deconstruction of lignocellulose: new insights from thermal-analytical and complementary studies.
Bioresource technology.
2011 Oct; 102(19):9272-8. doi:
10.1016/j.biortech.2011.06.044
. [PMID: 21763128] - Rubini Kannangara, Mohammed S Motawia, Natascha K K Hansen, Suzanne M Paquette, Carl E Olsen, Birger L Møller, Kirsten Jørgensen. Characterization and expression profile of two UDP-glucosyltransferases, UGT85K4 and UGT85K5, catalyzing the last step in cyanogenic glucoside biosynthesis in cassava.
The Plant journal : for cell and molecular biology.
2011 Oct; 68(2):287-301. doi:
10.1111/j.1365-313x.2011.04695.x
. [PMID: 21736650] - Antonio Ariza, Jens M Eklöf, Oliver Spadiut, Wendy A Offen, Shirley M Roberts, Werner Besenmatter, Esben P Friis, Michael Skjøt, Keith S Wilson, Harry Brumer, Gideon Davies. Structure and activity of Paenibacillus polymyxa xyloglucanase from glycoside hydrolase family 44.
The Journal of biological chemistry.
2011 Sep; 286(39):33890-900. doi:
10.1074/jbc.m111.262345
. [PMID: 21795708] - Ulyana Lalo, Jonathan A Roberts, Richard J Evans. Identification of human P2X1 receptor-interacting proteins reveals a role of the cytoskeleton in receptor regulation.
The Journal of biological chemistry.
2011 Sep; 286(35):30591-30599. doi:
10.1074/jbc.m111.253153
. [PMID: 21757694] - Laima Cesonienė, Remigijus Daubaras, Ina Jasutienė, Jonė Venclovienė, Inga Miliauskienė. Evaluation of the biochemical components and chromatic properties of the juice of Vaccinium macrocarpon Aiton and Vaccinium oxycoccos L.
Plant foods for human nutrition (Dordrecht, Netherlands).
2011 Sep; 66(3):238-44. doi:
10.1007/s11130-011-0241-5
. [PMID: 21735163] - M Anusha, M Venkateswarlu, V Prabhakaran, S Shareen Taj, B Pushpa Kumari, D Ranganayakulu. Hepatoprotective activity of aqueous extract of Portulaca oleracea in combination with lycopene in rats.
Indian journal of pharmacology.
2011 Sep; 43(5):563-7. doi:
10.4103/0253-7613.84973
. [PMID: 22022001] - Andrew P Breksa, Tracy Kahn, Audrius A Zukas, Marlene B Hidalgo, Michelle Lee Yuen. Limonoid content of sour orange varieties.
Journal of the science of food and agriculture.
2011 Aug; 91(10):1789-94. doi:
10.1002/jsfa.4383
. [PMID: 21681758] - Hong-Sheng Wang, Ling Sun, Yue-Hu Wang, Ya-Na Shi, Gui-Hua Tang, Fu-Wei Zhao, Hong-Mei Niu, Chun-Lin Long, Ling Li. Carboxymethyl flavonoids and a monoterpene glucoside from Selaginella moellendorffii.
Archives of pharmacal research.
2011 Aug; 34(8):1283-8. doi:
10.1007/s12272-011-0807-7
. [PMID: 21910049] - Ying Qin, Ya-Ping Tian. Protective effects of total glucosides of paeony and the underlying mechanisms in carbon tetrachloride-induced experimental liver injury.
Archives of medical science : AMS.
2011 Aug; 7(4):604-12. doi:
10.5114/aoms.2011.24129
. [PMID: 22291795] - Manoj Goyal, Anil Pareek, B P Nagori, D Sasmal. Aerva lanata: A review on phytochemistry and pharmacological aspects.
Pharmacognosy reviews.
2011 Jul; 5(10):195-8. doi:
10.4103/0973-7847.91120
. [PMID: 22279378] - Barbara Rinaldi, Maria Donniacuo, Emanuela Esposito, Annalisa Capuano, Loredana Sodano, Emanuela Mazzon, Donatella Di Palma, Irene Paterniti, Salvatore Cuzzocrea, Francesco Rossi. PPARα mediates the anti-inflammatory effect of simvastatin in an experimental model of zymosan-induced multiple organ failure.
British journal of pharmacology.
2011 Jun; 163(3):609-23. doi:
10.1111/j.1476-5381.2011.01248.x
. [PMID: 21323892] - T G Valderhaug, J Hjelmesæth, A Hartmann, J Røislien, H A Bergrem, T Leivestad, P D Line, T Jenssen. The association of early post-transplant glucose levels with long-term mortality.
Diabetologia.
2011 Jun; 54(6):1341-9. doi:
10.1007/s00125-011-2105-9
. [PMID: 21409415] - Ebenezer O Farombi, Olatunde Owoeye. Antioxidative and chemopreventive properties of Vernonia amygdalina and Garcinia biflavonoid.
International journal of environmental research and public health.
2011 06; 8(6):2533-55. doi:
10.3390/ijerph8062533
. [PMID: 21776245] - Yulin Ren, Susan Matthew, Daniel D Lantvit, Tran Ngoc Ninh, Heebyung Chai, James R Fuchs, Djaja D Soejarto, Esperanza J Carcache de Blanco, Steven M Swanson, A Douglas Kinghorn. Cytotoxic and NF-κB inhibitory constituents of the stems of Cratoxylum cochinchinense and their semisynthetic analogues.
Journal of natural products.
2011 May; 74(5):1117-25. doi:
10.1021/np200051j
. [PMID: 21428375] - Sukhuman Whankaew, Supannee Poopear, Supanath Kanjanawattanawong, Sithichoke Tangphatsornruang, Opas Boonseng, David A Lightfoot, Kanokporn Triwitayakorn. A genome scan for quantitative trait loci affecting cyanogenic potential of cassava root in an outbred population.
BMC genomics.
2011 May; 12(?):266. doi:
10.1186/1471-2164-12-266
. [PMID: 21609492] - Hisako Akiyama, Narie Sasaki, Shuwa Hanazawa, Mari Gotoh, Susumu Kobayashi, Yoshio Hirabayashi, Kimiko Murakami-Murofushi. Novel sterol glucosyltransferase in the animal tissue and cultured cells: evidence that glucosylceramide as glucose donor.
Biochimica et biophysica acta.
2011 May; 1811(5):314-22. doi:
10.1016/j.bbalip.2011.02.005
. [PMID: 21397038] - John E Casida. Neonicotinoid metabolism: compounds, substituents, pathways, enzymes, organisms, and relevance.
Journal of agricultural and food chemistry.
2011 Apr; 59(7):2923-31. doi:
10.1021/jf102438c
. [PMID: 20731358] - Batur Mamtimin, Halmurat Upur. [Plasma metabonomics analysis of tumor patients of phlegm-stasis syndrome].
Zhongguo Zhong xi yi jie he za zhi Zhongguo Zhongxiyi jiehe zazhi = Chinese journal of integrated traditional and Western medicine.
2011 Apr; 31(4):492-5. doi:
. [PMID: 21608220]
- Taha S El-Alfy, Shahira M Ezzat, Ahmed K Hegazy, Aziza M M Amer, Gehan M Kamel. Isolation of biologically active constituents from Moringa peregrina (Forssk.) Fiori. (family: Moringaceae) growing in Egypt.
Pharmacognosy magazine.
2011 Apr; 7(26):109-15. doi:
10.4103/0973-1296.80667
. [PMID: 21716619] - Sutharson Lingadurai, Soma Roy, Rajan Vedasiromoni Joseph, Lila Kant Nath. Antileukemic activity of the leaf extract of Bischofia javanica blume on human leukemic cell lines.
Indian journal of pharmacology.
2011 Apr; 43(2):143-9. doi:
10.4103/0253-7613.77348
. [PMID: 21572647] - Jian Zhao, David Huhman, Gail Shadle, Xian-Zhi He, Lloyd W Sumner, Yuhong Tang, Richard A Dixon. MATE2 mediates vacuolar sequestration of flavonoid glycosides and glycoside malonates in Medicago truncatula.
The Plant cell.
2011 Apr; 23(4):1536-55. doi:
10.1105/tpc.110.080804
. [PMID: 21467581] - Kutti R Vinothkumar. Structure of rhomboid protease in a lipid environment.
Journal of molecular biology.
2011 Mar; 407(2):232-47. doi:
10.1016/j.jmb.2011.01.029
. [PMID: 21256137] - Sigrid Husar, Franz Berthiller, Shozo Fujioka, Wilfried Rozhon, Mamoona Khan, Florian Kalaivanan, Luisa Elias, Gillian S Higgins, Yi Li, Rainer Schuhmacher, Rudolf Krska, Hideharu Seto, Fabian E Vaistij, Dianna Bowles, Brigitte Poppenberger. Overexpression of the UGT73C6 alters brassinosteroid glucoside formation in Arabidopsis thaliana.
BMC plant biology.
2011 Mar; 11(?):51. doi:
10.1186/1471-2229-11-51
. [PMID: 21429230] - Kotamballi N Chidambara Murthy, G K Jayaprakasha, Vinod Kumar, Keerti S Rathore, Bhimanagouda S Patil. Citrus limonin and its glucoside inhibit colon adenocarcinoma cell proliferation through apoptosis.
Journal of agricultural and food chemistry.
2011 Mar; 59(6):2314-23. doi:
10.1021/jf104498p
. [PMID: 21338095] - Yuki Okabe, Tsukasa Shimazu, Hiroyuki Tanimoto. Higher bioavailability of isoflavones after a single ingestion of aglycone-rich fermented soybeans compared with glucoside-rich non-fermented soybeans in Japanese postmenopausal women.
Journal of the science of food and agriculture.
2011 Mar; 91(4):658-63. doi:
10.1002/jsfa.4228
. [PMID: 21104834] - Yun-Soo Kim, Soon Lim, Hiroshi Yoda, Yong-Eui Choi, Hiroshi Sano. Simultaneous activation of salicylate production and fungal resistance in transgenic Chrysanthemum producing caffeine.
Plant signaling & behavior.
2011 Mar; 6(3):409-12. doi:
10.4161/psb.6.3.14353
. [PMID: 21346420] - Sara Vitalini, Alessandra Braca, Gelsomina Fico. Study on secondary metabolite content of Helleborus niger L. leaves.
Fitoterapia.
2011 Mar; 82(2):152-4. doi:
10.1016/j.fitote.2010.08.012
. [PMID: 20804829] - Wing-Sham Lee, Shih-Feng Fu, Jeanmarie Verchot-Lubicz, John P Carr. Genetic modification of alternative respiration in Nicotiana benthamiana affects basal and salicylic acid-induced resistance to potato virus X.
BMC plant biology.
2011 Feb; 11(?):41. doi:
10.1186/1471-2229-11-41
. [PMID: 21356081] - Karla Tolzin-Banasch, Enkhmaa Dagvadorj, Ulrike Sammer, Maritta Kunert, Roy Kirsch, Kerstin Ploss, Jacques M Pasteels, Wilhelm Boland. Glucose and glucose esters in the larval secretion of Chrysomela lapponica; selectivity of the glucoside import system from host plant leaves.
Journal of chemical ecology.
2011 Feb; 37(2):195-204. doi:
10.1007/s10886-011-9913-8
. [PMID: 21301937] - Yun-Jan Wang, Jinhui Dou, Kevin P Cross, Luis G Valerio. Computational analysis for hepatic safety signals of constituents present in botanical extracts widely used by women in the United States for treatment of menopausal symptoms.
Regulatory toxicology and pharmacology : RTP.
2011 Feb; 59(1):111-24. doi:
10.1016/j.yrtph.2010.09.012
. [PMID: 20920542] - Maja Jakesevic, Kjersti Aaby, Grethe-Iren A Borge, Bengt Jeppsson, Siv Ahrné, Göran Molin. Antioxidative protection of dietary bilberry, chokeberry and Lactobacillus plantarum HEAL19 in mice subjected to intestinal oxidative stress by ischemia-reperfusion.
BMC complementary and alternative medicine.
2011 Jan; 11(?):8. doi:
10.1186/1472-6882-11-8
. [PMID: 21272305] - Mohammad Abhary, Dimuth Siritunga, Gene Stevens, Nigel J Taylor, Claude M Fauquet. Transgenic biofortification of the starchy staple cassava (Manihot esculenta) generates a novel sink for protein.
PloS one.
2011 Jan; 6(1):e16256. doi:
10.1371/journal.pone.0016256
. [PMID: 21283593] - Prasenjit Manna, Sudip Bhattacharyya, Joydeep Das, Jyotirmoy Ghosh, Parames C Sil. Phytomedicinal Role of Pithecellobium dulce against CCl(4)-mediated Hepatic Oxidative Impairments and Necrotic Cell Death.
Evidence-based complementary and alternative medicine : eCAM.
2011; 2011(?):832805. doi:
10.1093/ecam/neq065
. [PMID: 21869899] - Glen E Kisby, Rebecca C Fry, Michael R Lasarev, Theodor K Bammler, Richard P Beyer, Mona Churchwell, Daniel R Doerge, Lisiane B Meira, Valerie S Palmer, Ana-Luiza Ramos-Crawford, Xuefeng Ren, Robert C Sullivan, Terrance J Kavanagh, Leona D Samson, Helmut Zarbl, Peter S Spencer. The cycad genotoxin MAM modulates brain cellular pathways involved in neurodegenerative disease and cancer in a DNA damage-linked manner.
PloS one.
2011; 6(6):e20911. doi:
10.1371/journal.pone.0020911
. [PMID: 21731631] - Bruce P Burnett, Lakshmi Pillai, Alessandra Bitto, Francesco Squadrito, Robert M Levy. Evaluation of CYP450 inhibitory effects and steady-state pharmacokinetics of genistein in combination with cholecalciferol and citrated zinc bisglycinate in postmenopausal women.
International journal of women's health.
2011; 3(?):139-50. doi:
10.2147/ijwh.s19309
. [PMID: 21792336] - Shuangxia Jin, Anderson Kanagaraj, Dheeraj Verma, Theo Lange, Henry Daniell. Release of hormones from conjugates: chloroplast expression of β-glucosidase results in elevated phytohormone levels associated with significant increase in biomass and protection from aphids or whiteflies conferred by sucrose esters.
Plant physiology.
2011 Jan; 155(1):222-35. doi:
10.1104/pp.110.160754
. [PMID: 21068365] - Ompal Singh, Zakia Khanam, Neelam Misra, Manoj Kumar Srivastava. Chamomile (Matricaria chamomilla L.): An overview.
Pharmacognosy reviews.
2011 Jan; 5(9):82-95. doi:
10.4103/0973-7847.79103
. [PMID: 22096322]