4-Hydroxyphenylpyruvic acid (BioDeep_00000001655)
Secondary id: BioDeep_00000265280, BioDeep_00000400000
natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite BioNovoGene_Lab2019 Volatile Flavor Compounds
代谢物信息卡片
化学式: C9H8O4 (180.0422568)
中文名称: 4-羟苯基丙酮酸
谱图信息:
最多检出来源 Homo sapiens(blood) 0.11%
Last reviewed on 2024-09-13.
Cite this Page
4-Hydroxyphenylpyruvic acid. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/4-hydroxyphenylpyruvic_acid (retrieved
2024-11-22) (BioDeep RN: BioDeep_00000001655). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: c1(ccc(cc1)O)CC(=O)C(=O)O
InChI: InChI=1S/C9H8O4/c10-7-3-1-6(2-4-7)5-8(11)9(12)13/h1-4,10H,5H2,(H,12,13)
描述信息
3-(4-hydroxy-phenyl)pyruvic acid, also known as 4-hydroxy a-oxobenzenepropanoate or 3-(p-hydroxyphenyl)-2-oxopropanoate, belongs to phenylpyruvic acid derivatives class of compounds. Those are compounds containing a phenylpyruvic acid moiety, which consists of a phenyl group substituted at the second position by an pyruvic acid. 3-(4-hydroxy-phenyl)pyruvic acid is slightly soluble (in water) and a moderately acidic compound (based on its pKa). 3-(4-hydroxy-phenyl)pyruvic acid can be synthesized from pyruvic acid. 3-(4-hydroxy-phenyl)pyruvic acid can also be synthesized into 4-hydroxyphenylpyruvic acid oxime. 3-(4-hydroxy-phenyl)pyruvic acid can be found in a number of food items such as garden onion (variety), rose hip, sourdough, and horseradish tree, which makes 3-(4-hydroxy-phenyl)pyruvic acid a potential biomarker for the consumption of these food products. 3-(4-hydroxy-phenyl)pyruvic acid can be found primarily in blood and urine, as well as in human prostate tissue. 3-(4-hydroxy-phenyl)pyruvic acid exists in all eukaryotes, ranging from yeast to humans. In humans, 3-(4-hydroxy-phenyl)pyruvic acid is involved in few metabolic pathways, which include disulfiram action pathway, phenylalanine and tyrosine metabolism, and tyrosine metabolism. 3-(4-hydroxy-phenyl)pyruvic acid is also involved in several metabolic disorders, some of which include tyrosinemia type I, phenylketonuria, tyrosinemia, transient, of the newborn, and alkaptonuria. Moreover, 3-(4-hydroxy-phenyl)pyruvic acid is found to be associated with hawkinsinuria and phenylketonuria.
4-Hydroxyphenylpyruvic acid (4-HPPA) is a keto acid that is involved in the tyrosine catabolism pathway. It is a product of the enzyme (R)-4-hydroxyphenyllactate dehydrogenase (EC 1.1.1.222) and is formed during tyrosine metabolism. The conversion from tyrosine to 4-HPPA is catalyzed by tyrosine aminotransferase. Additionally, 4-HPPA can be converted to homogentisic acid which is one of the precursors to ochronotic pigment. The enzyme 4-hydroxyphenylpyruvic acid dioxygenase (HPD) catalyzes the reaction that converts 4-hydroxyphenylpyruvic acid to homogentisic acid. A deficiency in the catalytic activity of HPD is known to lead to tyrosinemia type III, an autosomal recessive disorder characterized by elevated levels of blood tyrosine and massive excretion of tyrosine derivatives into urine. It has been shown that hawkinsinuria, an autosomal dominant disorder characterized by the excretion of hawkinsin, may also be a result of HPD deficiency (PMID: 11073718). Moreover, 4-hydroxyphenylpyruvic acid is also found to be associated in phenylketonuria, which is also an inborn error of metabolism. There are two isomers of HPPA, specifically 4HPPA and 3HPPA, of which 4HPPA is the most common. 4-HPPA has been found to be a microbial metabolite in Escherichia (ECMDB).
KEIO_ID H007
4-Hydroxyphenylpyruvic acid is an intermediate in the metabolism of the amino acid phenylalanine.
4-Hydroxyphenylpyruvic acid is an intermediate in the metabolism of the amino acid phenylalanine.
同义名列表
48 个代谢物同义名
4-Hydroxy-alpha-oxobenzenepropanoic acid; 4-Hydroxyphenylpyruvic acid, sodium salt; 3-(4-Hydroxyphenyl)-2-oxo-propanoic acid; 4-Hydroxy alpha-oxobenzenepropanoic acid; 3-(4-Hydroxyphenyl)-2-oxopropionic acid; 3-(p-Hydroxyphenyl)-2-oxopropionic acid; 3-(4-hydroxyphenyl)-2-oxopropanoic acid; 3-(p-Hydroxyphenyl)-2-oxopropanoic acid; 4-Hydroxy α-oxobenzenepropanoic acid; 4-Hydroxy alpha-oxobenzenepropanoate; 4-Hydroxy-alpha-oxobenzenepropanoate; 4-Hydroxy-a-oxobenzenepropanoic acid; 3-(4-Hydroxyphenyl)-2-oxo-propanoate; 4-Hydroxy a-oxobenzenepropanoic acid; 3-(4-Hydroxyphenyl)-2-oxopropionate; 3-(p-Hydroxyphenyl)-2-oxopropanoate; 3-(p-Hydroxyphenyl)-2-oxopropionate; 3-(4-HYDROXY-phenyl)pyruvIC ACID; 4-Hydroxy-a-oxobenzenepropanoate; 4-Hydroxy α-oxobenzenepropanoate; 4-Hydroxyphenylpyruvic acid, ion; 4-Hydroxy a-oxobenzenepropanoate; 3-(4-Hydroxyphenyl)pyruvic acid; 3-(p-Hydroxyphenyl)pyruvic acid; (p-Hydroxyphenyl)-pyruvic acid; Para-hydroxyphenylpyruvic acid; (p-Hydroxyphenyl)pyruvic acid; (4-Hydroxyphenyl)pyruvic acid; 3-(4-HYDROXY-phenyl)pyruvate; 3-(p-Hydroxyphenyl)pyruvate; p-Hydroxyphenylpyruvic acid; 4-Hydroxyphenylpyruvic acid; 3-(4-Hydroxyphenyl)pyruvate; (p-Hydroxyphenyl)-pyruvate; Hydroxyphenylpyruvic acid; (p-Hydroxyphenyl)pyruvate; (4-Hydroxyphenyl)pyruvate; p-Hydroxyphenylpyruvate; 4-Hydroxyphenylpyruvate; p-Hydroxyphenylpyruvic; Hydroxyphenylpyruvate; Testacid; 4HPPA; HPPA; 4-Hydroxyphenylpyruvic acid; 4-?Hydroxyphenylpyruvic acid; 3-(4-Hydroxyphenyl)pyruvate; 4-Hydroxyphenylpyruvic acid
数据库引用编号
29 个数据库交叉引用编号
- ChEBI: CHEBI:15999
- KEGG: C01179
- PubChem: 979
- HMDB: HMDB0000707
- Metlin: METLIN3315
- DrugBank: DB07718
- ChEMBL: CHEMBL607712
- Wikipedia: 4-Hydroxyphenylpyruvic_acid
- MetaCyc: P-HYDROXY-PHENYLPYRUVATE
- KNApSAcK: C00007512
- foodb: FDB030506
- chemspider: 954
- CAS: 156-39-8
- MoNA: KO000974
- MoNA: KO000977
- MoNA: KO000973
- MoNA: KO000976
- MoNA: PS000702
- MoNA: KO000975
- PMhub: MS000000927
- PubChem: 4406
- PDB-CCD: ENO
- 3DMET: B00254
- NIKKAJI: J101.877I
- RefMet: 4-Hydroxyphenylpyruvic acid
- medchemexpress: HY-W010040
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-442
- KNApSAcK: 15999
- LOTUS: LTS0129018
分类词条
相关代谢途径
Reactome(6)
PlantCyc(0)
代谢反应
623 个相关的代谢反应过程信息。
Reactome(84)
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
CARN + SAM ⟶ Anserine + SAH
- Phenylalanine and tyrosine catabolism:
2OG + L-Tyr ⟶ HPPYRA + L-Glu
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
CARN + SAM ⟶ Anserine + SAH
- Phenylalanine and tyrosine catabolism:
2OG + L-Tyr ⟶ HPPYRA + L-Glu
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Phenylalanine and tyrosine catabolism:
2OG + L-Tyr ⟶ HPPYRA + L-Glu
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Phenylalanine and tyrosine catabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Phenylalanine and tyrosine catabolism:
2OG + L-Tyr ⟶ HPPYRA + L-Glu
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Phenylalanine and tyrosine catabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Phenylalanine and tyrosine catabolism:
2OG + L-Tyr ⟶ HPPYRA + L-Glu
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Phenylalanine and tyrosine catabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Phenylalanine and tyrosine catabolism:
2OG + L-Tyr ⟶ HPPYRA + L-Glu
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Phenylalanine and tyrosine catabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Phenylalanine and tyrosine catabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Phenylalanine and tyrosine catabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Phenylalanine and tyrosine catabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Phenylalanine and tyrosine catabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Phenylalanine and tyrosine catabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Phenylalanine and tyrosine metabolism:
2OG + L-Tyr ⟶ HPPYRA + L-Glu
- Tyrosine catabolism:
2OG + L-Tyr ⟶ HPPYRA + L-Glu
- Phenylalanine and tyrosine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Tyrosine catabolism:
2OG + L-Tyr ⟶ HPPYRA + L-Glu
- Phenylalanine and tyrosine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Tyrosine catabolism:
2OG + L-Tyr ⟶ HPPYRA + L-Glu
- Phenylalanine and tyrosine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Tyrosine catabolism:
2OG + L-Tyr ⟶ HPPYRA + L-Glu
- Phenylalanine and tyrosine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Tyrosine catabolism:
2OG + L-Tyr ⟶ HPPYRA + L-Glu
- Phenylalanine and tyrosine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Tyrosine catabolism:
2OG + L-Tyr ⟶ HPPYRA + L-Glu
- Phenylalanine and tyrosine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Tyrosine catabolism:
2OG + L-Tyr ⟶ HPPYRA + L-Glu
- Phenylalanine and tyrosine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Tyrosine catabolism:
HGTA + Oxygen ⟶ 4MAA
- Phenylalanine and tyrosine metabolism:
2OG + L-Tyr ⟶ HPPYRA + L-Glu
- Tyrosine catabolism:
2OG + L-Tyr ⟶ HPPYRA + L-Glu
- Phenylalanine and tyrosine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Tyrosine catabolism:
2OG + L-Tyr ⟶ HPPYRA + L-Glu
- Phenylalanine and tyrosine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Tyrosine catabolism:
2OG + L-Tyr ⟶ HPPYRA + L-Glu
- Phenylalanine and tyrosine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Tyrosine catabolism:
2OG + L-Tyr ⟶ HPPYRA + L-Glu
BioCyc(7)
- tyrosine biosynthesis:
L-alanine + p-hydroxyphenylpyruvate ⟶ L-tyrosine + pyruvate
- tyrosol biosynthesis:
L-alanine + p-hydroxyphenylpyruvate ⟶ L-tyrosine + pyruvate
- superpathway of phenylalanine, tyrosine, and tryptophan biosynthesis:
4-hydroxyphenylpyruvate + L-glutamate ⟶ 2-oxoglutarate + L-tyrosine
- tyrosine degradation I:
4-hydroxyphenylpyruvate + O2 ⟶ CO2 + homogentisate
- tyrosine biosynthesis I:
4-hydroxyphenylpyruvate + L-glutamate ⟶ 2-oxoglutarate + L-tyrosine
- 4-hydroxyphenylpyruvate biosynthesis:
2-oxoglutarate + L-tyrosine ⟶ 4-hydroxyphenylpyruvate + L-glutamate
- ubiquinone (coenzyme Q) biosynthesis:
L-tyrosine ⟶ ammonia + p-hydroxyphenylpyruvate
Plant Reactome(486)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
H2O + L-Asn ⟶ L-Asp + ammonia
- tyrosine degradation I:
2OG + L-Tyr ⟶ HPPYRA + L-Glu
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Cofactor biosyntheses:
9-mercaptodethiobiotin ⟶ Btn
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
2OG + L-Val ⟶ Glu + KIV
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
H2O + L-Asn ⟶ L-Asp + ammonia
- tyrosine degradation I:
2OG + L-Tyr ⟶ HPPYRA + L-Glu
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
H2O + L-Asn ⟶ L-Asp + ammonia
- tyrosine degradation I:
2OG + L-Tyr ⟶ HPPYRA + L-Glu
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- tyrosine degradation I:
2OG + L-Tyr ⟶ HPPYRA + L-Glu
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid catabolism:
2OG + L-Val ⟶ Glu + KIV
- tyrosine degradation I:
2OG + L-Tyr ⟶ HPPYRA + L-Glu
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid catabolism:
2OG + L-Val ⟶ Glu + KIV
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Amino acid metabolism:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
INOH(2)
- Tyrosine metabolism ( Tyrosine metabolism ):
4-Hydroxy-phenyl-acetaldehyde + H2O + NAD+ ⟶ 4-Hydroxy-phenyl-acetic acid + NADH
- 2-Oxo-glutaric acid + L-Tyrosine = L-Glutamic acid + 4-Hydroxy-phenyl-pyruvic acid ( Tyrosine metabolism ):
2-Oxo-glutaric acid + L-Tyrosine ⟶ 4-Hydroxy-phenyl-pyruvic acid + L-Glutamic acid
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(43)
- Tyrosine Metabolism:
4-Hydroxyphenylpyruvic acid + L-Alanine ⟶ L-Tyrosine + Pyruvic acid
- Tyrosine Biosynthesis:
4-Hydroxyphenylpyruvic acid + L-Glutamic acid ⟶ L-Tyrosine + Oxoglutaric acid
- Phenylalanine Metabolism:
2-Oxo-3-phenylpropanoic acid (Mixture oxo and keto) + L-Tyrosine ⟶ 4-Hydroxyphenylpyruvic acid + L-Phenylalanine
- Tyrosine Metabolism:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Phenylalanine and Tyrosine Metabolism:
Adenosine triphosphate + L-Phenylalanine ⟶ Adenosine monophosphate + Pyrophosphate
- Phenylketonuria:
Adenosine triphosphate + L-Phenylalanine ⟶ Adenosine monophosphate + Pyrophosphate
- Tyrosinemia Type 2 (or Richner-Hanhart Syndrome):
Adenosine triphosphate + L-Phenylalanine ⟶ Adenosine monophosphate + Pyrophosphate
- Tyrosinemia Type 3 (TYRO3):
Adenosine triphosphate + L-Phenylalanine ⟶ Adenosine monophosphate + Pyrophosphate
- Alkaptonuria:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Hawkinsinuria:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Tyrosinemia Type I:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Disulfiram Action Pathway:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Tyrosinemia, Transient, of the Newborn:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Dopamine beta-Hydroxylase Deficiency:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Monoamine Oxidase-A Deficiency (MAO-A):
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Tyrosine Metabolism:
4-Fumarylacetoacetic acid + Water ⟶ Acetoacetic acid + Fumaric acid + Hydrogen Ion
- Plastoquinol-9 Biosynthesis:
L-Tyrosine + Oxoglutaric acid ⟶ 4-Hydroxyphenylpyruvic acid + L-Glutamic acid
- Phenylalanine and Tyrosine Metabolism:
Adenosine triphosphate + L-Tyrosine ⟶ Adenosine monophosphate + Pyrophosphate
- Tyrosine Metabolism:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Alkaptonuria:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Hawkinsinuria:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Tyrosinemia Type I:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Tyrosinemia Type 3 (TYRO3):
Adenosine triphosphate + L-Phenylalanine ⟶ Adenosine monophosphate + Pyrophosphate
- Tyrosinemia Type 2 (or Richner-Hanhart Syndrome):
Adenosine triphosphate + L-Phenylalanine ⟶ Adenosine monophosphate + Pyrophosphate
- Phenylketonuria:
Adenosine triphosphate + L-Phenylalanine ⟶ Adenosine monophosphate + Pyrophosphate
- Tyrosinemia, Transient, of the Newborn:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Dopamine beta-Hydroxylase Deficiency:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Monoamine Oxidase-A Deficiency (MAO-A):
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Phenylalanine and Tyrosine Metabolism:
Adenosine triphosphate + L-Phenylalanine ⟶ Adenosine monophosphate + Pyrophosphate
- Tyrosine Metabolism:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Phenylalanine and Tyrosine Metabolism:
Adenosine triphosphate + L-Phenylalanine ⟶ Adenosine monophosphate + Pyrophosphate
- Tyrosine Metabolism:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Tyrosine Metabolism:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Alkaptonuria:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Hawkinsinuria:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Tyrosinemia Type I:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Tyrosinemia Type 3 (TYRO3):
Adenosine triphosphate + L-Tyrosine ⟶ Adenosine monophosphate + Pyrophosphate
- Tyrosinemia Type 2 (or Richner-Hanhart Syndrome):
Adenosine triphosphate + L-Tyrosine ⟶ Adenosine monophosphate + Pyrophosphate
- Phenylketonuria:
Adenosine triphosphate + L-Tyrosine ⟶ Adenosine monophosphate + Pyrophosphate
- Tyrosinemia, Transient, of the Newborn:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Dopamine beta-Hydroxylase Deficiency:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Monoamine Oxidase-A Deficiency (MAO-A):
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Isoquinoline Alkaloid Biosynthesis:
Dopamine + Oxygen + Water ⟶ 3,4-Dihydroxyphenylacetaldehyde + Ammonia + Hydrogen peroxide
PharmGKB(0)
66 个相关的物种来源信息
- 39509 - Agave: LTS0129018
- 39510 - Agave americana: 10.1038/NPLANTS.2016.178
- 39510 - Agave americana: LTS0129018
- 22140 - Annonaceae: LTS0129018
- 7458 - Apidae: LTS0129018
- 7459 - Apis: LTS0129018
- 7461 - Apis cerana: 10.1371/JOURNAL.PONE.0175573
- 7461 - Apis cerana: LTS0129018
- 12947 - Aristolochia: LTS0129018
- 12948 - Aristolochia gigantea: 10.3390/MOLECULES15129462
- 12948 - Aristolochia gigantea: LTS0129018
- 16727 - Aristolochiaceae: LTS0129018
- 6656 - Arthropoda: LTS0129018
- 40552 - Asparagaceae: LTS0129018
- 2 - Bacteria: LTS0129018
- 171249 - Citrus limonia: -
- 3452 - Clematis: LTS0129018
- 1857144 - Clematis parviloba: 10.1007/S12272-009-1111-7
- 1857144 - Clematis parviloba: LTS0129018
- 46246 - Delphinium: LTS0129018
- 1127184 - Delphinium pentagynum: 10.1016/J.PHYTOCHEM.2004.03.017
- 1127184 - Delphinium pentagynum: LTS0129018
- 7227 - Drosophila melanogaster: 10.1038/S41467-019-11933-Z
- 543 - Enterobacteriaceae: LTS0129018
- 3841 - Erythrina: LTS0129018
- 49817 - Erythrina crista-galli: 10.1016/S0031-9422(99)00230-7
- 49817 - Erythrina crista-galli: LTS0129018
- 561 - Escherichia: LTS0129018
- 562 - Escherichia coli: LTS0129018
- 33682 - Euglenozoa: LTS0129018
- 2759 - Eukaryota: LTS0129018
- 3803 - Fabaceae: LTS0129018
- 1236 - Gammaproteobacteria: LTS0129018
- 3379 - Gnetaceae: LTS0129018
- 3372 - Gnetopsida: LTS0129018
- 3380 - Gnetum: LTS0129018
- 3381 - Gnetum montanum: 10.1021/NP200700F
- 3381 - Gnetum montanum: LTS0129018
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S11306-016-1051-4
- 50557 - Insecta: LTS0129018
- 5653 - Kinetoplastea: LTS0129018
- 4447 - Liliopsida: LTS0129018
- 56856 - Macleaya: LTS0129018
- 56857 - Macleaya cordata: 10.1016/J.MOLP.2017.05.007
- 56857 - Macleaya cordata: LTS0129018
- 3398 - Magnoliopsida: LTS0129018
- 39338 - Melissa officinalis: 10.1007/S00425-010-1206-X
- 33208 - Metazoa: LTS0129018
- 3465 - Papaveraceae: LTS0129018
- 3440 - Ranunculaceae: LTS0129018
- 56861 - Romneya: LTS0129018
- 56862 - Romneya coulteri: 10.1016/S0031-9422(98)00745-6
- 56862 - Romneya coulteri: LTS0129018
- 35493 - Streptophyta: LTS0129018
- 58023 - Tracheophyta: LTS0129018
- 5690 - Trypanosoma: LTS0129018
- 5691 - Trypanosoma brucei:
- 5691 - Trypanosoma brucei: 10.1128/AAC.00044-13
- 5691 - Trypanosoma brucei: 10.1371/JOURNAL.PNTD.0001618
- 5691 - Trypanosoma brucei: LTS0129018
- 5654 - Trypanosomatidae: LTS0129018
- 33090 - Viridiplantae: LTS0129018
- 225838 - Xylopia: LTS0129018
- 992813 - Xylopia parviflora: 10.1016/J.PHYTOCHEM.2003.12.010
- 992813 - Xylopia parviflora: LTS0129018
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Anne Jahn, Maike Petersen. Hydroxy(phenyl)pyruvic acid reductase in Actaea racemosa L.: a putative enzyme in cimicifugic and fukinolic acid biosynthesis.
Planta.
2024 Mar; 259(5):102. doi:
10.1007/s00425-024-04382-6
. [PMID: 38549005] - Huan Lu, Yingze Liu, Mengshuo Li, Heping Han, Fengyan Zhou, Alex Nyporko, Qin Yu, Sheng Qiang, Stephen Powles. Multiple Metabolic Enzymes Can Be Involved in Cross-Resistance to 4-Hydroxyphenylpyruvate-Dioxygenase-Inhibiting Herbicides in Wild Radish.
Journal of agricultural and food chemistry.
2023 Jun; 71(24):9302-9313. doi:
10.1021/acs.jafc.3c01231
. [PMID: 37170102] - Jia-Xu Nan, Jing-Fang Yang, Hong-Yan Lin, Yao-Chao Yan, Shao-Meng Zhou, Xue-Fang Wei, Qiong Chen, Wen-Chao Yang, Ren-Yu Qu, Guang-Fu Yang. Synthesis and Herbicidal Activity of Triketone-Aminopyridines as Potent p-Hydroxyphenylpyruvate Dioxygenase Inhibitors.
Journal of agricultural and food chemistry.
2021 May; 69(20):5734-5745. doi:
10.1021/acs.jafc.0c07782
. [PMID: 33999624] - S L Curtis, B P Norman, A M Milan, J A Gallagher, B Olsson, L R Ranganath, N B Roberts. Interference of hydroxyphenylpyruvic acid, hydroxyphenyllactic acid and tyrosine on routine serum and urine clinical chemistry assays; implications for biochemical monitoring of patients with alkaptonuria treated with nitisinone.
Clinical biochemistry.
2019 Sep; 71(?):24-30. doi:
10.1016/j.clinbiochem.2019.06.010
. [PMID: 31228435] - Guo-Quan Wang, Jun-Feng Chen, Bo Yi, He-Xin Tan, Lei Zhang, Wan-Sheng Chen. HPPR encodes the hydroxyphenylpyruvate reductase required for the biosynthesis of hydrophilic phenolic acids in Salvia miltiorrhiza.
Chinese journal of natural medicines.
2017 Dec; 15(12):917-927. doi:
10.1016/s1875-5364(18)30008-6
. [PMID: 29329649] - Ying Fu, Yi-Na Sun, Ke-Han Yi, Ming-Qiang Li, Hai-Feng Cao, Jia-Zhong Li, Fei Ye. 3D Pharmacophore-Based Virtual Screening and Docking Approaches toward the Discovery of Novel HPPD Inhibitors.
Molecules (Basel, Switzerland).
2017 Jun; 22(6):. doi:
10.3390/molecules22060959
. [PMID: 28598377] - Minmin Wang, Kyoko Toda, Hiroshi A Maeda. Biochemical properties and subcellular localization of tyrosine aminotransferases in Arabidopsis thaliana.
Phytochemistry.
2016 Dec; 132(?):16-25. doi:
10.1016/j.phytochem.2016.09.007
. [PMID: 27726859] - Daniel P Killeen, Lesley Larsen, Franck E Dayan, Keith C Gordon, Nigel B Perry, John W van Klink. Nortriketones: Antimicrobial Trimethylated Acylphloroglucinols from Ma̅nuka (Leptospermum scoparium).
Journal of natural products.
2016 Mar; 79(3):564-9. doi:
10.1021/acs.jnatprod.5b00968
. [PMID: 26731565] - Valeria A Kostevich, Alexey V Sokolov, Natalia A Grudinina, Elena T Zakharova, Valeria R Samygina, Vadim B Vasilyev. Interaction of macrophage migration inhibitory factor with ceruloplasmin: role of labile copper ions.
Biometals : an international journal on the role of metal ions in biology, biochemistry, and medicine.
2015 Oct; 28(5):817-26. doi:
10.1007/s10534-015-9868-2
. [PMID: 26091949] - Ilya Gertsman, Jon A Gangoiti, William L Nyhan, Bruce A Barshop. Perturbations of tyrosine metabolism promote the indolepyruvate pathway via tryptophan in host and microbiome.
Molecular genetics and metabolism.
2015 Mar; 114(3):431-7. doi:
10.1016/j.ymgme.2015.01.005
. [PMID: 25680927] - Matthew A Bedewitz, Elsa Góngora-Castillo, Joseph B Uebler, Eliana Gonzales-Vigil, Krystle E Wiegert-Rininger, Kevin L Childs, John P Hamilton, Brieanne Vaillancourt, Yun-Soo Yeo, Joseph Chappell, Dean DellaPenna, A Daniel Jones, C Robin Buell, Cornelius S Barry. A root-expressed L-phenylalanine:4-hydroxyphenylpyruvate aminotransferase is required for tropane alkaloid biosynthesis in Atropa belladonna.
The Plant cell.
2014 Sep; 26(9):3745-62. doi:
10.1105/tpc.114.130534
. [PMID: 25228340] - Klaus Grossmann, Johannes Hutzler, Stefan Tresch, Nicole Christiansen, Ralf Looser, Thomas Ehrhardt. On the mode of action of the herbicides cinmethylin and 5-benzyloxymethyl-1, 2-isoxazolines: putative inhibitors of plant tyrosine aminotransferase.
Pest management science.
2012 Mar; 68(3):482-92. doi:
10.1002/ps.2319
. [PMID: 22076790] - Qing Li, Xiaohong Yang, Shutu Xu, Ye Cai, Dalong Zhang, Yingjia Han, Lin Li, Zuxin Zhang, Shibin Gao, Jiansheng Li, Jianbing Yan. Genome-wide association studies identified three independent polymorphisms associated with α-tocopherol content in maize kernels.
PloS one.
2012; 7(5):e36807. doi:
10.1371/journal.pone.0036807
. [PMID: 22615816] - Eun-Jeong Lee, Peter J Facchini. Tyrosine aminotransferase contributes to benzylisoquinoline alkaloid biosynthesis in opium poppy.
Plant physiology.
2011 Nov; 157(3):1067-78. doi:
10.1104/pp.111.185512
. [PMID: 21949209] - Haymo Pircher, Grit D Straganz, Daniela Ehehalt, Geneviève Morrow, Robert M Tanguay, Pidder Jansen-Dürr. Identification of human fumarylacetoacetate hydrolase domain-containing protein 1 (FAHD1) as a novel mitochondrial acylpyruvase.
The Journal of biological chemistry.
2011 Oct; 286(42):36500-8. doi:
10.1074/jbc.m111.264770
. [PMID: 21878618] - Zhoutong Sun, Yuanyuan Ning, Lixia Liu, Yingmiao Liu, Bingbing Sun, Weihong Jiang, Chen Yang, Sheng Yang. Metabolic engineering of the L-phenylalanine pathway in Escherichia coli for the production of S- or R-mandelic acid.
Microbial cell factories.
2011 Sep; 10(?):71. doi:
10.1186/1475-2859-10-71
. [PMID: 21910908] - Tomiko Kuhara, Morimasa Ohse, Yoshito Inoue, Arthur J L Cooper. A GC/MS-based metabolomic approach for diagnosing citrin deficiency.
Analytical and bioanalytical chemistry.
2011 Jun; 400(7):1881-94. doi:
10.1007/s00216-011-4766-0
. [PMID: 21365350] - Rajesh K Singh, Sharique A Ali, Pravendra Nath, Vidhu A Sane. Activation of ethylene-responsive p-hydroxyphenylpyruvate dioxygenase leads to increased tocopherol levels during ripening in mango.
Journal of experimental botany.
2011 Jun; 62(10):3375-85. doi:
10.1093/jxb/err006
. [PMID: 21430290] - Valentina L Kouznetsova, Igor F Tsigelny, Megha A Nagle, Sanjay K Nigam. Elucidation of common pharmacophores from analysis of targeted metabolites transported by the multispecific drug transporter-Organic anion transporter1 (Oat1).
Bioorganic & medicinal chemistry.
2011 Jun; 19(11):3320-40. doi:
10.1016/j.bmc.2011.04.045
. [PMID: 21571536] - Ying Xiao, Lei Zhang, Shouhong Gao, Saengking Saechao, Peng Di, Junfeng Chen, Wansheng Chen. The c4h, tat, hppr and hppd genes prompted engineering of rosmarinic acid biosynthetic pathway in Salvia miltiorrhiza hairy root cultures.
PloS one.
2011; 6(12):e29713. doi:
10.1371/journal.pone.0029713
. [PMID: 22242141] - Ruy J Cruz, Tomoyuki Harada, Eizaburo Sasatomi, Mitchell P Fink. Effects of ethyl pyruvate and other α-keto carboxylic acid derivatives in a rat model of multivisceral ischemia and reperfusion.
The Journal of surgical research.
2011 Jan; 165(1):151-7. doi:
10.1016/j.jss.2009.07.008
. [PMID: 19959189] - Jia V Li, Jasmina Saric, Yulan Wang, Jürg Utzinger, Elaine Holmes, Oliver Balmer. Metabonomic investigation of single and multiple strain Trypanosoma brucei brucei infections.
The American journal of tropical medicine and hygiene.
2011 Jan; 84(1):91-8. doi:
10.4269/ajtmh.2011.10-0402
. [PMID: 21212208] - Katja Behnke, Andreas Kaiser, Ina Zimmer, Nicolas Brüggemann, Dennis Janz, Andrea Polle, Rüdiger Hampp, Robert Hänsch, Jennifer Popko, Philippe Schmitt-Kopplin, Barbara Ehlting, Heinz Rennenberg, Csengele Barta, Francesco Loreto, Jörg-Peter Schnitzler. RNAi-mediated suppression of isoprene emission in poplar transiently impacts phenolic metabolism under high temperature and high light intensities: a transcriptomic and metabolomic analysis.
Plant molecular biology.
2010 Sep; 74(1-2):61-75. doi:
10.1007/s11103-010-9654-z
. [PMID: 20526857] - James Cartwright, Richard M Green. Tyrosine-derived 4-hydroxyphenylpyruvate reacts with ketone test fields of 3 commercially available urine dipsticks.
Veterinary clinical pathology.
2010 Sep; 39(3):354-7. doi:
10.1111/j.1939-165x.2010.00231.x
. [PMID: 20487432] - Ya-zhi Xing, Wen-juan Qiu, Jun Ye, Lian-shu Han, Shan-shan Xu, Hui-wen Zhang, Xiao-lan Gao, Yu Wang, Xue-fan Gu. [Studies on the clinical manifestation and SLC25A13 gene mutation of Chinese patients with neonatal intrahepatic cholestasis caused by citrin deficiency].
Zhonghua yi xue yi chuan xue za zhi = Zhonghua yixue yichuanxue zazhi = Chinese journal of medical genetics.
2010 Apr; 27(2):180-5. doi:
10.3760/cma.j.issn.1003-9406.2010.02.014
. [PMID: 20376801] - Pranav R Prabhu, André O Hudson. Identification and Partial Characterization of an L-Tyrosine Aminotransferase (TAT) from Arabidopsis thaliana.
Biochemistry research international.
2010; 2010(?):549572. doi:
10.1155/2010/549572
. [PMID: 21188077] - David Cassiman, Renate Zeevaert, Elisabeth Holme, Eli-Anne Kvittingen, Jaak Jaeken. A novel mutation causing mild, atypical fumarylacetoacetase deficiency (Tyrosinemia type I): a case report.
Orphanet journal of rare diseases.
2009 Dec; 4(?):28. doi:
10.1186/1750-1172-4-28
. [PMID: 20003495] - Ying Xiao, Peng Di, Junfeng Chen, Ying Liu, Wansheng Chen, Lei Zhang. Characterization and expression profiling of 4-hydroxyphenylpyruvate dioxygenase gene (Smhppd) from Salvia miltiorrhiza hairy root cultures.
Molecular biology reports.
2009 Sep; 36(7):2019-29. doi:
10.1007/s11033-008-9413-2
. [PMID: 19011990] - Ying Xiao, Shouhong Gao, Peng Di, Junfeng Chen, Wansheng Chen, Lei Zhang. Methyl jasmonate dramatically enhances the accumulation of phenolic acids in Salvia miltiorrhiza hairy root cultures.
Physiologia plantarum.
2009 Sep; 137(1):1-9. doi:
10.1111/j.1399-3054.2009.01257.x
. [PMID: 19570133] - Hyung-Doo Park, Dong Hwan Lee, Tae-Youn Choi, You Kyoung Lee, Jong-Won Kim, Chang-Seok Ki, Yong-Wha Lee. Clinical, biochemical, and genetic analysis of a Korean neonate with hereditary tyrosinemia type 1.
Clinical chemistry and laboratory medicine.
2009; 47(8):930-3. doi:
10.1515/cclm.2009.223
. [PMID: 19569981] - Ju Qian, Liu Guiping, Liu Xiujun, Han Xincai, Liu Hongmei. Influence of growth regulators and sucrose concentrations on growth and rosmarinic acid production in calli and suspension cultures of Coleus blumei.
Natural product research.
2009; 23(2):127-37. doi:
10.1080/14786410801890338
. [PMID: 19173121] - Asok K Datta, Syamali Mandal, Anindya Dasgupta, Tarun K Ghosh. Alkaptonuria diagnosed in a 4-month-old baby girl: a case report.
Cases journal.
2008 Nov; 1(1):308. doi:
10.1186/1757-1626-1-308
. [PMID: 19014543] - Yuling Liang, Hiromichi Minami, Fumihiko Sato. Isolation of herbicide-resistant 4-hydroxyphenylpyruvate dioxygenase from cultured Coptis japonica cells.
Bioscience, biotechnology, and biochemistry.
2008 Nov; 72(11):3059-62. doi:
10.1271/bbb.80466
. [PMID: 18997404] - Gregory Kaler, David M Truong, Akash Khandelwal, Megha Nagle, Satish A Eraly, Peter W Swaan, Sanjay K Nigam. Structural variation governs substrate specificity for organic anion transporter (OAT) homologs. Potential remote sensing by OAT family members.
The Journal of biological chemistry.
2007 Aug; 282(33):23841-53. doi:
10.1074/jbc.m703467200
. [PMID: 17553798] - Chike Bellarmine Item, Ivana Mihalek, Oliver Lichtarge, Anil Jalan, Julia Vodopiutz, Adolf Muhl, Olaf A Bodamer. Manifestation of hawkinsinuria in a patient compound heterozygous for hawkinsinuria and tyrosinemia III.
Molecular genetics and metabolism.
2007 Aug; 91(4):379-83. doi:
10.1016/j.ymgme.2007.04.008
. [PMID: 17560158] - Hiromichi Minami, Emilyn Dubouzet, Kinuko Iwasa, Fumihiko Sato. Functional analysis of norcoclaurine synthase in Coptis japonica.
The Journal of biological chemistry.
2007 Mar; 282(9):6274-82. doi:
10.1074/jbc.m608933200
. [PMID: 17204481] - Vincent M Purpero, Graham R Moran. Catalytic, noncatalytic, and inhibitory phenomena: kinetic analysis of (4-hydroxyphenyl)pyruvate dioxygenase from Arabidopsis thaliana.
Biochemistry.
2006 May; 45(19):6044-55. doi:
10.1021/bi052409c
. [PMID: 16681377] - Jihad T Al-Ratrout, Mohammed Al-Muzian, Mona Al-Nazer, Naseem A Ansari. Plantar keratoderma: a manifestation of tyrosinemia type II (Richner-Hanhart syndrome).
Annals of Saudi medicine.
2005 Sep; 25(5):422-4. doi:
10.5144/0256-4947.2005.422
. [PMID: 16270769] - Heike Holländer-Czytko, Janine Grabowski, Iris Sandorf, Katrin Weckermann, Elmar W Weiler. Tocopherol content and activities of tyrosine aminotransferase and cystine lyase in Arabidopsis under stress conditions.
Journal of plant physiology.
2005 Jul; 162(7):767-70. doi:
10.1016/j.jplph.2005.04.019
. [PMID: 16008101] - Tomohisa Kuzuyama, Joseph P Noel, Stéphane B Richard. Structural basis for the promiscuous biosynthetic prenylation of aromatic natural products.
Nature.
2005 Jun; 435(7044):983-7. doi:
10.1038/nature03668
. [PMID: 15959519] - Michel Matringe, Alain Sailland, Bernard Pelissier, Anne Rolland, Olivier Zink. p-Hydroxyphenylpyruvate dioxygenase inhibitor-resistant plants.
Pest management science.
2005 Mar; 61(3):269-76. doi:
10.1002/ps.997
. [PMID: 15633191] - R E Williams, E A Lock. D-serine-induced nephrotoxicity: possible interaction with tyrosine metabolism.
Toxicology.
2004 Sep; 201(1-3):231-8. doi:
10.1016/j.tox.2004.05.001
. [PMID: 15297036] - Iris M Fritze, Lars Linden, Jörg Freigang, Günter Auerbach, Robert Huber, Stefan Steinbacher. The crystal structures of Zea mays and Arabidopsis 4-hydroxyphenylpyruvate dioxygenase.
Plant physiology.
2004 Apr; 134(4):1388-400. doi:
10.1104/pp.103.034082
. [PMID: 15084729] - Pascal Rippert, Claire Scimemi, Manuel Dubald, Michel Matringe. Engineering plant shikimate pathway for production of tocotrienol and improving herbicide resistance.
Plant physiology.
2004 Jan; 134(1):92-100. doi:
10.1104/pp.103.032441
. [PMID: 14684842] - Caroline Loutre, David P Dixon, Melissa Brazier, Malcolm Slater, David J Cole, Robert Edwards. Isolation of a glucosyltransferase from Arabidopsis thaliana active in the metabolism of the persistent pollutant 3,4-dichloroaniline.
The Plant journal : for cell and molecular biology.
2003 May; 34(4):485-93. doi:
10.1046/j.1365-313x.2003.01742.x
. [PMID: 12753587] - F Wu, M Fu, X Wei, W Yang, R Hu, L Guo. [Fluorescence quenching method for the determination of p-hydroxyphenylpyruvic acid].
Guang pu xue yu guang pu fen xi = Guang pu.
2001 Jun; 21(3):359-61. doi:
. [PMID: 12947668]
- J P Infante, V A Huszagh. Impaired arachidonic (20:4n-6) and docosahexaenoic (22:6n-3) acid synthesis by phenylalanine metabolites as etiological factors in the neuropathology of phenylketonuria.
Molecular genetics and metabolism.
2001 Mar; 72(3):185-98. doi:
10.1006/mgme.2001.3148
. [PMID: 11243724] - A El Sawalhy, J R Seed, J E Hall, H El Attar. Increased excretion of aromatic amino acid catabolites in animals infected with Trypanosoma brucei evansi.
The Journal of parasitology.
1998 Jun; 84(3):469-73. doi:
. [PMID: 9645841]
- Kh K Karshiev. [Effects of ultraviolet irradiation of blood and sodium hypochlorite on aromatic amino acid metabolism in phlegmons of the maxillofacial region].
Vestnik khirurgii imeni I. I. Grekova.
1998; 157(6):72-3. doi:
NULL
. [PMID: 10672668] - J C Deutsch. Determination of p-hydroxyphenylpyruvate, p-hydroxyphenyllactate and tyrosine in normal human plasma by gas chromatography-mass spectrometry isotope-dilution assay.
Journal of chromatography. B, Biomedical sciences and applications.
1997 Mar; 690(1-2):1-6. doi:
10.1016/s0378-4347(96)00411-2
. [PMID: 9106023] - G A Mitchell. Inhibition of 4-hydroxyphenylpyruvate dioxygenase by 2-(2-nitro-4-trifluoromethylbenzoyl)-cyclohexane-1,3-dione and 2-(2-chloro-4-methanesulfonylbenzoyl)-cyclohexane-1,3-dione.
Human & experimental toxicology.
1996 Feb; 15(2):179-81. doi:
10.1177/096032719601500209
. [PMID: 8645506] - M K Ellis, A C Whitfield, L A Gowans, T R Auton, W M Provan, E A Lock, L L Smith. Inhibition of 4-hydroxyphenylpyruvate dioxygenase by 2-(2-nitro-4-trifluoromethylbenzoyl)-cyclohexane-1,3-dione and 2-(2-chloro-4-methanesulfonylbenzoyl)-cyclohexane-1,3-dione.
Toxicology and applied pharmacology.
1995 Jul; 133(1):12-9. doi:
10.1006/taap.1995.1121
. [PMID: 7597701] - M Borden, J Holm, J Leslie, L Sweetman, W L Nyhan, L Fleisher, H Nadler, D Lewis, C R Scott. Hawkinsinuria in two families.
American journal of medical genetics.
1992 Sep; 44(1):52-6. doi:
10.1002/ajmg.1320440113
. [PMID: 1519651] - G Y Wu, J R Thompson. The effect of glutamine on protein turnover in chick skeletal muscle in vitro.
The Biochemical journal.
1990 Jan; 265(2):593-8. doi:
10.1042/bj2650593
. [PMID: 2302190] - E Mönch, J Kneer, C Jakobs, M Arnold, H Diehl, U Batzler. Examination of urine metabolites in the newborn period and during protein loading tests at 6 months of age--Part 1.
European journal of pediatrics.
1990; 149 Suppl 1(?):S17-24. doi:
10.1007/bf02126294
. [PMID: 2091926] - Kh Kurbanov, N A Spiridonova. [Tyrosine and methionine metabolism in various states of melaninogenesis].
Biokhimiia (Moscow, Russia).
1990 Jan; 55(1):165-72. doi:
. [PMID: 1971518]
- T O Frommel, J R Seed, J Sechelski. Changes in albumin levels in blood and urine of Microtus montanus chronically infected with Trypanosoma brucei gambiense.
The Journal of parasitology.
1988 Dec; 74(6):957-62. doi:
NULL
. [PMID: 3057169] - A G Antoshechkin, L A Zuyeva, L A Maximova. Excretion of phenylpyruvic, 4-hydroxyphenylpyruvic and indolyl-3-acetic acids by the skin fibroblasts from a phenylketonuric child.
Journal of inherited metabolic disease.
1988; 11(3):299-301. doi:
10.1007/bf01800373
. [PMID: 3148072] - M Matsuo, K Saiki, J Tanabe, H Nakamura, T Matsuo. Citrullinaemia: an infantile form with p-hydroxyphenylpyruvic and p-hydroxyphenyllactic acidurias.
Journal of inherited metabolic disease.
1987; 10(3):276. doi:
10.1007/bf01800080
. [PMID: 3123792] - N Furukawa, T Hayano, N Sato, F Inoue, Y Machida, A Kinugasa, S Imashuku, T Kusunoki, T Takamatisu. The enzyme defects in hereditary tyrosinaemia type I.
Journal of inherited metabolic disease.
1984; 7 Suppl 2(?):137-8. doi:
10.1007/978-94-009-5612-4_43
. [PMID: 6434869] - J E Hall, J R Seed. Increased urinary excretion of aromatic amino acid catabolites by Microtus montanus chronically infected with Trypanosoma brucei gambiense.
Comparative biochemistry and physiology. B, Comparative biochemistry.
1984; 77(4):755-60. doi:
10.1016/0305-0491(84)90309-2
. [PMID: 6375946] - M Yanaka, J Okumura. Effects of dietary protein level and ascorbic acid supplementation on the contents of tyrosine metabolites in droppings and plasma of chicks fed a diet containing excess tyrosine.
Poultry science.
1983 Dec; 62(12):2433-41. doi:
10.3382/ps.0622433
. [PMID: 6689445] - H Machino, Y Miki, T Kawatsu, K Kida, H Matsuda. Successful dietary control of tyrosinemia II.
Journal of the American Academy of Dermatology.
1983 Oct; 9(4):533-9. doi:
10.1016/s0190-9622(83)70165-9
. [PMID: 6195199] - F Endo, A Kitano, I Uehara, N Nagata, I Matsuda, T Shinka, T Kuhara, I Matsumoto. Four-hydroxyphenylpyruvic acid oxidase deficiency with normal fumarylacetoacetase: a new variant form of hereditary hypertyrosinemia.
Pediatric research.
1983 Feb; 17(2):92-6. doi:
10.1203/00006450-198302000-00002
. [PMID: 6828337] - J R Seed, J E Hall, C C Price. A physiological mechanism to explain pathogenesis in African trypanosomiasis.
Contributions to microbiology and immunology.
1983; 7(?):83-94. doi:
NULL
. [PMID: 6337778] - P Sampathkumar, J F Morrison. Chorismate mutase-prephenate dehydrogenase from Escherichia coli. Kinetic mechanism of the prephenate dehydrogenase reaction.
Biochimica et biophysica acta.
1982 Apr; 702(2):212-9. doi:
10.1016/0167-4838(82)90505-2
. [PMID: 7044425] - J R Seed, J E Hall, J Sechelski. Phenylalanine metabolism in Microtus montanus chronically infected with Trypanosoma brucei gambiense.
Comparative biochemistry and physiology. B, Comparative biochemistry.
1982; 71(2):209-15. doi:
10.1016/0305-0491(82)90242-5
. [PMID: 7037281] - P Riederer, G P Reynolds. Determination of a wide range of urinary amine metabolites using a simple high-performance liquid chromatographic technique.
Journal of chromatography.
1981 Sep; 225(1):179-84. doi:
10.1016/s0378-4347(00)80257-1
. [PMID: 6170650] - B M Nordlinger, J T Fulenwider, B A Faraj, R A Bethel, D Rudman. Tyrosine metabolism in cirrhosis: acquired alkaptonuria.
Surgical forum.
1978; 29(?):442-4. doi:
NULL
. [PMID: 401217] - S A Fernbach, R E Summons, W E Pereira, A M Duffield. Metabolic studies of transient tyrosinemia in premature infants.
Pediatric research.
1975 Apr; 9(4):172-6. doi:
10.1203/00006450-197504000-00006
. [PMID: 1143952] - W E KNOX, M LeMAY-KNOX. The oxidation in liver of l-tyrosine to acetoacetate through p-hydroxyphenylpyruvate and homogentisic acid.
The Biochemical journal.
1951 Oct; 49(5):686-93. doi:
10.1042/bj0490686
. [PMID: 14886367] - . .
.
. doi:
. [PMID: 15284489]