7-Methylxanthine (BioDeep_00000014444)

 

Secondary id: BioDeep_00000053809, BioDeep_00000405496

human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite


代谢物信息卡片


7-methyl-2,3,6,7-tetrahydro-1H-purine-2,6-dione

化学式: C6H6N4O2 (166.0490736)
中文名称: 7-甲基黄嘌呤
谱图信息: 最多检出来源 Homo sapiens(blood) 0.16%

Reviewed

Last reviewed on 2024-07-16.

Cite this Page

7-Methylxanthine. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/7-methylxanthine (retrieved 2024-09-17) (BioDeep RN: BioDeep_00000014444). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: c1(=O)[nH]c(=O)c2c([nH]1)ncn2C
InChI: InChI=1S/C6H6N4O2/c1-10-2-7-4-3(10)5(11)9-6(12)8-4/h2H,1H3,(H2,8,9,11,12)

描述信息

7-Methylxanthine is a methyl derivative of xanthine, found occasionally in human urine. 7-Methylxanthine is one of the purine components in urinary calculi. Methylated purines originate from the metabolism of methylxanthines (caffeine, theophylline and theobromine). Caffeine is metabolized via successive pathways mainly catalyzed by CYP1A2, xanthine oxidase or N-acetyltransferase-2 to give 14 different metabolites, including 7-methylxanthine. CYP1A2 activity shows an inter-individual variability among the population. CYP1A2, an isoform of the CYP1A cytochrome P450 super-family, is involved in the metabolism of many drugs and plays a potentially important role in the induction of chemical carcinogenesis. Purine derivatives in urinary calculi could be considered markers of abnormal purine metabolism. The content of a purine derivative in stone depends on its average urinary excretion in the general population, similarity to the chemical structure of uric acid, and content of the latter in stone. This suggests that purines in stones represent a solid solution with uric acid as solvent. It is also plausible that methylxanthines, ubiquitous components of the diet and drugs, are involved in the pathogenesis of urolithiasis. (PMID:11712316, 15833286, 3506820, 15013152).

Found in sugar cane and other biol. sources, a urinary metabolite of caffeine in man

7-Methylxanthine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=552-62-5 (retrieved 2024-07-16) (CAS RN: 552-62-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
7-Methylxanthine, a methyl derivative of xanthine, is one of the purine components in urinary calculi.

同义名列表

11 个代谢物同义名

7-methyl-2,3,6,7-tetrahydro-1H-purine-2,6-dione; 3,7-Dihydro-7-methyl-1H-purine-2,6-dione; 7-Methyl-3,7-dihydro-1H-purine-2,6-dione; 7-Methylxanthine, 7-(13)C-labeled; 2,6-Dihydroxy-7-methylpurine; 7-Methyl-7H-purine-2,6-diol; 7-Methylxanthine; 7-Methylxanthin; Heteroxanthine; Methylxanthine; Heteroxanthin



数据库引用编号

20 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(2)

PlantCyc(0)

代谢反应

20 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(5)

WikiPathways(1)

Plant Reactome(0)

INOH(0)

PlantCyc(9)

COVID-19 Disease Map(0)

PathBank(5)

  • Caffeine Metabolism: Oxygen + Paraxanthine + Water ⟶ 1,7-Dimethyluric acid + Hydrogen peroxide
  • Caffeine Metabolism: Oxygen + Paraxanthine + Water ⟶ 1,7-Dimethyluric acid + Hydrogen peroxide
  • Caffeine Metabolism: Oxygen + Paraxanthine + Water ⟶ 1,7-Dimethyluric acid + Hydrogen peroxide
  • Caffeine Metabolism: Oxygen + Paraxanthine + Water ⟶ 1,7-Dimethyluric acid + Hydrogen peroxide
  • Caffeine Metabolism: Oxygen + Paraxanthine + Water ⟶ 1,7-Dimethyluric acid + Hydrogen peroxide

PharmGKB(0)

28 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Binxing Zhou, Cunqiang Ma, Xiaoying Ren, Tao Xia, Xiaohong Li. LC-MS/MS-based metabolomic analysis of caffeine-degrading fungus Aspergillus sydowii during tea fermentation. Journal of food science. 2020 Feb; 85(2):477-485. doi: 10.1111/1750-3841.15015. [PMID: 31905425]
  • Felix Grases, Antonia Costa-Bauza, Joan Roig, Adrian Rodriguez. Xanthine urolithiasis: Inhibitors of xanthine crystallization. PloS one. 2018; 13(8):e0198881. doi: 10.1371/journal.pone.0198881. [PMID: 30157195]
  • Ivan Senta, Emma Gracia-Lor, Andrea Borsotti, Ettore Zuccato, Sara Castiglioni. Wastewater analysis to monitor use of caffeine and nicotine and evaluation of their metabolites as biomarkers for population size assessment. Water research. 2015 May; 74(?):23-33. doi: 10.1016/j.watres.2015.02.002. [PMID: 25706221]
  • Flávia Camila Schimpl, Eduardo Kiyota, Juliana Lischka Sampaio Mayer, José Francisco de Carvalho Gonçalves, José Ferreira da Silva, Paulo Mazzafera. Molecular and biochemical characterization of caffeine synthase and purine alkaloid concentration in guarana fruit. Phytochemistry. 2014 Sep; 105(?):25-36. doi: 10.1016/j.phytochem.2014.04.018. [PMID: 24856135]
  • Cheng-Ying Shi, Hua Yang, Chao-Ling Wei, Oliver Yu, Zheng-Zhu Zhang, Chang-Jun Jiang, Jun Sun, Ye-Yun Li, Qi Chen, Tao Xia, Xiao-Chun Wan. Deep sequencing of the Camellia sinensis transcriptome revealed candidate genes for major metabolic pathways of tea-specific compounds. BMC genomics. 2011 Feb; 12(?):131. doi: 10.1186/1471-2164-12-131. [PMID: 21356090]
  • Hiroshi Ashihara, Misako Kato, Alan Crozier. Distribution, biosynthesis and catabolism of methylxanthines in plants. Handbook of experimental pharmacology. 2011; ?(200):11-31. doi: 10.1007/978-3-642-13443-2_2. [PMID: 20859792]
  • Chenwei Lin, Lukas A Mueller, James Mc Carthy, Dominique Crouzillat, Vincent Pétiard, Steven D Tanksley. Coffee and tomato share common gene repertoires as revealed by deep sequencing of seed and cherry transcripts. TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik. 2005 Dec; 112(1):114-30. doi: 10.1007/s00122-005-0112-2. [PMID: 16273343]
  • Mirosława Zydroń, Jacek Baranowski, Irena Baranowska. Separation, pre-concentration, and HPLC analysis of methylxanthines in urine samples. Journal of separation science. 2004 Oct; 27(14):1166-72. doi: 10.1002/jssc.200401841. [PMID: 15537072]
  • Hirotaka Uefuji, Shinjiro Ogita, Yube Yamaguchi, Nozomu Koizumi, Hiroshi Sano. Molecular cloning and functional characterization of three distinct N-methyltransferases involved in the caffeine biosynthetic pathway in coffee plants. Plant physiology. 2003 May; 132(1):372-80. doi: 10.1104/pp.102.019679. [PMID: 12746542]
  • Kouichi Mizuno, Akira Okuda, Misako Kato, Naho Yoneyama, Hiromi Tanaka, Hiroshi Ashihara, Tatsuhito Fujimura. Isolation of a new dual-functional caffeine synthase gene encoding an enzyme for the conversion of 7-methylxanthine to caffeine from coffee (Coffea arabica L.). FEBS letters. 2003 Jan; 534(1-3):75-81. doi: 10.1016/s0014-5793(02)03781-x. [PMID: 12527364]
  • Pierre Wong, Abderrazak Bachki, Kris Banerjee, Brian Leyland-Jones. Identification of N1-methyl-2-pyridone-5-carboxamide and N1-methyl-4-pyridone-5-carboxamide as components in urine extracts of individuals consuming coffee. Journal of pharmaceutical and biomedical analysis. 2002 Oct; 30(3):773-80. doi: 10.1016/s0731-7085(02)00384-9. [PMID: 12367703]
  • Andreas Labedzki, Jeroen Buters, Wafaâ Jabrane, Uwe Fuhr. Differences in caffeine and paraxanthine metabolism between human and murine CYP1A2. Biochemical pharmacology. 2002 Jun; 63(12):2159-67. doi: 10.1016/s0006-2952(02)01019-5. [PMID: 12110375]
  • K A Georgia, V F Samanidou, I N Papadoyannis. Use of novel solid-phase extraction sorbent materials for high-performance liquid chromatography quantitation of caffeine metabolism products methylxanthines and methyluric acids in samples of biological origin. Journal of chromatography. B, Biomedical sciences and applications. 2001 Aug; 759(2):209-18. doi: 10.1016/s0378-4347(01)00251-1. [PMID: 11499474]
  • M C Di Pietro, D Vannoni, R Leoncini, G Liso, R Guerranti, E Marinello. Determination of urinary methylated purine pattern by high-performance liquid chromatography. Journal of chromatography. B, Biomedical sciences and applications. 2001 Feb; 751(1):87-92. doi: 10.1016/s0378-4347(00)00471-0. [PMID: 11232859]
  • Y C Bechtel, H Lelouët, S Hrusovsky, M P Brientini, G Mantion, G Paintaud, J P Miguet, P R Bechtel. Caffeine metabolism before and after liver transplantation. International journal of clinical pharmacology and therapeutics. 2001 Feb; 39(2):53-60. doi: 10.5414/cpp39053. [PMID: 11270802]
  • S Gates, J O Miners. Cytochrome P450 isoform selectivity in human hepatic theobromine metabolism. British journal of clinical pharmacology. 1999 Mar; 47(3):299-305. doi: 10.1046/j.1365-2125.1999.00890.x. [PMID: 10215755]
  • H M Himmel, V Sadony, U Ravens. Quantitation of hypoxanthine in plasma from patients with ischemic heart disease: adaption of a high-performance liquid chromatographic method. Journal of chromatography. 1991 Jul; 568(1):105-15. doi: 10.1016/0378-4347(91)80344-c. [PMID: 1770088]
  • W A Tramontano, D A Phillips, C A Carman, A M Massaro. Nuclear incorporation of [adenine 14C]NAD is altered by compounds which affect poly(ADP-ribose) formation. Phytochemistry. 1990; 29(1):31-3. doi: 10.1016/0031-9422(90)89004-s. [PMID: 1367419]
  • . . . . doi: . [PMID: 14977550]