Dopamine (BioDeep_00000001122)
Secondary id: BioDeep_00000399911, BioDeep_00000863998
human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite Toxin BioNovoGene_Lab2019 natural product
代谢物信息卡片
化学式: C8H11NO2 (153.079)
中文名称: 多巴胺 盐酸盐, 多巴胺(盐酸盐), 多巴胺
谱图信息:
最多检出来源 Homo sapiens(blood) 20.75%
Last reviewed on 2024-06-29.
Cite this Page
Dopamine. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/dopamine (retrieved
2025-01-14) (BioDeep RN: BioDeep_00000001122). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C1=CC(=C(C=C1CCN)O)O
InChI: InChI=1S/C8H11NO2/c9-4-3-6-1-2-7(10)8(11)5-6/h1-2,5,10-11H,3-4,9H2
描述信息
Dopamine is a member of the catecholamine family of neurotransmitters in the brain and is a precursor to epinephrine (adrenaline) and norepinephrine (noradrenaline). Dopamine is synthesized in the body (mainly by nervous tissue and adrenal glands) first by the hydration of the amino acid tyrosine to DOPA by tyrosine hydroxylase and then by the decarboxylation of DOPA by aromatic-L-amino-acid decarboxylase. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (dopamine receptors) mediates its action, which plays a major role in reward-motivated behaviour. Dopamine has many other functions outside the brain. In blood vessels, dopamine inhibits norepinephrine release and acts as a vasodilator (at normal concentrations); in the kidneys, it increases sodium excretion and urine output; in the pancreas, it reduces insulin production; in the digestive system, it reduces gastrointestinal motility and protects intestinal mucosa; and in the immune system, it reduces the activity of lymphocytes. Parkinsons disease, a degenerative condition causing tremor and motor impairment, is caused by a loss of dopamine-secreting neurons in an area of the midbrain called the substantia nigra. There is evidence that schizophrenia involves altered levels of dopamine activity, and most antipsychotic drugs used to treat this are dopamine antagonists, which reduce dopamine activity. Attention deficit hyperactivity disorder, bipolar disorder, and addiction are also characterized by defects in dopamine production or metabolism. It has been suggested that animals derived their dopamine-synthesizing machinery from bacteria via horizontal gene transfer that may have occurred relatively late in evolutionary time. This is perhaps a result of the symbiotic incorporation of bacteria into eukaryotic cells that gave rise to mitochondria. Dopamine is elevated in the urine of people who consume bananas. When present in sufficiently high levels, dopamine can be a neurotoxin and a metabotoxin. A neurotoxin is a compound that disrupts or attacks neural tissue. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of dopamine are associated with neuroblastoma, Costello syndrome, leukemia, phaeochromocytoma, aromatic L-amino acid decarboxylase deficiency, and Menkes disease (MNK). High levels of dopamine can lead to hyperactivity, insomnia, agitation and anxiety, depression, delusions, excessive salivation, nausea, and digestive problems. A study has shown that urinary dopamine is produced by Bacillus and Serratia (PMID: 24621061)
Occurs in several higher plants, such as banana (Musa sapientum). As a member of the catecholamine family, dopamine is a precursor to norepinephrine (noradrenaline) and then epinephrine (adrenaline) in the biosynthetic pathways for these neurotransmitters. Dopamine is elevated in the urine of people who consume bananas. Dopamine is found in many foods, some of which are garden onion, purslane, garden tomato, and swiss chard.
Dopamine (DA, a contraction of 3,4-dihydroxyphenethylamine) is a neuromodulatory molecule that plays several important roles in cells. It is an organic chemical of the catecholamine and phenethylamine families. Dopamine constitutes about 80\% of the catecholamine content in the brain. It is an amine synthesized by removing a carboxyl group from a molecule of its precursor chemical, L-DOPA, which is synthesized in the brain and kidneys. Dopamine is also synthesized in plants and most animals. In the brain, dopamine functions as a neurotransmitter—a chemical released by neurons (nerve cells) to send signals to other nerve cells. Neurotransmitters are synthesized in specific regions of the brain, but affect many regions systemically. The brain includes several distinct dopamine pathways, one of which plays a major role in the motivational component of reward-motivated behavior. The anticipation of most types of rewards increases the level of dopamine in the brain,[4] and many addictive drugs increase dopamine release or block its reuptake into neurons following release.[5] Other brain dopamine pathways are involved in motor control and in controlling the release of various hormones. These pathways and cell groups form a dopamine system which is neuromodulatory.[5]
In popular culture and media, dopamine is often portrayed as the main chemical of pleasure, but the current opinion in pharmacology is that dopamine instead confers motivational salience;[6][7][8] in other words, dopamine signals the perceived motivational prominence (i.e., the desirability or aversiveness) of an outcome, which in turn propels the organism's behavior toward or away from achieving that outcome.[8][9]
Outside the central nervous system, dopamine functions primarily as a local paracrine messenger. In blood vessels, it inhibits norepinephrine release and acts as a vasodilator; in the kidneys, it increases sodium excretion and urine output; in the pancreas, it reduces insulin production; in the digestive system, it reduces gastrointestinal motility and protects intestinal mucosa; and in the immune system, it reduces the activity of lymphocytes. With the exception of the blood vessels, dopamine in each of these peripheral systems is synthesized locally and exerts its effects near the cells that release it.
Several important diseases of the nervous system are associated with dysfunctions of the dopamine system, and some of the key medications used to treat them work by altering the effects of dopamine. Parkinson's disease, a degenerative condition causing tremor and motor impairment, is caused by a loss of dopamine-secreting neurons in an area of the midbrain called the substantia nigra. Its metabolic precursor L-DOPA can be manufactured; Levodopa, a pure form of L-DOPA, is the most widely used treatment for Parkinson's. There is evidence that schizophrenia involves altered levels of dopamine activity, and most antipsychotic drugs used to treat this are dopamine antagonists which reduce dopamine activity.[10] Similar dopamine antagonist drugs are also some of the most effective anti-nausea agents. Restless legs syndrome and attention deficit hyperactivity disorder (ADHD) are associated with decreased dopamine activity.[11] Dopaminergic stimulants can be addictive in high doses, but some are used at lower doses to treat ADHD. Dopamine itself is available as a manufactured medication for intravenous injection. It is useful in the treatment of severe heart failure or cardiogenic shock.[12] In newborn babies it may be used for hypotension and septic shock.[13]
Dopamine is synthesized in a restricted set of cell types, mainly neurons and cells in the medulla of the adrenal glands.[22] The primary and minor metabolic pathways respectively are:
Primary: L-Phenylalanine → L-Tyrosine → L-DOPA → Dopamine[19][20]
Minor: L-Phenylalanine → L-Tyrosine → p-Tyramine → Dopamine[19][20][21]
Minor: L-Phenylalanine → m-Tyrosine → m-Tyramine → Dopamine[21][23][24]
The direct precursor of dopamine, L-DOPA, can be synthesized indirectly from the essential amino acid phenylalanine or directly from the non-essential amino acid tyrosine.[25] These amino acids are found in nearly every protein and so are readily available in food, with tyrosine being the most common. Although dopamine is also found in many types of food, it is incapable of crossing the blood–brain barrier that surrounds and protects the brain.[26] It must therefore be synthesized inside the brain to perform its neuronal activity.[26]
L-Phenylalanine is converted into L-tyrosine by the enzyme phenylalanine hydroxylase, with molecular oxygen (O2) and tetrahydrobiopterin as cofactors. L-Tyrosine is converted into L-DOPA by the enzyme tyrosine hydroxylase, with tetrahydrobiopterin, O2, and iron (Fe2+) as cofactors.[25] L-DOPA is converted into dopamine by the enzyme aromatic L-amino acid decarboxylase (also known as DOPA decarboxylase), with pyridoxal phosphate as the cofactor.[25]
Dopamine itself is used as precursor in the synthesis of the neurotransmitters norepinephrine and epinephrine.[25] Dopamine is converted into norepinephrine by the enzyme dopamine β-hydroxylase, with O2 and L-ascorbic acid as cofactors.[25] Norepinephrine is converted into epinephrine by the enzyme phenylethanolamine N-methyltransferase with S-adenosyl-L-methionine as the cofactor.[25]
Some of the cofactors also require their own synthesis.[25] Deficiency in any required amino acid or cofactor can impair the synthesis of dopamine, norepinephrine, and epinephrine.[25]
Degradation
Dopamine is broken down into inactive metabolites by a set of enzymes—monoamine oxidase (MAO), catechol-O-methyl transferase (COMT), and aldehyde dehydrogenase (ALDH), acting in sequence.[27] Both isoforms of monoamine oxidase, MAO-A and MAO-B, effectively metabolize dopamine.[25] Different breakdown pathways exist but the main end-product is homovanillic acid (HVA), which has no known biological activity.[27] From the bloodstream, homovanillic acid is filtered out by the kidneys and then excreted in the urine.[27] The two primary metabolic routes that convert dopamine into HVA are:[28]
Dopamine → DOPAL → DOPAC → HVA – catalyzed by MAO, ALDH, and COMT respectively
Dopamine → 3-Methoxytyramine → HVA – catalyzed by COMT and MAO+ALDH respectively
In clinical research on schizophrenia, measurements of homovanillic acid in plasma have been used to estimate levels of dopamine activity in the brain. A difficulty in this approach however, is separating the high level of plasma homovanillic acid contributed by the metabolism of norepinephrine.[29][30]
Although dopamine is normally broken down by an oxidoreductase enzyme, it is also susceptible to oxidation by direct reaction with oxygen, yielding quinones plus various free radicals as products.[31] The rate of oxidation can be increased by the presence of ferric iron or other factors. Quinones and free radicals produced by autoxidation of dopamine can poison cells, and there is evidence that this mechanism may contribute to the cell loss that occurs in Parkinson's disease and other conditions.[32]
同义名列表
32 个代谢物同义名
alpha-(3,4-Dihydroxyphenyl)-beta-aminoethane; a-(3,4-Dihydroxyphenyl)-b-aminoethane; 2-(3,4-Dihydroxyphenyl)ethylamine; 4-(2-Aminoethyl)benzene-1,2-diol; 4-(2-Aminoethyl)-1,2-benzenediol; 4-(2-Aminoethyl)-pyrocatechol; 3,4-Dihydroxyphenylethylamine; 4-(2-Aminoethyl)pyrocatechol; 3,4-Dihydroxyphenethylamine; 3,4 Dihydroxyphenethylamine; 4-(2-Aminoethyl)catechol; Hydrochloride, dopamine; Dopamine hydrochloride; 3-Hydroxytyramine; Deoxyepinephrine; Hydroxytyramine; Hydroxytyramin; Dopamine(2); Oxytyramine; Dopaminum; Dophamine; Dopamine; Intropin; Dopastat; Dopamina; Dopamin; Dynatra; Revivan; Medopa; Dopamine; Dopamine; Dopamine
数据库引用编号
58 个数据库交叉引用编号
- ChEBI: CHEBI:18243
- KEGG: C03758
- KEGGdrug: D07870
- PubChem: 681
- HMDB: HMDB0000073
- Metlin: METLIN64
- DrugBank: DB00988
- ChEMBL: CHEMBL59
- Wikipedia: Dopamine
- MeSH: Dopamine
- MetaCyc: DOPAMINE
- KNApSAcK: C00001408
- foodb: FDB012163
- chemspider: 661
- CAS: 62-31-7
- CAS: 51-61-6
- MoNA: KO002690
- MoNA: EQ329954
- MoNA: KO002688
- MoNA: EQ329902
- MoNA: KO003152
- MoNA: KO000581
- MoNA: PB000482
- MoNA: KO002687
- MoNA: PB000481
- MoNA: EQ329955
- MoNA: EQ329903
- MoNA: KO003150
- MoNA: KO000582
- MoNA: EQ329906
- MoNA: EQ329904
- MoNA: EQ329952
- MoNA: KO000579
- MoNA: PB000478
- MoNA: EQ329951
- MoNA: KO000580
- MoNA: EQ329901
- MoNA: EQ329956
- MoNA: KO003151
- MoNA: KO000583
- MoNA: PB000479
- MoNA: KO003149
- MoNA: PB000480
- MoNA: KO002691
- MoNA: EQ329953
- MoNA: KO002689
- MoNA: KO003148
- MoNA: EQ329905
- PMhub: MS000000004
- PDB-CCD: LDP
- 3DMET: B00634
- NIKKAJI: J4.120C
- RefMet: Dopamine
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-870
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-142
- PubChem: 6517
- KNApSAcK: 18243
- LOTUS: LTS0029901
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
70 个相关的代谢反应过程信息。
Reactome(29)
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amine-derived hormones:
Iodine + L-Tyr ⟶ HI + MIT
- Catecholamine biosynthesis:
DA + Oxygen + VitC ⟶ DHA + H2O + NAd
- Catecholamine biosynthesis:
Dopa ⟶ DA + carbon dioxide
- Enzymatic degradation of Dopamine by monoamine oxidase:
DA + H2O + Oxygen ⟶ DOPAC + H2O2 + ammonia
- Enzymatic degradation of dopamine by COMT:
DA + SAM ⟶ 3MT + SAH
- Enzymatic degradation of Dopamine by monoamine oxidase:
DA + H2O + Oxygen ⟶ 5HT-N-CH3 + ammonia
- Transmission across Chemical Synapses:
DA + SAM ⟶ 3MT + SAH
- Neuronal System:
DA + SAM ⟶ 3MT + SAH
- Neurotransmitter clearance:
DA + SAM ⟶ 3MT + SAH
- Clearance of dopamine:
DA + SAM ⟶ 3MT + SAH
- Enzymatic degradation of dopamine by COMT:
DA + SAM ⟶ 3MT + SAH
- GPCR ligand binding:
Ade-Rib + H0YT13 ⟶ ADORA1,3:Ade-Rib
- Class A/1 (Rhodopsin-like receptors):
Ade-Rib + H0YT13 ⟶ ADORA1,3:Ade-Rib
- Amine ligand-binding receptors:
H0ZMX8 + PEA ⟶ Trace amine-associated receptor:PEA
- Dopamine receptors:
DA + DRD1,5 ⟶ DRD1,5:dopamine
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amine-derived hormones:
Dopa ⟶ DA + carbon dioxide
- Catecholamine biosynthesis:
Dopa ⟶ DA + carbon dioxide
- Enzymatic degradation of Dopamine by monoamine oxidase:
DA + H2O + Oxygen ⟶ 5HT-N-CH3 + ammonia
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amine-derived hormones:
Dopa ⟶ DA + carbon dioxide
- Signaling Pathways:
AMP + p-AMPK heterotrimer ⟶ p-AMPK heterotrimer:AMP
- Signaling by GPCR:
H2O + cAMP ⟶ AMP
- GPCR downstream signalling:
H2O + cAMP ⟶ AMP
- G alpha (i) signalling events:
H2O + cAMP ⟶ AMP
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
BioCyc(0)
WikiPathways(9)
- 17p13.3 (YWHAE) copy number variation:
Dopamine ⟶ Noradrenaline
- Dopamine metabolism:
Dopamine ⟶ 3-Methoxytyramine
- Dopamine metabolism:
Dopamine ⟶ 3-Methoxytyramine
- Involvement of -secretase in neurodegenerative diseases:
dopamine ⟶ DOPAL
- Parkinson's disease:
L-Tyrosine ⟶ L-DOPA
- Biogenic amine synthesis:
Norepinephrine ⟶ Epinephrine
- Parkinson's disease pathway:
L-Tyrosine ⟶ L-DOPA
- Biogenic amine synthesis:
Choline ⟶ Acetylcholine
- 22q11.2 copy number variation syndrome:
Dopamine ⟶ 3-Methoxytyramine
Plant Reactome(0)
INOH(1)
- Tyrosine metabolism ( Tyrosine metabolism ):
4-Hydroxy-phenyl-acetaldehyde + H2O + NAD+ ⟶ 4-Hydroxy-phenyl-acetic acid + NADH
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(31)
- Tyrosinemia Type I:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Tyrosinemia, Transient, of the Newborn:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Dopamine beta-Hydroxylase Deficiency:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Monoamine Oxidase-A Deficiency (MAO-A):
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Tyrosine Metabolism:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Tyrosine Metabolism:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Tyrosine Metabolism:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Alkaptonuria:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Hawkinsinuria:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Tyrosinemia Type I:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Tyrosine Metabolism:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Dopamine beta-Hydroxylase Deficiency:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Monoamine Oxidase-A Deficiency (MAO-A):
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Catecholamine Biosynthesis:
Ascorbic acid + Dopamine + Oxygen ⟶ Dehydroascorbic acid + Norepinephrine + Water
- Aromatic L-Aminoacid Decarboxylase Deficiency:
Ascorbic acid + Dopamine + Oxygen ⟶ Dehydroascorbic acid + Norepinephrine + Water
- Tyrosine Hydroxylase Deficiency:
Ascorbic acid + Dopamine + Oxygen ⟶ Dehydroascorbic acid + Norepinephrine + Water
- Alkaptonuria:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Hawkinsinuria:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Isoquinoline Alkaloid Biosynthesis:
Dopamine + Oxygen + Water ⟶ 3,4-Dihydroxyphenylacetaldehyde + Ammonia + Hydrogen peroxide
- Tyrosinemia Type I:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Catecholamine Biosynthesis:
Ascorbic acid + Dopamine + Oxygen ⟶ Dehydroascorbic acid + Norepinephrine + Water
- Disulfiram Action Pathway:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Tyrosine Metabolism:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Tyrosinemia, Transient, of the Newborn:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Dopamine beta-Hydroxylase Deficiency:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Monoamine Oxidase-A Deficiency (MAO-A):
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Alkaptonuria:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Hawkinsinuria:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Aromatic L-Aminoacid Decarboxylase Deficiency:
Ascorbic acid + Dopamine + Oxygen ⟶ Dehydroascorbic acid + Norepinephrine + Water
- Tyrosine Hydroxylase Deficiency:
Ascorbic acid + Dopamine + Oxygen ⟶ Dehydroascorbic acid + Norepinephrine + Water
- Tyrosinemia, Transient, of the Newborn:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
PharmGKB(0)
188 个相关的物种来源信息
- 3808 - Acacia: LTS0029901
- 654 - Aeromonas veronii: 10.3389/FCIMB.2020.00044
- 16896 - Alangium: LTS0029901
- 616984 - Alangium salviifolium:
- 22140 - Annonaceae: LTS0029901
- 4454 - Araceae: LTS0029901
- 267623 - Arisarum: LTS0029901
- 267624 - Arisarum vulgare: 10.1016/0031-9422(80)85057-6
- 267624 - Arisarum vulgare: LTS0029901
- 12947 - Aristolochia: LTS0029901
- 12948 - Aristolochia gigantea: 10.3390/MOLECULES15129462
- 12948 - Aristolochia gigantea: LTS0029901
- 16727 - Aristolochiaceae: LTS0029901
- 6656 - Arthropoda: LTS0029901
- 154405 - Austrocylindropuntia: LTS0029901
- 866931 - Austrocylindropuntia cylindrica:
- 866931 - Austrocylindropuntia cylindrica: 10.1021/JO01082A623
- 866931 - Austrocylindropuntia cylindrica: LTS0029901
- 2 - Bacteria: LTS0029901
- 203270 - Berberis aquifolium: 10.1016/J.CHROMA.2015.08.015
- 13601 - Berberis bealei: 10.1016/J.CHROMA.2015.08.015
- 6974 - Blattidae: LTS0029901
- 3593 - Cactaceae: LTS0029901
- 77880 - Carapichea ipecacuanha:
- 46963 - Caulophyllum thalictroides: 10.1016/J.JPBA.2011.07.028
- 7711 - Chordata: LTS0029901
- 3452 - Clematis: LTS0029901
- 1857144 - Clematis parviloba: 10.1007/S12272-009-1111-7
- 1857144 - Clematis parviloba: LTS0029901
- 3442 - Coptis japonica: 10.1074/JBC.M705082200
- 42219 - Cornaceae: LTS0029901
- 23159 - Crataegus: LTS0029901
- 298643 - Crataegus laevigata: 10.1002/PCA.2800030604
- 298643 - Crataegus laevigata: LTS0029901
- 140997 - Crataegus monogyna: 10.1002/PCA.2800030604
- 140997 - Crataegus monogyna: LTS0029901
- 510738 - Crataegus rhipidophylla: 10.1002/PCA.2800030604
- 510738 - Crataegus rhipidophylla: LTS0029901
- 701510 - Cylindropuntia: LTS0029901
- 866975 - Cylindropuntia acanthocarpa:
- 866980 - Cylindropuntia echinocarpa:
- 701514 - Cylindropuntia imbricata: 10.1016/0031-9422(80)87057-9
- 701514 - Cylindropuntia imbricata: LTS0029901
- 866988 - Cylindropuntia spinosior:
- 46246 - Delphinium: LTS0029901
- 1127147 - Delphinium caeruleum: 10.1016/J.PHYTOCHEM.2004.03.017
- 1127184 - Delphinium pentagynum: 10.1016/J.PHYTOCHEM.2004.03.017
- 1127184 - Delphinium pentagynum: LTS0029901
- 6970 - Dictyoptera: LTS0029901
- 183648 - Echinopsis: LTS0029901
- 1001097 - Echinopsis pachanoi: 10.1021/NP50020A022
- 1001097 - Echinopsis pachanoi: LTS0029901
- 1574108 - Echinopsis spachiana: 10.1021/NP50020A022
- 1574108 - Echinopsis spachiana: LTS0029901
- 1170788 - Echinopsis strigosa: 10.1021/NP50020A022
- 543 - Enterobacteriaceae: LTS0029901
- 3841 - Erythrina: LTS0029901
- 49817 - Erythrina crista-galli: 10.1016/S0031-9422(99)00230-7
- 49817 - Erythrina crista-galli: LTS0029901
- 561 - Escherichia: LTS0029901
- 562 - Escherichia coli: LTS0029901
- 2759 - Eukaryota: LTS0029901
- 3803 - Fabaceae: LTS0029901
- 1236 - Gammaproteobacteria: LTS0029901
- 3379 - Gnetaceae: LTS0029901
- 3372 - Gnetopsida: LTS0029901
- 3380 - Gnetum: LTS0029901
- 3381 - Gnetum montanum: 10.1021/NP200700F
- 3381 - Gnetum montanum: LTS0029901
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S11306-016-1051-4
- 50557 - Insecta: LTS0029901
- 4447 - Liliopsida: LTS0029901
- 442940 - Lyallia: LTS0029901
- 442941 - Lyallia kerguelensis: 10.1016/S0031-9422(99)00191-0
- 442941 - Lyallia kerguelensis: LTS0029901
- 56856 - Macleaya: LTS0029901
- 56857 - Macleaya cordata: 10.1016/J.MOLP.2017.05.007
- 56857 - Macleaya cordata: LTS0029901
- 349509 - Magnolia obovata: 10.1093/CHROMSCI/BMW052
- 85864 - Magnolia officinalis: 10.1093/CHROMSCI/BMW052
- 3398 - Magnoliopsida: LTS0029901
- 40674 - Mammalia: LTS0029901
- 33208 - Metazoa: LTS0029901
- 3537 - Mirabilis: LTS0029901
- 117585 - Mirabilis alipes: 10.1002/JPS.3030330804
- 117585 - Mirabilis alipes: LTS0029901
- 174216 - Monstera: LTS0029901
- 174217 - Monstera deliciosa: 10.1016/0031-9422(80)85057-6
- 174217 - Monstera deliciosa: LTS0029901
- 703407 - Montiaceae: LTS0029901
- 40336 - Mucuna: LTS0029901
- 157652 - Mucuna pruriens: 10.1007/BF02319010
- 157652 - Mucuna pruriens: LTS0029901
- 10066 - Muridae: LTS0029901
- 10088 - Mus: LTS0029901
- 10090 - Mus musculus: 10.1128/MCB.00232-17
- 10090 - Mus musculus: LTS0029901
- 10090 - Mus musculus: NA
- 4640 - Musa: LTS0029901
- 4641 - Musa acuminata: LTS0029901
- 258441 - Musa acuminata subsp. acuminata: 10.1021/JF9909860
- 258441 - Musa acuminata subsp. acuminata: LTS0029901
- 89151 - Musa × paradisiaca: 10.1021/JF60203A027
- 4637 - Musaceae: LTS0029901
- 3536 - Nyctaginaceae: LTS0029901
- 106975 - Opuntia: LTS0029901
- 371859 - Opuntia ficus-indica:
- 3468 - Papaver: LTS0029901
- 215227 - Papaver bracteatum:
- 215227 - Papaver bracteatum: 10.1016/0003-9861(83)90558-1
- 215227 - Papaver bracteatum: 10.1104/PP.81.1.161
- 215227 - Papaver bracteatum: 10.1104/PP.86.1.161
- 215227 - Papaver bracteatum: LTS0029901
- 3469 - Papaver somniferum:
- 3469 - Papaver somniferum: 10.1016/0003-9861(83)90558-1
- 3469 - Papaver somniferum: 10.1021/NP50034A019
- 3469 - Papaver somniferum: 10.1515/ZNC-1984-11-1205
- 3469 - Papaver somniferum: LTS0029901
- 3465 - Papaveraceae: LTS0029901
- 6977 - Periplaneta: LTS0029901
- 6978 - Periplaneta americana: 10.1016/S0021-9673(01)95373-7
- 6978 - Periplaneta americana: LTS0029901
- 71613 - Philodendron: LTS0029901
- 400857 - Philodendron erubescens: 10.1016/0031-9422(80)85057-6
- 400857 - Philodendron erubescens: LTS0029901
- 400859 - Philodendron glaziovii: 10.1016/0031-9422(80)85057-6
- 400859 - Philodendron glaziovii: LTS0029901
- 290852 - Philodendron hederaceum: LTS0029901
- 2876787 - Philodendron hederaceum var. hederaceum: 10.1016/0031-9422(80)85057-6
- 2876787 - Philodendron hederaceum var. hederaceum: LTS0029901
- 1804093 - Philodendron martianum: 10.1016/0031-9422(80)85057-6
- 1804093 - Philodendron martianum: LTS0029901
- 1804095 - Philodendron melanochrysum: 10.1016/0031-9422(80)85057-6
- 1804095 - Philodendron melanochrysum: LTS0029901
- 400881 - Philodendron tripartitum: 10.1016/0031-9422(80)85057-6
- 400881 - Philodendron tripartitum: LTS0029901
- 3582 - Portulaca: LTS0029901
- 3583 - Portulaca grandiflora: 10.1016/S0176-1617(84)80101-7
- 3583 - Portulaca grandiflora: LTS0029901
- 46147 - Portulaca oleracea:
- 46147 - Portulaca oleracea: LTS0029901
- 1150913 - Portulaca oleracea subsp. oleracea: 10.1016/S0021-9673(03)00786-6
- 1150913 - Portulaca oleracea subsp. oleracea: LTS0029901
- 3581 - Portulacaceae: 10.1021/ACS.JNATPROD.7B00762
- 3581 - Portulacaceae: LTS0029901
- 135621 - Pseudomonadaceae: LTS0029901
- 286 - Pseudomonas: LTS0029901
- 303 - Pseudomonas putida: 10.1371/JOURNAL.PONE.0156509
- 303 - Pseudomonas putida: LTS0029901
- 3440 - Ranunculaceae: LTS0029901
- 174221 - Rhaphidophora: LTS0029901
- 258281 - Rhaphidophora decursiva: 10.1016/0031-9422(80)85057-6
- 258281 - Rhaphidophora decursiva: LTS0029901
- 56861 - Romneya: LTS0029901
- 56862 - Romneya coulteri: 10.1016/S0031-9422(98)00745-6
- 56862 - Romneya coulteri: LTS0029901
- 3745 - Rosaceae: LTS0029901
- 468156 - Senegalia: LTS0029901
- 138013 - Senegalia berlandieri:
- 138013 - Senegalia berlandieri: 10.1016/S0031-9422(97)00240-9
- 138013 - Senegalia berlandieri: LTS0029901
- 4070 - Solanaceae: LTS0029901
- 4107 - Solanum: LTS0029901
- 4081 - Solanum lycopersicum: 10.1016/S0031-9422(01)00232-1
- 4111 - Solanum melongena: 10.1016/S0031-9422(01)00232-1
- 4113 - Solanum tuberosum: 10.1016/S0031-9422(01)00232-1
- 4113 - Solanum tuberosum: LTS0029901
- 35493 - Streptophyta: LTS0029901
- 7066 - Tenebrio: LTS0029901
- 7067 - Tenebrio molitor: 10.1515/BCHM2.1966.344.1-3.267
- 7067 - Tenebrio molitor: LTS0029901
- 7065 - Tenebrionidae: LTS0029901
- 292307 - Thaumatophyllum bipinnatifidum: 10.1016/0031-9422(80)85057-6
- 58023 - Tracheophyta: LTS0029901
- 2894700 - Trichocereus macrogonus: 10.1021/NP50020A022
- 468162 - Vachellia: LTS0029901
- 205076 - Vachellia rigidula:
- 205076 - Vachellia rigidula: 10.1016/S0031-9422(97)01022-4
- 205076 - Vachellia rigidula: LTS0029901
- 3906 - Vicia faba: 10.1016/S0031-9422(00)88471-X
- 33090 - Viridiplantae: LTS0029901
- 225838 - Xylopia: LTS0029901
- 992813 - Xylopia parviflora: 10.1016/J.PHYTOCHEM.2003.12.010
- 992813 - Xylopia parviflora: LTS0029901
- 69720 - Zantedeschia: LTS0029901
- 69721 - Zantedeschia aethiopica: 10.1016/0031-9422(80)85057-6
- 69721 - Zantedeschia aethiopica: LTS0029901
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Meng Hao, Yufeng He, Tingting Song, Huimin Guo, Margaret P Rayman, Jinsong Zhang. Dopamine and its precursor levodopa inactivate SARS-CoV-2 main protease by forming a quinoprotein.
Free radical biology & medicine.
2024 Aug; 220(?):167-178. doi:
10.1016/j.freeradbiomed.2024.05.008
. [PMID: 38718952] - Yayun Wu, Lijuan Liu, Ya Zhao, Xiong Li, Junhong Hu, Hanlin Li, Ruizhi Zhao. Xiaoyaosan promotes neurotransmitter transmission and alleviates CUMS-induced depression by regulating the expression of Oct1 and Oct3 in astrocytes of the prefrontal cortex.
Journal of ethnopharmacology.
2024 May; 326(?):117923. doi:
10.1016/j.jep.2024.117923
. [PMID: 38367929] - Elena Ortega Martínez, Ma Encarnación Morales Hernández, Julia Castillo-González, Elena González-Rey, Ma Adolfina Ruiz Martínez. Dopamine-loaded chitosan-coated solid lipid nanoparticles as a promise nanocarriers to the CNS.
Neuropharmacology.
2024 May; 249(?):109871. doi:
10.1016/j.neuropharm.2024.109871
. [PMID: 38412889] - David Calderón Guzmán, Norma Osnaya Brizuela, Maribel Ortíz Herrera, Hugo Juárez Olguín, Armando Valenzuela Peraza, Norma Labra Ruíz, Gerardo Barragán Mejía. Intake of oligoelements with cytarabine or etoposide alters dopamine levels and oxidative damage in rat brain.
Scientific reports.
2024 05; 14(1):10835. doi:
10.1038/s41598-024-61766-0
. [PMID: 38736022] - Leilei Liu, Xinyun Tian, Wentao Li. Mechanistic study of the anti-excitatory amino acid toxicity of Bushen Zhichan decoction for Parkinson's disease based on the transcriptional regulation of EAAT1 by YY1.
Journal of ethnopharmacology.
2024 May; 325(?):117857. doi:
10.1016/j.jep.2024.117857
. [PMID: 38350506] - Annalisa Chiavaroli, Simonetta Cristina Di Simone, Alessandra Acquaviva, Nilofar Nilofar, Maria Loreta Libero, Luigi Brunetti, Lucia Recinella, Sheila Leone, Giustino Orlando, Gokhan Zengin, Maura Di Vito, Luigi Menghini, Claudio Ferrante. Neuromodulatory Effects Induced by the Association of Moringa oleifera Lam., Tribulus terrestris L., Rhodiola rosea Lam., and Undaria pinnatidifida Extracts in the Hypothalamus.
Chemistry & biodiversity.
2024 May; 21(5):e202302075. doi:
10.1002/cbdv.202302075
. [PMID: 38527165] - Wenping Yang, Yongyue Wei, Jin Sun, Caixia Yao, Fen Ai, Haixia Ding. Safranal exerts a neuroprotective effect on Parkinson's disease with suppression of NLRP3 inflammation activation.
Molecular biology reports.
2024 Apr; 51(1):593. doi:
10.1007/s11033-024-09537-y
. [PMID: 38683404] - Rosanna Mallamaci, Debora Musarò, Marco Greco, Antonello Caponio, Stefano Castellani, Anas Munir, Lorenzo Guerra, Marina Damato, Giuseppe Fracchiolla, Chiara Coppola, Rosa Angela Cardone, Mehdi Rashidi, Roberta Tardugno, Sara Sergio, Adriana Trapani, Michele Maffia. Dopamine- and Grape-Seed-Extract-Loaded Solid Lipid Nanoparticles: Interaction Studies between Particles and Differentiated SH-SY5Y Neuronal Cell Model of Parkinson's Disease.
Molecules (Basel, Switzerland).
2024 Apr; 29(8):. doi:
10.3390/molecules29081774
. [PMID: 38675592] - Jie Chen, Ziying Guan, Lina Sun, Xinlin Fan, Desen Wang, Xiaoqiang Yu, Lihua Lyu, Guojun Qi. N6-methyladenosine modification of RNA controls dopamine synthesis to influence labour division in ants.
Molecular ecology.
2024 Apr; 33(8):e17322. doi:
10.1111/mec.17322
. [PMID: 38501589] - Zhengquan Yan, Yulian Tang, Zhaoran Zhang, Jing Feng, Junkai Hao, Shuo Sun, Meng Li, Yuguang Song, Wei Dong, Lei Hu. Biocompatible Folic-Acid-Strengthened Ag-Ir Quantum Dot Nanozyme for Cell and Plant Root Imaging of Cysteine/Stress and Multichannel Monitoring of Hg2+ and Dopamine.
Analytical chemistry.
2024 Mar; 96(10):4299-4307. doi:
10.1021/acs.analchem.4c00081
. [PMID: 38414258] - Anna Kang, Min-Jin Kwak, Daniel Junpyo Lee, Jeong Jae Lee, Min Kyu Kim, Minho Song, Minjee Lee, Jungwoo Yang, Sangnam Oh, Younghoon Kim. Dietary supplementation with probiotics promotes weight loss by reshaping the gut microbiome and energy metabolism in obese dogs.
Microbiology spectrum.
2024 Mar; 12(3):e0255223. doi:
10.1128/spectrum.02552-23
. [PMID: 38270436] - Jinxin Yu, Huiling Chen, Jiayi He, Xinnian Zeng, Hong Lei, Jiali Liu. Dual roles of dopaminergic pathways in olfactory learning and memory in the oriental fruit fly, Bactrocera dorsalis.
Pesticide biochemistry and physiology.
2024 Mar; 200(?):105825. doi:
10.1016/j.pestbp.2024.105825
. [PMID: 38582589] - Ning Wang, Bo Hong, Yingchun Zhao, Chuanbo Ding, Guodong Chai, Yue Wang, Jiali Yang, Lifeng Zhang, Weimin Yu, Yang Lu, Shuang Ma, Shuai Zhang, Xinglong Liu. Dopamine-grafted oxidized hyaluronic acid/gelatin/cordycepin nanofiber membranes modulate the TLR4/NF-kB signaling pathway to promote diabetic wound healing.
International journal of biological macromolecules.
2024 Mar; 262(Pt 1):130079. doi:
10.1016/j.ijbiomac.2024.130079
. [PMID: 38340939] - Javad Ghasemian-Yadegari, Ahmad Adineh, Hamidreza Mohammadi, Shima Davari, Yousef Veisani, Hori Ghaneialvar, Ali Aidy, Naser Abbasi, Elahe Karimi. Attenuation of cannabis withdrawal symptoms by Prosopis farcta extract, its luteolin and melatonin in mice: Involvement of brain-derived neurotrophic factor and dopamine.
Cell biochemistry and function.
2024 Mar; 42(2):e3980. doi:
10.1002/cbf.3980
. [PMID: 38491827] - En Hu, Tao Tang, You-Mei Li, Teng Li, Lin Zhu, Ruo-Qi Ding, Yao Wu, Qing Huang, Wei Zhang, Qian Wu, Yang Wang. Spatial amine metabolomics and histopathology reveal localized brain alterations in subacute traumatic brain injury and the underlying mechanism of herbal treatment.
CNS neuroscience & therapeutics.
2024 03; 30(3):e14231. doi:
10.1111/cns.14231
. [PMID: 37183394] - Li Liu, Lei Jiang, Jinglan Zhang, Yan Ma, Min Wan, Xueqing Hu, Lian Yang. Imperatorin inhibits oxidative stress injury and neuroinflammation via the PI3K/AKT signaling pathway in the MPTP-induced Parkinson's disease mouse.
Neuroreport.
2024 Feb; 35(3):175-184. doi:
10.1097/wnr.0000000000001997
. [PMID: 38305108] - Xiaomin Liu, Yanpeng Wang, Xiaoying Ma, Hongyi Zhang, Yi Zhou, Fengwang Ma, Chao Li. MdbHLH93 confers drought tolerance by activating MdTyDC expression and promoting dopamine biosynthesis.
International journal of biological macromolecules.
2024 Feb; 258(Pt 2):129003. doi:
10.1016/j.ijbiomac.2023.129003
. [PMID: 38159695] - Hyun Jun Lee, Darlene Mae Ortiz, Leandro Val Sayson, Mikyung Kim, Jae Hoon Cheong, Hee Jin Kim. Ameliorating effects of Acanthopanax koreanum extract and components on nicotine dependence and withdrawal symptoms.
Addiction biology.
2024 Feb; 29(2):e13360. doi:
10.1111/adb.13360
. [PMID: 38380695] - Bing Chen, Qian Zhang, Xiaoru Zhong, Xinwei Zhang, Xin Liu, Hongyang Wang, Fan Yang, Jingjing Zhang, Jingnan Huang, Yin-Kwan Wong, Piao Luo, Jigang Wang, Jichao Sun. Dopamine modification of glycolytic enzymes impairs glycolysis: possible implications for Parkinson's disease.
Cell communication and signaling : CCS.
2024 Jan; 22(1):75. doi:
10.1186/s12964-024-01478-0
. [PMID: 38287374] - Bruna Bernar Dias, Fernando Carreño, Victória Etges Helfer, Laura Ben Olivo, Keli Jaqueline Staudt, Karina Paese, Fabiano Barreto, Fabíola Schons Meyer, Ana Paula Herrmann, Sílvia Stanisçuaski Guterres, Stela Maris Kuze Rates, Bibiana Verlindo de Araújo, Iñaki F Trocóniz, Teresa Dalla Costa. Pharmacokinetic/pharmacodynamic modeling of cortical dopamine concentrations after quetiapine lipid core nanocapsules administration to schizophrenia phenotyped rats.
CPT: pharmacometrics & systems pharmacology.
2024 Jan; ?(?):. doi:
10.1002/psp4.13107
. [PMID: 38282365] - Baohua Zhu, Jie Jiang, Hui Yu, Lan Huang, Dandan Zhou. Effect of norepinephrine, vasopressin, and dopamine for survivals of the elderly with sepsis and pre-existing heart failure.
Scientific reports.
2024 01; 14(1):1948. doi:
10.1038/s41598-024-52514-5
. [PMID: 38253621] - Marina Bellot, Fernando Soria, Raul López-Arnau, Cristian Gómez-Canela, Carlos Barata. Daphnia magna an emerging environmental model of neuro and cardiotoxicity of illicit drugs.
Environmental pollution (Barking, Essex : 1987).
2024 Jan; 344(?):123355. doi:
10.1016/j.envpol.2024.123355
. [PMID: 38228265] - Kobra Khodarahmian, Alireza Ghiasvand, Abdullah Barkhordari. Exploring the optimal electropolymerization strategy for the preparation of solid-phase microextraction fibers using pyrrole-dopamine copolymers.
Journal of chromatography. A.
2024 Jan; 1714(?):464562. doi:
10.1016/j.chroma.2023.464562
. [PMID: 38065025] - Joana Rebouta, Luísa Dória, Ana Coelho, Miguel M Fonseca, Guillermo Castilla-Fernández, Nuno M Pires, M A Vieira-Coelho, Ana I Loureiro. HR/MS-based lipidome analysis of rat brain modulated by tolcapone.
Journal of pharmaceutical and biomedical analysis.
2024 Jan; 241(?):115971. doi:
10.1016/j.jpba.2024.115971
. [PMID: 38266454] - Eriton E L Valente, James L Klotz, Ryana C Markmann, Ronald J Trotta, J Lannett Edwards, John B May, David L Harmon. Levodopa attenuates the feed intake reduction caused by ergot alkaloids in cattle.
Journal of animal science.
2024 Jan; 102(?):. doi:
10.1093/jas/skae078
. [PMID: 38502533] - Joanna Kokoszka, Marta Opalinska, Katarzyna Sitarz, Magdalena Kolasa, Monika Szewczyk, Jolanta Bugajska, Joanna Berska, Krystyna Sztefko, Alicja Hubalewska-Dydejczyk. 24-hours urine metanephrines excretion in patients diagnosed with adrenal incidentaloma: impact of commonly used drugs on clinical decision.
Polish archives of internal medicine.
2024 Jan; ?(?):. doi:
10.20452/pamw.16646
. [PMID: 38164744] - Jingjing Song, Yang Zhao, Xiaoqian Shan, Yongyin Luo, Nan Hao, Lan Zhao. Active ingredients of Chinese medicine with immunomodulatory properties: NF-κB pathway and Parkinson's disease.
Brain research.
2024 01; 1822(?):148603. doi:
10.1016/j.brainres.2023.148603
. [PMID: 37748570] - Rong Chen. Cholesterol modulation of interactions between psychostimulants and dopamine transporters.
Advances in pharmacology (San Diego, Calif.).
2024; 99(?):35-59. doi:
10.1016/bs.apha.2023.09.004
. [PMID: 38467486] - Rabia Anjum, Chand Raza, Mehwish Faheem, Arif Ullah, Maham Chaudhry. Neuroprotective potential of Mentha piperita extract prevents motor dysfunctions in mouse model of Parkinson's disease through anti-oxidant capacities.
PloS one.
2024; 19(4):e0302102. doi:
10.1371/journal.pone.0302102
. [PMID: 38625964] - Kavina Ganapathy, Vaibhav Rastogi, Chandra Prakash Lora, Jagadeesh Suriyaprakash, Abdullah A Alarfaj, Abdurahman Hajinur Hirad, T Indumathi. Biogenic synthesis of dopamine/carboxymethyl cellulose/TiO2 nanoparticles using Psidium guajava leaf extract with enhanced antimicrobial and anticancer activities.
Bioprocess and biosystems engineering.
2024 Jan; 47(1):131-143. doi:
10.1007/s00449-023-02954-6
. [PMID: 38103080] - Hend A Sabry, Mai M Zahra. Icariin attenuates dopaminergic neural loss in haloperidol-induced Parkinsonism in rats via GSK-3β and tyrosine hydroxylase regulation mechanism.
Journal of chemical neuroanatomy.
2023 Dec; 136(?):102385. doi:
10.1016/j.jchemneu.2023.102385
. [PMID: 38160784] - Nor Haliza Mohamad Najib, Mohamad Fairuz Yahaya, Srijit Das, Seong Lin Teoh. The effects of metallothionein in paraquat-induced Parkinson disease model of zebrafish.
The International journal of neuroscience.
2023 Dec; 133(8):822-833. doi:
10.1080/00207454.2021.1990916
. [PMID: 34623211] - Shanshan Hu, Xiaorong Huang, Jian Huang, Ying Qian, Yingbiao Tian, Ye Xiao, Xiaolan Qi, Xiaoxian Zhou, Zhusheng Yang, Zehui Chen. Iron chelation prevents nigrostriatal neurodegeneration in a chronic methamphetamine mice model.
Neurotoxicology.
2023 Dec; 99(?):24-33. doi:
10.1016/j.neuro.2023.09.006
. [PMID: 37717738] - Yu Fang, Yanqing Li, Xin Liao, Jie Deng, Qiannan Wang, Jingtao Liang, Bohua Yan. Corydalis yanhusuo Polysaccharides Ameliorate Chronic Stress-Induced Depression in Mice through Gut Microbiota-Derived Short-Chain Fatty Acid Activation of 5-Hydroxytryptamine Signaling.
Journal of medicinal food.
2023 Dec; 26(12):890-901. doi:
10.1089/jmf.2023.k.0050
. [PMID: 38010856] - Liang Gong, Kang Chen, Hongyu Zhang, Shang Zhang, Ronghua Xu, Duan Liu, Bei Zhang, Siyi Yu, Chunhua Xi. Dopamine multilocus genetic profile influence on reward network in chronic insomnia disorder with depression.
Sleep medicine.
2023 12; 112(?):122-128. doi:
10.1016/j.sleep.2023.09.026
. [PMID: 37839273] - Elvira De Giglio, Udo Bakowsky, Konrad Engelhardt, Antonello Caponio, Matteo La Pietra, Stefania Cometa, Stefano Castellani, Lorenzo Guerra, Giuseppe Fracchiolla, Maria Luana Poeta, Rosanna Mallamaci, Rosa Angela Cardone, Stefano Bellucci, Adriana Trapani. Solid Lipid Nanoparticles Containing Dopamine and Grape Seed Extract: Freeze-Drying with Cryoprotection as a Formulation Strategy to Achieve Nasal Powders.
Molecules (Basel, Switzerland).
2023 Nov; 28(23):. doi:
10.3390/molecules28237706
. [PMID: 38067437] - Katherine S Morton, Jessica H Hartman, Nathan Heffernan, Ian T Ryde, Isabel W Kenny-Ganzert, Lingfeng Meng, David R Sherwood, Joel N Meyer. Chronic high-sugar diet in adulthood protects Caenorhabditis elegans from 6-OHDA-induced dopaminergic neurodegeneration.
BMC biology.
2023 11; 21(1):252. doi:
10.1186/s12915-023-01733-9
. [PMID: 37950228] - Guang-Zhen Wan, Chun-Lin Zhang, Juan Chen. Catechol-tetraethylenepentamine co-deposition modified cellulose filter paper for α-glucosidase immobilization and inhibitor screening from traditional Chinese medicine.
Analytical methods : advancing methods and applications.
2023 Nov; ?(?):. doi:
10.1039/d3ay01835k
. [PMID: 37942997] - Xinye Li, Chao He, Min Shen, Mingyun Wang, Jingwen Zhou, Dongying Chen, Tong Zhang, Yiqiong Pu. Effects of aqueous extracts and volatile oils prepared from Huaxiang Anshen decoction on p-chlorophenylalanine-induced insomnia mice.
Journal of ethnopharmacology.
2023 Oct; 319(Pt 3):117331. doi:
10.1016/j.jep.2023.117331
. [PMID: 37858748] - Lan Yi, Haisheng Ma, Xiaoxiao Yang, Qi Zheng, Jun Zhong, Sen Ye, Xican Li, Dongfeng Chen, Hui Li, Caixia Li. Cotransplantation of NSCs and ethyl stearate promotes synaptic plasticity in PD rats by Drd1/ERK/AP-1 signaling pathway.
Journal of ethnopharmacology.
2023 Oct; ?(?):117292. doi:
10.1016/j.jep.2023.117292
. [PMID: 37806537] - Neha S L, Ashwini Kumar Mishra, Laxmi Rani, Shweta Paroha, Hitesh Kumar Dewangan, Pravat Kumar Sahoo. Design and evaluations of a nanostructured lipid carrier loaded with dopamine hydrochloride for intranasal bypass drug delivery in Parkinson's disease.
Journal of microencapsulation.
2023 Oct; ?(?):1-14. doi:
10.1080/02652048.2023.2264386
. [PMID: 37787159] - Weifen Li, Tahir Ali, Shengnan Mou, Qichao Gong, Ningning Li, Liangliang Hao, Zhi-Jian Yu, Shupeng Li. D1R-5-HT2AR Uncoupling Reduces Depressive Behaviours via HDAC Signalling.
Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics.
2023 Oct; ?(?):. doi:
10.1007/s13311-023-01436-7
. [PMID: 37782408] - Milica Vranic, Fozia Ahmed, Robin Kristófi, Susanne Hetty, Dariush Mokhtari, Maria K Svensson, Jan W Eriksson, Maria J Pereira. Subcutaneous adipose tissue dopamine D2 receptor is increased in prediabetes and T2D.
Endocrine.
2023 Sep; ?(?):. doi:
10.1007/s12020-023-03525-1
. [PMID: 37752366] - Sai Teja Meka, Sree Lalitha Bojja, Gautam Kumar, Sumit Raosaheb Birangal, C Mallikarjuna Rao. Novel HDAC inhibitors provide neuroprotection in MPTP-induced Parkinson's disease model of rats.
European journal of pharmacology.
2023 Sep; 959(?):176067. doi:
10.1016/j.ejphar.2023.176067
. [PMID: 37751833] - Yan Geng, Xinyi Long, Yuting Zhang, Yupeng Wang, Guoxing You, Wenjie Guo, Gaoming Zhuang, Yuanyuan Zhang, Xiao Cheng, Zhengqiang Yuan, Jie Zan. FTO-targeted siRNA delivery by MSC-derived exosomes synergistically alleviates dopaminergic neuronal death in Parkinson's disease via m6A-dependent regulation of ATM mRNA.
Journal of translational medicine.
2023 09; 21(1):652. doi:
10.1186/s12967-023-04461-4
. [PMID: 37737187] - Miao Ma, Hongfeng Quan, Shujuan Chen, Xueyan Fu, Lingling Zang, Lin Dong. The Anxiolytic Effect of Polysaccharides from Stellariae Radix through Monoamine Neurotransmitters, HPA Axis, and ECS/ERK/CREB/BDNF Signaling Pathway in Stress-induced Male Rats.
Brain research bulletin.
2023 Sep; 203(?):110768. doi:
10.1016/j.brainresbull.2023.110768
. [PMID: 37739234] - Yachao He, Ibrahim Kaya, Reza Shariatgorji, Johan Lundkvist, Lars U Wahlberg, Anna Nilsson, Dejan Mamula, Jan Kehr, Justyna Zareba-Paslawska, Henrik Biverstål, Karima Chergui, Xiaoqun Zhang, Per E Andren, Per Svenningsson. Prosaposin maintains lipid homeostasis in dopamine neurons and counteracts experimental parkinsonism in rodents.
Nature communications.
2023 09; 14(1):5804. doi:
10.1038/s41467-023-41539-5
. [PMID: 37726325] - Qiang-Ming Li, Tong Xu, Xue-Qiang Zha, Xiao-Wen Feng, Feng-Yun Zhang, Jian-Ping Luo. Buddlejasaponin IVb ameliorates ferroptosis of dopaminergic neuron by suppressing IRP2-mediated iron overload in Parkinson's disease.
Journal of ethnopharmacology.
2023 Sep; ?(?):117196. doi:
10.1016/j.jep.2023.117196
. [PMID: 37717841] - Yi Lu, Xin Gao, Shadi A D Mohammed, Tianyu Wang, Jiaqi Fu, Yu Wang, Yang Nan, Fang Lu, Shumin Liu. Efficacy and mechanism study of Baichanting compound, a combination of Acanthopanax senticosus (Rupr. and Maxim.) Harms, Paeonia lactiflora Pall and Uncaria rhynchophylla (Miq.) Miq. ex Havil, on Parkinson's disease based on metagenomics and metabolomics.
Journal of ethnopharmacology.
2023 Sep; ?(?):117182. doi:
10.1016/j.jep.2023.117182
. [PMID: 37714224] - Di Chuan, Rangrang Fan, Bo Chen, Yangmei Ren, Min Mu, Haifeng Chen, Bingwen Zou, Haohao Dong, Aiping Tong, Gang Guo. Lipid-Polymer Hybrid Nanoparticles with Both PD-L1 Knockdown and Mild Photothermal Effect for Tumor Photothermal Immunotherapy.
ACS applied materials & interfaces.
2023 Sep; 15(36):42209-42226. doi:
10.1021/acsami.3c07648
. [PMID: 37605506] - Liaqat Hussain, Ina Masood, Matloob Ahmad, Muhammad Yasir Ali, Uzma Saleem, Musaddique Hussain, Syed Haroon Khalid, Zunera Chauhdary. Pharmacological and toxicological evaluation of methyl 4-hydroxy-2H-1,2-benzothiazine-3-carboxylate 1,1-dioxoide against haloperidol induced Parkinson like symptoms in animal model: In-vitro and in-vivo studies.
Toxicology and applied pharmacology.
2023 Sep; 477(?):116678. doi:
10.1016/j.taap.2023.116678
. [PMID: 37683697] - Meewhi Kim, Ilya Bezprozvanny. Potential direct role of synuclein in dopamine transport and its implications for Parkinson's disease pathogenesis.
Biochemical and biophysical research communications.
2023 09; 671(?):18-25. doi:
10.1016/j.bbrc.2023.05.110
. [PMID: 37290280] - Varsha Lisa John, A R Nayana, T R Keerthi, Athira Krishnan K A, B C P Sasidharan, Vinod T P. Mulberry Leaves (Morus Rubra)-Derived Blue-Emissive Carbon Dots Fed to Silkworms to Produce Augmented Silk Applicable for the Ratiometric Detection of Dopamine.
Macromolecular bioscience.
2023 09; 23(9):e2300081. doi:
10.1002/mabi.202300081
. [PMID: 37097218] - Rima Atria Japarin, Norsyifa Harun, Zurina Hassan, Christian P Müller. The dopamine D1 receptor antagonist SCH-23390 blocks the acquisition, but not expression of mitragynine-induced conditioned place preference in rats.
Behavioural brain research.
2023 Aug; 453(?):114638. doi:
10.1016/j.bbr.2023.114638
. [PMID: 37619769] - Jun-Yuan Guo, Bin-Bin Han, Nai-Guang Jia. Atropine combined with dopamine in a patient with sinus bradycardia scheduled for laparoscopic surgery.
Asian journal of surgery.
2023 Aug; ?(?):. doi:
10.1016/j.asjsur.2023.08.012
. [PMID: 37597976] - Dharmender Singh Rana, Ritika Sharma, Neeraj Gupta, Vinit Sharma, Sourbh Thakur, Dilbag Singh. Development of metal free carbon catalyst derived from Parthenium hysterophorus for the electrochemical detection of dopamine.
Environmental research.
2023 08; 231(Pt 2):116151. doi:
10.1016/j.envres.2023.116151
. [PMID: 37196695] - S B Caine, S Plant, K Furbish, M Yerton, E Smaragdi, B Niclou, J M Lorusso, J Y Chang, C Bitter, A Basu, S Miller, C-Y Huang, R Komson, D Liu, S Behar, M Thomsen. Sprague Dawley rats from different vendors vary in the modulation of prepulse inhibition of startle (PPI) by dopamine, acetylcholine, and glutamate drugs.
Psychopharmacology.
2023 Aug; ?(?):. doi:
10.1007/s00213-023-06444-1
. [PMID: 37580441] - Yu Zhang, Sheng Li, Liyan Hou, Mingyang Wu, Jianing Liu, Ruonan Wang, Qingshan Wang, Jie Zhao. NLRP3 mediates the neuroprotective effects of SVHRSP derived from scorpion venom in rotenone-induced experimental Parkinson's disease model.
Journal of ethnopharmacology.
2023 Aug; 312(?):116497. doi:
10.1016/j.jep.2023.116497
. [PMID: 37072089] - Zhengjia Pu, Shuya Liu, Zeming Guo, Xuemei Zhang, Jie Yan, Yong Tang, Hong Xiao, Jieying Gao, Yingli Li, Qunhua Bai. Casein Reactivates Dopaminergic Nerve Injury and Intestinal Inflammation with Disturbing Intestinal Microflora and Fecal Metabolites in a Convalescent Parkinson's Disease Mouse Model.
Neuroscience.
2023 08; 524(?):120-136. doi:
10.1016/j.neuroscience.2023.05.014
. [PMID: 37321369] - Xiaolu Hu, Lan Yu, Yatong Li, Xiaoxi Li, Yimeng Zhao, Lijuan Xiong, Jiaxuan Ai, Qijun Chen, Xing Wang, Xiaoqing Chen, Yinying Ba, Yaonan Wang, Xia Wu. Piperine improves levodopa availability in the 6-OHDA-lesioned rat model of Parkinson's disease by suppressing gut bacterial tyrosine decarboxylase.
CNS neuroscience & therapeutics.
2023 Aug; ?(?):. doi:
10.1111/cns.14383
. [PMID: 37528534] - Xuan Zhang, Ci Wang, Ze-Yu Zhang, Pei-Pei Zhang, Qiu'an Ren, Xian-Liang Wang, Jing-Yuan Mao. [Establishment of a Rat Model of Hypotension Induced by Reserpine].
Zhongguo yi xue ke xue yuan xue bao. Acta Academiae Medicinae Sinicae.
2023 Aug; 45(4):533-540. doi:
10.3881/j.issn.1000-503x.15376
. [PMID: 37654133] - Yuanyuan Liu, Kaihua Rao, Zhengfeng Li, Chunhua Huang. Improvement of neurological recovery in the insomnia rats by Warming Yang Strategy through targeting SIRT4 by inhibiting inflammation and apoptosis.
Immunity, inflammation and disease.
2023 08; 11(8):e964. doi:
10.1002/iid3.964
. [PMID: 37647454] - Ricardo J Ramírez-Carreto, Víctor J Zaldívar-Machorro, Dafne J Pérez-Ramírez, Blanca E Rodríguez-López, Claudia Meza, Esperanza García, Abel Santamaría, Anahí Chavarría. Oral Administration of Silybin Protects Against MPTP-Induced Neurotoxicity by Reducing Pro-inflammatory Cytokines and Preserving BDNF Levels in Mice.
Molecular neurobiology.
2023 Jul; ?(?):. doi:
10.1007/s12035-023-03485-7
. [PMID: 37480498] - Mariana Silva Cardoso, Andrea Rebouças Rocha, José Antônio Souza-Júnior, José Antonio Menezes-Filho. Analytical method for urinary homovanillic acid and 5-hydroxyindoleacetic acid levels using HPLC with electrochemical detection applied to evaluate children environmentally exposed to manganese.
Biomedical chromatography : BMC.
2023 Jul; ?(?):e5699. doi:
10.1002/bmc.5699
. [PMID: 37427763] - C Jiang, K Q Zhao, H L Zhao, Z Z Zheng, X H Zhao, W W Wu. [Relationship between carotid atherosclerotic plaque characteristics in magnetic resonance imaging and perioperative hemodynamic instability].
Zhonghua yi xue za zhi.
2023 Jul; 103(25):1918-1924. doi:
10.3760/cma.j.cn112137-20221208-02600
. [PMID: 37402673] - Emile F van Vliet, Maarten J Knol, Raymond M Schiffelers, Massimiliano Caiazzo, Marcel H A M Fens. Levodopa-loaded nanoparticles for the treatment of Parkinson's disease.
Journal of controlled release : official journal of the Controlled Release Society.
2023 Jun; 360(?):212-224. doi:
10.1016/j.jconrel.2023.06.026
. [PMID: 37343725] - Linlin Meng, Muyun Wang, Yixuan Gao, Liangzhi Chen, Kun Wang, Wei Gao, Qinghua Liu. Dopamine D1 receptor agonist alleviates acute lung injury via modulating inflammatory responses in macrophages and barrier function in airway epithelial cells.
Free radical biology & medicine.
2023 06; 202(?):2-16. doi:
10.1016/j.freeradbiomed.2023.03.016
. [PMID: 36965538] - Hui Cheng, Ye He, Junya Lu, Ziwei Yan, Luming Song, Yuling Mao, Donghua Di, Yikun Gao, Qinfu Zhao, Siling Wang. Degradable iron-rich mesoporous dopamine as a dual-glutathione depletion nanoplatform for photothermal-enhanced ferroptosis and chemodynamic therapy.
Journal of colloid and interface science.
2023 Jun; 639(?):249-262. doi:
10.1016/j.jcis.2023.02.041
. [PMID: 36805750] - Katy A van Galen, Anouk Schrantee, Kasper W Ter Horst, Susanne E la Fleur, Jan Booij, R Todd Constable, Gary J Schwartz, Ralph J DiLeone, Mireille J Serlie. Brain responses to nutrients are severely impaired and not reversed by weight loss in humans with obesity: a randomized crossover study.
Nature metabolism.
2023 06; 5(6):1059-1072. doi:
10.1038/s42255-023-00816-9
. [PMID: 37308722] - Subham Preetam, Swathi Jonnalagadda, Lamha Kumar, Rajeswari Rath, Soham Chattopadhyay, Badrah S Alghamdi, Adel Mohammad Abuzenadahg, Niraj Jha, Akash Gautam, Sumira Malik, Ghulam Md Ashraf. Therapeutic potential of Lipid Nanosystems for the treatment of Parkinson's disease: an updated review.
Ageing research reviews.
2023 May; ?(?):101965. doi:
10.1016/j.arr.2023.101965
. [PMID: 37268112] - Caihong Yao, Yiwen Zhang, Xinran Sun, Haiyue Pei, Shanshan Wei, Mengdi Wang, Qi Chang, Xinmin Liu, Ning Jiang. Areca catechu L. ameliorates chronic unpredictable mild stress-induced depression behavior in rats by the promotion of the BDNF signaling pathway.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2023 May; 164(?):114459. doi:
10.1016/j.biopha.2023.114459
. [PMID: 37245336] - Macarena González-Portilla, Susana Mellado, Sandra Montagud-Romero, Fernando Rodríguez de Fonseca, María Pascual, Marta Rodríguez-Arias. Oleoylethanolamide attenuates cocaine-primed reinstatement and alters dopaminergic gene expression in the striatum.
Behavioral and brain functions : BBF.
2023 May; 19(1):8. doi:
10.1186/s12993-023-00210-1
. [PMID: 37226219] - Mingxuan Song, Juanxia Xing, Huan Cai, Xin Gao, Chunyang Li, Changjin Liu, Xinmin Li, Xuhuai Fu, Shijia Ding, Wei Cheng, Rui Chen. Pomegranate-Bionic Encapsulating Horseradish Peroxidase Using Dopamine Flexible Scaffold-Coated Multishell Porous ZIF-8 To Enhance Immunochromatographic Diagnosis.
ACS nano.
2023 May; ?(?):. doi:
10.1021/acsnano.3c02164
. [PMID: 37195286] - Jie Sun, Xiao-Min Lin, Dan-Hua Lu, Meng Wang, Kun Li, Sheng-Rong Li, Zheng-Qiu Li, Cheng-Jun Zhu, Zhi-Min Zhang, Chang-Yu Yan, Ming-Hai Pan, Hai-Biao Gong, Jing-Cheng Feng, Yun-Feng Cao, Feng Huang, Wan-Yang Sun, Hiroshi Kurihara, Yi-Fang Li, Wen-Jun Duan, Gen-Long Jiao, Li Zhang, Rong-Rong He. Midbrain dopamine oxidation links ubiquitination of glutathione peroxidase 4 to ferroptosis of dopaminergic neurons.
The Journal of clinical investigation.
2023 05; 133(10):. doi:
10.1172/jci165228
. [PMID: 37183824] - Muhammed Bekmezci, Hudanur Ozturk, Merve Akin, Ramazan Bayat, Fatih Sen, Rozhin Darabi, Hassan Karimi-Maleh. Bimetallic Biogenic Pt-Ag Nanoparticle and Their Application for Electrochemical Dopamine Sensor.
Biosensors.
2023 May; 13(5):. doi:
10.3390/bios13050531
. [PMID: 37232892] - Mahesh Rachamalla, Arash Salahinejad, Maria Khan, Ashok Kumar Datusalia, Som Niyogi. Chronic dietary exposure to arsenic at environmentally relevant concentrations impairs cognitive performance in adult zebrafish (Danio rerio) via oxidative stress and dopaminergic dysfunction.
The Science of the total environment.
2023 May; 886(?):163771. doi:
10.1016/j.scitotenv.2023.163771
. [PMID: 37164085] - Fu-Guang Wang, Yi Sun, Juan Cao, Xu-Ri Shen, Fu-Wang Liu, Shuang-Shuang Song, Xue-Qin Hou, Lei Yin. Effects of Danggui-Shaoyao-San on central neuroendocrine and pharmacokinetics in female ovariectomized rats.
Journal of ethnopharmacology.
2023 May; ?(?):116609. doi:
10.1016/j.jep.2023.116609
. [PMID: 37150422] - Joaquim Barbosa Leite Júnior, Luiz Gustavo Soares Carvalho Crespo, Richard Ian Samuels, Norberto Cysne Coimbra, Robert J Carey, Marinete Pinheiro Carrera. Morphine and dopamine: Low dose apomorphine can prevent both the induction and expression of morphine locomotor sensitization and conditioning.
Behavioural brain research.
2023 Apr; 448(?):114434. doi:
10.1016/j.bbr.2023.114434
. [PMID: 37100351] - Zedong Cai, Meng-Lei Huan, Yao-Wen Zhang, Ting-Ting Zhao, Tian-Yan Han, Wei He, Si-Yuan Zhou, Bang-Le Zhang. Tumor targeted combination therapeutic system for the effective treatment of drug resistant triple negative breast cancer.
International journal of pharmaceutics.
2023 Apr; 636(?):122821. doi:
10.1016/j.ijpharm.2023.122821
. [PMID: 36914017] - Zhenwu Zhang, Ye Zhang, Yun Wang, Jiaqi Fan, Zhihua Xie, Kaijie Qi, Xun Sun, Shaoling Zhang. Exogenous dopamine improves resistance to Botryosphaeria dothidea by increasing autophagy activity in pear.
Plant science : an international journal of experimental plant biology.
2023 Apr; 329(?):111603. doi:
10.1016/j.plantsci.2023.111603
. [PMID: 36709003] - Yuan Longyu, Qichang Liang, Yanfang Li, Yangsuo Dai, Jianmei Shen, Liming Hu, Hanxiang Xiao, Zhenfei Zhang. Nicotine-mediated dopamine regulates short neuropeptide F to inhibit brown planthopper feeding behavior in tobacco-rice rotation cropping.
Pest management science.
2023 Mar; ?(?):. doi:
10.1002/ps.7474
. [PMID: 36966467] - Mehmet Enes Arslan, Hasan Türkez, Yasemin Sevim, Harun Selvitopi, Abdurrahim Kadi, Sena Öner, Adil Mardinoğlu. Costunolide and Parthenolide Ameliorate MPP+ Induced Apoptosis in the Cellular Parkinson's Disease Model.
Cells.
2023 03; 12(7):. doi:
10.3390/cells12070992
. [PMID: 37048065] - Azam Shafieenezhad, Saheli Mitra, Stephen R Wassall, Stephanie Tristram-Nagle, John F Nagle, Horia I Petrache. Location of dopamine in lipid bilayers and its relevance to neuromodulator function.
Biophysical journal.
2023 03; 122(6):1118-1129. doi:
10.1016/j.bpj.2023.02.016
. [PMID: 36804668] - Xinya Xu, Yundong Xie, Pengqi Guo, Yongheng Shi, Meng Sun, Jing Zhou, Chuan Wang, Chaojun Han, Jiping Liu, Ting Li. Facile synthesis of novel helical imprinted fibers based on zucchini-derived microcoils for efficient recognition of target protein in biological sample.
Food chemistry.
2023 Mar; 404(Pt B):134645. doi:
10.1016/j.foodchem.2022.134645
. [PMID: 36327511] - Baile Ning, Zhifang Wang, Qian Wu, Qiyue Deng, Qing Yang, Jing Gao, Wen Fu, Ying Deng, Bingxin Wu, Xichang Huang, Jilin Mei, Wenbin Fu. Acupuncture inhibits autophagy and repairs synapses by activating the mTOR pathway in Parkinson's disease depression model rats.
Brain research.
2023 Mar; 1808(?):148320. doi:
10.1016/j.brainres.2023.148320
. [PMID: 36914042] - Ahmad M Alamir, Mohammed A Jeraiby, Hesham M Korashy, Emad Sayed Shaheen, Mohammad A Attafi, Magbool E Oraiby, Ahmed M Hakami, Mohammed Y Albeishy, Ibrahim A Khardali, Ismail A Juraybi, Abeer A Alobaida, Ibraheem M Attafi. Cathine and cathinone disposition kinetics and neurotransmitter profile in several organs of rats exposed to a single dose of Catha edulis (Vahl) Forssk. ex Endl. extract.
Drug metabolism and personalized therapy.
2023 Mar; ?(?):. doi:
10.1515/dmpt-2022-0154
. [PMID: 36883753] - Hongli Li, Min Gao, Ziyu Chen, Zhenyu Zhou, Wei Li, Xiaoyang Zhang, Xi Jiang, Lingling Luo, Fei Li, Gaorui Wang, Yu Zhang, Xingxu Huang, Jingning Zhu, Shengjie Fan, Xiaojun Wu, Cheng Huang. Hordenine improves Parkinsonian-like motor deficits in mice and nematodes by activating dopamine D2 receptor-mediated signaling.
Phytotherapy research : PTR.
2023 Mar; ?(?):. doi:
10.1002/ptr.7790
. [PMID: 36883794] - Shiyu Wang, Anna I Neel, Kristen L Adams, Haiguo Sun, Sara R Jones, Allyn C Howlett, Rong Chen. Atorvastatin differentially regulates the interactions of cocaine and amphetamine with dopamine transporters.
Neuropharmacology.
2023 03; 225(?):109387. doi:
10.1016/j.neuropharm.2022.109387
. [PMID: 36567004] - Y Nomier, G Khuwaja, S R Penakalapati, S Alshahrani, Z Rehman, R Khawaji, W Alhazmi, A Mubarak, M F Alam, T Anwer, H Rashid, E Shaheen, K Alkashef. Ethnopharmacological evaluation of Poppy seed oil in combination with Tramadol on behavioral paradigm and on dopamine, and cytokines levels.
European review for medical and pharmacological sciences.
2023 Mar; 27(5):2077-2090. doi:
10.26355/eurrev_202303_31579
. [PMID: 36930507] - Nan Zhang, Shu-Ting Wang, Lei Yao. Inhalation of Cananga odorata essential oil relieves anxiety behaviors in autism-like rats via regulation of serotonin and dopamine metabolism.
Journal of integrative medicine.
2023 03; 21(2):205-214. doi:
10.1016/j.joim.2023.01.006
. [PMID: 36792414] - Sarah Martins Presti-Silva, Alice Laschuk Herlinger, Cristina Martins-Silva, Rita Gomes Wanderley Pires. Biochemical and behavioral effects of rosmarinic acid treatment in an animal model of Parkinson's disease induced by MPTP.
Behavioural brain research.
2023 Feb; 440(?):114257. doi:
10.1016/j.bbr.2022.114257
. [PMID: 36526017] - Regina F Fernandez, Emily S Wilson, Victoria Diaz, Jonatan Martínez-Gardeazabal, Rachel Foguth, Jason R Cannon, Shelley N Jackson, Brian P Hermann, Jeffrey B Eells, Jessica M Ellis. Lipid metabolism in dopaminergic neurons influences light entrainment.
Journal of neurochemistry.
2023 Feb; ?(?):. doi:
10.1111/jnc.15793
. [PMID: 36815399] - Khushboo Govind Faldu, Snehal Sanjay Patel, Jigna Samir Shah. Celastrus paniculatus oil ameliorates NF-KB mediated neuroinflammation and synaptic plasticity in the scopolamine-induced cognitive impairment rat model.
Metabolic brain disease.
2023 Feb; ?(?):. doi:
10.1007/s11011-023-01186-7
. [PMID: 36809523] - Laura Hautrive Milanesi, Domenika Rubert Rossato, Jéssica Leandra Oliveira Rosa, Lívia Ferraz D'avila, Vinícia Garzella Metz, Camila Reck Rampelotto, Viviane Gonçalves Pereira, Scheila Rezende Schaffazick, Cristiane de Bona da Silva, Marilise E Burger. Ferulic acid-loaded nanostructure prevents morphine reinstatement: the involvement of dopamine system, NRF2, and ΔFosB in the striatum brain area of rats.
Naunyn-Schmiedeberg's archives of pharmacology.
2023 Feb; ?(?):. doi:
10.1007/s00210-023-02420-w
. [PMID: 36790483] - Huai-Syuan Huang, Yu-En Lin, Suraphan Panyod, Rou-An Chen, Ying-Cheng Lin, Laura Min Xuan Chai, Cheng-Chih Hsu, Wei-Kai Wu, Kuan-Hung Lu, Yun-Ju Huang, Lee-Yan Sheen. Anti-depressive-like and cognitive impairment alleviation effects of Gastrodia elata Blume water extract is related to gut microbiome remodeling in ApoE-/- mice exposed to unpredictable chronic mild stress.
Journal of ethnopharmacology.
2023 Feb; 302(Pt B):115872. doi:
10.1016/j.jep.2022.115872
. [PMID: 36343797] - Víctor H Castillo-Campohermoso, Luz M Molina-Martínez, Eliana Barrios de Tomasi, Jorge Juárez. Co-administration of bromocriptine and corticosterone produces short- and long-lasting reduction in intake of high-fat food in male rats.
Behavioural pharmacology.
2023 02; 34(1):1-11. doi:
10.1097/fbp.0000000000000706
. [PMID: 36730784] - Yuqiu Yang, Yufeng Gao, Chelimoge Wang. [Mongolian medicine Heisuga-25 promotes the expression of neuroskeletal protein, increases the content of neurotransmitter and improves the symptoms of Alzheimer's disease in mice].
Xi bao yu fen zi mian yi xue za zhi = Chinese journal of cellular and molecular immunology.
2023 Feb; 39(2):153-158. doi:
. [PMID: 36872434]
- Ming Gao, Yi Wu, Lishou Yang, Faju Chen, Liangqun Li, Qiji Li, Yu Wang, Lilang Li, Mei Peng, Yanfang Yan, Juan Yang, Xiaosheng Yang. Anti-depressant-like effect of fermented Gastrodia elata Bl. by regulating monoamine levels and BDNF/NMDAR pathways in mice.
Journal of ethnopharmacology.
2023 Jan; 301(?):115832. doi:
10.1016/j.jep.2022.115832
. [PMID: 36283636] - Taiwo G Olubodun-Obadun, Ismail O Ishola, Timisola P Adesokan, Blessing O Anih, Olufunmilayo O Adeyemi. Antidepressant- and anxiolytic-like actions of Cajanus cajan seed extract mediated through monoaminergic, nitric oxide-cyclic GMP and GABAergic pathways.
Journal of ethnopharmacology.
2023 Jan; 306(?):116142. doi:
10.1016/j.jep.2023.116142
. [PMID: 36638856]