alpha-Ketoisovaleric acid (BioDeep_00000003233)
Secondary id: BioDeep_00000229666, BioDeep_00000405185
natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite Volatile Flavor Compounds
代谢物信息卡片
化学式: C5H8O3 (116.0473418)
中文名称: 3-甲基-2-氧代丁酸(α-酮酸), 3-甲基-2-氧丁酸, 3-甲基-2-氧代丁酸
谱图信息:
最多检出来源 Homo sapiens(blood) 0.1%
Last reviewed on 2024-09-13.
Cite this Page
alpha-Ketoisovaleric acid. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/alpha-ketoisovaleric_acid (retrieved
2024-11-21) (BioDeep RN: BioDeep_00000003233). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C(=O)(C(=O)O)C(C)C
InChI: InChI=1S/C5H8O3/c1-3(2)4(6)5(7)8/h3H,1-2H3,(H,7,8)
描述信息
alpha-Ketoisovaleric acid is an abnormal metabolite that arises from the incomplete breakdown of branched-chain amino acids. alpha-Ketoisovaleric acid is a neurotoxin, an acidogen, and a metabotoxin. A neurotoxin causes damage to nerve cells and nerve tissues. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of alpha-ketoisovaleric acid are associated with maple syrup urine disease. MSUD is a metabolic disorder caused by a deficiency of the branched-chain alpha-keto acid dehydrogenase complex (BCKDC), leading to a buildup of the branched-chain amino acids (leucine, isoleucine, and valine) and their toxic by-products (ketoacids) in the blood and urine. The symptoms of MSUD often show in infancy and lead to severe brain damage if untreated. MSUD may also present later depending on the severity of the disease. If left untreated in older individuals, during times of metabolic crisis, symptoms of the condition include uncharacteristically inappropriate, extreme, or erratic behaviour and moods, hallucinations, anorexia, weight loss, anemia, diarrhea, vomiting, dehydration, lethargy, oscillating hypertonia and hypotonia, ataxia, seizures, hypoglycemia, ketoacidosis, opisthotonus, pancreatitis, rapid neurological decline, and coma. In maple syrup urine disease, the brain concentration of branched-chain ketoacids can increase 10- to 20-fold. This leads to a depletion of glutamate and a consequent reduction in the concentration of brain glutamine, aspartate, alanine, and other amino acids. The result is a compromise of energy metabolism because of a failure of the malate-aspartate shuttle and a diminished rate of protein synthesis (PMID: 15930465). alpha-Ketoisovaleric acid is a keto-acid, which is a subclass of organic acids. Abnormally high levels of organic acids in the blood (organic acidemia), urine (organic aciduria), the brain, and other tissues lead to general metabolic acidosis. Acidosis typically occurs when arterial pH falls below 7.35. In infants with acidosis, the initial symptoms include poor feeding, vomiting, loss of appetite, weak muscle tone (hypotonia), and lack of energy (lethargy). These can progress to heart, liver, and kidney abnormalities, seizures, coma, and possibly death. These are also the characteristic symptoms of untreated MSUD. Many affected children with organic acidemias experience intellectual disability or delayed development.
Flavouring ingredient for use in butter-type flavours. Found in banana, bread, cheeses, asparagus, beer and cocoa
KEIO_ID M006
3-Methyl-2-oxobutanoic acid is a precursor of pantothenic acid in Escherichia coli.
同义名列表
74 个代谢物同义名
3-Methyl-2-oxobutyric acid sodium salt; α-Oxo-β-methylbutyric acid; alpha-Keto-beta-methylbutyric acid; α-Oxo-β-methylbutyrate; alpha-oxo-beta-Methylbutyric acid; alpha-oxo-beta-Methylbutyricacid; alpha-Keto-beta-methylbutyrate; alpha-oxo-beta-Methylbutyrate; 3-methyl-2-oxo-butanoic acid; 3-Methyl-2-oxobutanoic acid; a-Keto-b-methylbutyric acid; 2-Keto-3-methylbutyric acid; 2-oxo-3-Methylbutanoic acid; alpha-Ketoisopentanoic acid; 3-Methyl-2-oxo-butyric acid; 3-Methyl-2-oxobutinoic acid; α-ketoisovaleric acid; alpha-Keto-isovaleric acid; α-Oxoisovaleric acid; 2-oxo-3-Methylbutyric acid; a-oxo-b-Methylbutyric acid; 3-Methyl-2-oxobutyric acid; Α-oxo-β-methylbutyricacid; alpha-Ketoisovaleric acid; a-oxo-b-Methylbutyricacid; 3-Methyl-2-oxo-butanoate; α-keto-Isovalerate; alpha-Oxoisovaleric acid; 2-oxo-3-Methylbutanoate; 2-Keto-3-methylbutyrate; α-keto-Isovaleric; Isopropylglyoxylic acid; 3-Methyl-2-oxobutanoate; 3-Methyl-2-oxobutinoate; α-Ketoisovalerate; 2-oxo-3-Methyl-butyrate; a-Keto-b-methylbutyrate; 3-Methyl-2-oxo-butyrate; 2-oxo-3-Methylbutyrate; a-oxo-b-Methylbutyrate; α-Oxoisovalerate; a-Keto-isovaleric acid; alpha-Keto-isovalerate; 3-Methyl-2-oxobutyrate; 2-Oxoisopentanoic acid; Α-keto-isovaleric acid; a-Ketoisovaleric acid; α-Ketoisovaleric acid; 2-Ketoisovaleric acid; alpha-Ketoisovalerate; 2-Ketoisvaleric acid; a-Oxoisovaleric acid; alpha-Oxoisovalerate; Α-oxoisovaleric acid; Dimethylpyruvic acid; 2-Oxoisovaleric acid; Isopropylglyoxylate; 2-Oxoisopentanoate; a-Keto-isovalerate; Α-keto-isovalerate; Α-ketoisovalerate; a-Ketoisovalerate; 2-Ketoisovalerate; a-Oxoisovalerate; 2-Oxoisovalerate; Α-oxoisovalerate; alpha-Ketovaline; Dimethylpyruvate; Α-ketovaline; 2-Ketovaline; a-Ketovaline; Ketovaline; 3-Methyl-2-oxobutanoic acid; 3-Methyl-2-oxobutanoic acid
数据库引用编号
27 个数据库交叉引用编号
- ChEBI: CHEBI:16530
- KEGG: C00141
- PubChem: 49
- HMDB: HMDB0000019
- Metlin: METLIN120
- DrugBank: DB04074
- ChEMBL: CHEMBL146554
- Wikipedia: Alpha-Ketoisovaleric acid
- MetaCyc: 2-KETO-ISOVALERATE
- KNApSAcK: C00007623
- foodb: FDB012250
- chemspider: 48
- CAS: 759-05-7
- MoNA: KO001315
- MoNA: PS068607
- MoNA: KO001318
- MoNA: KO001317
- MoNA: KO001316
- PMhub: MS000008551
- ChEBI: CHEBI:11851
- PubChem: 3441
- LipidMAPS: LMFA01020274
- PDB-CCD: KIV
- 3DMET: B00039
- NIKKAJI: J39.558G
- medchemexpress: HY-W006057
- KNApSAcK: 11851
分类词条
相关代谢途径
Reactome(0)
PlantCyc(0)
代谢反应
878 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(6)
- superpathway of leucine, valine, and isoleucine biosynthesis:
L-threonine ⟶ 2-oxobutanoate + ammonia
- leucine biosynthesis:
2-isopropylmalate + coenzyme A ⟶ 2-keto-isovalerate + H2O + acetyl-CoA
- pantothenate and coenzyme A biosynthesis:
α-ketoglutarate + L-valine ⟶ 2-keto-isovalerate + L-glutamate
- branched-chain α-keto acid dehydrogenase complexes:
2-keto-isovalerate + enzyme N6-(lipoyl)lysine ⟶ CO2 + enzyme N6-(S-[2-methylpropanoyl]dihydrolipoyl)lysine
- valine biosynthesis:
2,3-dihydroxy-3-methylbutanoate ⟶ 2-keto-isovalerate + H2O
- valine degradation:
α-ketoglutarate + L-valine ⟶ 2-keto-isovalerate + L-glutamate
WikiPathways(1)
- Glucosinolate biosynthesis from branched-chain amino acid:
2-Oxo-3-methyl-butanoic acid ⟶ L-Valine
Plant Reactome(809)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Pantothenate biosynthesis I:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Pantothenate biosynthesis II:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Pantothenate biosynthesis I:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Pantothenate biosynthesis II:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Pantothenate biosynthesis I:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Pantothenate biosynthesis II:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Pantothenate biosynthesis I:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Pantothenate biosynthesis II:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Pantothenate biosynthesis I:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Pantothenate biosynthesis II:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Pantothenate biosynthesis I:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Pantothenate biosynthesis II:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Pantothenate biosynthesis I:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Pantothenate biosynthesis II:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Pantothenate biosynthesis I:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Pantothenate biosynthesis II:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Pantothenate biosynthesis I:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Pantothenate biosynthesis II:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Pantothenate biosynthesis I:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Pantothenate biosynthesis II:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Pantothenate biosynthesis I:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Pantothenate biosynthesis II:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid biosynthesis:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Valine biosynthesis:
KIV + L-Glu ⟶ 2OG + L-Val
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid biosynthesis:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid biosynthesis:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid biosynthesis:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid metabolism:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Amino acid biosynthesis:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Valine biosynthesis:
KIV + L-Glu ⟶ 2OG + L-Val
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Valine degradation:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Valine degradation:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Valine degradation:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Valine degradation:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Valine degradation:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Valine degradation:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Valine degradation:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Valine degradation:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Valine degradation:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Valine degradation:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Valine degradation:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Valine degradation:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Valine degradation:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Valine degradation:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Valine degradation:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Valine degradation:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Valine degradation:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Valine degradation:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Valine degradation:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Amino acid catabolism:
2OG + L-Val ⟶ Glu + KIV
- Valine degradation:
2OG + L-Val ⟶ Glu + KIV
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Valine biosynthesis:
KIV + L-Glu ⟶ 2OG + L-Val
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Amino acid catabolism:
2OG + L-Val ⟶ Glu + KIV
- Valine biosynthesis:
KIV + L-Glu ⟶ 2OG + L-Val
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Amino acid catabolism:
2OG + L-Val ⟶ Glu + KIV
- Valine degradation:
2OG + L-Val ⟶ Glu + KIV
- Leucine biosynthesis:
Ac-CoA + H2O + KIV ⟶ 2-isopropylmalate + CoA-SH
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis I:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate biosynthesis II:
2OG + L-Val ⟶ KIV + L-Glu
- Valine degradation:
2OG + L-Val ⟶ Glu + KIV
INOH(2)
- Valine,Leucine and Isoleucine degradation ( Valine,Leucine and Isoleucine degradation ):
2-Methyl-3-acetoacetyl-CoA + CoA ⟶ Acetyl-CoA + Propanoyl-CoA
- 2-Oxo-glutaric acid + L-Valine = L-Glutamic acid + 3-Methyl-2-oxo-butanoic acid ( Valine,Leucine and Isoleucine degradation ):
2-Oxo-glutaric acid + L-Valine ⟶ 3-Methyl-2-oxo-butanoic acid + L-Glutamic acid
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(60)
- L-Alanine Metabolism:
L-Valine + Pyruvic acid ⟶ -Ketoisovaleric acid + L-Alanine
- L-Alanine Metabolism:
L-Valine + Pyruvic acid ⟶ -Ketoisovaleric acid + L-Alanine
- Pyruvate Metabolism:
2-Isopropylmalic acid + Coenzyme A ⟶ -Ketoisovaleric acid + Acetyl-CoA + Water
- Valine Degradation:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Valine Degradation:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Valine, Leucine, and Isoleucine Degradation:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- beta-Ketothiolase Deficiency:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- 2-Methyl-3-hydroxybutyryl-CoA Dehydrogenase Deficiency:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- Propionic Acidemia:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- 3-Hydroxy-3-methylglutaryl-CoA Lyase Deficiency:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- Maple Syrup Urine Disease:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- 3-Methylcrotonyl-CoA Carboxylase Deficiency Type I:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- 3-Methylglutaconic Aciduria Type I:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- 3-Methylglutaconic Aciduria Type III:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- Methylmalonate Semialdehyde Dehydrogenase Deficiency:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- Methylmalonic Aciduria:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- Isovaleric Aciduria:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- 3-Methylglutaconic Aciduria Type IV:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- 3-Hydroxyisobutyric Acid Dehydrogenase Deficiency:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- 3-Hydroxyisobutyric Aciduria:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- Isobutyryl-CoA Dehydrogenase Deficiency:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- Isovaleric Acidemia:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- Valine, Leucine, and Isoleucine Degradation:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 2-Methyl-3-hydroxybutryl-CoA Dehydrogenase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Hydroxy-3-methylglutaryl-CoA Lyase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Methylcrotonyl-CoA Carboxylase Deficiency Type I:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Methylglutaconic Aciduria Type I:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Methylglutaconic Aciduria Type III:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Methylglutaconic Aciduria Type IV:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- beta-Ketothiolase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Isovaleric Aciduria:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Maple Syrup Urine Disease:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Methylmalonate Semialdehyde Dehydrogenase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Methylmalonic Aciduria:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Propionic Acidemia:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Hydroxyisobutyric Acid Dehydrogenase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Hydroxyisobutyric Aciduria:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Isobutyryl-CoA Dehydrogenase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Isovaleric Acidemia:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Valine, Leucine, and Isoleucine Degradation:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Valine, Leucine, and Isoleucine Degradation:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 2-Methyl-3-hydroxybutryl-CoA Dehydrogenase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Hydroxy-3-methylglutaryl-CoA Lyase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Methylcrotonyl-CoA Carboxylase Deficiency Type I:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Methylglutaconic Aciduria Type I:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Methylglutaconic Aciduria Type III:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Methylglutaconic Aciduria Type IV:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- beta-Ketothiolase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Isovaleric Aciduria:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Maple Syrup Urine Disease:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Methylmalonate Semialdehyde Dehydrogenase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Methylmalonic Aciduria:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Propionic Acidemia:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Hydroxyisobutyric Acid Dehydrogenase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Hydroxyisobutyric Aciduria:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Isobutyryl-CoA Dehydrogenase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Isovaleric Acidemia:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Pantothenate and CoA Biosynthesis:
-Ketoisovaleric acid + 5,10-Methylene-THF + Water ⟶ 2-dehydropantoate + Tetrahydrofolic acid
- Pantothenate and CoA Biosynthesis:
-Ketoisovaleric acid + 5,10-Methylene-THF + Water ⟶ 2-dehydropantoate + Tetrahydrofolic acid
- Pantothenate and CoA Biosynthesis:
-Ketoisovaleric acid + 5,10-Methylene-THF + Water ⟶ 2-dehydropantoate + Tetrahydrofolic acid
PharmGKB(0)
9 个相关的物种来源信息
- 1080010 - Aloe africana: 10.1021/JF071110T
- 7227 - Drosophila melanogaster: 10.1038/S41467-019-11933-Z
- 3039 - Euglena gracilis: 10.3389/FBIOE.2021.662655
- 9606 - Homo sapiens:
- 9606 - Homo sapiens: -
- 418402 - Pseudostellaria heterophylla: 10.3390/MOLECULES21111538
- 148305 - Pyricularia grisea: 10.1021/JA01622A084
- 318829 - Pyricularia oryzae: 10.1021/JA01622A084
- 5691 - Trypanosoma brucei:
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Gabriella A M Ten Have, Lisa Jansen, Marieke G Schooneman, Marielle P K J Engelen, Nicolaas E P Deutz. Metabolic flux analysis of branched-chain amino and keto acids (BCAA, BCKA) and β-hydroxy β-methylbutyric acid across multiple organs in the pig.
American journal of physiology. Endocrinology and metabolism.
2021 03; 320(3):E629-E640. doi:
10.1152/ajpendo.00384.2020
. [PMID: 33522397] - Kiana Ashley West, Chidimma Kanu, Tanya Maric, Julie Anne Kathryn McDonald, Jeremy K Nicholson, Jia V Li, Mark R Johnson, Elaine Holmes, Makrina D Savvidou. Longitudinal metabolic and gut bacterial profiling of pregnant women with previous bariatric surgery.
Gut.
2020 08; 69(8):1452-1459. doi:
10.1136/gutjnl-2019-319620
. [PMID: 31964751] - Katsumi Shibata. Urinary Excretion of 2-Oxo Acids Is Greater in Rats with Streptozotocin-Induced Diabetes.
Journal of nutritional science and vitaminology.
2018; 64(4):292-295. doi:
10.3177/jnsv.64.292
. [PMID: 30175794] - Caroline Hall, Ian Grayson. Genotoxicity and sub-chronic toxicity of MYOLUTION® (branched chain keto acids).
Regulatory toxicology and pharmacology : RTP.
2017 Nov; 90(?):133-143. doi:
10.1016/j.yrtph.2017.09.004
. [PMID: 28888959] - Katsumi Shibata, Chifumi Nakata, Tsutomu Fukuwatari. High-performance liquid chromatographic method for profiling 2-oxo acids in urine and its application in evaluating vitamin status in rats.
Bioscience, biotechnology, and biochemistry.
2016; 80(2):304-12. doi:
10.1080/09168451.2015.1083395
. [PMID: 26745680] - Kota Fukai, Sei Harada, Miho Iida, Ayako Kurihara, Ayano Takeuchi, Kazuyo Kuwabara, Daisuke Sugiyama, Tomonori Okamura, Miki Akiyama, Yuji Nishiwaki, Yuko Oguma, Asako Suzuki, Chizuru Suzuki, Akiyoshi Hirayama, Masahiro Sugimoto, Tomoyoshi Soga, Masaru Tomita, Toru Takebayashi. Metabolic Profiling of Total Physical Activity and Sedentary Behavior in Community-Dwelling Men.
PloS one.
2016; 11(10):e0164877. doi:
10.1371/journal.pone.0164877
. [PMID: 27741291] - Dong Wan Lee, Bee Gek Ng, Beom Seok Kim. Increased valinomycin production in mutants of Streptomyces sp. M10 defective in bafilomycin biosynthesis and branched-chain α-keto acid dehydrogenase complex expression.
Journal of industrial microbiology & biotechnology.
2015 Nov; 42(11):1507-17. doi:
10.1007/s10295-015-1679-5
. [PMID: 26335568] - Xiaoya Huang, Yuan Zhong, Zhongping Huang, Chen Jin, Lili Wang, Zaifa Pan. [Simultaneous determination of five active components of compound α-ketoacid tablet in human urine by ion-pair reversed-phase high performance liquid chromatography].
Se pu = Chinese journal of chromatography.
2015 Feb; 33(2):169-73. doi:
10.3724/sp.j.1123.2014.10024
. [PMID: 25989690] - Claire L Boulangé, Sandrine P Claus, Chieh J Chou, Sebastiano Collino, Ivan Montoliu, Sunil Kochhar, Elaine Holmes, Serge Rezzi, Jeremy K Nicholson, Marc E Dumas, François-Pierre J Martin. Early metabolic adaptation in C57BL/6 mice resistant to high fat diet induced weight gain involves an activation of mitochondrial oxidative pathways.
Journal of proteome research.
2013 Apr; 12(4):1956-68. doi:
10.1021/pr400051s
. [PMID: 23473242] - Gaia Novarino, Paul El-Fishawy, Hulya Kayserili, Nagwa A Meguid, Eric M Scott, Jana Schroth, Jennifer L Silhavy, Majdi Kara, Rehab O Khalil, Tawfeg Ben-Omran, A Gulhan Ercan-Sencicek, Adel F Hashish, Stephan J Sanders, Abha R Gupta, Hebatalla S Hashem, Dietrich Matern, Stacey Gabriel, Larry Sweetman, Yasmeen Rahimi, Robert A Harris, Matthew W State, Joseph G Gleeson. Mutations in BCKD-kinase lead to a potentially treatable form of autism with epilepsy.
Science (New York, N.Y.).
2012 Oct; 338(6105):394-7. doi:
10.1126/science.1224631
. [PMID: 22956686] - Meiyi Zhou, Gang Lu, Chen Gao, Yibin Wang, Haipeng Sun. Tissue-specific and nutrient regulation of the branched-chain α-keto acid dehydrogenase phosphatase, protein phosphatase 2Cm (PP2Cm).
The Journal of biological chemistry.
2012 Jul; 287(28):23397-406. doi:
10.1074/jbc.m112.351031
. [PMID: 22589535] - Philip J Saylor, Edward D Karoly, Matthew R Smith. Prospective study of changes in the metabolomic profiles of men during their first three months of androgen deprivation therapy for prostate cancer.
Clinical cancer research : an official journal of the American Association for Cancer Research.
2012 Jul; 18(13):3677-85. doi:
10.1158/1078-0432.ccr-11-3209
. [PMID: 22589396] - Yue-Ping Wang, Man-Long Qi, Ting-Ting Li, Yun-Jing Zhao. Two novel mutations in the BCKDHB gene (R170H, Q346R) cause the classic form of maple syrup urine disease (MSUD).
Gene.
2012 Apr; 498(1):112-5. doi:
10.1016/j.gene.2012.01.082
. [PMID: 22326532] - Su-Qing Qu, Li-Cai Yang, Zuo Luan, Kan Du, Hui Yang. [Acute encephalopathy due to late-onset maple syrup urine disease in a school boy].
Zhongguo dang dai er ke za zhi = Chinese journal of contemporary pediatrics.
2012 Mar; 14(3):161-4. doi:
. [PMID: 22433398]
- Timo Friedrich, Aaron M Lambert, Mark A Masino, Gerald B Downes. Mutation of zebrafish dihydrolipoamide branched-chain transacylase E2 results in motor dysfunction and models maple syrup urine disease.
Disease models & mechanisms.
2012 Mar; 5(2):248-58. doi:
10.1242/dmm.008383
. [PMID: 22046030] - Raffaella Di Cagno, Maria De Angelis, Ilaria De Pasquale, Maurice Ndagijimana, Pamela Vernocchi, Patrizia Ricciuti, Francesca Gagliardi, Luca Laghi, Carmine Crecchio, Maria Elisabetta Guerzoni, Marco Gobbetti, Ruggiero Francavilla. Duodenal and faecal microbiota of celiac children: molecular, phenotype and metabolome characterization.
BMC microbiology.
2011 Oct; 11(?):219. doi:
10.1186/1471-2180-11-219
. [PMID: 21970810] - Jia V Li, Jasmina Saric, Yulan Wang, Jennifer Keiser, Jürg Utzinger, Elaine Holmes. Chemometric analysis of biofluids from mice experimentally infected with Schistosoma mansoni.
Parasites & vectors.
2011 Sep; 4(?):179. doi:
10.1186/1756-3305-4-179
. [PMID: 21929782] - Ekaterina A Savrasova, Aleksander D Kivero, Rustem S Shakulov, Nataliya V Stoynova. Use of the valine biosynthetic pathway to convert glucose into isobutanol.
Journal of industrial microbiology & biotechnology.
2011 Sep; 38(9):1287-94. doi:
10.1007/s10295-010-0907-2
. [PMID: 21161324] - Lei Gong, Nelly Aranibar, Yong-Hae Han, Youcai Zhang, Lloyd Lecureux, Vasanthi Bhaskaran, Purnima Khandelwal, Curtis D Klaassen, Lois D Lehman-McKeeman. Characterization of organic anion-transporting polypeptide (Oatp) 1a1 and 1a4 null mice reveals altered transport function and urinary metabolomic profiles.
Toxicological sciences : an official journal of the Society of Toxicology.
2011 Aug; 122(2):587-97. doi:
10.1093/toxsci/kfr114
. [PMID: 21561886] - Caroline Mescka, Tarsila Moraes, Andrea Rosa, Priscila Mazzola, Bruna Piccoli, Carlos Jacques, Giovana Dalazen, Juliana Coelho, Marcelo Cortes, Melaine Terra, Carmen Regla Vargas, Carlos S Dutra-Filho. In vivo neuroprotective effect of L-carnitine against oxidative stress in maple syrup urine disease.
Metabolic brain disease.
2011 Mar; 26(1):21-8. doi:
10.1007/s11011-011-9238-x
. [PMID: 21380499] - Nicola Brunetti-Pierri, Brendan Lanpher, Ayelet Erez, Elitsa A Ananieva, Mohammad Islam, Juan C Marini, Qin Sun, Chunli Yu, Madhuri Hegde, Jun Li, R Max Wynn, David T Chuang, Susan Hutson, Brendan Lee. Phenylbutyrate therapy for maple syrup urine disease.
Human molecular genetics.
2011 Feb; 20(4):631-40. doi:
10.1093/hmg/ddq507
. [PMID: 21098507] - Tripty A Hirani, Alejandro Tovar-Méndez, Ján A Miernyk, Douglas D Randall. Asp295 stabilizes the active-site loop structure of pyruvate dehydrogenase, facilitating phosphorylation of ser292 by pyruvate dehydrogenase-kinase.
Enzyme research.
2011 Jan; 2011(?):939068. doi:
10.4061/2011/939068
. [PMID: 21318135] - Jia V Li, Jasmina Saric, Yulan Wang, Jürg Utzinger, Elaine Holmes, Oliver Balmer. Metabonomic investigation of single and multiple strain Trypanosoma brucei brucei infections.
The American journal of tropical medicine and hygiene.
2011 Jan; 84(1):91-8. doi:
10.4269/ajtmh.2011.10-0402
. [PMID: 21212208] - Hyung-Doo Park, Dong Hwan Lee, Yong Hee Hong, Dong Hee Kang, You Kyoung Lee, Junghan Song, Soo-Youn Lee, Jong-Won Kim, Chang-Seok Ki, Yong-Wha Lee. Three Korean patients with maple syrup urine disease: four novel mutations in the BCKDHA gene.
Annals of clinical and laboratory science.
2011; 41(2):167-73. doi:
. [PMID: 21844576]
- Jian Wang, Hongjing Liu, Guoqiang Chen, Sian Hsiang-Te Tsuei, Tingting Yu, Qihua Fu. Identification of two novel BCKDHA mutations in a Chinese patient with maple syrup urine disease.
Journal of pediatric endocrinology & metabolism : JPEM.
2011; 24(9-10):827-9. doi:
10.1515/jpem.2011.278
. [PMID: 22145486] - Jan-Willem de Kraker, Jonathan Gershenzon. From amino acid to glucosinolate biosynthesis: protein sequence changes in the evolution of methylthioalkylmalate synthase in Arabidopsis.
The Plant cell.
2011 Jan; 23(1):38-53. doi:
10.1105/tpc.110.079269
. [PMID: 21205930] - Carmen Espinoza, Thomas Degenkolbe, Camila Caldana, Ellen Zuther, Andrea Leisse, Lothar Willmitzer, Dirk K Hincha, Matthew A Hannah. Interaction with diurnal and circadian regulation results in dynamic metabolic and transcriptional changes during cold acclimation in Arabidopsis.
PloS one.
2010 Nov; 5(11):e14101. doi:
10.1371/journal.pone.0014101
. [PMID: 21124901] - Goncalo Graca, Iola F Duarte, Antonio S Barros, Brian J Goodfellow, Silvia O Diaz, Joana Pinto, Isabel M Carreira, Eulalia Galhano, Cristina Pita, Ana M Gil. Impact of prenatal disorders on the metabolic profile of second trimester amniotic fluid: a nuclear magnetic resonance metabonomic study.
Journal of proteome research.
2010 Nov; 9(11):6016-24. doi:
10.1021/pr100815q
. [PMID: 20849080] - Junfang Wu, Wenxin Xu, Zhenping Ming, Huifen Dong, Huiru Tang, Yulan Wang. Metabolic changes reveal the development of schistosomiasis in mice.
PLoS neglected tropical diseases.
2010 Aug; 4(8):. doi:
10.1371/journal.pntd.0000807
. [PMID: 20824219] - Anna A Dobritsa, Zhentian Lei, Shuh-Ichi Nishikawa, Ewa Urbanczyk-Wochniak, David V Huhman, Daphne Preuss, Lloyd W Sumner. LAP5 and LAP6 encode anther-specific proteins with similarity to chalcone synthase essential for pollen exine development in Arabidopsis.
Plant physiology.
2010 Jul; 153(3):937-55. doi:
10.1104/pp.110.157446
. [PMID: 20442277] - Gregory S Maloney, Andrej Kochevenko, Denise M Tieman, Takayuki Tohge, Uri Krieger, Dani Zamir, Mark G Taylor, Alisdair R Fernie, Harry J Klee. Characterization of the branched-chain amino acid aminotransferase enzyme family in tomato.
Plant physiology.
2010 Jul; 153(3):925-36. doi:
10.1104/pp.110.154922
. [PMID: 20435740] - Walter E Gall, Kirk Beebe, Kay A Lawton, Klaus-Peter Adam, Matthew W Mitchell, Pamela J Nakhle, John A Ryals, Michael V Milburn, Monica Nannipieri, Stefania Camastra, Andrea Natali, Ele Ferrannini. alpha-hydroxybutyrate is an early biomarker of insulin resistance and glucose intolerance in a nondiabetic population.
PloS one.
2010 May; 5(5):e10883. doi:
10.1371/journal.pone.0010883
. [PMID: 20526369] - Jasmina Saric, Jia V Li, Jonathan R Swann, Jürg Utzinger, Gail Calvert, Jeremy K Nicholson, Stephan Dirnhofer, Maggie J Dallman, Magda Bictash, Elaine Holmes. Integrated cytokine and metabolic analysis of pathological responses to parasite exposure in rodents.
Journal of proteome research.
2010 May; 9(5):2255-64. doi:
10.1021/pr901019z
. [PMID: 20092362] - Susan C Connor, Michael K Hansen, Adam Corner, Randall F Smith, Terence E Ryan. Integration of metabolomics and transcriptomics data to aid biomarker discovery in type 2 diabetes.
Molecular bioSystems.
2010 May; 6(5):909-21. doi:
10.1039/b914182k
. [PMID: 20567778] - Anthony Schilmiller, Feng Shi, Jeongwoon Kim, Amanda L Charbonneau, Daniel Holmes, A Daniel Jones, Robert L Last. Mass spectrometry screening reveals widespread diversity in trichome specialized metabolites of tomato chromosomal substitution lines.
The Plant journal : for cell and molecular biology.
2010 May; 62(3):391-403. doi:
10.1111/j.1365-313x.2010.04154.x
. [PMID: 20113441] - Markus Karl Wiltafsky, Michael Walter Pfaffl, Franz Xaver Roth. The effects of branched-chain amino acid interactions on growth performance, blood metabolites, enzyme kinetics and transcriptomics in weaned pigs.
The British journal of nutrition.
2010 Apr; 103(7):964-76. doi:
10.1017/s0007114509992212
. [PMID: 20196890] - Hideki Matsumoto, Keiichi Akita, Ryosei Sakai, Yoshiharu Shimomura. Analysis of branched-chain alpha-keto acid dehydrogenase complex activity in rat tissues using alpha-keto[1-13C]isocaproate as substrate.
Analytical biochemistry.
2010 Apr; 399(1):1-6. doi:
10.1016/j.ab.2009.12.017
. [PMID: 20018161] - Stephanie M Carleton, Dawn S Peck, Julie Grasela, Kristin L Dietiker, Charlotte L Phillips. DNA carrier testing and newborn screening for maple syrup urine disease in Old Order Mennonite communities.
Genetic testing and molecular biomarkers.
2010 Apr; 14(2):205-8. doi:
10.1089/gtmb.2009.0107
. [PMID: 20136525] - ". Genome sequence of the pea aphid Acyrthosiphon pisum.
PLoS biology.
2010 Feb; 8(2):e1000313. doi:
10.1371/journal.pbio.1000313
. [PMID: 20186266] - Theodoros Georgiou, Jacinta L Chuang, R Max Wynn, Goula Stylianidou, Mark Korson, David T Chuang, Anthi Drousiotou. Maple syrup urine disease in Cypriot families: identification of three novel mutations and biochemical characterization of the p.Thr211Met mutation in the E1alpha subunit.
Genetic testing and molecular biomarkers.
2009 Oct; 13(5):657-64. doi:
10.1089/gtmb.2009.0065
. [PMID: 19715473] - Gustavo Bajotto, Taro Murakami, Masaru Nagasaki, Yuzo Sato, Yoshiharu Shimomura. Decreased enzyme activity and contents of hepatic branched-chain alpha-keto acid dehydrogenase complex subunits in a rat model for type 2 diabetes mellitus.
Metabolism: clinical and experimental.
2009 Oct; 58(10):1489-95. doi:
10.1016/j.metabol.2009.04.029
. [PMID: 19586643] - Tanja Knill, Michael Reichelt, Christian Paetz, Jonathan Gershenzon, Stefan Binder. Arabidopsis thaliana encodes a bacterial-type heterodimeric isopropylmalate isomerase involved in both Leu biosynthesis and the Met chain elongation pathway of glucosinolate formation.
Plant molecular biology.
2009 Oct; 71(3):227-39. doi:
10.1007/s11103-009-9519-5
. [PMID: 19597944] - Kristen J Skvorak, Harbhajan S Paul, Kenneth Dorko, Fabio Marongiu, Ewa Ellis, Donald Chace, Carolyn Ferguson, K Michael Gibson, Gregg E Homanics, Stephen C Strom. Hepatocyte transplantation improves phenotype and extends survival in a murine model of intermediate maple syrup urine disease.
Molecular therapy : the journal of the American Society of Gene Therapy.
2009 Jul; 17(7):1266-73. doi:
10.1038/mt.2009.99
. [PMID: 19436271] - Gang Lu, Haipeng Sun, Pengxiang She, Ji-Youn Youn, Sarah Warburton, Peipei Ping, Thomas M Vondriska, Hua Cai, Christopher J Lynch, Yibin Wang. Protein phosphatase 2Cm is a critical regulator of branched-chain amino acid catabolism in mice and cultured cells.
The Journal of clinical investigation.
2009 Jun; 119(6):1678-87. doi:
10.1172/jci38151
. [PMID: 19411760] - Sofia Quental, Alfredo Gusmão, Pilar Rodríguez-Pombo, Magdalena Ugarte, Laura Vilarinho, António Amorim, Maria J Prata. Revisiting MSUD in Portuguese Gypsies: evidence for a founder mutation and for a mutational hotspot within the BCKDHA gene.
Annals of human genetics.
2009 May; 73(Pt 3):298-303. doi:
10.1111/j.1469-1809.2009.00518.x
. [PMID: 19456321] - K J Skvorak. Animal models of maple syrup urine disease.
Journal of inherited metabolic disease.
2009 Apr; 32(2):229-46. doi:
10.1007/s10545-009-1086-z
. [PMID: 19263237] - R Barea, L Brossard, N Le Floc'h, Y Primot, D Melchior, J van Milgen. The standardized ileal digestible valine-to-lysine requirement ratio is at least seventy percent in postweaned piglets.
Journal of animal science.
2009 Mar; 87(3):935-47. doi:
10.2527/jas.2008-1006
. [PMID: 19028844] - Kerstin Gorzelany, Ali Dursun, Turgay Coşkun, Serap H Kalkanoğlu-Sivri, Gülden Fatma Gökçay, Mübeccel Demirkol, Oliver Feyen, Udo Wendel. Molecular genetics of maple syrup urine disease in the Turkish population.
The Turkish journal of pediatrics.
2009 Mar; 51(2):97-102. doi:
NULL
. [PMID: 19480318] - M David Marks, Li Tian, Jonathan P Wenger, Stephanie N Omburo, Wilfredo Soto-Fuentes, Ji He, David R Gang, George D Weiblen, Richard A Dixon. Identification of candidate genes affecting Delta9-tetrahydrocannabinol biosynthesis in Cannabis sativa.
Journal of experimental botany.
2009; 60(13):3715-26. doi:
10.1093/jxb/erp210
. [PMID: 19581347] - Roman Kand'ár, Pavla Záková, Jana Jirosová, Michaela Sladká. Determination of branched chain amino acids, methionine, phenylalanine, tyrosine and alpha-keto acids in plasma and dried blood samples using HPLC with fluorescence detection.
Clinical chemistry and laboratory medicine.
2009; 47(5):565-72. doi:
10.1515/cclm.2009.123
. [PMID: 19290779] - G Y Liu. Isolation, sequence identification, and tissue expression profile of 3 novel porcine genes: NCF2, BCKDHB and BCKDHA.
Journal of applied genetics.
2009; 50(1):47-50. doi:
10.1007/bf03195651
. [PMID: 19193982] - G Y Liu, S Z Gao. Molecular cloning, sequence identification and tissue expression profile of three novel sheep (Ovis aries) genes - BCKDHA, NAGA and HEXA.
Biological research.
2009; 42(1):69-77. doi:
/s0716-97602009000100007
. [PMID: 19621134] - S Quental, E Martins, L Vilarinho, A Amorim, M João Prata. Maple syrup urine disease due to a new large deletion at BCKDHA caused by non-homologous recombination.
Journal of inherited metabolic disease.
2008 Dec; 31 Suppl 2(?):S457-60. doi:
10.1007/s10545-008-1046-z
. [PMID: 19085071] - Suthipong Pangkanon, Wiyada Charoensiriwatana, Varaporn Sangtawesin. Maple syrup urine disease in Thai infants.
Journal of the Medical Association of Thailand = Chotmaihet thangphaet.
2008 Oct; 91 Suppl 3(?):S41-4. doi:
NULL
. [PMID: 19255991] - Jasmina Saric, Jia V Li, Yulan Wang, Jennifer Keiser, Jake G Bundy, Elaine Holmes, Jürg Utzinger. Metabolic profiling of an Echinostoma caproni infection in the mouse for biomarker discovery.
PLoS neglected tropical diseases.
2008 Jul; 2(7):e254. doi:
10.1371/journal.pntd.0000254
. [PMID: 18596973] - Sofia Quental, Sandra Macedo-Ribeiro, Raquel Matos, Laura Vilarinho, Esmeralda Martins, Elisa Leão Teles, Esmeralda Rodrigues, Luísa Diogo, Paula Garcia, Filomena Eusébio, Ana Gaspar, Sílvia Sequeira, Fátima Furtado, Isabel Lança, António Amorim, Maria João Prata. Molecular and structural analyses of maple syrup urine disease and identification of a founder mutation in a Portuguese Gypsy community.
Molecular genetics and metabolism.
2008 Jun; 94(2):148-56. doi:
10.1016/j.ymgme.2008.02.008
. [PMID: 18378174] - Julia C Engelmann, Rosalia Deeken, Tobias Müller, Günter Nimtz, M Rob G Roelfsema, Rainer Hedrich. Is gene activity in plant cells affected by UMTS-irradiation? A whole genome approach.
Advances and applications in bioinformatics and chemistry : AABC.
2008; 1(?):71-83. doi:
10.2147/aabc.s3570
. [PMID: 21918607] - Pengxiang She, Cynthia Van Horn, Tanya Reid, Susan M Hutson, Robert N Cooney, Christopher J Lynch. Obesity-related elevations in plasma leucine are associated with alterations in enzymes involved in branched-chain amino acid metabolism.
American journal of physiology. Endocrinology and metabolism.
2007 Dec; 293(6):E1552-63. doi:
10.1152/ajpendo.00134.2007
. [PMID: 17925455] - N Flaschker, O Feyen, S Fend, E Simon, P Schadewaldt, U Wendel. Description of the mutations in 15 subjects with variant forms of maple syrup urine disease.
Journal of inherited metabolic disease.
2007 Nov; 30(6):903-9. doi:
10.1007/s10545-007-0579-x
. [PMID: 17922217] - Cláudia Funchal, Francine Tramontina, André Quincozes dos Santos, Daniela Fraga de Souza, Carlos Alberto Gonçalves, Regina Pessoa-Pureur, Moacir Wajner. Effect of the branched-chain alpha-keto acids accumulating in maple syrup urine disease on S100B release from glial cells.
Journal of the neurological sciences.
2007 Sep; 260(1-2):87-94. doi:
10.1016/j.jns.2007.04.011
. [PMID: 17499767] - Kerry A Lucas, Jessica R Filley, Jeremy M Erb, Eric R Graybill, John W Hawes. Peroxisomal metabolism of propionic acid and isobutyric acid in plants.
The Journal of biological chemistry.
2007 Aug; 282(34):24980-9. doi:
10.1074/jbc.m701028200
. [PMID: 17580301] - David Schachter. L-glutamine in vitro regulates rat aortic glutamate content and modulates nitric oxide formation and contractility responses.
American journal of physiology. Cell physiology.
2007 Jul; 293(1):C142-51. doi:
10.1152/ajpcell.00589.2006
. [PMID: 17329397] - Elinor Scott, Francisc Peter, Johan Sanders. Biomass in the manufacture of industrial products--the use of proteins and amino acids.
Applied microbiology and biotechnology.
2007 Jun; 75(4):751-62. doi:
10.1007/s00253-007-0932-x
. [PMID: 17387469] - Xiaonan Wang, Junping Hu, S Russ Price. Inhibition of PI3-kinase signaling by glucocorticoids results in increased branched-chain amino acid degradation in renal epithelial cells.
American journal of physiology. Cell physiology.
2007 May; 292(5):C1874-9. doi:
10.1152/ajpcell.00617.2006
. [PMID: 17229808] - Alexander I Shestopalov, Bruce S Kristal. Branched chain keto-acids exert biphasic effects on alpha-ketoglutarate-stimulated respiration in intact rat liver mitochondria.
Neurochemical research.
2007 Apr; 32(4-5):947-51. doi:
10.1007/s11064-007-9291-3
. [PMID: 17342410] - Malcolm Watford. Lowered concentrations of branched-chain amino acids result in impaired growth and neurological problems: insights from a branched-chain alpha-keto acid dehydrogenase complex kinase-deficient mouse model.
Nutrition reviews.
2007 Apr; 65(4):167-72. doi:
10.1111/j.1753-4887.2007.tb00296.x
. [PMID: 17503711] - André Wajner, Cristiane Bürger, Carlos Severo Dutra-Filho, Moacir Wajner, Angela Terezinha de Souza Wyse, Clóvis Milton Duval Wannmacher. Synaptic plasma membrane Na(+), K (+)-ATPase activity is significantly reduced by the alpha-keto acids accumulating in maple syrup urine disease in rat cerebral cortex.
Metabolic brain disease.
2007 Mar; 22(1):77-88. doi:
10.1007/s11011-007-9046-5
. [PMID: 17295076] - Jan-Willem de Kraker, Katrin Luck, Susanne Textor, James G Tokuhisa, Jonathan Gershenzon. Two Arabidopsis genes (IPMS1 and IPMS2) encode isopropylmalate synthase, the branchpoint step in the biosynthesis of leucine.
Plant physiology.
2007 Feb; 143(2):970-86. doi:
10.1104/pp.106.085555
. [PMID: 17189332] - Mandar A Joshi, Nam Ho Jeoung, Mariko Obayashi, Eyas M Hattab, Eric G Brocken, Edward A Liechty, Michael J Kubek, Krishna M Vattem, Ronald C Wek, Robert A Harris. Impaired growth and neurological abnormalities in branched-chain alpha-keto acid dehydrogenase kinase-deficient mice.
The Biochemical journal.
2006 Nov; 400(1):153-62. doi:
10.1042/bj20060869
. [PMID: 16875466] - Hiroki Ishiguro, Yoshiaki Katano, Isao Nakano, Masatoshi Ishigami, Kazuhiko Hayashi, Takashi Honda, Hidemi Goto, Gustavo Bajotto, Ken Maeda, Yoshiharu Shimomura. Clofibrate treatment promotes branched-chain amino acid catabolism and decreases the phosphorylation state of mTOR, eIF4E-BP1, and S6K1 in rat liver.
Life sciences.
2006 Jul; 79(8):737-43. doi:
10.1016/j.lfs.2006.02.037
. [PMID: 16616211] - Pilar Rodríguez-Pombo, Rosa Navarrete, Begoña Merinero, Paulino Gómez-Puertas, Magdalena Ugarte. Mutational spectrum of maple syrup urine disease in Spain.
Human mutation.
2006 Jul; 27(7):715. doi:
10.1002/humu.9428
. [PMID: 16786533] - Dongying Wu, Sean C Daugherty, Susan E Van Aken, Grace H Pai, Kisha L Watkins, Hoda Khouri, Luke J Tallon, Jennifer M Zaborsky, Helen E Dunbar, Phat L Tran, Nancy A Moran, Jonathan A Eisen. Metabolic complementarity and genomics of the dual bacterial symbiosis of sharpshooters.
PLoS biology.
2006 Jun; 4(6):e188. doi:
10.1371/journal.pbio.0040188
. [PMID: 16729848] - Gregg E Homanics, Kristen Skvorak, Carolyn Ferguson, Simon Watkins, Harbhajan S Paul. Production and characterization of murine models of classic and intermediate maple syrup urine disease.
BMC medical genetics.
2006 Mar; 7(?):33. doi:
10.1186/1471-2350-7-33
. [PMID: 16579849] - Katsuhisa Omagari, Yoshiko Kadokawa, Minoru Nakamura, Shiho Akazawa, Kazuo Ohba, Ken Ohnita, Yohei Mizuta, Manabu Daikoku, Hiroshi Yatsuhashi, Hiromi Ishibashi, Shigeru Kohno. IgA class antibodies to 2-oxo-acid dehydrogenase complex are not predictive markers of histopathological progression in primary biliary cirrhosis.
Autoimmunity.
2006 Mar; 39(2):107-12. doi:
10.1080/08916930600633006
. [PMID: 16698666] - Cláudia Funchal, Patrícia Fernanda Schuck, André Quincozes Dos Santos, Maria Caroline Jacques-Silva, Carmem Gottfried, Regina Pessoa-Pureur, Moacir Wajner. Creatine and antioxidant treatment prevent the inhibition of creatine kinase activity and the morphological alterations of C6 glioma cells induced by the branched-chain alpha-keto acids accumulating in maple syrup urine disease.
Cellular and molecular neurobiology.
2006 Feb; 26(1):67-79. doi:
10.1007/s10571-006-9098-9
. [PMID: 16633902] - Christian Bölling, Oliver Fiehn. Metabolite profiling of Chlamydomonas reinhardtii under nutrient deprivation.
Plant physiology.
2005 Dec; 139(4):1995-2005. doi:
10.1104/pp.105.071589
. [PMID: 16306140] - Benjamin F Miller, Jens L Olesen, Mette Hansen, Simon Døssing, Regina M Crameri, Rasmus J Welling, Henning Langberg, Allan Flyvbjerg, Michael Kjaer, John A Babraj, Kenneth Smith, Michael J Rennie. Coordinated collagen and muscle protein synthesis in human patella tendon and quadriceps muscle after exercise.
The Journal of physiology.
2005 Sep; 567(Pt 3):1021-33. doi:
10.1113/jphysiol.2005.093690
. [PMID: 16002437] - Cláudia Funchal, André Quincozes Dos Santos, Maria Caroline Jacques-Silva, Ariane Zamoner, Carmem Gottfried, Moacir Wajner, Regina Pessoa-Pureur. Branched-chain alpha-keto acids accumulating in maple syrup urine disease induce reorganization of phosphorylated GFAP in C6-glioma cells.
Metabolic brain disease.
2005 Sep; 20(3):205-17. doi:
10.1007/s11011-005-7208-x
. [PMID: 16167198] - Raquel Bridi, César A Braun, Giovanni K Zorzi, Clóvis M D Wannmacher, Moacir Wajner, Eduardo G Lissi, Carlos Severo Dutra-Filho. alpha-keto acids accumulating in maple syrup urine disease stimulate lipid peroxidation and reduce antioxidant defences in cerebral cortex from young rats.
Metabolic brain disease.
2005 Jun; 20(2):155-67. doi:
10.1007/s11011-005-4152-8
. [PMID: 15938133] - Marie-Hélène Odièvre, Dominique Chretien, Arnold Munnich, Brian H Robinson, Renée Dumoulin, Sahben Masmoudi, Noman Kadhom, Agnès Rötig, Pierre Rustin, Jean-Paul Bonnefont. A novel mutation in the dihydrolipoamide dehydrogenase E3 subunit gene (DLD) resulting in an atypical form of alpha-ketoglutarate dehydrogenase deficiency.
Human mutation.
2005 Mar; 25(3):323-4. doi:
10.1002/humu.9319
. [PMID: 15712224] - Joachim Schuster, Stefan Binder. The mitochondrial branched-chain aminotransferase (AtBCAT-1) is capable to initiate degradation of leucine, isoleucine and valine in almost all tissues in Arabidopsis thaliana.
Plant molecular biology.
2005 Jan; 57(2):241-54. doi:
10.1007/s11103-004-7533-1
. [PMID: 15821880] - Cláudia Funchal, Carmem Gottfried, Lúcia Maria Vieira De Almeida, Moacir Wajner, Regina Pessoa-Pureur. Evidence that the branched-chain alpha-keto acids accumulating in maple syrup urine disease induce morphological alterations and death in cultured astrocytes from rat cerebral cortex.
Glia.
2004 Nov; 48(3):230-40. doi:
10.1002/glia.20072
. [PMID: 15390119] - Georgina Meneses-Lorente, Paul C Guest, Jeffrey Lawrence, Nagaraja Muniappa, Michael R Knowles, Heather A Skynner, Kamran Salim, Ileana Cristea, Russell Mortishire-Smith, Simon J Gaskell, Alan Watt. A proteomic investigation of drug-induced steatosis in rat liver.
Chemical research in toxicology.
2004 May; 17(5):605-12. doi:
10.1021/tx034203n
. [PMID: 15144217] - Jon T Self, Thomas E Spencer, Greg A Johnson, Jianbo Hu, Fuller W Bazer, Guoyao Wu. Glutamine synthesis in the developing porcine placenta.
Biology of reproduction.
2004 May; 70(5):1444-51. doi:
10.1095/biolreprod.103.025486
. [PMID: 14736817] - Andrea Kasinski, Christopher B Doering, Dean J Danner. Leucine toxicity in a neuronal cell model with inhibited branched chain amino acid catabolism.
Brain research. Molecular brain research.
2004 Mar; 122(2):180-7. doi:
10.1016/j.molbrainres.2003.08.023
. [PMID: 15010210] - Takashi Honda, Yoshihide Fukuda, Isao Nakano, Yoshiaki Katano, Hidemi Goto, Masaru Nagasaki, Yuzo Sato, Taro Murakami, Yoshiharu Shimomura. Effects of liver failure on branched-chain alpha-keto acid dehydrogenase complex in rat liver and muscle: comparison between acute and chronic liver failure.
Journal of hepatology.
2004 Mar; 40(3):439-45. doi:
10.1016/j.jhep.2003.11.003
. [PMID: 15123358] - Xiaonan Wang, S Russ Price. Differential regulation of branched-chain alpha-ketoacid dehydrogenase kinase expression by glucocorticoids and acidification in LLC-PK1-GR101 cells.
American journal of physiology. Renal physiology.
2004 Mar; 286(3):F504-8. doi:
10.1152/ajprenal.00296.2003
. [PMID: 14612386] - Cláudia Funchal, Franciele Dall Bello Pessutto, Lúcia Maria Vieira de Almeida, Priscila de Lima Pelaez, Samanta Oliveira Loureiro, Lilian Vivian, Moacir Wajner, Regina Pessoa-Pureur. Alpha-keto-beta-methylvaleric acid increases the in vitro phosphorylation of intermediate filaments in cerebral cortex of young rats through the gabaergic system.
Journal of the neurological sciences.
2004 Jan; 217(1):17-24. doi:
10.1016/j.jns.2003.08.003
. [PMID: 14675604] - Yoshiharu Shimomura, Takashi Honda, Hidemi Goto, Toshiaki Nonami, Tsuyoshi Kurokawa, Masaru Nagasaki, Taro Murakami. Effects of liver failure on the enzymes in the branched-chain amino acid catabolic pathway.
Biochemical and biophysical research communications.
2004 Jan; 313(2):381-5. doi:
10.1016/j.bbrc.2003.07.022
. [PMID: 14684172] - Robert A Harris, Mandar Joshi, Nam Ho Jeoung. Mechanisms responsible for regulation of branched-chain amino acid catabolism.
Biochemical and biophysical research communications.
2004 Jan; 313(2):391-6. doi:
10.1016/j.bbrc.2003.11.007
. [PMID: 14684174] - Vilson de Castro Vasques, Melissa Avila de Boer, Felipe Diligenti, Fabrício Brinco, Fabrício Mallmann, Carlos Fernando Mello, Moacir Wajner. Intrahippocampal administration of the alpha-keto acids accumulating in maple syrup urine disease provokes learning deficits in rats.
Pharmacology, biochemistry, and behavior.
2004 Jan; 77(1):183-90. doi:
10.1016/j.pbb.2003.10.013
. [PMID: 14724056] - G Tajima, H Yofune, A D Bahagia Febriani, Y Nishimura, H Ono, N Sakura. A simple and rapid enzymatic assay for the branched-chain alpha-ketoacid dehydrogenase complex using high-performance liquid chromatography.
Journal of inherited metabolic disease.
2004; 27(5):633-9. doi:
10.1023/b:boli.0000042988.31581.ed
. [PMID: 15669679] - Maria Szpetnar, Kazimierz Pasternak, Anna Boguszewska. Branched chain amino acids (BCAAs) in heart diseases (ischaemic heart disease and myocardial infarction).
Annales Universitatis Mariae Curie-Sklodowska. Sectio D: Medicina.
2004; 59(2):91-5. doi:
NULL
. [PMID: 16146056] - Andrew J Sweatt, Mac Wood, Agus Suryawan, Reidar Wallin, Mark C Willingham, Susan M Hutson. Branched-chain amino acid catabolism: unique segregation of pathway enzymes in organ systems and peripheral nerves.
American journal of physiology. Endocrinology and metabolism.
2004 Jan; 286(1):E64-76. doi:
10.1152/ajpendo.00276.2003
. [PMID: 12965870] - Dominic S C Raj, Hemangini Shah, Vallabh O Shah, Arny Ferrando, Arthur Bankhurst, Robert Wolfe, Philip G Zager. Markers of inflammation, proteolysis, and apoptosis in ESRD.
American journal of kidney diseases : the official journal of the National Kidney Foundation.
2003 Dec; 42(6):1212-20. doi:
10.1053/j.ajkd.2003.08.022
. [PMID: 14655193] - Angela M Sgaravatti, Rafael B Rosa, Patrícia F Schuck, César A J Ribeiro, Clóvis M D Wannmacher, Angela T S Wyse, Carlos S Dutra-Filho, Moacir Wajner. Inhibition of brain energy metabolism by the alpha-keto acids accumulating in maple syrup urine disease.
Biochimica et biophysica acta.
2003 Nov; 1639(3):232-8. doi:
10.1016/j.bbadis.2003.09.010
. [PMID: 14636955] - Marco Henneke, Nadine Flaschker, Christoph Helbling, Martina Müller, Peter Schadewaldt, Jutta Gärtner, Udo Wendel. Identification of twelve novel mutations in patients with classic and variant forms of maple syrup urine disease.
Human mutation.
2003 Nov; 22(5):417. doi:
10.1002/humu.9187
. [PMID: 14517957] - P H Bisschop, M G M De Sain-Van Der Velden, F Stellaard, F Kuipers, A J Meijer, H P Sauerwein, J A Romijn. Dietary carbohydrate deprivation increases 24-hour nitrogen excretion without affecting postabsorptive hepatic or whole body protein metabolism in healthy men.
The Journal of clinical endocrinology and metabolism.
2003 Aug; 88(8):3801-5. doi:
10.1210/jc.2002-021087
. [PMID: 12915672] - Wajanat Jan, Robert A Zimmerman, Zhiyue J Wang, Gerard T Berry, Paige B Kaplan, Edward M Kaye. MR diffusion imaging and MR spectroscopy of maple syrup urine disease during acute metabolic decompensation.
Neuroradiology.
2003 Jun; 45(6):393-9. doi:
10.1007/s00234-003-0955-7
. [PMID: 12736767]