Sinapic acid (BioDeep_00000000434)

 

Secondary id: BioDeep_00000400220, BioDeep_00000422452

natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite


代谢物信息卡片


3,5-Dimethoxy-4-hydroxycinnamic acid, 4-Hydroxy-3,5-dimethoxy-cinnamic acid, Sinapinic acid

化学式: C11H12O5 (224.06847019999998)
中文名称: 3,5-二甲氧基-4-羟基肉桂酸, 4-羟基-3,5-二甲氧基肉桂酸, 咖啡酸反式异构体, 芥子酸, 芥子酸
谱图信息: 最多检出来源 Viridiplantae(plant) 0.2%

分子结构信息

SMILES: c1(c(c(cc(c1)/C=C/C(=O)O)OC)O)OC
InChI: InChI=1S/C11H12O5/c1-15-8-5-7(3-4-10(12)13)6-9(16-2)11(8)14/h3-6,14H,1-2H3,(H,12,13)

描述信息

Sinapic acid, also known as sinapinate, belongs to the class of organic compounds known as hydroxycinnamic acids. Hydroxycinnamic acids are compounds containing an cinnamic acid where the benzene ring is hydroxylated. Sinapic acid has been detected, but not quantified, in several different foods, such as strawberry guava, purple lavers, common verbena, ryes, and lupines. This could make sinapic acid a potential biomarker for the consumption of these foods. A sinapic acid in which the double bond has trans-configuration.
Trans-sinapic acid is a sinapic acid in which the double bond has trans-configuration. It has a role as a MALDI matrix material and a plant metabolite. It is a conjugate acid of a trans-sinapate.
Sinapic acid is a matrix for matrix-assisted laser desorption technique for protein MW determination. It is also a constituent of propolis.
Sinapic acid is a natural product found in Sida acuta, Limoniastrum guyonianum, and other organisms with data available.
A common constituent of plants and fruits. trans-Sinapic acid is found in many foods, some of which are small-leaf linden, redcurrant, malabar spinach, and blackcurrant.
D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents
A sinapic acid in which the double bond has trans-configuration.
Acquisition and generation of the data is financially supported in part by CREST/JST.
Profile spectrum of this record is given as a JPEG file.; [Profile] MCH00014.jpg
Profile spectrum of this record is given as a JPEG file.; [Profile] MCH00015.jpg
CONFIDENCE standard compound; INTERNAL_ID 174
Annotation level-1
Annotation level-2
KEIO_ID S028
Sinapinic acid (Sinapic acid) is a phenolic compound isolated from Hydnophytum formicarum Jack. Rhizome, acts as an inhibitor of HDAC, with an IC50 of 2.27 mM[1], and also inhibits ACE-I activity[2]. Sinapinic acid posssess potent anti-tumor activity, induces apoptosis of tumor cells[1]. Sinapinic acid shows antioxidant and antidiabetic activities[2]. Sinapinic acid reduces total cholesterol, triglyceride, and HOMA-IR index, and also normalizes some serum parameters of antioxidative abilities and oxidative damage in ovariectomized rats[3].
Sinapinic acid (Sinapic acid) is a phenolic compound isolated from Hydnophytum formicarum Jack. Rhizome, acts as an inhibitor of HDAC, with an IC50 of 2.27 mM[1], and also inhibits ACE-I activity[2]. Sinapinic acid posssess potent anti-tumor activity, induces apoptosis of tumor cells[1]. Sinapinic acid shows antioxidant and antidiabetic activities[2]. Sinapinic acid reduces total cholesterol, triglyceride, and HOMA-IR index, and also normalizes some serum parameters of antioxidative abilities and oxidative damage in ovariectomized rats[3].

同义名列表

56 个代谢物同义名

InChI=1/C11H12O5/c1-15-8-5-7(3-4-10(12)13)6-9(16-2)11(8)14/h3-6,14H,1-2H3,(H,12,13)/b4-3; Sinapic acid, matrix substance for MALDI-MS, >=99.5\\%, Ultra pure; 2-propenoic acid, 3-(4-hydroxy-3,5-dimethoxyphenyl)-, (2E)-; 2-Propenoic acid, 3-(4-hydroxy-3,5-dimethoxyphenyl)-, (E)-; Sinapic acid, matrix substance for MALDI-MS, >=99.0\\% (T); 3-(4-Hydroxy-3,5-dimethoxyphenyl)-(2E)-2-Propenoic acid; (2E)-3-(4-Hydroxy-3,5-dimethoxyphenyl)-2-propenoic acid; (2E)-3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoic acid; 3-(4-hydroxy-3,5-dimethoxyphenyl)-(E)-2-propenoic acid; (E)-3-(4-Hydroxy-3,5-dimethoxyphenyl)-2-propenoic acid; (E)-3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoic acid; 2-propenoic acid, 3-(4-hydroxy-3,5-dimethoxyphenyl)-; 3-(4-Hydroxy-3,5-dimethoxyphenyl)-2-propenoic acid #; (E)-3-(4-Hydroxy-3,5-dimethoxy-phenyl)-acrylic acid; (e)-3-(4-Hydroxy-3,5-dimethoxyphenyl)-2-propenoate; 3-(4-Hydroxy-3,5-dimethoxyphenyl)-2-Propenoic acid; 3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoic acid; (2E)-3-(4-hydroxy-3,5-dimethoxyphenyl)acrylic acid; (E)-3-(4-hydroxy-3,5-dimethoxyphenyl)acrylic acid; (E)-3-(4-hydroxy-3,5-dimethoxyphenyl)acrylicacid; 3-(4-hydroxy-3,5-dimethoxyphenyl)acrylic acid; cinnamic acid, 4-hydroxy-3,5-dimethoxy-, (E)-; 3,5-dimethoxy-4-hydroxy-trans-cinnamic acid; trans-3,5-Dimethoxy-4-hydroxycinnamic acid; trans-4-Hydroxy-3,5-dimethoxycinnamic acid; 4-Hydroxy-3,5-dimethoxy-(E)-Cinnamic acid; (E)-3,5-Dimethoxy-4-hydroxycinnamic acid; trans-Sinapic acid, analytical standard; Cinnamic acid, 4-hydroxy-3,5-dimethoxy-; 4-Hydroxy-3,5-dimethoxy-cinnamic acid; 4-hydroxy-3,5-dimethoxycinnamic acid; 7AE78999-D500-492B-9651-46622E8DAA71; 3,5-dimethoxy-4-hydroxycinnamic acid; 3,5-Dimethoxy-4-hydroxycinnamate; Sinapinic acid (Sinapic acid); Sinapic acid, >=98\\%, powder; Sinapic acid, trans-; trans-sinapinic acid; sinapic acid, (E)-; trans-sinapic acid; E-Sinapinic acid; (E)-sinapic acid; UNII-P0I60993EC; Sinapinic acid; synapitic acid; trans-Sinapate; Synapoic acid; sinapic acid; Sinapic_acid; DEGLY SINA; SINAPINATE; P0I60993EC; Sinapate; Sinapic; SXX; 3,5-Dimethoxy-4-hydroxycinnamic acid, 4-Hydroxy-3,5-dimethoxy-cinnamic acid, Sinapinic acid



数据库引用编号

54 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

256 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Prarambh S R Dwivedi, C S Shastry. System biology mediated assessment of molecular mechanism for sinapic acid against breast cancer: via network pharmacology and molecular dynamic simulation. Scientific reports. 2023 12; 13(1):21982. doi: 10.1038/s41598-023-47901-3. [PMID: 38081857]
  • Xiangfen Yang, Jingjing Shi, Han Li, Ke Zhang, Jun Li, Qingqing Song. Characterization of the metabolic fate of sinapic acid in rats. Analytical and bioanalytical chemistry. 2023 Nov; 415(26):6511-6523. doi: 10.1007/s00216-023-04929-8. [PMID: 37695392]
  • Hasan Şimşek, Sefa Küçükler, Cihan Gür, Nurhan Akaras, Fatih Mehmet Kandemir. Protective effects of sinapic acid against lead acetate-induced nephrotoxicity: a multi-biomarker approach. Environmental science and pollution research international. 2023 Aug; ?(?):. doi: 10.1007/s11356-023-29410-y. [PMID: 37648919]
  • Mohammad Shabani, Zhaleh Jamali, Aida Naserian, Saleh Khezri, Ahmad Salimi. Maintenance of mitochondrial function by sinapic acid protects against tramadol-induced toxicity in isolated mitochondria obtained from rat brain. Naunyn-Schmiedeberg's archives of pharmacology. 2023 Aug; ?(?):. doi: 10.1007/s00210-023-02648-6. [PMID: 37526689]
  • Yanhua Sun, Yange Zhang, Yujiao Hou, Hui Gong, Yifei Pang, Xiaoxiao Ge, Ming Li. Molecularly imprinted polymers based on calcined rape pollen and deep eutectic solvents for efficient sinapic acid extraction from rapeseed meal extract. Food chemistry. 2023 Aug; 416(?):135811. doi: 10.1016/j.foodchem.2023.135811. [PMID: 36898334]
  • Maya L Khasin, Lois F Bernhardson, Patrick M O'Neill, Nathan A Palmer, Erin D Scully, Scott E Sattler, Gautam Sarath, Deanna Lillian Funnell-Harris. Phenylpropanoids following wounding and infection of sweet sorghum lines differing in responses to stalk pathogens. Phytopathology. 2023 Jul; ?(?):. doi: 10.1094/phyto-12-22-0459-r. [PMID: 37486162]
  • Anqi Xu, Wenxing Li, Jieqi Cai, Zhuohua Wen, Kexin Wang, Yupeng Chen, Xifeng Li, Daogang Guan, Chuanzhi Duan. Screening of key functional components of Taohong Siwu Decoction on ischemic stroke treatment based on multiobjective optimization approach and experimental validation. BMC complementary medicine and therapies. 2023 Jun; 23(1):178. doi: 10.1186/s12906-023-03990-1. [PMID: 37264383]
  • Momita Rani Baro, Manas Das, Anuradha Kalita, Bhabajyoti Das, Kishore Sarma. Exploring the anti-inflammatory potential of Colocasia esculenta root extract in in-vitro and in-vivo models of inflammation. Journal of ethnopharmacology. 2023 Mar; 303(?):116021. doi: 10.1016/j.jep.2022.116021. [PMID: 36516907]
  • Dario Lučić, Iva Pavlović, Lidija Brkljačić, Sandro Bogdanović, Vladimir Farkaš, Andrea Cedilak, Lucia Nanić, Ivica Rubelj, Branka Salopek-Sondi. Antioxidant and Antiproliferative Activities of Kale (Brassica oleracea L. Var. acephala DC.) and Wild Cabbage (Brassica incana Ten.) Polyphenolic Extracts. Molecules (Basel, Switzerland). 2023 Feb; 28(4):. doi: 10.3390/molecules28041840. [PMID: 36838827]
  • Weiqiang Li, Yaru Sun, Kun Li, Hongtao Tian, Jiangtao Jia, Hongyu Zhang, Yaping Wang, Hong Wang, Baodi Bi, Jinggong Guo, Lam-Son Phan Tran, Yuchen Miao. Sinapate Esters Mediate UV-B-Induced Stomatal Closure by Regulating Nitric Oxide, Hydrogen Peroxide, and Malate Accumulation in Arabidopsis thaliana. Plant & cell physiology. 2023 Jan; 63(12):1890-1899. doi: 10.1093/pcp/pcac059. [PMID: 35475535]
  • Rayudika Aprilia Patindra Purba, Pramote Paengkoum. Farang (Psidium guajava L.) Dried Leaf Extracts: Phytochemical Profiles, Antioxidant, Anti-Diabetic, and Anti-Hemolytic Properties for Ruminant Health and Production. Molecules (Basel, Switzerland). 2022 Dec; 27(24):. doi: 10.3390/molecules27248987. [PMID: 36558117]
  • Yongxi Lin, Dong Li, Chunran Zhou, Yangliu Wu, Peijuan Miao, Qinyong Dong, Shusheng Zhu, Canping Pan. Application of insecticides on peppermint (Mentha × piperita L.) induces lignin accumulation in leaves by consuming phenolic acids and thus potentially deteriorates quality. Journal of plant physiology. 2022 Dec; 279(?):153836. doi: 10.1016/j.jplph.2022.153836. [PMID: 36244262]
  • Keying Wang, Chanhua Liang, Wenjing Cao, Gao Luo, Shumei Zhong, Zhen Zeng, Ling Dai, Jia-Le Song. Dietary sinapic acid attenuated high-fat diet-induced lipid metabolism and oxidative stress in male Syrian hamsters. Journal of food biochemistry. 2022 11; 46(11):e14203. doi: 10.1111/jfbc.14203. [PMID: 35470867]
  • Morteza Saeedavi, Mehdi Goudarzi, Saeed Mehrzadi, Zahra Basir, Ali Hasanvand, Azam Hosseinzadeh. Sinapic acid ameliorates airway inflammation in murine ovalbumin-induced allergic asthma by reducing Th2 cytokine production. Life sciences. 2022 Oct; 307(?):120858. doi: 10.1016/j.lfs.2022.120858. [PMID: 35931198]
  • Amir Rostami, Tourandokht Baluchnejadmojarad, Mehrdad Roghani. Sinapic acid ameliorates paracetamol-induced acute liver injury through targeting oxidative stress and inflammation. Molecular biology reports. 2022 Jun; 49(6):4179-4191. doi: 10.1007/s11033-022-07251-1. [PMID: 35279777]
  • Mohammad Raish, Ajaz Ahmad, Yousef A Bin Jardan, Mudassar Shahid, Khalid M Alkharfy, Abdul Ahad, Mushtaq Ahmad Ansari, Ibrahim Abdelsalam Abdelrahman, Fahad I Al-Jenoobi. Sinapic acid ameliorates cardiac dysfunction and cardiomyopathy by modulating NF-κB and Nrf2/HO-1 signaling pathways in streptozocin induced diabetic rats. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2022 Jan; 145(?):112412. doi: 10.1016/j.biopha.2021.112412. [PMID: 34768051]
  • F Altındağ, U Özdek. Synergistic effects of sinapic acid and ellagic acid ameliorate streptozotocin-induced diabetic nephropathy by inhibiting apoptosis, DNA damage, and structural deterioration in rats. Human & experimental toxicology. 2021 Dec; 40(12_suppl):S290-S299. doi: 10.1177/09603271211040825. [PMID: 34661493]
  • Shiva Rezaei, Seyed Jalal Hosseinimehr, Mehryar Zargari, Abbasali Karimpour Malekshah, Mansoureh Mirzaei, Fereshteh Talebpour Amiri. Protective effects of sinapic acid against cyclophosphamide-induced testicular toxicity via inhibiting oxidative stress, caspase-3 and NF-kB activity in BALB/c mice. Andrologia. 2021 Nov; 53(10):e14196. doi: 10.1111/and.14196. [PMID: 34333791]
  • Fikret Altındağ, Murat Çetin Rağbetli, Uğur Özdek, Necat Koyun, Jamal Khalid Ismael Alhalboosi, Sadi Elasan. Combined treatment of sinapic acid and ellagic acid attenuates hyperglycemia in streptozotocin-induced diabetic rats. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2021 Oct; 156(?):112443. doi: 10.1016/j.fct.2021.112443. [PMID: 34329744]
  • Long Wang, Fang Pan, Tao Luo. Sinapic Acid Attenuates Rheumatoid Arthritis Through Reducing Inflammation and Oxidative Stress by Downregulating IκB Kinase. Journal of interferon & cytokine research : the official journal of the International Society for Interferon and Cytokine Research. 2021 09; 41(9):347-354. doi: 10.1089/jir.2021.0044. [PMID: 34543128]
  • Olamide Fadairo, Ruchira Nandasiri, Adeola M Alashi, N A Michael Eskin, Usha Thiyam-Höllander. Air frying pretreatment and the recovery of lipophilic sinapates from the oil fraction of mustard samples. Journal of food science. 2021 Sep; 86(9):3810-3823. doi: 10.1111/1750-3841.15861. [PMID: 34342008]
  • Velid Unsal, Engin Kolukcu, Fikret Gevrek, Fatih Firat. Sinapic acid reduces ischemia/reperfusion injury due to testicular torsion/detorsion in rats. Andrologia. 2021 Sep; 53(8):e14117. doi: 10.1111/and.14117. [PMID: 34081348]
  • Zongyuan Wu, Bangfu Wu, Xin Lv, Ya Xie, Shuling Xu, Congcong Ma, Jiqu Xu, Xinghao Tu, Fang Wei, Hong Chen. Serumal Lipidomics Reveals the Anti-inflammatory Effect of Flax Lignans and Sinapic Acid in High-Fat-Diet-Fed Mice. Journal of agricultural and food chemistry. 2021 Aug; 69(32):9111-9123. doi: 10.1021/acs.jafc.0c07291. [PMID: 33427466]
  • Takahiro Mori, Kiyofumi Wanibuchi, Hiroyuki Morita, Ikuro Abe. Amide Bond Formation Using 4-Coumarate: CoA Ligase from Arabidopsis thaliana. Chemical & pharmaceutical bulletin. 2021 Aug; 69(8):717-720. doi: 10.1248/cpb.c21-00404. [PMID: 34053981]
  • Atsuhiro Iguchi, Shigesaburo Ogawa, Yukihiro Yamamoto, Setsuko Hara. Facile Preparation of Purified Sinapate Ethyl Ester from Rapeseed Meal Extracts Using Cation-exchange Resin in Dual Role as Adsorber and Catalyst. Journal of oleo science. 2021 Jul; 70(7):1007-1012. doi: 10.5650/jos.ess21036. [PMID: 34121031]
  • Haiyan Li, Yunxiang Ma, Xudong Gao, Guopeng Chen, Zhipeng Wang. Probing the structure-antioxidant activity relationships of four cinnamic acids porous starch esters. Carbohydrate polymers. 2021 Mar; 256(?):117428. doi: 10.1016/j.carbpol.2020.117428. [PMID: 33483017]
  • Mushtaq Ahmad Ansari, Mohammad Raish, Yousef A Bin Jardan, Ajaz Ahmad, Mudassar Shahid, Sheikh Fayaz Ahmad, Nazrul Haq, Mohammad Rashid Khan, Saleh A Bakheet. Sinapic acid ameliorates D-galactosamine/lipopolysaccharide-induced fulminant hepatitis in rats: Role of nuclear factor erythroid-related factor 2/heme oxygenase-1 pathways. World journal of gastroenterology. 2021 Feb; 27(7):592-608. doi: 10.3748/wjg.v27.i7.592. [PMID: 33642831]
  • Morad Chadni, Amandine L Flourat, Valentin Reungoat, Louis M M Mouterde, Florent Allais, Irina Ioannou. Selective Extraction of Sinapic Acid Derivatives from Mustard Seed Meal by Acting on pH: Toward a High Antioxidant Activity Rich Extract. Molecules (Basel, Switzerland). 2021 Jan; 26(1):. doi: 10.3390/molecules26010212. [PMID: 33401641]
  • P Stanely Mainzen Prince, Pinaki Dey, S J Roy. Sinapic acid safeguards cardiac mitochondria from damage in isoproterenol-induced myocardial infarcted rats. Journal of biochemical and molecular toxicology. 2020 Oct; 34(10):e22556. doi: 10.1002/jbt.22556. [PMID: 32627257]
  • Julia Wohl, Maike Petersen. Phenolic metabolism in the hornwort Anthoceros agrestis: 4-coumarate CoA ligase and 4-hydroxybenzoate CoA ligase. Plant cell reports. 2020 Sep; 39(9):1129-1141. doi: 10.1007/s00299-020-02552-w. [PMID: 32405654]
  • Monika Anna Olszewska, Sebastian Granica, Joanna Kolodziejczyk-Czepas, Anna Magiera, Monika Ewa Czerwińska, Pawel Nowak, Magdalena Rutkowska, Piotr Wasiński, Aleksandra Owczarek. Variability of sinapic acid derivatives during germination and their contribution to antioxidant and anti-inflammatory effects of broccoli sprouts on human plasma and human peripheral blood mononuclear cells. Food & function. 2020 Aug; 11(8):7231-7244. doi: 10.1039/d0fo01387k. [PMID: 32760968]
  • Seema Zargar, Salman Alamery, Ahmed H Bakheit, Tanveer A Wani. Poziotinib and bovine serum albumin binding characterization and influence of quercetin, rutin, naringenin and sinapic acid on their binding interaction. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy. 2020 Jul; 235(?):118335. doi: 10.1016/j.saa.2020.118335. [PMID: 32278151]
  • Gabriela Boscariol Rasera, Marina Hermenegildo Hilkner, Ruann Janser Soares de Castro. Free and insoluble-bound phenolics: How does the variation of these compounds affect the antioxidant properties of mustard grains during germination?. Food research international (Ottawa, Ont.). 2020 07; 133(?):109115. doi: 10.1016/j.foodres.2020.109115. [PMID: 32466905]
  • Huihui Shen, Xin Tong, Jiehong Yang, Li Yu, Huifen Zhou, Yu Wang, Yu He, Haitong Wan, Chang Li. Biotransformation of natural hydroxycinnamic acids by gut microbiota from normal and cerebral ischemia-reperfusion injured rats: a comparative study. Food & function. 2020 Jun; 11(6):5389-5395. doi: 10.1039/d0fo00775g. [PMID: 32469016]
  • Balwinder Singh, Jatinder Pal Singh, Amritpal Kaur, Narpinder Singh. Phenolic composition, antioxidant potential and health benefits of citrus peel. Food research international (Ottawa, Ont.). 2020 06; 132(?):109114. doi: 10.1016/j.foodres.2020.109114. [PMID: 32331689]
  • Tayse Ferreira Ferreira da Silveira, Letícia Maeda Cajaíba, Leonardo Valentin, Bruno Baréa, Pierre Villeneuve, Inar Alves Castro. Effect of sinapic acid ester derivatives on the oxidative stability of omega-3 fatty acids rich oil-in-water emulsions. Food chemistry. 2020 Mar; 309(?):125586. doi: 10.1016/j.foodchem.2019.125586. [PMID: 31670124]
  • Monir Hossain, Khan Mohammad Imran, Md Shamim Rahman, Dahyeon Yoon, Vignesh Marimuthu, Yong-Sik Kim. Sinapic acid induces the expression of thermogenic signature genes and lipolysis through activation of PKA/CREB signaling in brown adipocytes. BMB reports. 2020 Mar; 53(3):142-147. doi: . [PMID: 31401979]
  • E J Llorent-Martínez, J Ortega-Vidal, A Ruiz-Riaguas, P Ortega-Barrales, M L Fernández-de Córdova. Comparative study of the phytochemical and mineral composition of fresh and cooked broccolini. Food research international (Ottawa, Ont.). 2020 03; 129(?):108798. doi: 10.1016/j.foodres.2019.108798. [PMID: 32036908]
  • Muhammad Ishaq, Arshad Mehmood, Ashfaq Ur Rehman, Oumeddour Dounya Zad, Jiayi Li, Lei Zhao, Chengtao Wang, Imam Hossen, Muhammad Naveed, Yunhe Lian. Antihyperuricemic effect of dietary polyphenol sinapic acid commonly present in various edible food plants. Journal of food biochemistry. 2020 02; 44(2):e13111. doi: 10.1111/jfbc.13111. [PMID: 31849075]
  • In-Seon Bae, Sang Hoon Kim. Sinapic Acid Promotes Browning of 3T3-L1 Adipocytes via p38 MAPK/CREB Pathway. BioMed research international. 2020; 2020(?):5753623. doi: 10.1155/2020/5753623. [PMID: 32351999]
  • Bo Qian, Chengqiang Wang, Zhen Zeng, Yuan Ren, Dayu Li, Jia-Le Song. Ameliorative Effect of Sinapic Acid on Dextran Sodium Sulfate- (DSS-) Induced Ulcerative Colitis in Kunming (KM) Mice. Oxidative medicine and cellular longevity. 2020; 2020(?):8393504. doi: 10.1155/2020/8393504. [PMID: 33312339]
  • Maha A Aldubayan, Amira S Ahmed, Ashraf M Emara, Ahmed A Ahmed, Rehab M Elgharabawy. Sinapic Acid Attenuates Cardiovascular Disorders in Rats by Modulating Reactive Oxygen Species and Angiotensin Receptor Expression. Oxidative medicine and cellular longevity. 2020; 2020(?):1436858. doi: 10.1155/2020/1436858. [PMID: 32765804]
  • Priti Sengupta, Uttam Pal, Prasenjit Mondal, Adity Bose. Multi-spectroscopic and computational evaluation on the binding of sinapic acid and its Cu(II) complex with bovine serum albumin. Food chemistry. 2019 Dec; 301(?):125254. doi: 10.1016/j.foodchem.2019.125254. [PMID: 31398672]
  • Ruchira Nandasiri, N A Michael Eskin, Usha Thiyam-Höllander. Antioxidative Polyphenols of Canola Meal Extracted by High Pressure: Impact of Temperature and Solvents. Journal of food science. 2019 Nov; 84(11):3117-3128. doi: 10.1111/1750-3841.14799. [PMID: 31663155]
  • Kalimuthu Balagangadharan, Ritu Trivedi, Mariappanadar Vairamani, Nagarajan Selvamurugan. Sinapic acid-loaded chitosan nanoparticles in polycaprolactone electrospun fibers for bone regeneration in vitro and in vivo. Carbohydrate polymers. 2019 Jul; 216(?):1-16. doi: 10.1016/j.carbpol.2019.04.002. [PMID: 31047045]
  • Hyemin Choi, Dabin Lee, Yeoseon Kim, Huu-Quang Nguyen, Sol Han, Jeongkwon Kim. Effects of Matrices and Additives on Multiple Charge Formation of Proteins in MALDI-MS Analysis. Journal of the American Society for Mass Spectrometry. 2019 Jul; 30(7):1174-1178. doi: 10.1007/s13361-019-02213-7. [PMID: 31044356]
  • Mohammad Raish, Ajaz Ahmad, Mushtaq Ahmad Ansari, Khalid M Alkharfy, Abdul Ahad, Fahad I Al-Jenoobi, Abdullah M Al-Mohizea, Altaf Khan, Naushad Ali. Effects of sinapic acid on hepatic cytochrome P450 3A2, 2C11, and intestinal P-glycoprotein on the pharmacokinetics of oral carbamazepine in rats: Potential food/herb-drug interaction. Epilepsy research. 2019 07; 153(?):14-18. doi: 10.1016/j.eplepsyres.2019.03.012. [PMID: 30927680]
  • Natalia Mikołajczak, Małgorzata Tańska, Iwona Konopka. Impact of the addition of 4-vinyl-derivatives of ferulic and sinapic acids on retention of fatty acids and terpenoids in cold-pressed rapeseed and flaxseed oils during the induction period of oxidation. Food chemistry. 2019 Apr; 278(?):119-126. doi: 10.1016/j.foodchem.2018.11.001. [PMID: 30583352]
  • Maria Zych, Weronika Wojnar, Sławomir Dudek, Ilona Kaczmarczyk-Sedlak. Rosmarinic and Sinapic Acids May Increase the Content of Reduced Glutathione in the Lenses of Estrogen-Deficient Rats. Nutrients. 2019 Apr; 11(4):. doi: 10.3390/nu11040803. [PMID: 30970573]
  • J William Allwood, Yun Xu, Pilar Martinez-Martin, Raphaёlle Palau, Alexander Cowan, Royston Goodacre, Athole Marshall, Derek Stewart, Catherine Howarth. Rapid UHPLC-MS metabolite profiling and phenotypic assays reveal genotypic impacts of nitrogen supplementation in oats. Metabolomics : Official journal of the Metabolomic Society. 2019 03; 15(3):42. doi: 10.1007/s11306-019-1501-x. [PMID: 30868357]
  • Zhangpei Zhu, Jiajia Shen, Dawei Wang, Chong Chen, Yangfan Xu, Huimin Guo, Dian Kang, Naoki Hamada, Jing Dong, Guangji Wang, Yan Liang. An auxiliary matrix for routine analysis of small molecules and biological macromolecules using matrix-assisted laser desorption ionization mass spectrometry. Analytical and bioanalytical chemistry. 2019 Feb; 411(5):1041-1052. doi: 10.1007/s00216-018-1532-6. [PMID: 30613842]
  • Cristiane Rodrigues S Câmara, Qinyin Shi, Matthew Pedersen, Richard Zbasnik, Kenneth W Nickerson, Vicki Schlegel. Histone acetylation increases in response to ferulic, gallic, and sinapic acids acting synergistically in vitro to inhibit Candida albicans yeast-to-hyphae transition. Phytotherapy research : PTR. 2019 Feb; 33(2):319-326. doi: 10.1002/ptr.6222. [PMID: 30375074]
  • Chen Yang, Qianchun Deng, Jiqu Xu, Xu Wang, Chao Hu, Hu Tang, Fenghong Huang. Sinapic acid and resveratrol alleviate oxidative stress with modulation of gut microbiota in high-fat diet-fed rats. Food research international (Ottawa, Ont.). 2019 02; 116(?):1202-1211. doi: 10.1016/j.foodres.2018.10.003. [PMID: 30716907]
  • Mohammad Raish, Ajaz Ahmad, Mushtaq Ahmad Ansari, Khalid M Alkharfy, Abdul Ahad, Altaf Khan, Fahad I Aljenobi, Naushad Ali, Abdullah M Al-Mohizea. Effect of sinapic acid on aripiprazole pharmacokinetics in rats: Possible food drug interaction. Journal of food and drug analysis. 2019 01; 27(1):332-338. doi: 10.1016/j.jfda.2018.06.002. [PMID: 30648588]
  • Neda Martinović, Helena Abramovič, Nataša Poklar Ulrih. Inhibition of copper-induced lipid peroxidation by sinapic acid and its derivatives in correlation to their effect on the membrane structural properties. Biochimica et biophysica acta. Biomembranes. 2019 01; 1861(1):1-8. doi: 10.1016/j.bbamem.2018.10.008. [PMID: 30326200]
  • Sayeh Sinichi, Ana Victoria Legorreta Siañez, Levente L Diosady. Recovery of phenolic compounds from the by-products of yellow mustard protein isolation. Food research international (Ottawa, Ont.). 2019 01; 115(?):460-466. doi: 10.1016/j.foodres.2018.10.047. [PMID: 30599965]
  • Sheng Fang, Fubin Lin, Daofeng Qu, Xianrui Liang, Liping Wang. Characterization of Purified Red Cabbage Anthocyanins: Improvement in HPLC Separation and Protective Effect against H₂O₂-Induced Oxidative Stress in HepG2 Cells. Molecules (Basel, Switzerland). 2018 Dec; 24(1):. doi: 10.3390/molecules24010124. [PMID: 30602654]
  • Mohammad Raish, Ajaz Ahmad, Mushtaq Ahmad Ansari, Abdul Ahad, Fahad I Al-Jenoobi, Abdullah M Al-Mohizea, Altaf Khan, Naushad Ali. Sinapic acid ameliorates bleomycin-induced lung fibrosis in rats. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2018 Dec; 108(?):224-231. doi: 10.1016/j.biopha.2018.09.032. [PMID: 30219680]
  • Aleksander Siger, Marzena Gawrysiak-Witulska, Jolanta Wawrzyniak. Changes in contents of phenolic compounds (sinapic acid derivatives) in seeds of Brassica napus L.under adverse storage conditions. Acta scientiarum polonorum. Technologia alimentaria. 2018 Oct; 17(4):367-375. doi: 10.17306/j.afs.0596. [PMID: 30558393]
  • Lucia Giorgetti, Gianluca Giorgi, Edoardo Cherubini, Pier Giovanni Gervasi, Clara Maria Della Croce, Vincenzo Longo, Lorenza Bellani. Screening and identification of major phytochemical compounds in seeds, sprouts and leaves of Tuscan black kale Brassica oleracea (L.) ssp acephala (DC) var. sabellica L. Natural product research. 2018 Jul; 32(14):1617-1626. doi: 10.1080/14786419.2017.1392953. [PMID: 29058468]
  • Lianzhu Lin, Qingyun Yang, Kun Zhao, Mouming Zhao. Identification of the free phenolic profile of Adlay bran by UPLC-QTOF-MS/MS and inhibitory mechanisms of phenolic acids against xanthine oxidase. Food chemistry. 2018 Jul; 253(?):108-118. doi: 10.1016/j.foodchem.2018.01.139. [PMID: 29502809]
  • Talita A Comunian, Marina Nogueira, Bianca Scolaro, Marcelo Thomazini, Roselayne Ferro-Furtado, Inar Alves de Castro, Carmen S Favaro-Trindade. Enhancing stability of echium seed oil and beta-sitosterol by their coencapsulation by complex coacervation using different combinations of wall materials and crosslinkers. Food chemistry. 2018 Jun; 252(?):277-284. doi: 10.1016/j.foodchem.2018.01.121. [PMID: 29478542]
  • P M Pradeep, Yadahally N Sreerama. Phenolic antioxidants of foxtail and little millet cultivars and their inhibitory effects on α-amylase and α-glucosidase activities. Food chemistry. 2018 May; 247(?):46-55. doi: 10.1016/j.foodchem.2017.11.103. [PMID: 29277227]
  • Małgorzata Tańska, Natalia Mikołajczak, Iwona Konopka. Comparison of the effect of sinapic and ferulic acids derivatives (4-vinylsyringol vs. 4-vinylguaiacol) as antioxidants of rapeseed, flaxseed, and extra virgin olive oils. Food chemistry. 2018 Feb; 240(?):679-685. doi: 10.1016/j.foodchem.2017.08.007. [PMID: 28946329]
  • Yong Han, Hong Qiu, Xing Pei, Yigang Fan, Hongyan Tian, Jie Geng. Low-dose Sinapic Acid Abates the Pyroptosis of Macrophages by Downregulation of lncRNA-MALAT1 in Rats With Diabetic Atherosclerosis. Journal of cardiovascular pharmacology. 2018 02; 71(2):104-112. doi: 10.1097/fjc.0000000000000550. [PMID: 29095793]
  • Rana M F Hussain, Hye K Kim, Muhammad Khurshid, Muhammad T Akhtar, Huub J M Linthorst. Overexpression of AtWRKY50 is correlated with enhanced production of sinapic derivatives in Arabidopsis. Metabolomics : Official journal of the Metabolomic Society. 2018 01; 14(3):25. doi: 10.1007/s11306-018-1317-0. [PMID: 30830336]
  • M D Horbury, A L Flourat, S E Greenough, F Allais, V G Stavros. Investigating isomer specific photoprotection in a model plant sunscreen. Chemical communications (Cambridge, England). 2018 Jan; 54(8):936-939. doi: 10.1039/c7cc09061g. [PMID: 29318223]
  • Hannah M Tetreault, Erin D Scully, Tammy Gries, Nathan A Palmer, Deanna L Funnell-Harris, Lisa Baird, Javier Seravalli, Bruce S Dien, Gautam Sarath, Thomas E Clemente, Scott E Sattler. Overexpression of the Sorghum bicolor SbCCoAOMT alters cell wall associated hydroxycinnamoyl groups. PloS one. 2018; 13(10):e0204153. doi: 10.1371/journal.pone.0204153. [PMID: 30289910]
  • Yanli Li, Tong He, Rong Liang, Zhengzhe Luo, Yuanbo Zhu, Cheng Yang. Preparation and properties of multifunctional sinapic acid corn bran arabinoxylan esters. International journal of biological macromolecules. 2018 Jan; 106(?):1279-1287. doi: 10.1016/j.ijbiomac.2017.08.137. [PMID: 28855131]
  • Maria Zych, Ilona Kaczmarczyk-Sedlak, Weronika Wojnar, Joanna Folwarczna. The Effects of Sinapic Acid on the Development of Metabolic Disorders Induced by Estrogen Deficiency in Rats. Oxidative medicine and cellular longevity. 2018; 2018(?):9274246. doi: 10.1155/2018/9274246. [PMID: 29967666]
  • Meike Siebers, Thomas Rohr, Marina Ventura, Vadim Schütz, Stephan Thies, Filip Kovacic, Karl-Erich Jaeger, Martin Berg, Peter Dörmann, Margot Schulz. Disruption of microbial community composition and identification of plant growth promoting microorganisms after exposure of soil to rapeseed-derived glucosinolates. PloS one. 2018; 13(7):e0200160. doi: 10.1371/journal.pone.0200160. [PMID: 29969500]
  • Anela Topcagic, Sanja Cavar Zeljkovic, Erna Karalija, Semira Galijasevic, Emin Sofic. Evaluation of phenolic profile, enzyme inhibitory and antimicrobial activities of Nigella sativa L. seed extracts. Bosnian journal of basic medical sciences. 2017 Nov; 17(4):286-294. doi: 10.17305/bjbms.2017.2049. [PMID: 28590231]
  • Yuan Gao, Shuai Ma, Meng Wang, Xiao-Yuan Feng. Characterization of Free, Conjugated, and Bound Phenolic Acids in Seven Commonly Consumed Vegetables. Molecules (Basel, Switzerland). 2017 Nov; 22(11):. doi: 10.3390/molecules22111878. [PMID: 29104269]
  • Mushtaq Ahmad Ansari. Sinapic acid modulates Nrf2/HO-1 signaling pathway in cisplatin-induced nephrotoxicity in rats. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2017 Sep; 93(?):646-653. doi: 10.1016/j.biopha.2017.06.085. [PMID: 28686978]
  • Tomasz Kulik, Kinga Stuper-Szablewska, Katarzyna Bilska, Maciej Buśko, Anna Ostrowska-Kołodziejczak, Dariusz Załuski, Juliusz Perkowski. Sinapic Acid Affects Phenolic and Trichothecene Profiles of F. culmorum and F. graminearum Sensu Stricto. Toxins. 2017 08; 9(9):. doi: 10.3390/toxins9090264. [PMID: 28846647]
  • Leah Quinn, Steven G Gray, Steve Meaney, Stephen Finn, Padraig McLoughlin, Maria Hayes. Extraction and Quantification of Sinapinic Acid from Irish Rapeseed Meal and Assessment of Angiotensin-I Converting Enzyme (ACE-I) Inhibitory Activity. Journal of agricultural and food chemistry. 2017 Aug; 65(32):6886-6892. doi: 10.1021/acs.jafc.7b02670. [PMID: 28748695]
  • Lalita Subedi, Ramu Venkatesan, Sun Yeou Kim. Neuroprotective and Anti-Inflammatory Activities of Allyl Isothiocyanate through Attenuation of JNK/NF-κB/TNF-α Signaling. International journal of molecular sciences. 2017 Jul; 18(7):. doi: 10.3390/ijms18071423. [PMID: 28671636]
  • Sonia Losada-Barreiro, Carlos Bravo-Díaz. Free radicals and polyphenols: The redox chemistry of neurodegenerative diseases. European journal of medicinal chemistry. 2017 Jun; 133(?):379-402. doi: 10.1016/j.ejmech.2017.03.061. [PMID: 28415050]
  • Baodi Bi, Jingliang Tang, Shuang Han, Jinggong Guo, Yuchen Miao. Sinapic acid or its derivatives interfere with abscisic acid homeostasis during Arabidopsis thaliana seed germination. BMC plant biology. 2017 06; 17(1):99. doi: 10.1186/s12870-017-1048-9. [PMID: 28587634]
  • Nan Wang, Pei Sun, Mingming Lv, Gangsheng Tong, Xin Jin, Xinyuan Zhu. Mustard-inspired delivery shuttle for enhanced blood-brain barrier penetration and effective drug delivery in glioma therapy. Biomaterials science. 2017 May; 5(5):1041-1050. doi: 10.1039/c7bm00133a. [PMID: 28378865]
  • Mushtaq Ahmad Ansari, Mohammad Raish, Ajaz Ahmad, Khalid M Alkharfy, Sheikh Fayaz Ahmad, Sabry M Attia, Abdulaziz M S Alsaad, Saleh A Bakheet. Sinapic acid ameliorate cadmium-induced nephrotoxicity: In vivo possible involvement of oxidative stress, apoptosis, and inflammation via NF-κB downregulation. Environmental toxicology and pharmacology. 2017 Apr; 51(?):100-107. doi: 10.1016/j.etap.2017.02.014. [PMID: 28233699]
  • Fang Liu, Likai Du, Zhenggang Lan, Jun Gao. Hydrogen bond dynamics governs the effective photoprotection mechanism of plant phenolic sunscreens. Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology. 2017 02; 16(2):211-219. doi: 10.1039/c6pp00367b. [PMID: 27982141]
  • Jun Shigeto, Yukie Ueda, Shinya Sasaki, Koki Fujita, Yuji Tsutsumi. Enzymatic activities for lignin monomer intermediates highlight the biosynthetic pathway of syringyl monomers in Robinia pseudoacacia. Journal of plant research. 2017 Jan; 130(1):203-210. doi: 10.1007/s10265-016-0882-4. [PMID: 27888422]
  • Mushtaq Ahmad Ansari, Mohammad Raish, Ajaz Ahmad, Sheikh Fayaz Ahmad, Shahid Mudassar, Kazi Mohsin, Faiyaz Shakeel, Hesham M Korashy, Saleh A Bakheet. Sinapic acid mitigates gentamicin-induced nephrotoxicity and associated oxidative/nitrosative stress, apoptosis, and inflammation in rats. Life sciences. 2016 Nov; 165(?):1-8. doi: 10.1016/j.lfs.2016.09.014. [PMID: 27664833]
  • Talita A Comunian, Joaquin Gomez-Estaca, Roselayne Ferro-Furtado, Gelson José Andrade Conceição, Izabel Cristina Freitas Moraes, Inar Alves de Castro, Carmen S Favaro-Trindade. Effect of different polysaccharides and crosslinkers on echium oil microcapsules. Carbohydrate polymers. 2016 Oct; 150(?):319-29. doi: 10.1016/j.carbpol.2016.05.044. [PMID: 27312643]
  • Jung-Ah Shin, Mi-Young Lee, Ki-Teak Lee. Oxidation Stability of O/W Emulsion Prepared with Linolenic Acid Enriched Diacylglycerol. Journal of food science. 2016 Oct; 81(10):C2373-C2380. doi: 10.1111/1750-3841.13421. [PMID: 27627797]
  • Jana Beinhauer, Martin Raus, Alena Hanzalová, Pavel Horčička, Marek Šebela. Intact spore MALDI-TOF mass spectrometry and proteomic analysis of Puccinia pathogenic fungi. Biochimica et biophysica acta. 2016 09; 1864(9):1093-1103. doi: 10.1016/j.bbapap.2016.06.002. [PMID: 27267623]
  • Eduardo Hernández-Vázquez, Sandybel Salgado-Barrera, Juan José Ramírez-Espinosa, Samuel Estrada-Soto, Francisco Hernández-Luis. Synthesis and molecular docking of N'-arylidene-5-(4-chlorophenyl)-1-(3,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carbohydrazides as novel hypoglycemic and antioxidant dual agents. Bioorganic & medicinal chemistry. 2016 05; 24(10):2298-306. doi: 10.1016/j.bmc.2016.04.007. [PMID: 27079123]
  • Gi-Un Seong, In-Wook Hwang, Shin-Kyo Chung. Antioxidant capacities and polyphenolics of Chinese cabbage (Brassica rapa L. ssp. Pekinensis) leaves. Food chemistry. 2016 May; 199(?):612-8. doi: 10.1016/j.foodchem.2015.12.066. [PMID: 26776015]
  • Thangarasu Silambarasan, Jeganathan Manivannan, Boobalan Raja, Suvro Chatterjee. Prevention of cardiac dysfunction, kidney fibrosis and lipid metabolic alterations in l-NAME hypertensive rats by sinapic acid--Role of HMG-CoA reductase. European journal of pharmacology. 2016 Apr; 777(?):113-23. doi: 10.1016/j.ejphar.2016.03.004. [PMID: 26945821]
  • Karina Hettwer, Christoph Böttcher, Andrej Frolov, Juliane Mittasch, Andreas Albert, Edda von Roepenack-Lahaye, Dieter Strack, Carsten Milkowski. Dynamic metabolic changes in seeds and seedlings of Brassica napus (oilseed rape) suppressing UGT84A9 reveal plasticity and molecular regulation of the phenylpropanoid pathway. Phytochemistry. 2016 Apr; 124(?):46-57. doi: 10.1016/j.phytochem.2016.01.014. [PMID: 26833384]
  • Lewis A Baker, Michael D Horbury, Simon E Greenough, Florent Allais, Patrick S Walsh, Scott Habershon, Vasilios G Stavros. Ultrafast Photoprotecting Sunscreens in Natural Plants. The journal of physical chemistry letters. 2016 Jan; 7(1):56-61. doi: 10.1021/acs.jpclett.5b02474. [PMID: 26654715]
  • Yanzhou Zhang, Xunhang Li, Zhikui Hao, Ruchun Xi, Yujie Cai, Xiangru Liao. Hydrogen Peroxide-Resistant CotA and YjqC of Bacillus altitudinis Spores Are a Promising Biocatalyst for Catalyzing Reduction of Sinapic Acid and Sinapine in Rapeseed Meal. PloS one. 2016; 11(6):e0158351. doi: 10.1371/journal.pone.0158351. [PMID: 27362423]
  • Yi-Yun Chen, Zhi-Sheng Xu, Ai-Sheng Xiong. Identification and Characterization of DcUSAGT1, a UDP-Glucose: Sinapic Acid Glucosyltransferase from Purple Carrot Taproots. PloS one. 2016; 11(5):e0154938. doi: 10.1371/journal.pone.0154938. [PMID: 27171142]
  • Hanaka Komori, Riho Hashizaki, Issey Osaka, Takao Hibi, Hajime Katano, Shu Taira. Nanoparticle-assisted laser desorption/ionization using sinapic acid-modified iron oxide nanoparticles for mass spectrometry analysis. The Analyst. 2015 Dec; 140(24):8134-7. doi: 10.1039/c5an02081f. [PMID: 26535417]
  • Anna Gramza-Michałowska, Andrzej Sidor, Julita Reguła, Bartosz Kulczyński. PCL assay application in superoxide anion-radical scavenging capacity of tea Camellia sinensis extracts. Acta scientiarum polonorum. Technologia alimentaria. 2015 Oct; 14(4):331-341. doi: 10.17306/j.afs.2015.4.33. [PMID: 28068039]
  • Aleksandra Szydłowska-Czerniak, Agnieszka Tułodziecka, György Karlovits, Edward Szłyk. Optimisation of ultrasound-assisted extraction of natural antioxidants from mustard seed cultivars. Journal of the science of food and agriculture. 2015 May; 95(7):1445-53. doi: 10.1002/jsfa.6840. [PMID: 25060714]
  • Jiří Grúz, Jiří Pospíšil, Hana Kozubíková, Tomáš Pospíšil, Karel Doležal, Mirko Bunzel, Miroslav Strnad. Determination of free diferulic, disinapic and dicoumaric acids in plants and foods. Food chemistry. 2015 Mar; 171(?):280-6. doi: 10.1016/j.foodchem.2014.08.131. [PMID: 25308670]
  • Kobra Zare, Akram Eidi, Mehrdad Roghani, Ali Haeri Rohani. The neuroprotective potential of sinapic acid in the 6-hydroxydopamine-induced hemi-parkinsonian rat. Metabolic brain disease. 2015 Feb; 30(1):205-13. doi: 10.1007/s11011-014-9604-6. [PMID: 25123753]