PC(16:0/16:0) (BioDeep_00000018527)

 

Secondary id: BioDeep_00000173767, BioDeep_00000397633, BioDeep_00000410741, BioDeep_00000411534, BioDeep_00001871364

human metabolite Endogenous blood metabolite PANOMIX LipidSearch LipidSearch


代谢物信息卡片


(R)-4-Hydroxy-N,N,N-trimethyl-10-oxo-7-[(1-oxohexadecyl)oxy]-3,5,9-trioxa-4-phosphapentacosan-1-aminium 4-oxide hydroxide inner salt

化学式: C40H80NO8P (733.562125)
中文名称: 1,2-二棕榈酰-sn-甘油-3-磷酰胆碱, 1,2-二棕榈酰-rac-甘油-3-磷酸胆碱
谱图信息: 最多检出来源 Homo sapiens(blood) 0.01%

分子结构信息

SMILES: CCCCCCCCCCCCCCCC(=O)OCC(COP(=O)([O-])OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCCCC
InChI: InChI=1S/C40H80NO8P/c1-6-8-10-12-14-16-18-20-22-24-26-28-30-32-39(42)46-36-38(37-48-50(44,45)47-35-34-41(3,4)5)49-40(43)33-31-29-27-25-23-21-19-17-15-13-11-9-7-2/h38H,6-37H2,1-5H3

描述信息

PC(16:0/16:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(16:0/16:0), in particular, consists of two chains of palmitic acid at the C-1 and C-2 positions. The palmitic acid moieties are derived from fish oils, milk fats, vegetable oils and animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Dipalmitoylphosphatidylcholine (DPPC) is the major constituent of pulmonary surfactant. It is also used for research purposes in studying liposomes, lipid bilayers, and model biological membranes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.
PC(16:0/16:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(16:0/16:0), in particular, consists of two chains of palmitic acid at the C-1 and C-2 positions. The palmitic acid moieties are derived from fish oils, milk fats, vegetable oils and animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Dipalmitoylphosphatidylcholine (DPPC) is the major constituent of pulmonary surfactant. It is also used for research purposes in studying liposomes, lipid bilayers, and model biological membranes.
R - Respiratory system > R07 - Other respiratory system products > R07A - Other respiratory system products > R07AA - Lung surfactants
C78273 - Agent Affecting Respiratory System
DPPC (129Y83) is a zwitterionic phosphoglyceride that can be used for the preparation of liposomal monolayers[1]. DPPC-liposome serves effectively as a delivery vehicle for inducing immune responses against GSL antigen in mice[2].

同义名列表

90 个代谢物同义名

(R)-4-Hydroxy-N,N,N-trimethyl-10-oxo-7-[(1-oxohexadecyl)oxy]-3,5,9-trioxa-4-phosphapentacosan-1-aminium 4-oxide hydroxide inner salt; (R)-4-Hydroxy-N,N,N-trimethyl-10-oxo-7-[(1-oxohexadecyl)oxy]-3,5,9-trioxa-4-phosphapentacosan-1-aminium 4-oxide inner salt; (2-{[(2R)-2,3-bis(hexadecanoyloxy)propyl phosphono]oxy}ethyl)trimethylazanium; 1,2-Dihexadecanoyl-sn-glycerol-3-phosphorylcholine; 1,2-Bis(hexadecanoyl)-sn-glycero-3-phosphocholine; 1,2-Dipalmitoyl-sn-glycero-3-phosphatidylcholine; 1,2-DIHEXADECANOYL-RAC-GLYCERO-3-PHOSPHOCHOLINE; 1,2-Bis(palmitoyl)-sn-glycero-3-phosphocholine; 1,2-Dipalmitoyl-sn-glycero-3-phosphorylcholine; 1,2-Dipalmitoyl-rac-glycero-3-phosphocholine; 1,2-Dipalmitoyl-sn-glyceryl-3-phosphocholine; 1,2-Dipalmitoyl-sn-glycerol-3-phosphocholine; 1,2-Dipalmitoyl-L-alpha-phosphatidylcholine; 1,2-Dipalmitoyl-sn-glycerophosphorylcholine; 1,2-dipalmitoyl-sn-glycero-3-phosphocholine; L-b,g-Dipalmitoyl-alpha-phosphatidylcholine; b,g-Dipalmitoyl L-alpha-phosphatidylcholine; 1,2-Dipalmitoyl-sn-3-glycerophosphocholine; Dihexadecanoyl-sn-glycero-3-phosphocholine; 1,2-L-alpha-Dipalmitoylphosphatidylcholine; Dipalmitoyl-L-3-glycerylphosphorylcholine; 1,2-Dipalmitoyl-sn-glycerophosphocholine; 1,2-Dipalmitoyl-3-sn-phosphatidylcholine; Dipalmitoyl L-alpha-phosphatidylcholine; b,g-Dipalmitoyl L-a-phosphatidylcholine; 1,2-Dipalmitoylglycero-3-phosphocholine; 1,2-Dipalmitoyl-L-a-phosphatidylcholine; L-b,g-Dipalmitoyl-a-phosphatidylcholine; 1,2-Dipalmitoyl-L-3-phosphatidylcholine; Dipalmitoyl-L-alpha-phosphatidylcholine; L-alpha-Dipalmitoylphosphatidylcholine; 1,2-Dipalmitoyl-sn-phosphatidylcholine; 1,2-L-a-Dipalmitoylphosphatidylcholine; b,g-Dipalmitoyl-L-phosphatidylcholine; 1,2-Dipalmitoyl-L-phosphatidylcholine; L-1,2-Dipalmitoylphosphatidylcholine; Dipalmitoyl-sn-3-phosphatidylcholine; L-b,g-Dipalmitoylphosphatidylcholine; Dipalmitoyl-L-a-phosphatidylcholine; Dipalmitoyl L-a-phosphatidylcholine; L-a-Dipalmitoylphosphatidylcholine; 1,2-Dipalmitoylphosphatidylcholine; 1-16:0-2-16:0-Phosphatidylcholine; DL-Dipalmitoylphosphatidylcholine; L-b,g-Dipalmitoyl-alpha-lecithin; L-1,2-Dipalmitoyl-alpha-lecithin; L-alpha-1,2-Dipalmitoyl lecithin; 1,2-Dipalmitoyl-L-alpha-lecithin; Dipalmitoyl phosphatidylcholine; Phosphatidylcholine(16:0/16:0); Dipalmitoylphosphatidylcholine; b,g-Dipalmitoyl-L-(a)-lecithin; Phosphatidylcholine 16:0/16:0; L-b,g-Dipalmitoyl-a-lecithin; Dipalmitoyl-L-alpha-lecithin; L-1,2-Dipalmitoyl-a-lecithin; L-a-1,2-Dipalmitoyl lecithin; Palmitic acid de colfosceril; 1,2-Dipalmitoyl-L-a-lecithin; L-alpha-Dipalmitoyllecithin; L-alpha-Dipalmitoylecithin; 1,2-Dipalmitoyl-L-lecithin; Colfosceril palmitic acid; Palmitato de colfoscerilo; Phosphatidylcholine(32:0); sn-3-Dipalmitoyllecithin; Dipalmitoyl-L-a-lecithin; Palmitate de colfosceril; L-a-Dipalmitoyllecithin; L-Dipalmitoyl lecithin; L-a-Dipalmitoylecithin; Colfoscerili palmitas; Colfosceril palmitate; 1,2-Dipalmitoyl-GPC; GPCho(16:0/16:0); GPCho 16:0/16:0; Dipalmitoyl-GPC; GPC(16:0/16:0); PC(16:0/16:0); PC 16:0/16:0; L-alpha-DPPC; 16:0-16:0-PC; PC Aa C32:0; GPCho(32:0); L-a-DPPC; PC(32:0); Lecithin; L-DPPC; DPPC; 129Y83



数据库引用编号

16 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

120 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(3)

WikiPathways(1)

Plant Reactome(0)

INOH(0)

PlantCyc(95)

COVID-19 Disease Map(0)

PathBank(21)

PharmGKB(0)

7 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Hong Zhuang, Xiaoliang Zhang, Sijia Wu, Chen Mao, Yaxi Dai, Pang Yong, Xiaodi Niu. Study transport of hesperidin based on the DPPC lipid model and the BSA transport model. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy. 2024 Jun; 314(?):124172. doi: 10.1016/j.saa.2024.124172. [PMID: 38513316]
  • María A Brandan, Hugo A Pérez, Aníbal Disalvo, María de Los A Frías. Interaction of L-phenylalanine with carbonyl groups in mixed lipid membranes. Biochimica et biophysica acta. Biomembranes. 2024 Jun; 1866(5):184328. doi: 10.1016/j.bbamem.2024.184328. [PMID: 38688404]
  • Alexa Guglielmelli, Caterina M Tone, Eleonora Ragozzino, Federica Ciuchi, Rosa Bartucci. Cholesterol drives enantiospecific effects of ibuprofen in biomimetic membranes. Biochimica et biophysica acta. Biomembranes. 2024 Jun; 1866(5):184334. doi: 10.1016/j.bbamem.2024.184334. [PMID: 38744417]
  • Hanna Orlikowska-Rzeznik, Jan Versluis, Huib J Bakker, Lukasz Piatkowski. Cholesterol Changes Interfacial Water Alignment in Model Cell Membranes. Journal of the American Chemical Society. 2024 May; 146(19):13151-13162. doi: 10.1021/jacs.4c00474. [PMID: 38687869]
  • Yuanqing Gu, Björn M Reinhard. Membrane fluidity properties of lipid-coated polylactic acid nanoparticles. Nanoscale. 2024 May; 16(17):8533-8545. doi: 10.1039/d3nr06464f. [PMID: 38595322]
  • Sijia Wu, Ping Jiang, Xiaoliang Zhang, Chen Mao, Yaxi Dai, Hong Zhuang, Yong Pang. Understanding the Transepithelial Transport and Transbilayer Diffusion of the Antihypertensive Peptide Asn-Cys-Trp: Insights from Caco-2 Cell Monolayers and the DPPC Model Membrane. Journal of agricultural and food chemistry. 2024 May; 72(17):9828-9841. doi: 10.1021/acs.jafc.4c00155. [PMID: 38639269]
  • Vineet Gunwant, Preeti Gahtori, Srinivasa Rao Varanasi, Ravindra Pandey. Protein-Mediated Changes in Membrane Fluidity and Ordering: Insights into the Molecular Mechanism and Implications for Cellular Function. The journal of physical chemistry letters. 2024 Apr; 15(16):4408-4415. doi: 10.1021/acs.jpclett.3c03627. [PMID: 38625684]
  • Ravindar Chinapaka, Dokku Sivaramakrishna, Suman Kumar Choudhury, Konga Manasa, Sudheer K Cheppali, Musti J Swamy. Structure, Self-Assembly, and Phase Behavior of Neuroactive N-Acyl GABAs: Doxorubicin Encapsulation in NPGABA/DPPC Liposomes and Release Studies. Langmuir : the ACS journal of surfaces and colloids. 2024 Apr; 40(15):7883-7895. doi: 10.1021/acs.langmuir.3c03615. [PMID: 38587263]
  • Daniel Eckhardt, Enrico F Semeraro, Jessica Steigenberger, Johannes Schnur, Louma Kalie, Ulrich Massing, Georg Pabst, Heiko Heerklotz. Eutectic Resolves Lysolipid Paradox in Thermoresponsive Liposomes. Molecular pharmaceutics. 2024 Apr; 21(4):1768-1776. doi: 10.1021/acs.molpharmaceut.3c01094. [PMID: 38381374]
  • Hiromichi Nakahara, Takato Hiranita, Osamu Shibata. A Sigma1 Receptor Agonist Alters Fluidity and Stability of Lipid Monolayers. Langmuir : the ACS journal of surfaces and colloids. 2024 Mar; 40(12):6484-6492. doi: 10.1021/acs.langmuir.4c00053. [PMID: 38470245]
  • Sophia A Korono, John F Nagle. Closer look at the calorimetric lower transition in lipid bilayers. Chemistry and physics of lipids. 2024 03; 259(?):105366. doi: 10.1016/j.chemphyslip.2023.105366. [PMID: 38081501]
  • Lea Pašalić, Petra Maleš, Ana Čikoš, Barbara Pem, Danijela Bakarić. The rise of FTIR spectroscopy in the characterization of asymmetric lipid membranes. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy. 2024 Jan; 305(?):123488. doi: 10.1016/j.saa.2023.123488. [PMID: 37813090]
  • Heba A Fayyaz, Magda A El-Massik, Mohammed Bahey-El-Din, Amany Abdel-Bary, Ossama Y Abdallah, Hoda M Eltaher. Targeted DPPC/DMPG surface-modified voriconazole lipid nanoparticles control invasive pulmonary aspergillosis in immunocompromised population: in-vitro and in-vivo assessment. International journal of pharmaceutics. 2024 Jan; 649(?):123663. doi: 10.1016/j.ijpharm.2023.123663. [PMID: 38061501]
  • Biplab Roy, Pritam Guha, Chien-Hsiang Chang, Prasant Nahak, Gourab Karmakar, Alexey G Bykov, Alexander V Akentiev, Boris A Noskov, Anuttam Patra, Kunal Dutta, Chandradipa Ghosh, Amiya Kumar Panda. Effect of cationic dendrimer on membrane mimetic systems in the form of monolayer and bilayer. Chemistry and physics of lipids. 2024 01; 258(?):105364. doi: 10.1016/j.chemphyslip.2023.105364. [PMID: 38040405]
  • Alain Bolaño Alvarez, Pablo E A Rodríguez, Gerardo D Fidelio. Interfacial Aβ fibril formation is modulated by the disorder-order state of the lipids: The concept of the physical environment as amyloid inductor in biomembranes. Biochimica et biophysica acta. Biomembranes. 2024 01; 1866(1):184234. doi: 10.1016/j.bbamem.2023.184234. [PMID: 37741307]
  • A G Bykov, M A Panaeva, O Y Milyaeva, A V Michailov, A R Rafikova, E Guzman, R Rubio, R Miller, B A Noskov. Structural changes in layers of lipid mixtures at low surface tensions. Chemistry and physics of lipids. 2024 01; 258(?):105365. doi: 10.1016/j.chemphyslip.2023.105365. [PMID: 38092233]
  • Abhay Kumar, Snehasis Daschakraborty. Anomalous lateral diffusion of lipids during the fluid/gel phase transition of a lipid membrane. Physical chemistry chemical physics : PCCP. 2023 Nov; 25(45):31431-31443. doi: 10.1039/d3cp04081j. [PMID: 37962400]
  • Miguel A Rodrigues, Olga Matsarskaia, Pedro Rego, Vitor Geraldes, Lauren E Connor, Iain D H Oswald, Michael Sztucki, Evgenyi Shalaev. Freeze-Induced Phase Transition and Local Pressure in a Phospholipid/Water System: Novel Insights Were Obtained from a Time/Temperature Resolved Synchrotron X-ray Diffraction Study. Molecular pharmaceutics. 2023 11; 20(11):5790-5799. doi: 10.1021/acs.molpharmaceut.3c00657. [PMID: 37889088]
  • Justyna Kapral-Piotrowska, Jakub W Strawa, Katarzyna Jakimiuk, Adrian Wiater, Michał Tomczyk, Wiesław I Gruszecki, Bożena Pawlikowska-Pawlęga. Investigation of the Membrane Localization and Interaction of Selected Flavonoids by NMR and FTIR Spectroscopy. International journal of molecular sciences. 2023 Oct; 24(20):. doi: 10.3390/ijms242015275. [PMID: 37894955]
  • Zhipeng Yu, Wenhao Ma, Huizhuo Ji, Yue Fan, Wenzhu Zhao. Interaction mechanism of egg derived peptides RVPSL and QIGLF with dipalmitoyl phosphatidylcholine membrane: microcalorimetric and molecular dynamics simulation studies. Journal of the science of food and agriculture. 2023 Oct; 103(13):6383-6393. doi: 10.1002/jsfa.12714. [PMID: 37205773]
  • Salomé Mielke, Raya Sorkin, Jacob Klein. Effect of cholesterol on the mechanical stability of gel-phase phospholipid bilayers studied by AFM force spectroscopy. The European physical journal. E, Soft matter. 2023 Sep; 46(9):77. doi: 10.1140/epje/s10189-023-00338-y. [PMID: 37672138]
  • Nathália Maria Moraes Fernandes, Luciano Caseli, Izilda A Bagatin. Bioinspired nanoarchitectonics at the air-water interface to understand the interaction of lipids with a Europium-coordinated quinoline derivative. Colloids and surfaces. B, Biointerfaces. 2023 Sep; 229(?):113465. doi: 10.1016/j.colsurfb.2023.113465. [PMID: 37490807]
  • C A Menéndez, A R Verde, L M Alarcón, S R Accordino, G A Appignanesi. Influence of docosahexaenoic acid on the interfacial behavior of cholesterol-containing lipid membranes: Interactions with small amphiphiles and hydration properties. Biophysical chemistry. 2023 Aug; 301(?):107081. doi: 10.1016/j.bpc.2023.107081. [PMID: 37542837]
  • Zsófia B Rózsa, György Hantal, Milán Szőri, Balázs Fábián, Pál Jedlovszky. Understanding the Molecular Mechanism of Anesthesia: Effect of General Anesthetics and Structurally Similar Non-Anesthetics on the Properties of Lipid Membranes. The journal of physical chemistry. B. 2023 07; 127(27):6078-6090. doi: 10.1021/acs.jpcb.3c02976. [PMID: 37368412]
  • Lívia Budai, Marianna Budai, Tamás Bozó, Gergely Agócs, Miklós Kellermayer, István Antal. Determination of the Main Phase Transition Temperature of Phospholipids by Oscillatory Rheology. Molecules (Basel, Switzerland). 2023 Jun; 28(13):. doi: 10.3390/molecules28135125. [PMID: 37446784]
  • Katelyn M Duncan, Rhys C Trousdale, Cristina N Gonzales, William H Steel, Robert A Walker. l-Phenylalanine Partitioning Mechanisms in Model Biological Membranes. The journal of physical chemistry. B. 2023 06; 127(25):5633-5644. doi: 10.1021/acs.jpcb.2c08582. [PMID: 37315336]
  • Jorge A Ceballos, Sebastián Jaramillo-Isaza, Juan C Calderón, Paulo B Miranda, Marco A Giraldo. Doxorubicin Interaction with Lipid Monolayers Leads to Decreased Membrane Stiffness when Experiencing Compression-Expansion Dynamics. Langmuir : the ACS journal of surfaces and colloids. 2023 Jun; ?(?):. doi: 10.1021/acs.langmuir.3c00250. [PMID: 37320858]
  • Eri Kumagawa, Yoshiki Yajima, Hiroshi Takahashi. Calorimetric, volumetric and structural studies of the interaction between chlorogenic acid and dipalmitoylphosphatidylcholine bilayers. Biochimica et biophysica acta. Biomembranes. 2023 06; 1865(5):184158. doi: 10.1016/j.bbamem.2023.184158. [PMID: 37094707]
  • Ryugo Tero, Yoshi Hagiwara, Shun Saito. Domain Localization by Graphene Oxide in Supported Lipid Bilayers. International journal of molecular sciences. 2023 Apr; 24(9):. doi: 10.3390/ijms24097999. [PMID: 37175707]
  • Kangdi Sun, Tooba Shoaib, Mark W Rutland, Joseph Beller, Changwoo Do, Rosa M Espinosa-Marzal. Insight into the assembly of lipid-hyaluronan complexes in osteoarthritic conditions. Biointerphases. 2023 04; 18(2):021005. doi: 10.1116/6.0002502. [PMID: 37041102]
  • Alexa Guglielmelli, Rosa Bartucci, Bruno Rizzuti, Giovanna Palermo, Rita Guzzi, Giuseppe Strangi. The interaction of tryptophan enantiomers with model membranes is modulated by polar head type and physical state of phospholipids. Colloids and surfaces. B, Biointerfaces. 2023 Apr; 224(?):113216. doi: 10.1016/j.colsurfb.2023.113216. [PMID: 36848783]
  • Leila Karami. Interaction of neutral and protonated Tamoxifen with the DPPC lipid bilayer using molecular dynamics simulation. Steroids. 2023 Mar; 194(?):109225. doi: 10.1016/j.steroids.2023.109225. [PMID: 36948347]
  • Giulia Elisa G Gonçalves, Samuel Oliveira, Kaio de Souza Gomes, Thais Alves Costa-Silva, Andre Gustavo Tempone, João Henrique Ghilardi Lago, Luciano Caseli. Effect of partial O-methylation in dehydrodieugenol on its antitrypanosomal activity - correlation with the toxicity using cell membrane models. Biophysical chemistry. 2023 Feb; 296(?):106975. doi: 10.1016/j.bpc.2023.106975. [PMID: 36842251]
  • Bin Xie, Shumin Yang. Effect of Fluoxetine on the Surface Behavior of the Lipid Monolayers at Different Surface Pressures. The Journal of membrane biology. 2023 02; 256(1):43-50. doi: 10.1007/s00232-022-00249-7. [PMID: 35907027]
  • André Campos Machado, Tamiris Reissa Cipriano da Silva, Cristiano Raminelli, Luciano Caseli. Unsaturation pattern of phosphatidylglycerols modulating the interaction of lysicamine with cells membrane models at the air-water interface. Colloids and surfaces. B, Biointerfaces. 2023 Feb; 222(?):113045. doi: 10.1016/j.colsurfb.2022.113045. [PMID: 36446237]
  • Zicheng Yu, Tingting Wu, Xiaoyan Liu, Hongjun Chen, Chunxia Ren, Lifei Zhu. Resveratrol-Loaded Dipalmitoylphosphatidylcholine Liposomal Large Porous Microparticle Inhalations for the Treatment of Bacterial Pneumonia Caused by Acinetobacter baumannii. Journal of aerosol medicine and pulmonary drug delivery. 2023 02; 36(1):2-11. doi: 10.1089/jamp.2021.0049. [PMID: 36695669]
  • Ipek Sahin, Çağatay Ceylan, Oguz Bayraktar. Ruscogenin interacts with DPPC and DPPG model membranes and increases the membrane fluidity: FTIR and DSC studies. Archives of biochemistry and biophysics. 2023 01; 733(?):109481. doi: 10.1016/j.abb.2022.109481. [PMID: 36522815]
  • Masato Kondoh, Arisa Sano, Izuru Kawamura, Taka-Aki Ishibashi. Total Internal Reflection Raman Spectra of Alamethicin Interacting with Supported Lipid Bilayers at a Silica/Water Interface. The journal of physical chemistry. B. 2022 12; 126(50):10712-10720. doi: 10.1021/acs.jpcb.2c06371. [PMID: 36440848]
  • Edvinas Navakauskas, Gediminas Niaura, Simona Strazdaite. Effect of deuteration on a phosphatidylcholine lipid monolayer structure: New insights from vibrational sum-frequency generation spectroscopy. Colloids and surfaces. B, Biointerfaces. 2022 Dec; 220(?):112866. doi: 10.1016/j.colsurfb.2022.112866. [PMID: 36174490]
  • Caio Vaz Rimoli, Rafael de Oliveira Pedro, Paulo B Miranda. Interaction mechanism of chitosan oligomers in pure water with cell membrane models studied by SFG vibrational spectroscopy. Colloids and surfaces. B, Biointerfaces. 2022 Nov; 219(?):112782. doi: 10.1016/j.colsurfb.2022.112782. [PMID: 36063719]
  • Nafiseh Farhadian, Malihe Samadi Kazemi, Fatemeh Moosavi Baigi, Mehdi Khalaj. Molecular dynamics simulation of drug delivery across the cell membrane by applying gold nanoparticle carrier: Flutamide as hydrophobic and glutathione as hydrophilic drugs as the case studies. Journal of molecular graphics & modelling. 2022 11; 116(?):108271. doi: 10.1016/j.jmgm.2022.108271. [PMID: 35863117]
  • Trivikram R Molugu, Robin L Thurmond, Todd M Alam, Theodore P Trouard, Michael F Brown. Phospholipid headgroups govern area per lipid and emergent elastic properties of bilayers. Biophysical journal. 2022 11; 121(21):4205-4220. doi: 10.1016/j.bpj.2022.09.005. [PMID: 36088534]
  • Yang Liu, Xu Zheng, Dongshi Guan, Xikai Jiang, Guoqing Hu. Heterogeneous Nanostructures Cause Anomalous Diffusion in Lipid Monolayers. ACS nano. 2022 10; 16(10):16054-16066. doi: 10.1021/acsnano.2c04089. [PMID: 36149751]
  • Beata Tim, Monika Rojewska, Krystyna Prochaska. Effect of Silica Microparticles on Interactions in Mono- and Multicomponent Membranes. International journal of molecular sciences. 2022 Oct; 23(21):. doi: 10.3390/ijms232112822. [PMID: 36361613]
  • Victoria Cheng, John C Conboy. Inhibitory Effect of Lanthanides on Native Lipid Flip-Flop. The journal of physical chemistry. B. 2022 10; 126(39):7651-7663. doi: 10.1021/acs.jpcb.2c04039. [PMID: 36129784]
  • Ananda Kafle, Masaaki Akamatsu, Avinash Bhadani, Kenichi Sakai, Chihiro Kaise, Teruhisa Kaneko, Hideki Sakai. Binding and distribution of water molecules in DPPC bilayers doped with β-sitosteryl sulfate. Colloids and surfaces. B, Biointerfaces. 2022 Oct; 218(?):112748. doi: 10.1016/j.colsurfb.2022.112748. [PMID: 35933887]
  • Moritz P K Frewein, Paulina Piller, Enrico F Semeraro, Krishna C Batchu, Frederick A Heberle, Haden L Scott, Yuri Gerelli, Lionel Porcar, Georg Pabst. Interdigitation-Induced Order and Disorder in Asymmetric Membranes. The Journal of membrane biology. 2022 10; 255(4-5):407-421. doi: 10.1007/s00232-022-00234-0. [PMID: 35471665]
  • Jasmin Ceja-Vega, Escarlin Perez, Patrick Scollan, Juan Rosario, Alondra Gamez Hernandez, Katherine Ivanchenko, Jamie Gudyka, Sunghee Lee. Trans-Resveratrol Decreases Membrane Water Permeability: A Study of Cholesterol-Dependent Interactions. The Journal of membrane biology. 2022 10; 255(4-5):575-590. doi: 10.1007/s00232-022-00250-0. [PMID: 35748919]
  • Petra Maleš, Barbara Pem, Dražen Petrov, Darija Domazet Jurašin, Danijela Bakarić. Deciphering the origin of the melting profile of unilamellar phosphatidylcholine liposomes by measuring the turbidity of its suspensions. Soft matter. 2022 Sep; 18(35):6703-6715. doi: 10.1039/d2sm00878e. [PMID: 36017811]
  • María Pedrosa, Julia Maldonado-Valderrama, María José Gálvez-Ruiz. Interactions between curcumin and cell membrane models by Langmuir monolayers. Colloids and surfaces. B, Biointerfaces. 2022 Sep; 217(?):112636. doi: 10.1016/j.colsurfb.2022.112636. [PMID: 35738079]
  • Nidhin Thomas, Ashutosh Agrawal. A lateral electric field inhibits gel-to-fluid transition in lipid bilayers. Soft matter. 2022 Aug; 18(34):6437-6442. doi: 10.1039/d2sm00740a. [PMID: 35983708]
  • Veerendra Kumar Sharma, Jyoti Gupta, Harish Srinivasan, Himal Bhatt, Victoria García Sakai, Subhankur Mitra. Curcumin Accelerates the Lateral Motion of DPPC Membranes. Langmuir : the ACS journal of surfaces and colloids. 2022 08; 38(31):9649-9659. doi: 10.1021/acs.langmuir.2c01250. [PMID: 35878409]
  • Nida Shaikh, Jessica M Andriolo, Jack L Skinner, Robert A Walker. Carbon Nanoparticle-Induced Changes to Lipid Monolayer Structure at Water-Air Interfaces. The journal of physical chemistry. B. 2022 08; 126(30):5667-5677. doi: 10.1021/acs.jpcb.2c02526. [PMID: 35877465]
  • Arunavo Chatterjee, Ruturaj, Manas Pratim Chakraborty, Sukhendu Nandi, Pradipta Purkayastha. Biocompatible and optically stable hydrophobic fluorescent carbon dots for isolation and imaging of lipid rafts in model membrane. Analytical and bioanalytical chemistry. 2022 Aug; 414(20):6055-6067. doi: 10.1007/s00216-022-04165-6. [PMID: 35697813]
  • Haidong Li, Xiaoqi Tao, Erqun Song, Yang Song. Iron oxide nanoparticles oxidize transformed RAW 264.7 macrophages into foam cells: Impact of pulmonary surfactant component dipalmitoylphosphatidylcholine. Chemosphere. 2022 Aug; 300(?):134617. doi: 10.1016/j.chemosphere.2022.134617. [PMID: 35430205]
  • Guilherme Henrique da Cruz Ramos Pires, Vitor Torres Freire, Rafael Guimarães Pereira, Leonardo José Amaral de Siqueira, Eric Umehara, João Henrique Ghilardi Lago, Luciano Caseli. Sakuranetin interacting with cell membranes models: Surface chemistry combined with molecular simulation. Colloids and surfaces. B, Biointerfaces. 2022 Aug; 216(?):112546. doi: 10.1016/j.colsurfb.2022.112546. [PMID: 35588685]
  • Piya Patra, Raja Banerjee, Jaydeb Chakrabarti. Effect of biphosphate salt on dipalmitoylphosphatidylcholine bilayer deformation by Tat polypeptide. Biopolymers. 2022 Aug; 113(8):e23518. doi: 10.1002/bip.23518. [PMID: 35621373]
  • Hayato Takase, Keishi Suga, Hideki Matsune, Hiroshi Umakoshi, Koichiro Shiomori. Preferential adsorption of L-tryptophan by L-phospholipid coated porous polymer particles. Colloids and surfaces. B, Biointerfaces. 2022 Aug; 216(?):112535. doi: 10.1016/j.colsurfb.2022.112535. [PMID: 35594752]
  • Qiaoyu Liu, Jingwen Xue, Xinrui Zhang, Juanjuan Chai, Lu Qin, Jian Guan, Xin Zhang, Shirui Mao. The influence of a biomimetic pulmonary surfactant modification on the in vivo fate of nanoparticles in the lung. Acta biomaterialia. 2022 Jul; 147(?):391-402. doi: 10.1016/j.actbio.2022.05.038. [PMID: 35643196]
  • Seonghoon Kim, Changbong Hyeon. Location of the TEMPO moiety of TEMPO-PC in phosphatidylcholine bilayers is membrane phase dependent. Biophysical journal. 2022 07; 121(13):2550-2556. doi: 10.1016/j.bpj.2022.05.044. [PMID: 35651317]
  • Elisa Aranda, José A Teruel, Antonio Ortiz, María Dolores Pérez-Cárceles, Francisco J Aranda. Interaction of Docetaxel with Phosphatidylcholine Membranes: A Combined Experimental and Computational Study. The Journal of membrane biology. 2022 06; 255(2-3):277-291. doi: 10.1007/s00232-022-00219-z. [PMID: 35175383]
  • R Arieli, S Khatib. Dipalmitoylphosphatidylcholine in the heart of mice with lupus might support the hypothesis of dual causes of autoimmune diseases. Respiratory physiology & neurobiology. 2022 06; 300(?):103871. doi: 10.1016/j.resp.2022.103871. [PMID: 35182818]
  • Susanne Dogan, Michael Paulus, Göran Surmeier, Kevin Foryt, Katharina Brägelmann, Metin Tolan. Nondestructive Compression and Fluidization of Phospholipid Monolayers by Gaseous and Aerolized Perfluorocarbons: Promising Substances for Lung Surfactant Treatment. Langmuir : the ACS journal of surfaces and colloids. 2022 05; 38(21):6690-6699. doi: 10.1021/acs.langmuir.2c00617. [PMID: 35588471]
  • Petra Maleš, Zlatko Brkljača, Darija Domazet Jurašin, Danijela Bakarić. New spirit of an old technique: Characterization of lipid phase transitions via UV/Vis spectroscopy. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy. 2022 May; 272(?):121013. doi: 10.1016/j.saa.2022.121013. [PMID: 35176647]
  • Ibtihal Alahmadi, Donyeil Hoy, Armin Tahmasbi Rad, Sanyukta Patil, Anas Alahmadi, Jacob Kinnun, Haden L Scott, John Katsaras, Mu-Ping Nieh. Changes Experienced by Low-Concentration Lipid Bicelles as a Function of Temperature. Langmuir : the ACS journal of surfaces and colloids. 2022 04; 38(14):4332-4340. doi: 10.1021/acs.langmuir.2c00078. [PMID: 35357197]
  • Tianhang Zhou, Zhenghao Wu, Shubhadip Das, Hossein Eslami, Florian Müller-Plathe. How Ethanolic Disinfectants Disintegrate Coronavirus Model Membranes: A Dissipative Particle Dynamics Simulation Study. Journal of chemical theory and computation. 2022 Apr; 18(4):2597-2615. doi: 10.1021/acs.jctc.1c01120. [PMID: 35286098]
  • Maki Mizogami, Hironori Tsuchiya. Membrane Interactivity of Capsaicin Antagonized by Capsazepine. International journal of molecular sciences. 2022 Apr; 23(7):. doi: 10.3390/ijms23073971. [PMID: 35409329]
  • Lijun Ding, Jie Yang, Kangrui Yin, Hao Cheng, Jing Li, Changhu Xue. The spatial arrangement of astaxanthin in bilayers greatly influenced the structural stability of DPPC liposomes. Colloids and surfaces. B, Biointerfaces. 2022 Apr; 212(?):112383. doi: 10.1016/j.colsurfb.2022.112383. [PMID: 35131712]
  • Yu V Zaytseva, I V Zaytseva, N V Surovtsev. Conformational state diagram of DOPC/DPPCd62/cholesterol mixtures. Biochimica et biophysica acta. Biomembranes. 2022 04; 1864(4):183869. doi: 10.1016/j.bbamem.2022.183869. [PMID: 35063400]
  • A V Rogachev, N N Novikova, M V Kovalchuk, Yu N Malakhova, O V Konovalov, N D Stepina, E A Shlyapnikova, I L Kanev, Yu M Shlyapnikov, S N Yakunin. Permeation of Nanoparticles into Pulmonary Surfactant Monolayer: In Situ X-ray Standing Wave Studies. Langmuir : the ACS journal of surfaces and colloids. 2022 03; 38(12):3630-3640. doi: 10.1021/acs.langmuir.1c02179. [PMID: 35302765]
  • Ritika Gupta, Veerendra K Sharma, Jyoti Gupta, Sajal K Ghosh. 1,3 Dialkylated Imidazolium Ionic Liquid Causes Interdigitated Domains in a Phospholipid Membrane. Langmuir : the ACS journal of surfaces and colloids. 2022 03; 38(11):3412-3421. doi: 10.1021/acs.langmuir.1c03160. [PMID: 35263113]
  • Ezequiel N Frigini, Rodolfo D Porasso. Effect of Ionic Strength on Ibuprofenate Adsorption on a Lipid Bilayer of Dipalmitoylphosphatidylcholine from Molecular Dynamics Simulations. The journal of physical chemistry. B. 2022 03; 126(9):1941-1950. doi: 10.1021/acs.jpcb.1c09301. [PMID: 35226503]
  • Peter Schousboe, Andreas Ronit, Henning B Nielsen, Thomas Benfield, Lothar Wiese, Nikolaos Scoutaris, Henrik Verder, Ronan M G Berg, Povl Verder, Ronni R Plovsing. Reduced levels of pulmonary surfactant in COVID-19 ARDS. Scientific reports. 2022 03; 12(1):4040. doi: 10.1038/s41598-022-07944-4. [PMID: 35260704]
  • Ngai Ying Denise Li, David J Moore, Michael A Thompson, Eloise Welfare, Michael Rappolt. Influence of humectants on the thermotropic behaviour and nanostructure of fully hydrated lecithin bilayers. Chemistry and physics of lipids. 2022 03; 243(?):105165. doi: 10.1016/j.chemphyslip.2021.105165. [PMID: 34971600]
  • Yu V Zaytseva, N V Surovtsev. Raman scattering in protonated and deuterated 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC): Indicators of conformational and lateral orders. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy. 2022 Feb; 267(Pt 2):120583. doi: 10.1016/j.saa.2021.120583. [PMID: 34782267]
  • Gianluca Del Frate, Marina Macchiagodena, Muhammad Jan Akhunzada, Francesca D'Autilia, Andrea Catte, Nicholus Bhattacharjee, Vincenzo Barone, Francesco Cardarelli, Giuseppe Brancato. Probing Liquid-Ordered and Disordered Phases in Lipid Model Membranes: A Combined Theoretical and Spectroscopic Study of a Fluorescent Molecular Rotor. The journal of physical chemistry. B. 2022 01; 126(2):480-491. doi: 10.1021/acs.jpcb.1c08324. [PMID: 35001625]
  • Karen Jochelavicius, Andressa R Pereira, Anderson Fiamingo, Thatyane M Nobre, Sérgio P Campana-Filho, Osvaldo N Oliveira. Chitosan effects on monolayers of zwitterionic, anionic and a natural lipid extract from E. coli at physiological pH. Colloids and surfaces. B, Biointerfaces. 2022 Jan; 209(Pt 2):112146. doi: 10.1016/j.colsurfb.2021.112146. [PMID: 34634541]
  • Davide Bochicchio, Laura Cantu, Maria Vittoria Cadario, Leonardo Palchetti, Francesca Natali, Luca Monticelli, Giulia Rossi, Elena Del Favero. Polystyrene perturbs the structure, dynamics, and mechanical properties of DPPC membranes: An experimental and computational study. Journal of colloid and interface science. 2022 Jan; 605(?):110-119. doi: 10.1016/j.jcis.2021.07.069. [PMID: 34311305]
  • Ritika Gupta, Jyoti Kumari, Soumya Pati, Shailja Singh, Manasi Mishra, Sajal K Ghosh. Interaction of cyclotide Kalata B1 protein with model cellular membranes of varied electrostatics. International journal of biological macromolecules. 2021 Nov; 191(?):852-860. doi: 10.1016/j.ijbiomac.2021.09.147. [PMID: 34592223]
  • Yongzheng Zhu, Xuan Bai, Guoqing Hu. Interfacial behavior of phospholipid monolayers revealed by mesoscopic simulation. Biophysical journal. 2021 11; 120(21):4751-4762. doi: 10.1016/j.bpj.2021.09.031. [PMID: 34562445]
  • Xuebo Quan, Daohui Zhao, Jian Zhou. The interplay between surface-functionalized gold nanoparticles and negatively charged lipid vesicles. Physical chemistry chemical physics : PCCP. 2021 Oct; 23(41):23526-23536. doi: 10.1039/d1cp01903a. [PMID: 34642720]
  • Valeria Nele, Margaret N Holme, M Harunur Rashid, Hanna M G Barriga, Tu C Le, Michael R Thomas, James J Doutch, Irene Yarovsky, Molly M Stevens. Design of Lipid-Based Nanocarriers via Cation Modulation of Ethanol-Interdigitated Lipid Membranes. Langmuir : the ACS journal of surfaces and colloids. 2021 10; 37(40):11909-11921. doi: 10.1021/acs.langmuir.1c02076. [PMID: 34581180]
  • Philip N Jemmett, David C Milan, Richard J Nichols, Liam R Cox, Sarah L Horswell. Effect of Molecular Structure on Electrochemical Phase Behavior of Phospholipid Bilayers on Au(111). Langmuir : the ACS journal of surfaces and colloids. 2021 10; 37(40):11887-11899. doi: 10.1021/acs.langmuir.1c01975. [PMID: 34590852]
  • Jinkai Tang, Moumita Rakshit, Huei Min Chua, Anastasia Darwitan, Luong T H Nguyen, Aristo Muktabar, Subbu Venkatraman, Kee Woei Ng. Liposome interaction with macrophages and foam cells for atherosclerosis treatment: effects of size, surface charge and lipid composition. Nanotechnology. 2021 Oct; 32(50):. doi: 10.1088/1361-6528/ac2810. [PMID: 34536952]
  • Eun Sub Song, Younghoon Oh, Bong June Sung. Interdomain exchange and the flip-flop of cholesterol in ternary component lipid membranes and their effects on heterogeneous cholesterol diffusion. Physical review. E. 2021 Oct; 104(4-1):044402. doi: 10.1103/physreve.104.044402. [PMID: 34781553]
  • Ilona Jurek, Aleksandra Szuplewska, Michał Chudy, Kamil Wojciechowski. Soapwort (Saponaria officinalis L.) Extract vs. Synthetic Surfactants-Effect on Skin-Mimetic Models. Molecules (Basel, Switzerland). 2021 Sep; 26(18):. doi: 10.3390/molecules26185628. [PMID: 34577098]
  • Xiao-Lei Hao, Hao-Yue Guo, Bobo Cao, Guang Mo, Zhi-Hong Li, Zhi-Wu Yu. The distinct effects of two imidazolium-based ionic liquids, [C4mim][OAc] and [C6mim][OAc], on the phase behaviours of DPPC. Physical chemistry chemical physics : PCCP. 2021 Sep; 23(33):17888-17893. doi: 10.1039/d1cp01220g. [PMID: 34378570]
  • Katelyn M Duncan, William H Steel, Robert A Walker. Amino acids change solute affinity for lipid bilayers. Biophysical journal. 2021 09; 120(17):3676-3687. doi: 10.1016/j.bpj.2021.07.021. [PMID: 34310940]
  • Tomáš Kondela, Ermuhammad Dushanov, Maria Vorobyeva, Kahramon Mamatkulov, Elizabeth Drolle, Dmytro Soloviov, Pavol Hrubovčák, Kholmirzo Kholmurodov, Grigory Arzumanyan, Zoya Leonenko, Norbert Kučerka. Investigating the competitive effects of cholesterol and melatonin in model lipid membranes. Biochimica et biophysica acta. Biomembranes. 2021 09; 1863(9):183651. doi: 10.1016/j.bbamem.2021.183651. [PMID: 34023300]
  • Andressa R Pereira, Flavio M Shimizu, Osvaldo N Oliveira. Cholesterol modulates the interaction between paclitaxel and Langmuir monolayers simulating cell membranes. Colloids and surfaces. B, Biointerfaces. 2021 Sep; 205(?):111889. doi: 10.1016/j.colsurfb.2021.111889. [PMID: 34098365]
  • Jingyu Guo, Hiroaki Ito, Yuji Higuchi, Klemen Bohinc, Naofumi Shimokawa, Masahiro Takagi. Three-Phase Coexistence in Binary Charged Lipid Membranes in a Hypotonic Solution. Langmuir : the ACS journal of surfaces and colloids. 2021 08; 37(32):9683-9693. doi: 10.1021/acs.langmuir.1c00967. [PMID: 34288679]
  • Ghenwa Nasr, Hélène Greige-Gerges, Abdelhamid Elaissari, Nathalie Khreich. Liposome Permeability to Essential Oil Components: A Focus on Cholesterol Content. The Journal of membrane biology. 2021 08; 254(4):381-395. doi: 10.1007/s00232-021-00180-3. [PMID: 33939003]
  • Jun Meng, Yan-Yang Wang, Yun-Peng Hao, Shao-Bing Zhang, Chang-He Ding, Yan-Zhi You. Coating function and stabilizing effects of surface layer protein from Lactobacillus acidophilus ATCC 4356 on liposomes. International journal of biological macromolecules. 2021 Jul; 183(?):457-462. doi: 10.1016/j.ijbiomac.2021.04.135. [PMID: 33933546]
  • Azadeh Alavizargar, Fabian Keller, Roland Wedlich-Söldner, Andreas Heuer. Effect of Cholesterol Versus Ergosterol on DPPC Bilayer Properties: Insights from Atomistic Simulations. The journal of physical chemistry. B. 2021 07; 125(28):7679-7690. doi: 10.1021/acs.jpcb.1c03528. [PMID: 34255501]
  • Riccardo Capelli, Andrea Gardin, Charly Empereur-Mot, Giovanni Doni, Giovanni M Pavan. A Data-Driven Dimensionality Reduction Approach to Compare and Classify Lipid Force Fields. The journal of physical chemistry. B. 2021 07; 125(28):7785-7796. doi: 10.1021/acs.jpcb.1c02503. [PMID: 34254518]
  • Viet Hoang Man, Mai Suan Li, Philippe Derreumaux, Junmei Wang, Phuong H Nguyen. Molecular Mechanism of Ultrasound-Induced Structural Defects in Liposomes: A Nonequilibrium Molecular Dynamics Simulation Study. Langmuir : the ACS journal of surfaces and colloids. 2021 07; 37(26):7945-7954. doi: 10.1021/acs.langmuir.1c00555. [PMID: 34161100]
  • Pradyumn Sharma, Rajat Desikan, K Ganapathy Ayappa. Evaluating Coarse-Grained MARTINI Force-Fields for Capturing the Ripple Phase of Lipid Membranes. The journal of physical chemistry. B. 2021 06; 125(24):6587-6599. doi: 10.1021/acs.jpcb.1c03277. [PMID: 34081861]
  • Gergo Peter Szekeres, Szilvia Krekic, Rebecca L Miller, Mark Mero, Kevin Pagel, Zsuzsanna Heiner. The interaction of chondroitin sulfate with a lipid monolayer observed by using nonlinear vibrational spectroscopy. Physical chemistry chemical physics : PCCP. 2021 Jun; 23(23):13389-13395. doi: 10.1039/d1cp01975a. [PMID: 34105546]
  • Meisam Omidi, Luis Almeida, Lobat Tayebi. Microfluidic-assisted fabrication of reverse micelle/PLGA hybrid microspheres for sustained vascular endothelial growth factor delivery. Biotechnology and applied biochemistry. 2021 Jun; 68(3):616-625. doi: 10.1002/bab.1971. [PMID: 32533571]