3-(3-hydroxyphenyl)propionate (BioDeep_00000003202)

 

Secondary id: BioDeep_00000867194, BioDeep_00001871802

human metabolite PANOMIX_OTCML-2023 blood metabolite


代谢物信息卡片


dihydro-3-Coumaric acid, monosodium salt

化学式: C9H10O3 (166.063)
中文名称: 3-(3-羟基苯基)丙酸, 3-(3-羟基苯基)丙酸
谱图信息: 最多检出来源 Homo sapiens(blood) 15.65%

Reviewed

Last reviewed on 2024-09-13.

Cite this Page

3-(3-hydroxyphenyl)propionate. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/3-(3-hydroxyphenyl)propionate (retrieved 2025-01-06) (BioDeep RN: BioDeep_00000003202). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: C1=CC(=CC(=C1)O)CCC(=O)O
InChI: InChI=1S/C9H10O3/c10-8-3-1-2-7(6-8)4-5-9(11)12/h1-3,6,10H,4-5H2,(H,11,12)

描述信息

3-(3-Hydroxyphenyl)propanoic (hMPP) acid is one of the major metabolites of ingested caffeic acid (PMID: 15479001) and of the phenolic degradation products of proanthocyanidins (the most abundant polyphenol present in chocolate) by the microflora in the colon (PMID: 12663291). mHPP is suspected to have antioxidants properties and is actively absorbed by the monocarboxylic acid transporter (MCT) in intestinal Caco-2 cell monolayers (PMID: 15479001, 12663291). hMPP has been found to be a metabolite of Clostridium, Escherichia, and Eubacterium (PMID: 28393285, 19520845). 3-(3-Hydroxyphenyl)propanoic acid is a flavonoid metabolite. 3-(3-Hydroxyphenyl)propanoic acid is a phenolic acid metabolite formed by the gut microflora detected after the consumption of whole grain.
3-(3-Hydroxyphenyl)propanoic (hMPP) acid is one of the major metabolites of ingested caffeic acid (PMID 15479001) and of the phenolic degradation products of proanthocyanidins (the most abundant polyphenol present in chocolate) by the microflora in the colon (PMID 12663291). mHPP is suspected to have antioxidants properties and is actively absorbed by the monocarboxylic acid transporter (MCT) in intestinal Caco-2 cell monolayers (PMID 15479001, 12663291). [HMDB]
3-(3-Hydroxyphenyl)propionic acid is a flavonoid metabolite formed by human microflora. 3-(3-Hydroxyphenyl)propionic acid shows vasodilatory activity[1].
3-(3-Hydroxyphenyl)propionic acid is a flavonoid metabolite formed by human microflora. 3-(3-Hydroxyphenyl)propionic acid shows vasodilatory activity[1].

同义名列表

41 个代谢物同义名

dihydro-3-Coumaric acid, monosodium salt; beta-(m-Hydroxyphenyl)propionic acid; beta-(3-Hydroxyphenyl)propionic acid; 3-(3-Hydroxy-phenyl)-propanoic acid; 3-(3-Hydroxy-phenyl)-propionic acid; 3-(3-hydroxyphenyl)propanoic acid; 3-(3-Hydroxyphenyl)propionic acid; 3-(3-Hydroxyphenyl)propanoic acid; 3-(m-Hydroxyphenyl)propionic acid; Β-(m-hydroxyphenyl)propionic acid; b-(m-Hydroxyphenyl)propionic acid; b-(3-Hydroxyphenyl)propionic acid; beta-(3-Hydroxyphenyl)propionate; beta-(m-Hydroxyphenyl)propionate; 3-(3-Hydroxy-phenyl)-propanoate; 3-Hydroxybenzenepropanoic acid; 3-Hydroxydihydrocinnamic acid; 3-(3-Hydroxyphenyl)propanoate; m-Hydroxyphenylpropionic acid; b-(m-Hydroxyphenyl)propionate; 3-(3-Hydroxyphenyl)propionate; b-(3-Hydroxyphenyl)propionate; 3-Hydroxyphenylpropanoic acid; Β-(m-hydroxyphenyl)propionate; 3-Hydroxyphenylpropionic acid; 3-(m-Hydroxyphenyl)propionate; m-Hydroxy-hydrocinnamic acid; 3-Hydroxyhydrocinnamic acid; 3-Hydroxybenzenepropanoate; m-Hydroxyphenylpropionate; 3-Hydroxyphenylpropanoate; 3-Hydroxydihydrocinnamate; 3-Hydroxyphenylpropionate; m-Hydroxy-hydrocinnamate; dihydro-m-Coumaric acid; Dihydro-3-coumaric acid; m-Hydrocoumaric acid; dihydro-m-Coumarate; Dihydro-3-coumarate; 3-(3-Hydroxyphenyl)propanoic acid; 3-(3-Hydroxyphenyl)propanoic acid



数据库引用编号

18 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

5 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(1)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(4)

PharmGKB(0)

3 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 6 CACNA1A, CTNNB1, PIK3CA, PPARG, SNCA, TNFSF11
Peripheral membrane protein 2 CTSK, GORASP1
Nucleus 4 CACNA1A, CTNNB1, PPARG, SNCA
cytosol 6 CTNNB1, NRK, PIK3CA, PPARG, PRKCQ, SNCA
centrosome 1 CTNNB1
nucleoplasm 3 CTNNB1, CTSK, PPARG
RNA polymerase II transcription regulator complex 1 PPARG
Cell membrane 9 CACNA1A, CTNNB1, CTSK, GPRC5A, HCAR2, SELE, TNF, TNFSF11, VCAM1
Cytoplasmic side 1 GORASP1
lamellipodium 2 CTNNB1, PIK3CA
Cell projection, axon 1 SNCA
Multi-pass membrane protein 3 CACNA1A, GPRC5A, HCAR2
Golgi apparatus membrane 1 GORASP1
Synapse 3 CACNA1A, CTNNB1, SNCA
cell cortex 2 CTNNB1, SNCA
cell junction 2 CTNNB1, HCAR2
cell surface 3 ICAM1, TNF, VCAM1
glutamatergic synapse 1 CTNNB1
Golgi apparatus 2 GORASP1, VCAM1
Golgi membrane 2 GORASP1, INS
growth cone 1 SNCA
lysosomal membrane 1 GAA
neuronal cell body 3 CACNA1A, SNCA, TNF
postsynapse 1 SNCA
presynaptic membrane 1 CTNNB1
sarcolemma 1 VCAM1
Lysosome 3 CTSK, GAA, SNCA
plasma membrane 14 CACNA1A, CTNNB1, CTSK, GAA, GPRC5A, HCAR2, ICAM1, PIK3CA, PRKCQ, SELE, SNCA, TNF, TNFSF11, VCAM1
synaptic vesicle membrane 1 SNCA
Membrane 9 CACNA1A, CTNNB1, GAA, HCAR2, ICAM1, NRK, SNCA, TNFSF11, VCAM1
apical plasma membrane 1 CTSK
axon 1 SNCA
basolateral plasma membrane 1 CTNNB1
caveola 1 SELE
extracellular exosome 6 CTNNB1, GAA, GPRC5A, ICAM1, MMP9, VCAM1
Lysosome membrane 1 GAA
endoplasmic reticulum 1 VCAM1
extracellular space 9 CTSK, ICAM1, INS, MMP9, SELE, SNCA, TNF, TNFSF11, VCAM1
lysosomal lumen 2 CTSK, GAA
perinuclear region of cytoplasm 5 CTNNB1, PIK3CA, PPARG, SELE, SNCA
Schaffer collateral - CA1 synapse 1 CTNNB1
adherens junction 1 CTNNB1
apicolateral plasma membrane 1 CTNNB1
bicellular tight junction 1 CTNNB1
intercalated disc 1 PIK3CA
mitochondrion 1 SNCA
protein-containing complex 2 CTNNB1, SNCA
intracellular membrane-bounded organelle 4 CTSK, GAA, GPRC5A, PPARG
filopodium 1 VCAM1
Single-pass type I membrane protein 3 ICAM1, SELE, VCAM1
Secreted 5 CTSK, GAA, INS, SNCA, TNFSF11
extracellular region 7 CTSK, GAA, INS, MMP9, SNCA, TNF, TNFSF11
Extracellular side 1 CTSK
transcription regulator complex 1 CTNNB1
centriolar satellite 1 PRKCQ
external side of plasma membrane 5 CTSK, ICAM1, SELE, TNF, VCAM1
Secreted, extracellular space, extracellular matrix 1 MMP9
actin cytoskeleton 1 SNCA
Z disc 1 CTNNB1
beta-catenin destruction complex 1 CTNNB1
nucleolus 1 GPRC5A
Wnt signalosome 1 CTNNB1
Early endosome 1 VCAM1
apical part of cell 2 CTNNB1, VCAM1
cell-cell junction 1 CTNNB1
clathrin-coated pit 1 SELE
recycling endosome 1 TNF
Single-pass type II membrane protein 2 TNF, TNFSF11
vesicle 1 GPRC5A
postsynaptic membrane 1 CTNNB1
Apical cell membrane 1 CTSK
Membrane raft 3 ICAM1, SELE, TNF
Cytoplasm, cytoskeleton 1 CTNNB1
focal adhesion 2 CTNNB1, ICAM1
cis-Golgi network 1 GORASP1
Cell junction, adherens junction 1 CTNNB1
flotillin complex 1 CTNNB1
collagen-containing extracellular matrix 2 ICAM1, MMP9
fascia adherens 1 CTNNB1
lateral plasma membrane 1 CTNNB1
receptor complex 2 GPRC5A, PPARG
chromatin 1 PPARG
cell projection 1 CACNA1A
phagocytic cup 1 TNF
cell periphery 1 CTNNB1
supramolecular fiber 1 SNCA
podosome 1 VCAM1
Cytoplasm, cytoskeleton, cilium basal body 1 CTNNB1
spindle pole 1 CTNNB1
postsynaptic density, intracellular component 1 CTNNB1
microvillus membrane 1 CTNNB1
Endomembrane system 1 CTNNB1
endosome lumen 1 INS
microvillus 1 VCAM1
monoatomic ion channel complex 1 CACNA1A
Cytoplasmic vesicle membrane 1 GPRC5A
tertiary granule membrane 1 GAA
euchromatin 1 CTNNB1
ficolin-1-rich granule lumen 1 MMP9
secretory granule lumen 1 INS
Golgi lumen 1 INS
endoplasmic reticulum lumen 1 INS
axon terminus 1 SNCA
voltage-gated calcium channel complex 1 CACNA1A
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
tertiary granule lumen 1 MMP9
transport vesicle 1 INS
azurophil granule membrane 1 GAA
beta-catenin-TCF complex 1 CTNNB1
Endoplasmic reticulum-Golgi intermediate compartment membrane 2 GORASP1, INS
immunological synapse 2 ICAM1, PRKCQ
aggresome 1 PRKCQ
Golgi apparatus, cis-Golgi network membrane 1 GORASP1
[Isoform 2]: Cytoplasm 1 TNFSF11
[Tumor necrosis factor ligand superfamily member 11, soluble form]: Secreted 1 TNFSF11
presynaptic active zone cytoplasmic component 1 CTNNB1
protein-DNA complex 1 CTNNB1
ficolin-1-rich granule membrane 1 GAA
catenin complex 1 CTNNB1
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
cortical cytoskeleton 1 SELE
inclusion body 1 SNCA
endolysosome lumen 1 CTSK
autolysosome lumen 1 GAA
beta-catenin-TCF7L2 complex 1 CTNNB1
[Vascular cell adhesion protein 1]: Cell membrane 1 VCAM1
[Soluble Vascular Cell Adhesion Molecule-1]: Secreted 1 VCAM1
alpha9-beta1 integrin-vascular cell adhesion molecule-1 complex 1 VCAM1
beta-catenin-ICAT complex 1 CTNNB1
Scrib-APC-beta-catenin complex 1 CTNNB1
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Ying Xu, Ning-Yi Zhou. MhpA Is a Hydroxylase Catalyzing the Initial Reaction of 3-(3-Hydroxyphenyl)Propionate Catabolism in Escherichia coli K-12. Applied and environmental microbiology. 2020 02; 86(4):. doi: 10.1128/aem.02385-19. [PMID: 31811039]
  • Noriko Hiraishi, Daisaku Kaneko, Shu Taira, Siqian Wang, Masayuki Otsuki, Junji Tagami. Mussel-mimetic, bioadhesive polymers from plant-derived materials. Journal of investigative and clinical dentistry. 2015 Feb; 6(1):59-62. doi: 10.1111/jicd.12054. [PMID: 23857900]
  • Doris M Jacobs, Jens C Fuhrmann, Ferdinand A van Dorsten, Dietrich Rein, Sonja Peters, Ewoud J J van Velzen, Boudewijn Hollebrands, Richard Draijer, John van Duynhoven, Ursula Garczarek. Impact of short-term intake of red wine and grape polyphenol extract on the human metabolome. Journal of agricultural and food chemistry. 2012 Mar; 60(12):3078-85. doi: 10.1021/jf2044247. [PMID: 22372405]
  • Xiao Wu, Sébastien Monchy, Safiyh Taghavi, Wei Zhu, Juan Ramos, Daniel van der Lelie. Comparative genomics and functional analysis of niche-specific adaptation in Pseudomonas putida. FEMS microbiology reviews. 2011 Mar; 35(2):299-323. doi: 10.1111/j.1574-6976.2010.00249.x. [PMID: 20796030]
  • Maja Jakesevic, Kjersti Aaby, Grethe-Iren A Borge, Bengt Jeppsson, Siv Ahrné, Göran Molin. Antioxidative protection of dietary bilberry, chokeberry and Lactobacillus plantarum HEAL19 in mice subjected to intestinal oxidative stress by ischemia-reperfusion. BMC complementary and alternative medicine. 2011 Jan; 11(?):8. doi: 10.1186/1472-6882-11-8. [PMID: 21272305]
  • James M Kinross, Nawar Alkhamesi, Richard H Barton, David B Silk, Ivan K S Yap, Ara W Darzi, Elaine Holmes, Jeremy K Nicholson. Global metabolic phenotyping in an experimental laparotomy model of surgical trauma. Journal of proteome research. 2011 Jan; 10(1):277-87. doi: 10.1021/pr1003278. [PMID: 21105667]
  • Jianing Bai, Sean P McAteer, Edith Paxton, Arvind Mahajan, David L Gally, Jai J Tree. Screening of an E. coli O157:H7 Bacterial Artificial Chromosome Library by Comparative Genomic Hybridization to Identify Genomic Regions Contributing to Growth in Bovine Gastrointestinal Mucus and Epithelial Cell Colonization. Frontiers in microbiology. 2011; 2(?):168. doi: 10.3389/fmicb.2011.00168. [PMID: 21887152]
  • Gary Williamson, Michael N Clifford. Colonic metabolites of berry polyphenols: the missing link to biological activity?. The British journal of nutrition. 2010 Oct; 104 Suppl 3(?):S48-66. doi: 10.1017/s0007114510003946. [PMID: 20955650]
  • Fulgencio Saura-Calixto, Jara Pérez-Jiménez, Sonia Touriño, José Serrano, Elisabet Fuguet, Josep Lluis Torres, Isabel Goñi. Proanthocyanidin metabolites associated with dietary fibre from in vitro colonic fermentation and proanthocyanidin metabolites in human plasma. Molecular nutrition & food research. 2010 Jul; 54(7):939-46. doi: 10.1002/mnfr.200900276. [PMID: 20087856]
  • Stavroula Stoupi, Gary Williamson, J Warren Drynan, Denis Barron, Michael N Clifford. A comparison of the in vitro biotransformation of (-)-epicatechin and procyanidin B2 by human faecal microbiota. Molecular nutrition & food research. 2010 Jun; 54(6):747-59. doi: 10.1002/mnfr.200900123. [PMID: 19943260]
  • Jun-Fang Wu, Elaine Holmes, Jian Xue, Shu-Hua Xiao, Burton H Singer, Hui-Ru Tang, Jürg Utzinger, Yu-Lan Wang. Metabolic alterations in the hamster co-infected with Schistosoma japonicum and Necator americanus. International journal for parasitology. 2010 May; 40(6):695-703. doi: 10.1016/j.ijpara.2009.11.003. [PMID: 19951707]
  • Raika Koli, Iris Erlund, Antti Jula, Jukka Marniemi, Pirjo Mattila, Georg Alfthan. Bioavailability of various polyphenols from a diet containing moderate amounts of berries. Journal of agricultural and food chemistry. 2010 Apr; 58(7):3927-32. doi: 10.1021/jf9024823. [PMID: 20073463]
  • Ronald L Prior, Theodore R Rogers, Ramesh C Khanal, Samuel E Wilkes, Xianli Wu, Luke R Howard. Urinary excretion of phenolic acids in rats fed cranberry. Journal of agricultural and food chemistry. 2010 Apr; 58(7):3940-9. doi: 10.1021/jf9028392. [PMID: 20052972]
  • Sonia de Pascual-Teresa, Diego A Moreno, Cristina García-Viguera. Flavanols and anthocyanins in cardiovascular health: a review of current evidence. International journal of molecular sciences. 2010 Apr; 11(4):1679-703. doi: 10.3390/ijms11041679. [PMID: 20480037]
  • Kennan Kellaris Salinero, Keith Keller, William S Feil, Helene Feil, Stephan Trong, Genevieve Di Bartolo, Alla Lapidus. Metabolic analysis of the soil microbe Dechloromonas aromatica str. RCB: indications of a surprisingly complex life-style and cryptic anaerobic pathways for aromatic degradation. BMC genomics. 2009 Aug; 10(?):351. doi: 10.1186/1471-2164-10-351. [PMID: 19650930]
  • Maaike M Appeldoorn, Jean-Paul Vincken, Anna-Marja Aura, Peter C H Hollman, Harry Gruppen. Procyanidin dimers are metabolized by human microbiota with 2-(3,4-dihydroxyphenyl)acetic acid and 5-(3,4-dihydroxyphenyl)-gamma-valerolactone as the major metabolites. Journal of agricultural and food chemistry. 2009 Feb; 57(3):1084-92. doi: 10.1021/jf803059z. [PMID: 19191673]
  • Liwei Gu, Suzanne E House, Lloyd Rooney, Ronald L Prior. Sorghum bran in the diet dose dependently increased the excretion of catechins and microbial-derived phenolic acids in female rats. Journal of agricultural and food chemistry. 2007 Jun; 55(13):5326-34. doi: 10.1021/jf070100p. [PMID: 17536823]
  • Hanna-Leena Alakomi, Riitta Puupponen-Pimiä, Anna-Marja Aura, Ilkka M Helander, Liisa Nohynek, Kirsi-Marja Oksman-Caldentey, Maria Saarela. Weakening of salmonella with selected microbial metabolites of berry-derived phenolic compounds and organic acids. Journal of agricultural and food chemistry. 2007 May; 55(10):3905-12. doi: 10.1021/jf070190y. [PMID: 17439151]
  • E G Stanley, N J C Bailey, M E Bollard, J N Haselden, C J Waterfield, E Holmes, J K Nicholson. Sexual dimorphism in urinary metabolite profiles of Han Wistar rats revealed by nuclear-magnetic-resonance-based metabonomics. Analytical biochemistry. 2005 Aug; 343(2):195-202. doi: 10.1016/j.ab.2005.01.024. [PMID: 15993369]
  • Olivier Cloarec, Marc-Emmanuel Dumas, Andrew Craig, Richard H Barton, Johan Trygg, Jane Hudson, Christine Blancher, Dominique Gauguier, John C Lindon, Elaine Holmes, Jeremy Nicholson. Statistical total correlation spectroscopy: an exploratory approach for latent biomarker identification from metabolic 1H NMR data sets. Analytical chemistry. 2005 Mar; 77(5):1282-9. doi: 10.1021/ac048630x. [PMID: 15732908]
  • Natalie C Ward, Kevin D Croft, Ian B Puddey, Jonathan M Hodgson. Supplementation with grape seed polyphenols results in increased urinary excretion of 3-hydroxyphenylpropionic Acid, an important metabolite of proanthocyanidins in humans. Journal of agricultural and food chemistry. 2004 Aug; 52(17):5545-9. doi: 10.1021/jf049404r. [PMID: 15315398]
  • Andreas R Rechner, Martin A Smith, Gunter Kuhnle, Glenn R Gibson, Edward S Debnam, S Kaila S Srai, Kevin P Moore, Catherine A Rice-Evans. Colonic metabolism of dietary polyphenols: influence of structure on microbial fermentation products. Free radical biology & medicine. 2004 Jan; 36(2):212-25. doi: 10.1016/j.freeradbiomed.2003.09.022. [PMID: 14744633]
  • Toshiyuki Kohri, Masayuki Suzuki, Fumio Nanjo. Identification of metabolites of (-)-epicatechin gallate and their metabolic fate in the rat. Journal of agricultural and food chemistry. 2003 Aug; 51(18):5561-6. doi: 10.1021/jf034450x. [PMID: 12926915]
  • Laurent Y Rios, Marie-Paule Gonthier, Christian Rémésy, Isabelle Mila, Catherine Lapierre, Sheryl A Lazarus, Gary Williamson, Augustin Scalbert. Chocolate intake increases urinary excretion of polyphenol-derived phenolic acids in healthy human subjects. The American journal of clinical nutrition. 2003 Apr; 77(4):912-8. doi: 10.1093/ajcn/77.4.912. [PMID: 12663291]
  • Takaaki Yasuda, Akie Takasawa, Takahiro Nakazawa, Joji Ueda, Keisuke Ohsawa. Inhibitory effects of urinary metabolites on platelet aggregation after orally administering Shimotsu-To, a traditional Chinese medicine, to rats. The Journal of pharmacy and pharmacology. 2003 Feb; 55(2):239-44. doi: 10.1211/002235702531. [PMID: 12631416]
  • R E Williams, H W Eyton-Jones, M J Farnworth, R Gallagher, W M Provan. Effect of intestinal microflora on the urinary metabolic profile of rats: a (1)H-nuclear magnetic resonance spectroscopy study. Xenobiotica; the fate of foreign compounds in biological systems. 2002 Sep; 32(9):783-94. doi: 10.1080/00498250210143047. [PMID: 12396275]
  • C L Gavaghan, J K Nicholson, S C Connor, I D Wilson, B Wright, E Holmes. Directly coupled high-performance liquid chromatography and nuclear magnetic resonance spectroscopic with chemometric studies on metabolic variation in Sprague--Dawley rats. Analytical biochemistry. 2001 Apr; 291(2):245-52. doi: 10.1006/abio.2000.5034. [PMID: 11401298]
  • U Justesen, E Arrigoni. Electrospray ionisation mass spectrometric study of degradation products of quercetin, quercetin-3-glucoside and quercetin-3-rhamnoglucoside, produced by in vitro fermentation with human faecal flora. Rapid communications in mass spectrometry : RCM. 2001; 15(7):477-83. doi: 10.1002/rcm.250. [PMID: 11268131]
  • B L Goodwin, C R Ruthven, M Sandler. Gut flora and the origin of some urinary aromatic phenolic compounds. Biochemical pharmacology. 1994 Jun; 47(12):2294-7. doi: 10.1016/0006-2952(94)90268-2. [PMID: 8031324]
  • A Noma, K Nakayama. Polarographic method for rapid microdetermination of cholesterol with cholesterol esterase and cholesterol oxidase. Clinical chemistry. 1976 Mar; 22(3):336-40. doi: 10.1093/clinchem/22.3.336. [PMID: 3294]
  • L A GRIFFITHS. m-Hydroxyphenylpropionic acid, a major urinary metabolite of catechin in the rat. Nature. 1962 Jun; 194(?):869-70. doi: 10.1038/194869b0. [PMID: 13901876]