L-Isoleucine (BioDeep_00000000784)
Secondary id: BioDeep_00000229676, BioDeep_00000398133, BioDeep_00000399868
natural product human metabolite PANOMIX_OTCML-2023 blood metabolite BioNovoGene_Lab2019
代谢物信息卡片
化学式: C6H13NO2 (131.0946)
中文名称: DL-异亮氨酸, L-异亮氨酸, DL-别异亮氨酸, 异亮氨酸, L-异白氨酸, l-异亮氨酸
谱图信息:
最多检出来源 Homo sapiens(blood) 12.25%
Last reviewed on 2024-07-01.
Cite this Page
L-Isoleucine. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/l-isoleucine (retrieved
2024-12-22) (BioDeep RN: BioDeep_00000000784). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C([C@@H](N)[C@@H](C)CC)(=O)O
InChI: InChI=1S/C6H13NO2/c1-3-4(2)5(7)6(8)9/h4-5H,3,7H2,1-2H3,(H,8,9)
描述信息
Isoleucine (Ile) or L-isoleucine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. L-isolecuine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Isoleucine is found in all organisms ranging from bacteria to plants to animals. It is classified as a non-polar, uncharged (at physiological pH) aliphatic amino acid. Isoleucine is an essential amino acid in humans, meaning the body cannot synthesize it and that it must be obtained from the diet. In plants and microorganisms, isoleucine is synthesized starting from pyruvate and alpha-ketobutyrate. Isoleucine is classified as a branched chain amino acid (BCAA). BCAAs include three amino acids: isoleucine, leucine and valine. They are alpha amino acids whose carbon structure is marked by a beta branch point. Despite their structural similarities, BCAAs have different metabolic routes, with valine going solely to carbohydrates (glucogenic), leucine solely to fats (ketogenic) and isoleucine being both a glucogenic and a ketogenic amino acid. Isoleucine is catabolized via with alpha-ketoglutarate where upon it is oxidized and split into propionyl-CoA and acetyl-CoA. Propionyl-CoA is converted into succinyl-CoA, a TCA cycle intermediate which can be converted into oxaloacetate for gluconeogenesis (hence glucogenic). The acetyl-CoA can be fed into the TCA cycle by condensing with oxaloacetate to form citrate or used in the synthesis of ketone bodies or fatty acids. The different metabolism of BCAAs accounts for different requirements for these essential amino acids in humans: 12 mg/kg, 14 mg/kg and 16 mg/kg of valine, leucine and isoleucine are required respectively. Furthermore, these amino acids have different deficiency symptoms. Valine deficiency is marked by neurological defects in the brain, while isoleucine deficiency is marked by muscle tremors. BCAAs are decreased in patients with liver disease, such as hepatitis, hepatic coma, cirrhosis, extrahepatic biliary atresia. An inability to break down isoleucine, along with other amino acids, is associated with maple syrup urine disease (MSUD) (PMID: 34125801). Isoleucine, like other BCAAs, is associated with insulin resistance. In particular, higher levels of isoleucine are observed in the blood of diabetic mice, rats, and humans (PMID 25287287). Mice fed an isoleucine deprivation diet for one day have improved insulin sensitivity, and feeding of an isoleucine deprivation diet for one week significantly decreases blood glucose levels (PMID: 24684822).
L-isoleucine is the L-enantiomer of isoleucine. It has a role as a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite, a plant metabolite, a human metabolite, an algal metabolite and a mouse metabolite. It is an aspartate family amino acid, a proteinogenic amino acid, an isoleucine and a L-alpha-amino acid. It is a conjugate base of a L-isoleucinium. It is a conjugate acid of a L-isoleucinate. It is an enantiomer of a D-isoleucine. It is a tautomer of a L-isoleucine zwitterion.
An essential branched-chain aliphatic amino acid found in many proteins. It is an isomer of leucine. It is important in hemoglobin synthesis and regulation of blood sugar and energy levels.
L-Isoleucine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655).
Isoleucine is one of nine essential amino acids in humans (present in dietary proteins), Isoleucine has diverse physiological functions, such as assisting wound healing, detoxification of nitrogenous wastes, stimulating immune function, and promoting secretion of several hormones. Necessary for hemoglobin formation and regulating blood sugar and energy levels, isoleucine is concentrated in muscle tissues in humans. Isoleucine is found especially in meats, fish, cheese, eggs, and most seeds and nuts. (NCI04)
L-Isoleucine is one of the essential amino acids that cannot be made by the body and is known for its ability to help endurance and assist in the repair and rebuilding of muscle. This amino acid is important to body builders as it helps boost energy and helps the body recover from training. L-Isoleucine is also classified as a branched-chain amino acid (BCAA). It helps promote muscle recovery after exercise. Isoleucine is actually broken down for energy within the muscle tissue. It is important in hemoglobin synthesis and regulation of blood sugar and energy levels.
An essential branched-chain aliphatic amino acid found in many proteins. It is an isomer of LEUCINE. It is important in hemoglobin synthesis and regulation of blood sugar and energy levels.
L-Isoleucine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=73-32-5 (retrieved 2024-07-01) (CAS RN: 73-32-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
L-isoleucine is a nonpolar hydrophobic amino acid[1]. L-Isoleucine is an essential amino acid.
L-isoleucine is a nonpolar hydrophobic amino acid[1]. L-Isoleucine is an essential amino acid.
同义名列表
138 个代谢物同义名
L-Isoleucine, from non-animal source, meets EP, JP, USP testing specifications, suitable for cell culture, 98.5-101.0\\%; (S,S)-2-amino-3-methyl-pentanoicacid;(s,s)-isoleucine;[S-(R*,R*)]-2-Amino-3-methylpentanoic acid; L-Isoleucine, Pharmaceutical Secondary Standard; Certified Reference Material; 6-?amino-?5-?(ethylamino)?-?1-?methyl-2,?4(1H,?3H)?-?Pyrimidinedione; L-Isoleucine, United States Pharmacopeia (USP) Reference Standard; Isoleucine, European Pharmacopoeia (EP) Reference Standard; L-Isoleucine, certified reference material, TraceCERT(R); (2S,3S)-.alpha.-Amino-.beta.-methyl-n-valeric acid; .alpha.-Amino-.beta.-methylvaleric acid, (2S,3S)-; Pentanoic acid, 2-amino-3-methyl-, [S-(R*,R*)]-; L-Isoleucine, Cell Culture Reagent (H-L-Ile-OH); (2S,3S)-alpha-Amino-beta-merthyl-n-valeric acid; (2S,3S)-alpha-Amino-beta-methyl-n-valeric acid; Pentanoic acid, 2-amino-3-methyl-, (S-(R*,R))-; L-Isoleucine, Vetec(TM) reagent grade, >=98\\%; Acetic acid, amino(1-methylpropyl)-, (R*,R*)-; 2-Amino-3-methylpentanoic acid, (S-(R*,R*))-; (2S,3S)-alpha-Amino-beta-merthylvaleric acid; (+/-)-erythro-2-Amino-3-methylpentanoic acid; (2S,3S)-alpha-Amino-beta-merthyl-n-valerate; (2S,3S)-alpha-Amino-beta-methylvaleric acid; Pentanoic acid, 2-amino-3-methyl-, (2S,3S)-; (2S,3S)-alph-Amino-beta-methylvaleric acid; (2S,3S)-alpha-Amino-beta-methyl-n-valerate; L-Isoleucine, reagent grade, >=98\\% (HPLC); [S-(R*,R*)]-2-Amino-3-methylpentanoic acid; (S-(R*,R*))-2-Amino-3-methylpentanoic acid; L-Isoleucine, SAJ special grade, >=99.0\\%; (2S,3S)-alpha-Amino-beta-merthylvalerate; (2S,3S)-alpha-Amino-beta-methylvalerate; (2S,3S)-a-Amino-b-methyl-n-valeric acid; (2S,3S)-2-amino-3-methyl-Pentanoic acid; (2S,3S)-alph-Amino-beta-methylvalerate; (2S,3S)-2-Amino-3-methylpentanoic acid; [S-(R*,R*)]-2-Amino-3-methylpentanoate; (2S,3S)-2-Amino-3-methylpentanoicacid; L-Isoleucine, BioUltra, >=99.5\\% (NT); (2S,3S)-a-Amino-b-methylvaleric acid; (2S,3S)-2-amino-3-methyl-Pentanoate; (2S,3S)-a-Amino-b-methyl-n-valerate; alpha-Amino-beta-methylvaleric acid; (2S,3S)-2-amino-3-methylpentanoate; Pentanoic acid, 2-amino-3-methyl-; (2S,3S)-a-Amino-b-methylvalerate; LEUCINE IMPURITY A [EP IMPURITY]; L-Norvaline, 3-methyl-, erythro-; 2S-Amino-3S-methylpentanoic acid; L-Isoleucine, Vetec(TM), 98.5\\%; VALINE IMPURITY B [EP IMPURITY]; L-Isoleucine: D-allo-isoleucine; Valeric acid, 2-amino-3-methyl-; alpha-Amino-beta-methylvalerate; 2-Amino-3-methylpentanoic acid; Norvaline, 3-methyl-, erythro-; Acetic acid, amino-sec-butyl-; Isoleucine [USAN:USP:INN:BAN]; 2-Amino-3-methylvaleric acid; a-Amino-b-methylvaleric acid; Α-amino-β-methylvaleric acid; 2S-Amino-3S-methylpentanoate; L-Isoleucine, 99\\%, FCC, FG; ISOLEUCINE [USP MONOGRAPH]; 2-amino-3-methylpentanoate; Isoleucine (L-Isoleucine); ISOLEUCINE [EP MONOGRAPH]; L-Isoleucine (H-L-Ile-OH); Α-amino-β-methylvalerate; 2-Amino-3-methylvalerate; a-Amino-b-methylvalerate; ISOLEUCINE DL-FORM [MI]; L-Isoleucine (H-lle-OH); Isoleucine [USAN:INN]; L-ISOLEUCINE [USP-RS]; Isoleucine, L Isomer; DL-ISOLEUCINE [FHFI]; Isoleucine, L-Isomer; Isoleucine, L- (8CI); Isoleucina [Spanish]; Norvaline, 3-methyl-; erythro-L-Isoleucine; sec-C4H9CH(NH2)COOH; ISOLEUCINE [WHO-DD]; DL-ISOLEUCINE [FCC]; L-Isoleucine (JP17); Isoleucinum [Latin]; L-Isomer Isoleucine; ISOLEUCINE DL-FORM; ISOLEUCINE [VANDF]; L-ISOLEUCINE [FCC]; ISOLEUCINE [MART.]; DL-Allo-isoleucine; L-Isoleucine, 99\\%; L-ISOLEUCINE [JAN]; ISOLEUCINE [INCI]; L-[14C]Isoleucine; ISOLEUCINE [USAN]; ISOLEUCINE [HSDB]; (S,S)-Isoleucine; 2S,3S-Isoleucine; L-Isoleucine,(S); L-(+)-Isoleucine; Isoleucine (VAN); ISOLEUCINE [INN]; (+)-L-isoleucine; Isoleucine (USP); ISOLEUCINE [MI]; Isoleucine, DL-; UNII-5HX0BYT4E3; ISOLEUCINE [II]; UNII-04Y7590D77; (L)-Isoleucine; L- iso-Leucine; (S)-Isoleucine; ISOLEUCINE, L-; Alloisoleucine; Tox21_112765_1; L-iso-leucine; DL-Isoleucine; Tox21_112765; L-lsoleucine; L-Isoleucine; iso-leucine; Isoleucinum; 5HX0BYT4E3; 04Y7590D77; Isoleucine; Isoleucina; AI3-18474; H-Ile-OH; Ile-OH; H-Ile; L-Ile; ile; I; L-Alloisoleucine; Isoleucine; L-Isoleucine; l-Isoleucine
数据库引用编号
55 个数据库交叉引用编号
- ChEBI: CHEBI:17191
- ChEBI: CHEBI:38264
- KEGG: C00407
- KEGGdrug: D00065
- PubChem: 6306
- PubChem: 791
- HMDB: HMDB0000172
- Metlin: METLIN23
- DrugBank: DB00167
- ChEMBL: CHEMBL1233584
- ChEMBL: CHEMBL297800
- Wikipedia: Isoleucine
- LipidMAPS: LMFA01100047
- MeSH: Isoleucine
- ChemIDplus: 0000073325
- MetaCyc: ILE
- KNApSAcK: C00001374
- foodb: FDB012397
- chemspider: 6067
- CAS: 73-32-5
- MoNA: KNA00043
- MoNA: KO003175
- MoNA: PB000398
- MoNA: PB000395
- MoNA: KO001176
- MoNA: PS028002
- MoNA: KO001177
- MoNA: PS028001
- MoNA: PS028003
- MoNA: KO003172
- MoNA: KO001179
- MoNA: KO003173
- MoNA: KNA00041
- MoNA: KNA00320
- MoNA: KNA00042
- MoNA: KNA00322
- MoNA: KO001178
- MoNA: KO001175
- MoNA: PB000396
- MoNA: KNA00321
- MoNA: KO003176
- MoNA: KO003174
- MoNA: PB000397
- medchemexpress: HY-N0771
- PMhub: MS000000007
- MetaboLights: MTBLC17191
- PDB-CCD: ILE
- 3DMET: B01236
- NIKKAJI: J2.818E
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-758
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-837
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-23
- PubChem: 3697
- KNApSAcK: 17191
- LOTUS: LTS0249538
分类词条
相关代谢途径
Reactome(0)
BioCyc(4)
PlantCyc(0)
代谢反应
74 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(4)
- isoleucine degradation I:
2-methylacetoacetyl-CoA + coenzyme A ⟶ acetyl-CoA + propanoyl-CoA
- superpathway of threonine metabolism:
2-oxobutanoate + coenzyme A ⟶ formate + propanoyl-CoA
- isoleucine biosynthesis I:
thr ⟶ 2-oxobutanoate + H+ + ammonia
- isoleucine biosynthesis I (from threonine):
thr ⟶ 2-oxobutanoate + H+ + ammonia
WikiPathways(2)
- Glucosinolate biosynthesis from branched-chain amino acid:
2-Oxo-3-methyl-butanoic acid ⟶ L-Valine
- Leucine, isoleucine and valine metabolism:
Methylmalonyl-CoA ⟶ Succinyl-CoA
Plant Reactome(0)
INOH(2)
- Valine,Leucine and Isoleucine degradation ( Valine,Leucine and Isoleucine degradation ):
2-Methyl-3-acetoacetyl-CoA + CoA ⟶ Acetyl-CoA + Propanoyl-CoA
- 2-Oxo-glutaric acid + L-Isoleucine = L-Glutamic acid + (R)-2-Oxo-3-methyl-pentanoic acid ( Valine,Leucine and Isoleucine degradation ):
2-Oxo-glutaric acid + L-Isoleucine ⟶ (R)-2-Oxo-3-methyl-pentanoic acid + L-Glutamic acid
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(66)
- 3-Methylglutaconic Aciduria Type I:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- 3-Methylglutaconic Aciduria Type III:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- Methylmalonate Semialdehyde Dehydrogenase Deficiency:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- Methylmalonic Aciduria:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- Isovaleric Aciduria:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- 3-Methylglutaconic Aciduria Type IV:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- 3-Hydroxyisobutyric Acid Dehydrogenase Deficiency:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- 3-Hydroxyisobutyric Aciduria:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- Isobutyryl-CoA Dehydrogenase Deficiency:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- Isovaleric Acidemia:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- Isoleucine Biosynthesis:
2-iminobutanoate + Hydrogen Ion + Water ⟶ 2-Ketobutyric acid + Ammonium
- Isoleucine Biosynthesis:
2-iminobutanoate + Hydrogen Ion + Water ⟶ 2-Ketobutyric acid + Ammonium
- Isoleucine Biosynthesis:
2-iminobutanoate + Hydrogen Ion + Water ⟶ 2-Ketobutyric acid + Ammonium
- Valine, Leucine, and Isoleucine Degradation:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 2-Methyl-3-hydroxybutryl-CoA Dehydrogenase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Hydroxy-3-methylglutaryl-CoA Lyase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Methylcrotonyl-CoA Carboxylase Deficiency Type I:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Methylglutaconic Aciduria Type I:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Methylglutaconic Aciduria Type III:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Methylglutaconic Aciduria Type IV:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- beta-Ketothiolase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Maple Syrup Urine Disease:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Methylmalonate Semialdehyde Dehydrogenase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Methylmalonic Aciduria:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Propionic Acidemia:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Hydroxyisobutyric Acid Dehydrogenase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Hydroxyisobutyric Aciduria:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Isobutyryl-CoA Dehydrogenase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Isovaleric Acidemia:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Isovaleric Aciduria:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Valine, Leucine, and Isoleucine Degradation:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Valine, Leucine, and Isoleucine Degradation:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 2-Methyl-3-hydroxybutryl-CoA Dehydrogenase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Hydroxy-3-methylglutaryl-CoA Lyase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Methylcrotonyl-CoA Carboxylase Deficiency Type I:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Methylglutaconic Aciduria Type I:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Methylglutaconic Aciduria Type III:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Methylglutaconic Aciduria Type IV:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- beta-Ketothiolase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Isovaleric Aciduria:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Maple Syrup Urine Disease:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Methylmalonate Semialdehyde Dehydrogenase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Methylmalonic Aciduria:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Propionic Acidemia:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Hydroxyisobutyric Acid Dehydrogenase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Hydroxyisobutyric Aciduria:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Isobutyryl-CoA Dehydrogenase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Valine, Leucine, and Isoleucine Degradation:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- Isoleucine Biosynthesis:
2-Ketobutyric acid + Hydrogen Ion + Pyruvic acid ⟶ (S)-2-Aceto-2-hydroxybutanoic acid + Carbon dioxide
- tRNA Charging:
Adenosine triphosphate + Hydrogen Ion + L-Arginine ⟶ Adenosine monophosphate + Pyrophosphate
- tRNA Charging:
Adenosine triphosphate + Hydrogen Ion + L-Arginine ⟶ Adenosine monophosphate + Pyrophosphate
- beta-Ketothiolase Deficiency:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- 2-Methyl-3-hydroxybutyryl-CoA Dehydrogenase Deficiency:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- Propionic Acidemia:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- 3-Hydroxy-3-methylglutaryl-CoA Lyase Deficiency:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- tRNA Charging 2:
Adenosine triphosphate + Hydrogen Ion + L-Arginine ⟶ Adenosine monophosphate + Pyrophosphate
- Isovaleric Acidemia:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Isoleucine Degradation:
L-Isoleucine + Oxoglutaric acid ⟶ (S)-3-methyl-2-oxopentanoate + L-Glutamic acid
- Maple Syrup Urine Disease:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- 3-Methylcrotonyl-CoA Carboxylase Deficiency Type I:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- Protein Synthesis: Isoleucine:
Adenosine triphosphate + L-Isoleucine ⟶ Adenosine monophosphate + Pyrophosphate
- Protein Synthesis: Isoleucine:
Adenosine triphosphate + L-Isoleucine ⟶ Adenosine monophosphate + Pyrophosphate
- Protein Synthesis: Isoleucine:
Adenosine triphosphate + L-Isoleucine ⟶ Adenosine monophosphate + Pyrophosphate
- Protein Synthesis: Isoleucine:
Adenosine triphosphate + L-Isoleucine ⟶ Adenosine monophosphate + Pyrophosphate
- tRNA Charging 2:
Adenosine triphosphate + Hydrogen Ion + L-Arginine ⟶ Adenosine monophosphate + Pyrophosphate
- Isoleucine Degradation:
L-Isoleucine + Oxoglutaric acid ⟶ (S)-3-methyl-2-oxopentanoate + L-Glutamic acid
PharmGKB(0)
407 个相关的物种来源信息
- 3319 - Abies: LTS0249538
- 90345 - Abies balsamea: 10.1016/S0021-9673(01)97854-9
- 90345 - Abies balsamea: LTS0249538
- 13328 - Achillea: LTS0249538
- 13329 - Achillea millefolium: 10.1016/S0031-9422(00)90576-4
- 13329 - Achillea millefolium: LTS0249538
- 482479 - Achillea millefolium var. borealis: 10.1016/S0031-9422(00)90576-4
- 482479 - Achillea millefolium var. borealis: LTS0249538
- 5339 - Agaricaceae: LTS0249538
- 155619 - Agaricomycetes: LTS0249538
- 5340 - Agaricus: LTS0249538
- 56157 - Agaricus campestris: 10.1021/JF60199A047
- 56157 - Agaricus campestris: LTS0249538
- 4449 - Alismataceae: LTS0249538
- 4678 - Allium: LTS0249538
- 4682 - Allium sativum: 10.1016/0378-8741(96)01416-X
- 4682 - Allium sativum: LTS0249538
- 94326 - Alpinia: LTS0249538
- 94327 - Alpinia galanga: 10.1016/0305-1978(86)90092-X
- 94327 - Alpinia galanga: LTS0249538
- 230707 - Alpinia purpurata: 10.1016/0305-1978(86)90092-X
- 230707 - Alpinia purpurata: LTS0249538
- 3563 - Amaranthaceae: LTS0249538
- 4668 - Amaryllidaceae: LTS0249538
- 8292 - Amphibia: LTS0249538
- 4614 - Ananas: LTS0249538
- 4615 - Ananas comosus: 10.1016/0305-1978(86)90092-X
- 4615 - Ananas comosus: LTS0249538
- 4150 - Antirrhinum: LTS0249538
- 4151 - Antirrhinum majus: 10.1055/S-0028-1097736
- 4151 - Antirrhinum majus: LTS0249538
- 4037 - Apiaceae: LTS0249538
- 3701 - Arabidopsis: LTS0249538
- 3702 - Arabidopsis thaliana: 10.1104/PP.104.053793
- 3702 - Arabidopsis thaliana: 10.1104/PP.109.148031
- 3702 - Arabidopsis thaliana: 10.1104/PP.114.240986
- 3702 - Arabidopsis thaliana: LTS0249538
- 4454 - Araceae: LTS0249538
- 4050 - Araliaceae: LTS0249538
- 131254 - Archontophoenix: LTS0249538
- 180981 - Archontophoenix alexandrae: 10.1016/0305-1978(86)90092-X
- 180981 - Archontophoenix alexandrae: LTS0249538
- 115440 - Areca: LTS0249538
- 184783 - Areca catechu: 10.1016/0305-1978(86)90092-X
- 184783 - Areca catechu: LTS0249538
- 4710 - Arecaceae: LTS0249538
- 6660 - Artemia: LTS0249538
- 85549 - Artemia salina: 10.1021/JF60200A008
- 85549 - Artemia salina: LTS0249538
- 38009 - Artemiidae: LTS0249538
- 6656 - Arthropoda: LTS0249538
- 4890 - Ascomycota: LTS0249538
- 40552 - Asparagaceae: LTS0249538
- 4210 - Asteraceae: LTS0249538
- 20400 - Astragalus: LTS0249538
- 20414 - Astragalus hamosus: 10.1021/NP50075A009
- 20414 - Astragalus hamosus: LTS0249538
- 265785 - Atractylodes Macrocephala Koidz.: -
- 91061 - Bacilli: LTS0249538
- 2 - Bacteria: LTS0249538
- 318051 - Bambusa textilis McClure,Schizostachyum chinense Rendle: -
- 5204 - Basidiomycota: LTS0249538
- 7091 - Bombyx Mori L.: -
- 6658 - Branchiopoda: LTS0249538
- 3705 - Brassica: LTS0249538
- 3708 - Brassica napus: 10.1021/JF00011A007
- 3708 - Brassica napus: LTS0249538
- 3700 - Brassicaceae: LTS0249538
- 4613 - Bromeliaceae: LTS0249538
- 37796 - Buccinidae: LTS0249538
- 3593 - Cactaceae: LTS0249538
- 3820 - Cajanus: LTS0249538
- 3821 - Cajanus cajan: 10.1055/S-2006-960880
- 3821 - Cajanus cajan: LTS0249538
- 5475 - Candida: LTS0249538
- 5476 - Candida albicans: LTS0249538
- 3481 - Cannabaceae: LTS0249538
- 3482 - Cannabis: LTS0249538
- 3483 - Cannabis sativa: 10.1021/NP50008A001
- 3483 - Cannabis sativa: LTS0249538
- 4200 - Caprifoliaceae: LTS0249538
- 3568 - Caryophyllaceae: LTS0249538
- 21019 - Castanea: LTS0249538
- 21020 - Castanea sativa: 10.1016/S0031-9422(00)83785-1
- 21020 - Castanea sativa: LTS0249538
- 123403 - Catha: LTS0249538
- 123405 - Catha edulis: 10.1002/ARDP.19602931105
- 123405 - Catha edulis: LTS0249538
- 4305 - Celastraceae: LTS0249538
- 1804623 - Chenopodiaceae: LTS0249538
- 3051 - Chlamydomonadaceae: LTS0249538
- 3052 - Chlamydomonas: LTS0249538
- 3055 - Chlamydomonas reinhardtii: 10.1111/TPJ.12747
- 3055 - Chlamydomonas reinhardtii: LTS0249538
- 3166 - Chlorophyceae: LTS0249538
- 3041 - Chlorophyta: LTS0249538
- 7711 - Chordata: LTS0249538
- 5110 - Claviceps: LTS0249538
- 5111 - Claviceps purpurea: 10.1055/S-0028-1100051
- 5111 - Claviceps purpurea: LTS0249538
- 34397 - Clavicipitaceae: LTS0249538
- 13893 - Cocos: LTS0249538
- 13894 - Cocos nucifera: 10.1016/0305-1978(86)90092-X
- 13894 - Cocos nucifera: LTS0249538
- 41218 - Colchicaceae: LTS0249538
- 13444 - Colchicum: LTS0249538
- 1094124 - Colchicum trigynum: 10.1055/S-0028-1097874
- 1094124 - Colchicum trigynum: LTS0249538
- 4743 - Commelina: LTS0249538
- 4740 - Commelinaceae: LTS0249538
- 16906 - Cornus Officinalis Sieb. Et Zucc.: -
- 3660 - Cucurbita: LTS0249538
- 184136 - Cucurbita foetidissima: 10.1021/JF60216A022
- 184136 - Cucurbita foetidissima: LTS0249538
- 3650 - Cucurbitaceae: LTS0249538
- 3367 - Cupressaceae: LTS0249538
- 4609 - Cyperaceae: LTS0249538
- 4610 - Cyperus: LTS0249538
- 1234190 - Cyperus aromaticus: 10.1016/0305-1978(86)90092-X
- 1234190 - Cyperus aromaticus: LTS0249538
- 6668 - Daphnia: LTS0249538
- 6669 - Daphnia pulex: 10.1038/SREP25125
- 6669 - Daphnia pulex: LTS0249538
- 77658 - Daphniidae: LTS0249538
- 4038 - Daucus: LTS0249538
- 4039 - Daucus carota: 10.1016/0008-6215(84)85339-2
- 4039 - Daucus carota: LTS0249538
- 766764 - Debaryomycetaceae: LTS0249538
- 37818 - Dendrobium: LTS0249538
- 51096 - Dendrobium crumenatum: 10.1016/0305-1978(86)90092-X
- 51096 - Dendrobium crumenatum: LTS0249538
- 42195 - Dieffenbachia: LTS0249538
- 4671 - Dioscoreaceae: LTS0249538
- 44615 - Discinaceae: LTS0249538
- 40129 - Donax: LTS0249538
- 96514 - Donax canniformis: 10.1016/0305-1978(86)90092-X
- 96514 - Donax canniformis: LTS0249538
- 210034 - Donax grandis: 10.1016/0305-1978(86)90092-X
- 210034 - Donax grandis: LTS0249538
- 147541 - Dothideomycetes: LTS0249538
- 543 - Enterobacteriaceae: LTS0249538
- 174214 - Epipremnum: LTS0249538
- 78380 - Epipremnum aureum: 10.1016/0305-1978(86)90092-X
- 78380 - Epipremnum aureum: LTS0249538
- 258264 - Epipremnum pinnatum: 10.1016/0305-1978(86)90092-X
- 258264 - Epipremnum pinnatum: LTS0249538
- 561 - Escherichia: LTS0249538
- 562 - Escherichia coli: LTS0249538
- 33682 - Euglenozoa: LTS0249538
- 2759 - Eukaryota: LTS0249538
- 3990 - Euphorbia: LTS0249538
- 212836 - Euphorbia prostrata: 10.1016/S0031-9422(00)86537-1
- 212836 - Euphorbia prostrata: LTS0249538
- 3977 - Euphorbiaceae: LTS0249538
- 3803 - Fabaceae: LTS0249538
- 3503 - Fagaceae: LTS0249538
- 38944 - Flammulina: LTS0249538
- 38945 - Flammulina velutipes: 10.1111/J.1365-2621.1987.TB13989.X
- 38945 - Flammulina velutipes: LTS0249538
- 4751 - Fungi: LTS0249538
- 1236 - Gammaproteobacteria: LTS0249538
- 6448 - Gastropoda: LTS0249538
- 3310 - Ginkgo: LTS0249538
- 3311 - Ginkgo biloba: 10.1016/S0731-7085(98)00094-6
- 3311 - Ginkgo biloba: LTS0249538
- 3309 - Ginkgoaceae: LTS0249538
- 29811 - Ginkgoopsida: LTS0249538
- 41219 - Gloriosa: LTS0249538
- 41220 - Gloriosa superba: 10.1016/0305-1978(86)90092-X
- 41220 - Gloriosa superba: LTS0249538
- 3846 - Glycine: LTS0249538
- 3847 - Glycine max: 10.1007/BF00576124
- 3847 - Glycine max: LTS0249538
- 33160 - Gyromitra: LTS0249538
- 33161 - Gyromitra esculenta: 10.1021/JF60199A047
- 33161 - Gyromitra esculenta: LTS0249538
- 4051 - Hedera: LTS0249538
- 4052 - Hedera helix: 10.1016/S0731-7085(98)00094-6
- 4052 - Hedera helix: LTS0249538
- 85353 - Hedera hibernica: 10.1016/S0731-7085(98)00094-6
- 85353 - Hedera hibernica: LTS0249538
- 9604 - Hominidae: LTS0249538
- 9605 - Homo: LTS0249538
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S11306-012-0464-Y
- 9606 - Homo sapiens: 10.1038/NBT.2488
- 9606 - Homo sapiens: LTS0249538
- 51023 - Hydrilla: LTS0249538
- 51024 - Hydrilla verticillata: 10.1016/0305-1978(86)90092-X
- 51024 - Hydrilla verticillata: LTS0249538
- 26319 - Hydrocharitaceae: LTS0249538
- 8418 - Hylidae: LTS0249538
- 20685 - Indigofera: LTS0249538
- 520844 - Indigofera hendecaphylla: 10.1021/JF60189A002
- 520844 - Indigofera hendecaphylla: LTS0249538
- 539088 - Indigofera hirsuta: 10.1021/JF60189A002
- 539088 - Indigofera hirsuta: LTS0249538
- 3089969 - Indigofera pilosa: LTS0249538
- 138272 - Indigofera schimperi: 10.1021/JF60189A002
- 138272 - Indigofera schimperi: LTS0249538
- 304104 - Iochroma: LTS0249538
- 304105 - Iochroma fuchsioides: 10.1021/NP50078A017
- 304105 - Iochroma fuchsioides: LTS0249538
- 3995 - Jatropha: LTS0249538
- 454931 - Jatropha gossypiifolia: 10.1016/0031-9422(71)85055-0
- 454931 - Jatropha gossypiifolia: 10.1016/S0031-9422(00)80544-0
- 454931 - Jatropha gossypiifolia: LTS0249538
- 13100 - Juniperus: LTS0249538
- 58039 - Juniperus communis: LTS0249538
- 244307 - Juniperus communis var. communis: 10.1016/S0021-9673(01)97854-9
- 244307 - Juniperus communis var. communis: LTS0249538
- 114265 - Juniperus occidentalis: 10.1016/S0021-9673(01)97854-9
- 114265 - Juniperus occidentalis: LTS0249538
- 466205 - Juniperus scopulorum: 10.1016/S0021-9673(01)97854-9
- 466205 - Juniperus scopulorum: LTS0249538
- 5653 - Kinetoplastea: LTS0249538
- 147548 - Leotiomycetes: LTS0249538
- 4447 - Liliopsida: LTS0249538
- 8370 - Litoria: LTS0249538
- 681275 - Litoria verreauxii: 10.1038/SDATA.2018.33
- 681275 - Litoria verreauxii: LTS0249538
- 3963 - Loranthaceae: LTS0249538
- 3869 - Lupinus: LTS0249538
- 3870 - Lupinus albus: 10.1515/BCHM2.1905.45.1-2.38
- 3870 - Lupinus albus: LTS0249538
- 3398 - Magnoliopsida: LTS0249538
- 3629 - Malvaceae: LTS0249538
- 40674 - Mammalia: LTS0249538
- 4619 - Marantaceae: LTS0249538
- 33208 - Metazoa: LTS0249538
- 6447 - Mollusca: LTS0249538
- 3487 - Moraceae: LTS0249538
- 5193 - Morchella: LTS0249538
- 60347 - Morchella angusticeps: 10.1021/JF60199A047
- 60347 - Morchella angusticeps: LTS0249538
- 62754 - Morchella crassipes: 10.1021/JF60199A047
- 62754 - Morchella crassipes: LTS0249538
- 1579548 - Morchella deliciosa: 10.1021/JF60199A047
- 1579548 - Morchella deliciosa: LTS0249538
- 39407 - Morchella esculenta: 10.1021/JF60199A047
- 39407 - Morchella esculenta: LTS0249538
- 5192 - Morchellaceae: LTS0249538
- 168074 - Murdannia: LTS0249538
- 428249 - Murdannia nudiflora: 10.1016/0305-1978(86)90092-X
- 428249 - Murdannia nudiflora: LTS0249538
- 10066 - Muridae: LTS0249538
- 10088 - Mus: LTS0249538
- 10090 - Mus musculus: LTS0249538
- 10090 - Mus musculus: NA
- 4640 - Musa: LTS0249538
- 89151 - Musa × paradisiaca: 10.1016/0305-1978(86)90092-X
- 4637 - Musaceae: LTS0249538
- 37240 - Myxotrichaceae: LTS0249538
- 78133 - Myxotrichum: 10.1016/0305-1978(86)90092-X
- 78133 - Myxotrichum: LTS0249538
- 57632 - Neptunea: LTS0249538
- 167137 - Neptunea antiqua: 10.1016/0041-0101(89)90038-X
- 167137 - Neptunea antiqua: LTS0249538
- 4085 - Nicotiana: LTS0249538
- 4097 - Nicotiana tabacum: 10.1007/BF02660305
- 4097 - Nicotiana tabacum: LTS0249538
- 42451 - Onchidiidae: LTS0249538
- 69681 - Onchidium: 10.1016/0305-1978(86)90092-X
- 69681 - Onchidium: LTS0249538
- 45173 - Oncidium: 10.1016/0305-1978(86)90092-X
- 45173 - Oncidium: LTS0249538
- 106975 - Opuntia: LTS0249538
- 371859 - Opuntia ficus-indica: 10.1055/S-1999-14037
- 371859 - Opuntia ficus-indica: LTS0249538
- 4747 - Orchidaceae: LTS0249538
- 4053 - Panax: LTS0249538
- 4054 - Panax ginseng: 10.1021/JF00093A051
- 4054 - Panax ginseng: LTS0249538
- 4724 - Pandanaceae: LTS0249538
- 4725 - Pandanus: LTS0249538
- 1165086 - Pandanus odorifer: 10.1016/0305-1978(86)90092-X
- 1165086 - Pandanus odorifer: LTS0249538
- 59064 - Peliosanthes: LTS0249538
- 148715 - Pentaclethra: LTS0249538
- 148716 - Pentaclethra macrophylla: 10.1007/BF02666050
- 148716 - Pentaclethra macrophylla: LTS0249538
- 147549 - Pezizomycetes: LTS0249538
- 862241 - Physalacriaceae: LTS0249538
- 3328 - Picea: LTS0249538
- 3330 - Picea glauca: 10.1016/S0021-9673(01)97854-9
- 3330 - Picea glauca: LTS0249538
- 3335 - Picea mariana: 10.1016/S0021-9673(01)97854-9
- 3335 - Picea mariana: LTS0249538
- 3331 - Picea pungens: 10.1016/S0021-9673(01)97854-9
- 3331 - Picea pungens: LTS0249538
- 3318 - Pinaceae: LTS0249538
- 58019 - Pinopsida: LTS0249538
- 3337 - Pinus: LTS0249538
- 3339 - Pinus contorta: 10.1016/S0021-9673(01)97854-9
- 3339 - Pinus contorta: LTS0249538
- 77912 - Pinus densiflora: 10.1248/YAKUSHI1947.107.4_279
- 77912 - Pinus densiflora: LTS0249538
- 55062 - Pinus ponderosa: 10.1016/S0021-9673(01)97854-9
- 55062 - Pinus ponderosa: 10.1034/J.1399-3054.1990.790104.X
- 55062 - Pinus ponderosa: LTS0249538
- 3887 - Pisum: LTS0249538
- 3888 - Pisum sativum: 10.1007/BF00574236
- 3888 - Pisum sativum: LTS0249538
- 208194 - Pisum sativum subsp. sativum: 10.1007/BF00574236
- 208194 - Pisum sativum subsp. sativum: LTS0249538
- 156152 - Plantaginaceae: LTS0249538
- 33090 - Plants: -
- 36657 - Pluteaceae: LTS0249538
- 16367 - Pontederiaceae: LTS0249538
- 3754 - Prunus: LTS0249538
- 3758 - Prunus domestica: 10.1021/JF00017A016
- 3758 - Prunus domestica: LTS0249538
- 135621 - Pseudomonadaceae: LTS0249538
- 286 - Pseudomonas: LTS0249538
- 287 - Pseudomonas aeruginosa: LTS0249538
- 303 - Pseudomonas putida: LTS0249538
- 3356 - Pseudotsuga: LTS0249538
- 3357 - Pseudotsuga menziesii: 10.1016/S0021-9673(01)97854-9
- 3357 - Pseudotsuga menziesii: LTS0249538
- 3889 - Psophocarpus: LTS0249538
- 3891 - Psophocarpus tetragonolobus: 10.1111/J.1365-2621.1985.TB10514.X
- 3891 - Psophocarpus tetragonolobus: LTS0249538
- 5296 - Puccinia: LTS0249538
- 5297 - Puccinia graminis: 10.1139/V60-033
- 5297 - Puccinia graminis: LTS0249538
- 5262 - Pucciniaceae: LTS0249538
- 162484 - Pucciniomycetes: LTS0249538
- 46332 - Rhynchospora: LTS0249538
- 906937 - Rhynchospora colorata: 10.1016/0305-1978(86)90092-X
- 906937 - Rhynchospora colorata: LTS0249538
- 2872799 - Ripariosida: LTS0249538
- 108447 - Ripariosida hermaphrodita: LTS0249538
- 3745 - Rosaceae: LTS0249538
- 24966 - Rubiaceae: LTS0249538
- 4930 - Saccharomyces: LTS0249538
- 4932 - Saccharomyces cerevisiae: LTS0249538
- 4893 - Saccharomycetaceae: LTS0249538
- 4891 - Saccharomycetes: LTS0249538
- 4450 - Sagittaria: LTS0249538
- 4451 - Sagittaria sagittifolia: 10.1016/0305-1978(86)90092-X
- 4451 - Sagittaria sagittifolia: LTS0249538
- 590 - Salmonella: LTS0249538
- 28901 - Salmonella enterica: 10.1039/C3MB25598K
- 28901 - Salmonella enterica: LTS0249538
- 3958 - Santalaceae: LTS0249538
- 35974 - Santalum Album L\uff0e: -
- 53922 - Senna: LTS0249538
- 346985 - Senna obtusifolia: 10.1021/JF00102A014
- 346985 - Senna obtusifolia: LTS0249538
- 77655 - Sida: LTS0249538
- 108447 - Sida hermaphrodita: 10.1007/BF00607552
- 4070 - Solanaceae: LTS0249538
- 147550 - Sordariomycetes: LTS0249538
- 35916 - Spermacoce: LTS0249538
- 2491924 - Spermacoce pusilla: 10.4268/CJCMM20120313
- 2491924 - Spermacoce pusilla: LTS0249538
- 90964 - Staphylococcaceae: LTS0249538
- 1279 - Staphylococcus: LTS0249538
- 1280 - Staphylococcus aureus: LTS0249538
- 13273 - Stellaria: LTS0249538
- 13274 - Stellaria media: 10.1007/S10600-010-9710-6
- 13274 - Stellaria media: LTS0249538
- 35493 - Streptophyta: LTS0249538
- 46108 - Suaeda: LTS0249538
- 224153 - Suaeda aegyptiaca: 10.4197/SCI.16-1.4
- 224153 - Suaeda aegyptiaca: LTS0249538
- 44981 - Tacca: LTS0249538
- 2487666 - Tacca cristata: 10.1016/0305-1978(86)90092-X
- 2487666 - Tacca cristata: LTS0249538
- 167567 - Tacca integrifolia: 10.1016/0305-1978(86)90092-X
- 167567 - Tacca integrifolia: LTS0249538
- 1898022 - Taccaceae: LTS0249538
- 58023 - Tracheophyta: LTS0249538
- 4741 - Tradescantia: LTS0249538
- 428268 - Tradescantia spathacea: 10.1016/0305-1978(86)90092-X
- 428268 - Tradescantia spathacea: LTS0249538
- 709071 - Treculia: LTS0249538
- 709072 - Treculia africana: 10.1007/BF02666050
- 709072 - Treculia africana: LTS0249538
- 3677 - Trichosanthes Kirilowii Maxim: -
- 5690 - Trypanosoma: LTS0249538
- 5691 - Trypanosoma brucei: 10.1371/JOURNAL.PNTD.0001618
- 5691 - Trypanosoma brucei: LTS0249538
- 5654 - Trypanosomatidae: LTS0249538
- 3358 - Tsuga: LTS0249538
- 3359 - Tsuga heterophylla: 10.1016/S0021-9673(01)97854-9
- 3359 - Tsuga heterophylla: LTS0249538
- 19952 - Valeriana: LTS0249538
- 19953 - Valeriana officinalis: 10.1055/S-2006-959538
- 19953 - Valeriana officinalis: LTS0249538
- 19944 - Valerianaceae: LTS0249538
- 44607 - Verpa: LTS0249538
- 44609 - Verpa bohemica: 10.1021/JF60199A047
- 44609 - Verpa bohemica: LTS0249538
- 3904 - Vicia: LTS0249538
- 3908 - Vicia sativa: 10.1515/BCHM2.1905.45.1-2.38
- 3908 - Vicia sativa: LTS0249538
- 157791 - Vigna Radiata: -
- 33090 - Viridiplantae: LTS0249538
- 1003255 - Viscaceae: LTS0249538
- 3971 - Viscum: LTS0249538
- 3972 - Viscum album: 10.1515/BCHM2.1960.322.1.273
- 3972 - Viscum album: LTS0249538
- 36658 - Volvariella: LTS0249538
- 36659 - Volvariella volvacea: LTS0249538
- 4642 - Zingiberaceae: LTS0249538
- 569774 - 金线莲: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Rina Saito, Mai Morikawa, Toshiya Muto, Sayaka Saito, Takuya Kaji, Minoru Ueda. SlCYP94B18 and SlCYP94B19 monooxygenases for the catabolic turnover of jasmonates in tomato leaves.
Phytochemistry.
2024 Jul; 223(?):114141. doi:
10.1016/j.phytochem.2024.114141
. [PMID: 38750708] - Maria Ladeynova, Darya Kuznetsova, Anna Pecherina, Vladimir Vodeneev. pH change accompanying long-distance electrical signal controls systemic jasmonate biosynthesis.
Journal of plant physiology.
2024 May; 296(?):154225. doi:
10.1016/j.jplph.2024.154225
. [PMID: 38522214] - Na Song, Jinsong Wu. NaWRKY70 is a key regulator of Nicotiana attenuata resistance to Alternaria alternata through regulation of phytohormones and phytoalexins biosynthesis.
The New phytologist.
2024 May; 242(3):1289-1306. doi:
10.1111/nph.19647
. [PMID: 38426573] - Ludan Cao, Guo Wang, Xiuxu Ye, Fang Li, Shujun Wang, Huanling Li, Peng Wang, Jiabao Wang. Physiological, Metabolic, and Transcriptomic Analyses Reveal Mechanisms of Proliferation and Somatic Embryogenesis of Litchi (Litchi chinensis Sonn.) Embryogenic Callus Promoted by D-Arginine Treatment.
International journal of molecular sciences.
2024 Apr; 25(7):. doi:
10.3390/ijms25073965
. [PMID: 38612774] - Tianxia Yang, Lei Deng, Qinyang Wang, Chuanlong Sun, Muhammad Ali, Fangming Wu, Huawei Zhai, Qian Xu, Peiyong Xin, Shujing Cheng, Jinfang Chu, Tingting Huang, Chang-Bao Li, Chuanyou Li. Tomato CYP94C1 inactivates bioactive JA-Ile to attenuate jasmonate-mediated defense during fruit ripening.
Molecular plant.
2024 Apr; 17(4):509-512. doi:
10.1016/j.molp.2024.02.004
. [PMID: 38327053] - Haoming Zuo, Jiahao Chen, Zhidong Lv, Chenyu Shao, Ziqi Chen, Yuebin Zhou, Chengwen Shen. Tea-Derived Polyphenols Enhance Drought Resistance of Tea Plants (Camellia sinensis) by Alleviating Jasmonate-Isoleucine Pathway and Flavonoid Metabolism Flow.
International journal of molecular sciences.
2024 Mar; 25(7):. doi:
10.3390/ijms25073817
. [PMID: 38612625] - Shuting Chen, Miaofen Ye, Peng Kuai, Lin Chen, Yonggen Lou. Silencing an ATP-Dependent Caseinolytic Protease Proteolytic Subunit Gene Enhances the Resistance of Rice to Nilaparvata lugens.
International journal of molecular sciences.
2024 Mar; 25(7):. doi:
10.3390/ijms25073699
. [PMID: 38612510] - Yajun Gou, Yueqin Heng, Wenyan Ding, Canhong Xu, Qiushuang Tan, Yajing Li, Yudong Fang, Xiaoqing Li, Degui Zhou, Xinyu Zhu, Mingyue Zhang, Rongjian Ye, Haiyang Wang, Rongxin Shen. Natural variation in OsMYB8 confers diurnal floret opening time divergence between indica and japonica subspecies.
Nature communications.
2024 Mar; 15(1):2262. doi:
10.1038/s41467-024-46579-z
. [PMID: 38480732] - Sarathadevi Rajendran, Patrick Silcock, Phil Bremer. Volatile Organic Compounds (VOCs) Produced by Levilactobacillus brevis WLP672 Fermentation in Defined Media Supplemented with Different Amino Acids.
Molecules (Basel, Switzerland).
2024 Feb; 29(4):. doi:
10.3390/molecules29040753
. [PMID: 38398505] - Weilong Kong, Ping Zhao, Qing Zhang, Jingjing Yang, Qiufang Zhu, Yanbing Zhang, Xuming Deng, Xiao Chen, Jinke Lin, Xingtan Zhang. Chromatin accessibility mediated transcriptome changes contribute to flavor substance alterations and jasmonic acid hyperaccumulation during oolong tea withering process.
The Plant journal : for cell and molecular biology.
2024 Feb; 117(3):679-693. doi:
10.1111/tpj.16521
. [PMID: 37921032] - Deepika Mittal, Janesh Kumar Gautam, Mahendra Varma, Amrutha Laie, Shruti Mishra, Smrutisanjita Behera, Jyothilakshmi Vadassery. External jasmonic acid isoleucine mediates amplification of plant elicitor peptide receptor (PEPR) and jasmonate-based immune signalling.
Plant, cell & environment.
2024 Jan; ?(?):. doi:
10.1111/pce.14812
. [PMID: 38229005] - Hui Yang, Yan-Ru Liu, Zhong-Xing Song, Zhi-Shu Tang, Ai-Ling Jia, Ming-Geng Wang, Jin-Ao Duan. Study on the underlying mechanism of Poria in intervention of arrhythmia zebrafish by integrating metabolomics and network pharmacology.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2024 Jan; 122(?):155143. doi:
10.1016/j.phymed.2023.155143
. [PMID: 37890443] - Ming Zeng, Franziska Krajinski, Nicole M van Dam, Bettina Hause. Jarin-1, an inhibitor of JA-Ile biosynthesis in Arabidopsis thaliana, acts differently in other plant species.
Plant signaling & behavior.
2023 Dec; 18(1):2273515. doi:
10.1080/15592324.2023.2273515
. [PMID: 37902262] - Marta Vazquez-Vilar, Asun Fernandez-Del-Carmen, Victor Garcia-Carpintero, Margit Drapal, Silvia Presa, Dorotea Ricci, Gianfranco Diretto, José Luis Rambla, Rafael Fernandez-Muñoz, Ana Espinosa-Ruiz, Paul D Fraser, Cathie Martin, Antonio Granell, Diego Orzaez. Dually biofortified cisgenic tomatoes with increased flavonoids and branched-chain amino acids content.
Plant biotechnology journal.
2023 Sep; ?(?):. doi:
10.1111/pbi.14163
. [PMID: 37749961] - Taichi Okumura, Tsumugi Kitajima, Takuya Kaji, Haruyuki Urano, Kotaro Matsumoto, Hideo Inagaki, Koji Miyamoto, Kazunori Okada, Minoru Ueda. Difference in the ligand affinity among redundant plant hormone receptors of rice OsCOI1a/1b/2-OsJAZs.
Bioscience, biotechnology, and biochemistry.
2023 Sep; 87(10):1122-1128. doi:
10.1093/bbb/zbad092
. [PMID: 37403366] - Yuli Wang, Xue Rong, Hui Guan, Fangxin Ouyang, Xing Zhou, Feng Li, Xintong Tan, Dapeng Li. The Potential Effects of Isoleucine Restricted Diet on Cognitive Impairment in High-Fat-Induced Obese Mice via Gut Microbiota-Brain Axis.
Molecular nutrition & food research.
2023 Sep; ?(?):e2200767. doi:
10.1002/mnfr.202200767
. [PMID: 37658490] - Hao-Long He, Guo-Shan Zhang, Shan-Feng Xiao, Hong-Hua Liu, Huan Zhong, Xiao-Rong Chang, Qiong Liu, Mi Liu. [Effects of moxibustion at "Tianshu"(ST25) and "Shangjuxu" (ST37) on colonic metabolites and inflammatory factors in rats with Crohn's disease].
Zhen ci yan jiu = Acupuncture research.
2023 Aug; 48(8):736-45. doi:
10.13702/j.1000?0607.20221276
. [PMID: 37614131] - Alessandre C Crispim, Shirley M A Crispim, Jéssica R Rocha, Jeferson S Ursulino, Roberto R Sobrinho, Viviane A Porto, Edson S Bento, Antônio E G Santana, Luiz C Caetano. Light effects on Lasiodiplodia theobromae metabolome cultured in vitro.
Metabolomics : Official journal of the Metabolomic Society.
2023 08; 19(8):75. doi:
10.1007/s11306-023-02041-7
. [PMID: 37580624] - Vishal Varshney, Abhijit Hazra, Venkateswara Rao, Shraboni Ghosh, Nitin Uttam Kamble, Rakesh Kumar Achary, Shikha Gautam, Manoj Majee. The Arabidopsis F-box protein SKIP31 modulates seed maturation and seed vigor by targeting JAZ proteins independently of jasmonic acid-isoleucine.
The Plant cell.
2023 Jul; ?(?):. doi:
10.1093/plcell/koad199
. [PMID: 37462265] - Joel T Steyer, Richard B Todd. Branched-chain amino acid biosynthesis in fungi.
Essays in biochemistry.
2023 Jul; ?(?):. doi:
10.1042/ebc20230003
. [PMID: 37455545] - Noriyuki Konishi, Namiki Mitani-Ueno, Naoki Yamaji, Jian Feng Ma. Polar localization of a rice silicon transporter requires isoleucine at both C- and N-termini as well as positively charged residues.
The Plant cell.
2023 05; 35(6):2232-2250. doi:
10.1093/plcell/koad073
. [PMID: 36891818] - Marta Mendes Costa, Alda Pereira Da Silva, Carolina Santos, Joana Ferreira, Mário Rui Mascarenhas, Manuel Bicho, Ana Paula Barbosa. Influence of the TAS2R38 Gene Single Nucleotide Polymorphisms in Metabolism and Anthropometry in Thyroid Dysfunction.
Nutrients.
2023 May; 15(9):. doi:
10.3390/nu15092214
. [PMID: 37432370] - Andrei Z Damyanovich, Lisa Avery, James R Staples, K Wayne Marshall. 1H NMR Metabolic Profiling of Synovial Fluid from Patients with Anterior Cruciate Ligament Tears and Hemarthrosis.
Osteoarthritis and cartilage.
2023 May; ?(?):. doi:
10.1016/j.joca.2023.03.016
. [PMID: 37146959] - Lei Song, Yating Zhou, Yuxia Zhai, Xiangxiang Huo, Mengying Chen, Hong Shi, Yingli Yu, Yue Zhang, Kun Zhou. Sub-chronic toxicity of an aqueous extract of Epimedium sagittatum (Sieb. Et Zucc.) Maxim. in rats.
Drug and chemical toxicology.
2023 May; 46(3):451-461. doi:
10.1080/01480545.2022.2050749
. [PMID: 35287533] - Rina Saito, Toshiya Muto, Haruyuki Urano, Tsumugi Kitajima, Nobuki Kato, Eunsang Kwon, Minoru Ueda. (3R,7S)-12-Hydroxy- jasmonoyl-L-isoleucine is the genuine bioactive stereoisomer of a jasmonate metabolite in Arabidopsis thaliana.
The Plant journal : for cell and molecular biology.
2023 Apr; ?(?):. doi:
10.1111/tpj.16256
. [PMID: 37095639] - Kengo Hayashi, Nobuki Kato, Khurram Bashir, Haruna Nomoto, Misuzu Nakayama, Andrea Chini, Satoshi Takahashi, Hiroaki Saito, Raku Watanabe, Yousuke Takaoka, Maho Tanaka, Atsushi J Nagano, Motoaki Seki, Roberto Solano, Minoru Ueda. Subtype-selective agonists of plant hormone co-receptor COI1-JAZs identified from the stereoisomers of coronatine.
Communications biology.
2023 03; 6(1):320. doi:
10.1038/s42003-023-04709-1
. [PMID: 36966228] - Andrea Chini, Isabel Monte, Angel M Zamarreño, José M García-Mina, Roberto Solano. Evolution of the jasmonate ligands and their biosynthetic pathways.
The New phytologist.
2023 Mar; ?(?):. doi:
10.1111/nph.18891
. [PMID: 36942932] - Krishnan Raguvaran, Manickam Kalpana, Thulasiraman Manimegalai, Rajan Maheswaran. Bioefficacy of isolated compound l-isoleucine, N-allyloxycarbonyl-, and dodecyl ester from entomopathogenic actinobacteria Actinokineospora fastidiosa against agricultural insect pests, human vector mosquitoes, and antioxidant activities.
Environmental science and pollution research international.
2023 Mar; 30(15):42608-42628. doi:
10.1007/s11356-022-23565-w
. [PMID: 36260230] - Haiwen Chen, Jintao Cheng, Yuan Huang, Qiusheng Kong, Zhilong Bie. Comparative analysis of sugar, acid, and volatile compounds in CPPU-treated and honeybee-pollinated melon fruits during different developmental stages.
Food chemistry.
2023 Feb; 401(?):134072. doi:
10.1016/j.foodchem.2022.134072
. [PMID: 36108381] - Aslihan Cakmak, Emirhan Nemutlu, Samiye Yabanoglu-Ciftci, Ipek Baysal, Elif Kocaaga, Lutfi Coplu, Deniz Inal-Ince. Metabolomic, oxidative, and inflammatory responses to acute exercise in chronic obstructive pulmonary disease.
Heart & lung : the journal of critical care.
2023 Jan; 59(?):52-60. doi:
10.1016/j.hrtlng.2023.01.011
. [PMID: 36724589] - L H Kan, X Xu, Y M Chen, X M Wang, J L Li, F H Shen. [Correlation between intestinal and respiratory flora and their metabolites in a rat pneumoconiosis model].
Zhonghua lao dong wei sheng zhi ye bing za zhi = Zhonghua laodong weisheng zhiyebing zazhi = Chinese journal of industrial hygiene and occupational diseases.
2023 Jan; 41(1):21-30. doi:
10.3760/cma.j.cn121094-20211011-00495
. [PMID: 36725290] - Jolanta Bugajska, Joanna Berska, Małgorzata Wójcik, Krystyna Sztefko. Amino acid profile in overweight and obese prepubertal children - can simple biochemical tests help in the early prevention of associated comorbidities?.
Frontiers in endocrinology.
2023; 14(?):1274011. doi:
10.3389/fendo.2023.1274011
. [PMID: 37964971] - Ling Peng, Hong You, Mei-Yu Xu, Zhou-Yu Dong, Min Liu, Wen-Jing Jin, Chao Zhou. A Novel Metabolic Score for Predicting the Acute Exacerbation in Patients with Chronic Obstructive Pulmonary Disease.
International journal of chronic obstructive pulmonary disease.
2023; 18(?):785-795. doi:
10.2147/copd.s405547
. [PMID: 37180750] - Leila Mirjani, Azam Salimi, Maryam Shahbazi, Mohammad-Reza Hajirezaei, Mohammad Matinizadeh, Khadijeh Razavi, Seyed Mohsen Hesamzadeh Hejazi. Arbuscular mycorrhizal colonization leads to a change of hormone profile in micropropagated plantlet Satureja khuzistanica Jam.
Journal of plant physiology.
2023 Jan; 280(?):153879. doi:
10.1016/j.jplph.2022.153879
. [PMID: 36516535] - Shengnan Ma, Kai Zhang, Shuyan Shi, Xuemin Li, Chuanyan Che, Peng Chen, Huawei Liu. Low-protein diets supplemented with isoleucine alleviate lipid deposition in broilers through activating 5' adenosine monophosphate-activated protein kinase and janus kinase 2/signal transducer and activator of transcription 3 signaling pathways.
Poultry science.
2022 Dec; 102(3):102441. doi:
10.1016/j.psj.2022.102441
. [PMID: 36599221] - Mang-Mang Wang, Yang-Yang Huang, Wen-Bin Liu, Kang Xiao, Xi Wang, Hui-Xing Guo, Yi-Lin Zhang, Jing-Wei Fan, Xiang-Fei Li, Guang-Zhen Jiang. Interactive effects of dietary leucine and isoleucine affect amino acid profile and metabolism through AKT/TOR signaling pathways in blunt snout bream (Megalobrama amblycephala).
Fish physiology and biochemistry.
2022 Dec; ?(?):. doi:
10.1007/s10695-022-01161-6
. [PMID: 36525145] - Marwah Doestzada, Daria V Zhernakova, Inge C L van den Munckhof, Daoming Wang, Alexander Kurilshikov, Lianmin Chen, Vincent W Bloks, Martijn van Faassen, Joost H W Rutten, Leo A B Joosten, Mihai G Netea, Cisca Wijmenga, Niels P Riksen, Alexandra Zhernakova, Folkert Kuipers, Jingyuan Fu. Systematic analysis of relationships between plasma branched-chain amino acid concentrations and cardiometabolic parameters: an association and Mendelian randomization study.
BMC medicine.
2022 12; 20(1):485. doi:
10.1186/s12916-022-02688-4
. [PMID: 36522747] - Cui-Fang Wang, Xiao-Rong Cai, Yan-Ni Chi, Xiao-Yao Miao, Jian-Yun Yang, Bing-Kun Xiao, Rong-Qing Huang. Analgesic Activity of Jin Ling Zi Powder and Its Single Herbs: A Serum Metabonomics Study.
Chinese journal of integrative medicine.
2022 Nov; 28(11):1007-1014. doi:
10.1007/s11655-021-3277-x
. [PMID: 33881717] - Lu Cai, Han-Tong Guo, Guo-Di Zheng, Xin-Yu Wang, Kan Wang. Metagenomic analysis reveals the microbial degradation mechanism during kitchen waste biodrying.
Chemosphere.
2022 Nov; 307(Pt 4):135862. doi:
10.1016/j.chemosphere.2022.135862
. [PMID: 35944670] - Chetan Malik, Subhendu Ghosh. A mutation in the S6 segment of the KvAP channel changes the secondary structure and alters ion channel activity in a lipid bilayer membrane.
Amino acids.
2022 Nov; 54(11):1461-1475. doi:
10.1007/s00726-022-03188-8
. [PMID: 35896819] - Shangqing Li, Guorong Lyu, Shaohui Li, Hainan Yang, Yiru Yang. Metabolic characterization of amniotic fluid of fetuses with isolated choroid plexus cyst.
Journal of perinatal medicine.
2022 Oct; 50(8):1100-1106. doi:
10.1515/jpm-2022-0028
. [PMID: 35607760] - Amalia E Yanni, Alexander Kokkinos, Panagiota Binou, Varvara Papaioannou, Maria Halabalaki, Panagiotis Konstantopoulos, Stamatia Simati, Vaios T Karathanos. Postprandial Glucose and Gastrointestinal Hormone Responses of Healthy Subjects to Wheat Biscuits Enriched with L-Arginine or Branched-Chain Amino Acids of Plant Origin.
Nutrients.
2022 Oct; 14(20):. doi:
10.3390/nu14204381
. [PMID: 36297065] - Aradhana Mishra, Arpita Bhattacharya, Priyanka Chauhan, Shipra Pandey, Ashish Dwivedi. Phenotype microarray analysis reveals the biotransformation of Fusarium oxysporum f.sp. lycopersici influenced by Bacillus subtilis PBE-8 metabolites.
FEMS microbiology ecology.
2022 10; 98(10):. doi:
10.1093/femsec/fiac102
. [PMID: 36066920] - Haitao Jiang, Hua Zhu, Guangming Huo, Shengjie Li, Yulong Wu, Feng Zhou, Chun Hua, Qiuhui Hu. Oudemansiella raphanipies Polysaccharides Improve Lipid Metabolism Disorders in Murine High-Fat Diet-Induced Non-Alcoholic Fatty Liver Disease.
Nutrients.
2022 Oct; 14(19):. doi:
10.3390/nu14194092
. [PMID: 36235744] - Honghong Deng, Runmei He, Hui Xia, Nuo Xu, Qunxian Deng, Dong Liang, Lijin Lin, Ling Liao, Bo Xiong, Xinyu Xie, Zhijian Gao, Qingxuan Kang, Zhihui Wang. Ultra-HPLC-MS pseudo-targeted metabolomic profiling reveals metabolites and associated metabolic pathway alterations in Asian plum (Prunus salicina) fruits in response to gummosis disease.
Functional plant biology : FPB.
2022 10; 49(11):936-945. doi:
10.1071/fp21168
. [PMID: 35817541] - Zhiyuan Meng, Jiajia Cui, Li Liu, Chunmei Yang, Xin Bao, Jianjun Wang, Xiaojun Chen. Toxicity effects of chlorantraniliprole in zebrafish (Danio rerio) involving in liver function and metabolic phenotype.
Pesticide biochemistry and physiology.
2022 Oct; 187(?):105194. doi:
10.1016/j.pestbp.2022.105194
. [PMID: 36127066] - Sakil Mahmud, Chhana Ullah, Annika Kortz, Sabarna Bhattacharyya, Peng Yu, Jonathan Gershenzon, Ute C Vothknecht. Constitutive expression of JASMONATE RESISTANT 1 induces molecular changes that prime the plants to better withstand drought.
Plant, cell & environment.
2022 10; 45(10):2906-2922. doi:
10.1111/pce.14402
. [PMID: 35864601] - Zhengchun Li, Luonan Shen, Qiandong Hou, Zijing Zhou, Lina Mei, Hong Zhao, Xiaopeng Wen. Identification of Genes and Metabolic Pathways Involved in Resin Yield in Masson Pine by Integrative Analysis of Transcriptome, Proteome and Biochemical Characteristics.
International journal of molecular sciences.
2022 Sep; 23(19):. doi:
10.3390/ijms231911420
. [PMID: 36232722] - Raju Nalvothula, Surekha Challa, Vidyullatha Peddireddy, Ramchander Merugu, M P Pratap Rudra, Abed Alataway, Ahmed Z Dewidar, Hosam O Elansary. Isolation, Molecular Identification and Amino Acid Profiling of Single-Cell-Protein-Producing Phototrophic Bacteria Isolated from Oil-Contaminated Soil Samples.
Molecules (Basel, Switzerland).
2022 Sep; 27(19):. doi:
10.3390/molecules27196265
. [PMID: 36234802] - Venelina Popova, Zhana Petkova, Nadezhda Mazova, Tanya Ivanova, Nadezhda Petkova, Magdalena Stoyanova, Albena Stoyanova, Sezai Ercisli, Zuhal Okcu, Sona Skrovankova, Jiri Mlcek. Chemical Composition Assessment of Structural Parts (Seeds, Peel, Pulp) of Physalis alkekengi L. Fruits.
Molecules (Basel, Switzerland).
2022 Sep; 27(18):. doi:
10.3390/molecules27185787
. [PMID: 36144521] - Amanda Manoj Malik, Charanjit S Riar. Difference in the nutritional, in vitro, and functional characteristics of protein and fat isolates of two Indian chia (Salvia hispanica L) seed genotypes with variation in seed coat color.
Journal of food science.
2022 Sep; 87(9):3872-3887. doi:
10.1111/1750-3841.16276
. [PMID: 35982647] - Ling Gao, Qiang Gu, Hong Wang, Xingkong Ma, Feng Xue, Xing Zhang, Jiachun Ge, Tao Ding, Weijian Shen. [Determination of free amino acids in Eriocheir sinensis by ultra-high performance liquid chromatography-high resolution mass spectrometry].
Se pu = Chinese journal of chromatography.
2022 Sep; 40(9):825-832. doi:
10.3724/sp.j.1123.2022.03027
. [PMID: 36156629] - Yuan Lu, Yan-Li Wang, Zhong-Jun Song, Xiao-Qing Zhu, Chun-Hua Liu, Ji-Yu Chen, Yong-Jun Li, Yan He. [Cell metabolomics study of ginkgo flavone aglycone combined with doxorubicin against liver cancer in synergy].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2022 Sep; 47(18):5040-5051. doi:
10.19540/j.cnki.cjcmm.20220506.401
. [PMID: 36164914] - Xianfeng Liu, Lina Cheng, Ruizhen Li, Yue Cai, Xiaoyang Wang, Xin Fu, Xiufen Dong, Mingfang Qi, Cai-Zhong Jiang, Tao Xu, Tianlai Li. The HD-Zip transcription factor SlHB15A regulates abscission by modulating jasmonoyl-isoleucine biosynthesis.
Plant physiology.
2022 08; 189(4):2396-2412. doi:
10.1093/plphys/kiac212
. [PMID: 35522030] - Mohamad Tarik, Lakshmy Ramakrishnan, Nidhi Bhatia, Ravindra Goswami, Devasenathipathy Kandasamy, Atanu Roy, Dinu S Chandran, Archna Singh, Ashish Datt Upadhyay, Mani Kalaivani, Jayanthi Neelamraju, Ratna Sudha Madempudi, Reena Rajan. The effect of Bacillus coagulans Unique IS-2 supplementation on plasma amino acid levels and muscle strength in resistance trained males consuming whey protein: a double-blind, placebo-controlled study.
European journal of nutrition.
2022 Aug; 61(5):2673-2685. doi:
10.1007/s00394-022-02844-9
. [PMID: 35249118] - Eveline Gart, Wim van Duyvenvoorde, Martien P M Caspers, Nikki van Trigt, Jessica Snabel, Aswin Menke, Jaap Keijer, Kanita Salic, Martine C Morrison, Robert Kleemann. Intervention with isoleucine or valine corrects hyperinsulinemia and reduces intrahepatic diacylglycerols, liver steatosis, and inflammation in Ldlr-/-.Leiden mice with manifest obesity-associated NASH.
FASEB journal : official publication of the Federation of American Societies for Experimental Biology.
2022 08; 36(8):e22435. doi:
10.1096/fj.202200111r
. [PMID: 35830259] - Yulei Zhang, Jieyi Li, Zhangxi Hu, Dong Chen, Feng Li, Xianghu Huang, Changling Li. Transcriptome Analysis Reveals the Algicidal Mechanism of Brevibacillus laterosporus against Microcystis aeruginosa through Multiple Metabolic Pathways.
Toxins.
2022 07; 14(7):. doi:
10.3390/toxins14070492
. [PMID: 35878230] - Mengyao Shi, Jiang He, Changwei Li, Xiangfeng Lu, William J He, Jie Cao, Jing Chen, Ji-Chun Chen, Lydia A Bazzano, Jian-Xin Li, Hua He, Dongfeng Gu, Tanika N Kelly. Metabolomics study of blood pressure salt-sensitivity and hypertension.
Nutrition, metabolism, and cardiovascular diseases : NMCD.
2022 07; 32(7):1681-1692. doi:
10.1016/j.numecd.2022.04.002
. [PMID: 35599090] - Ambika Shandilya, Sidharth Mehan, Sumit Kumar, Pranshul Sethi, Acharan S Narula, Abdulrahman Alshammari, Metab Alharbi, Abdullah F Alasmari. Activation of IGF-1/GLP-1 Signalling via 4-Hydroxyisoleucine Prevents Motor Neuron Impairments in Experimental ALS-Rats Exposed to Methylmercury-Induced Neurotoxicity.
Molecules (Basel, Switzerland).
2022 Jun; 27(12):. doi:
10.3390/molecules27123878
. [PMID: 35745001] - Ninghua Li, Jing Li, Hui Wang, Jinnan Liu, Weiqin Li, Kai Yang, Xiaoxu Huo, Junhong Leng, Zhijie Yu, Gang Hu, Zhongze Fang, Xilin Yang. Branched-Chain Amino Acids and Their Interactions With Lipid Metabolites for Increased Risk of Gestational Diabetes.
The Journal of clinical endocrinology and metabolism.
2022 Jun; 107(7):e3058-e3065. doi:
10.1210/clinem/dgac141
. [PMID: 35271718] - Yaqin Wang, Keyong Huang, Fangchao Liu, Xiangfeng Lu, Jianfeng Huang, Dongfeng Gu. Association of circulating branched-chain amino acids with risk of cardiovascular disease: A systematic review and meta-analysis.
Atherosclerosis.
2022 06; 350(?):90-96. doi:
10.1016/j.atherosclerosis.2022.04.026
. [PMID: 35576716] - Wanting Chen, Qian Li, Ranran Hou, Huaguo Liang, Yongli Zhang, Yongxia Yang. An integrated metabonomics study to reveal the inhibitory effect and metabolism regulation of taurine on breast cancer.
Journal of pharmaceutical and biomedical analysis.
2022 May; 214(?):114711. doi:
10.1016/j.jpba.2022.114711
. [PMID: 35306435] - Kang-Ju Chou, Chih-Yang Hsu, Chien-Wei Huang, Hsin-Jao Chen, Shih-Hsiang Ou, Chien-Liang Chen, Po-Tsang Lee, Hua-Chang Fang. A new missense mutation of calcium sensing receptor with isoleucine replaced by serine at codon 857 leading to type V Bartter syndrome.
Experimental cell research.
2022 05; 414(1):113080. doi:
10.1016/j.yexcr.2022.113080
. [PMID: 35192837] - Jay C Delfin, Yuri Kanno, Mitsunori Seo, Naoki Kitaoka, Hideyuki Matsuura, Takayuki Tohge, Takafumi Shimizu. AtGH3.10 is another jasmonic acid-amido synthetase in Arabidopsis thaliana.
The Plant journal : for cell and molecular biology.
2022 05; 110(4):1082-1096. doi:
10.1111/tpj.15724
. [PMID: 35247019] - Tomoko Nakatsuka-Mori, Daisuke Sato, Hideyuki Aoki. Improvement of substrate recognition in branched-chain aminoacyl-tRNA synthetases from Escherichia coli under conditions of pyrophosphate amplification.
Journal of bioscience and bioengineering.
2022 May; 133(5):436-443. doi:
10.1016/j.jbiosc.2022.01.009
. [PMID: 35216933] - ShengNan Shao, Biao Li, Qi Sun, PeiRu Guo, YeJuan Du, JiaFeng Huang. Acetolactate synthases regulatory subunit and catalytic subunit genes VdILVs are involved in BCAA biosynthesis, microscletotial and conidial formation and virulence in Verticillium dahliae.
Fungal genetics and biology : FG & B.
2022 04; 159(?):103667. doi:
10.1016/j.fgb.2022.103667
. [PMID: 35041986] - Mohammad Habibi, Parniyan Goodarzi, Cedrick Ndhumba Shili, Julia Sutton, Caitlyn Marie Wileman, Dohyung Markus Kim, Dingbo Lin, Adel Pezeshki. A Mixture of Valine and Isoleucine Restores the Growth of Protein-Restricted Pigs Likely through Improved Gut Development, Hepatic IGF-1 Pathway, and Plasma Metabolomic Profile.
International journal of molecular sciences.
2022 Mar; 23(6):. doi:
10.3390/ijms23063300
. [PMID: 35328720] - Lijuan Sun, Hui Jen Goh, Sanjay Verma, Priya Govindharajulu, Suresh Anand Sadananthan, Navin Michael, Christiani Jeyakumar Henry, Julian Park-Nam Goh, S Sendhil Velan, Melvin Khee-Shing Leow. Brown adipose tissues mediate the metabolism of branched chain amino acids during the transitioning from hyperthyroidism to euthyroidism (TRIBUTE).
Scientific reports.
2022 03; 12(1):3693. doi:
10.1038/s41598-022-07701-7
. [PMID: 35256693] - Lakshminarayanan Gowtham, Das Ujjalkumar, Laxmi Moksha, Tapas Kumar Roy, Nabanita Halder, Thirumurthy Velpandian. Hydrophilic interaction LC-MS/MS method to avoid endogenous interference in the analysis of 4-hydroxy isoleucine from dietary supplementation of fenugreek.
Journal of separation science.
2022 Mar; 45(6):1210-1221. doi:
10.1002/jssc.202100894
. [PMID: 35044107] - Fen Zhang, Yating Wan, Tao Zuo, Yun Kit Yeoh, Qin Liu, Lin Zhang, Hui Zhan, Wenqi Lu, Wenye Xu, Grace C Y Lui, Amy Y L Li, Chun Pan Cheung, Chun Kwok Wong, Paul K S Chan, Francis K L Chan, Siew C Ng. Prolonged Impairment of Short-Chain Fatty Acid and L-Isoleucine Biosynthesis in Gut Microbiome in Patients With COVID-19.
Gastroenterology.
2022 02; 162(2):548-561.e4. doi:
10.1053/j.gastro.2021.10.013
. [PMID: 34687739] - Geetika Wadhwa, Kowthavarapu Venkata Krishna, Rajeev Taliyan, Neeraj Tandon, Satyapal Singh Yadav, Dipankar Banerjee, Avinash Narwaria, Chandrakant Katiyar, Sunil Kumar Dubey. A novel UPLC-MS/MS method for simultaneous quantification of trigonelline, 4-hydroxyisoleucine, and diosgenin from Trigonella foenum-graecum extract: Application to pharmacokinetic study in healthy and type 2 diabetic rats.
Biomedical chromatography : BMC.
2022 Feb; 36(2):e5275. doi:
10.1002/bmc.5275
. [PMID: 34738247] - Valentin Marquis, Ekaterina Smirnova, Stéfanie Graindorge, Pauline Delcros, Claire Villette, Julie Zumsteg, Dimitri Heintz, Thierry Heitz. Broad-spectrum stress tolerance conferred by suppressing jasmonate signaling attenuation in Arabidopsis JASMONIC ACID OXIDASE mutants.
The Plant journal : for cell and molecular biology.
2022 02; 109(4):856-872. doi:
10.1111/tpj.15598
. [PMID: 34808024] - S Ullah, Y A Ditta, A J King, T N Pasha, A Mahmud, K A Majeed. Varying isoleucine level to determine effects on performance, egg quality, serum biochemistry, and ileal protein digestibility in diets of young laying hens.
PloS one.
2022 ; 17(1):e0261159. doi:
10.1371/journal.pone.0261159
. [PMID: 35061687] - Yousuke Takaoka, Kaho Suzuki, Akira Nozawa, Hirotaka Takahashi, Tatsuya Sawasaki, Minoru Ueda. Protein-protein interactions between jasmonate-related master regulator MYC and transcriptional mediator MED25 depend on a short binding domain.
The Journal of biological chemistry.
2022 01; 298(1):101504. doi:
10.1016/j.jbc.2021.101504
. [PMID: 34929168] - Peter V Chrystal, Shiva Greenhalgh, Shemil P Macelline, Juliano C de Paula Dorigam, Peter H Selle, Sonia Y Liu. A multivariate Box-Behnken assessment of elevated branched-chain amino acid concentrations in reduced crude protein diets offered to male broiler chickens.
PloS one.
2022; 17(3):e0266080. doi:
10.1371/journal.pone.0266080
. [PMID: 35353869] - Su Han, Xiaoli Zhang, Jian Ding, Xiang Li, Xueli Zhang, Xu Jiang, Shanshan Duan, Beibei Sun, Xinyi Hu, Yannan Gao. Serum metabolic profiling of rats infected with Clonorchis sinensis using LC-MS/MS method.
Frontiers in cellular and infection microbiology.
2022; 12(?):1040330. doi:
10.3389/fcimb.2022.1040330
. [PMID: 36683702] - Haneen Saleemani, Gabriella Horvath, Sylvia Stockler-Ipsiroglu, Rajavel Elango. Determining ideal balance among branched-chain amino acids in medical formula for Propionic Acidemia: A proof of concept study in healthy children.
Molecular genetics and metabolism.
2022 01; 135(1):56-62. doi:
10.1016/j.ymgme.2021.12.013
. [PMID: 34969640] - Pragati Singh, Sharmeen Ishteyaque, Ramanand Prajapati, Karan Singh Yadav, Rupali Singh, Akhilesh Kumar, Sharad Sharma, Tadigoppula Narender, Madhav Nilakanth Mugale. Assessment of antidiabetic effect of 4-HIL in type 2 diabetic and healthy Sprague Dawley rats.
Human & experimental toxicology.
2022 Jan; 41(?):9603271211061873. doi:
10.1177/09603271211061873
. [PMID: 35072544] - Yuqi Wang, Enzong Xiao, Guorong Wu, Qing Bai, Feng Xu, Xiyue Ji, Chune Li, Li Li, Jiping Liu. The roles of selectivity filters in determining aluminum transport by AtNIP1;2.
Plant signaling & behavior.
2021 12; 16(12):1991686. doi:
10.1080/15592324.2021.1991686
. [PMID: 34709126] - Yuebai Zhang, Mengting Chen, Shuxing Zhou, Yonggen Lou, Jing Lu. Silencing an E3 Ubiquitin Ligase Gene OsJMJ715 Enhances the Resistance of Rice to a Piercing-Sucking Herbivore by Activating ABA and JA Signaling Pathways.
International journal of molecular sciences.
2021 Dec; 22(23):. doi:
10.3390/ijms222313020
. [PMID: 34884830] - Wen Hu, Ziyu Liu, Weinan Yu, Surong Wen, Xiaoqing Wang, Xing Qi, Hairong Hao, Yanwen Lu, Jing Li, Shayan Li, Hongwen Zhou. Effects of PPM1K rs1440581 and rs7678928 on serum branched-chain amino acid levels and risk of cardiovascular disease.
Annals of medicine.
2021 12; 53(1):1316-1326. doi:
10.1080/07853890.2021.1965204
. [PMID: 34382495] - Stephen A Harrison, Seth J Baum, Nadege T Gunn, Ziad H Younes, Anita Kohli, Rashmee Patil, Margaret J Koziel, Harinder Chera, Jeff Zhao, Manu V Chakravarthy. Safety, Tolerability, and Biologic Activity of AXA1125 and AXA1957 in Subjects With Nonalcoholic Fatty Liver Disease.
The American journal of gastroenterology.
2021 12; 116(12):2399-2409. doi:
10.14309/ajg.0000000000001375
. [PMID: 34382947] - Francesca Arfuso, Claudia Giannetto, Claudia Interlandi, Elisabetta Giudice, Antongiulio Bruschetta, Maria Francesca Panzera, Giuseppe Piccione. Dynamic Metabolic Response, Clotting Times and Peripheral Indices of Central Fatigue in Horse Competing in a 44 Km Endurance Race.
Journal of equine veterinary science.
2021 11; 106(?):103753. doi:
10.1016/j.jevs.2021.103753
. [PMID: 34670693] - Silvia Solís-Ortiz, Virginia Arriaga-Avila, Aurora Trejo-Bahena, Rosalinda Guevara-Guzmán. Deficiency in the Essential Amino Acids l-Isoleucine, l-Leucine and l-Histidine and Clinical Measures as Predictors of Moderate Depression in Elderly Women: A Discriminant Analysis Study.
Nutrients.
2021 Oct; 13(11):. doi:
10.3390/nu13113875
. [PMID: 34836128] - Chi Zhang, Yi-Yi Mo, Shi-Sui Feng, Ming-Wei Meng, Si-Ying Chen, Hui-Min Huang, Xue Ling, Hui Song, Yong-Hong Liang, Song-Feng Ou, Hong-Wei Guo, Zhi-Heng Su. Urinary metabonomics study of anti-depressive mechanisms of Millettia speciosa Champ on rats with chronic unpredictable mild stress-induced depression.
Journal of pharmaceutical and biomedical analysis.
2021 Oct; 205(?):114338. doi:
10.1016/j.jpba.2021.114338
. [PMID: 34461490] - Louisa Ulrich, Johanna Schmitz, Corinna Thurow, Christiane Gatz. The jasmonoyl-isoleucine receptor CORONATINE INSENSITIVE1 suppresses defense gene expression in Arabidopsis roots independently of its ligand.
The Plant journal : for cell and molecular biology.
2021 08; 107(4):1119-1130. doi:
10.1111/tpj.15372
. [PMID: 34145662] - X J Lin, L Li, Z Y Gou, Q L Fan, Y B Wang, S Q Jiang. Reproductive performance, metabolism and oxidative stress profile in Chinese yellow-feathered broiler breeder hens fed multiple levels of isoleucine.
British poultry science.
2021 Aug; 62(4):509-516. doi:
10.1080/00071668.2021.1894322
. [PMID: 33764231] - Sushma Verma, Mohammad Abbas, Shrikant Verma, Faizan Haider Khan, Syed Tasleem Raza, Zeba Siddiqi, Israr Ahmad, Farzana Mahdi. Impact of I/D polymorphism of angiotensin-converting enzyme 1 (ACE1) gene on the severity of COVID-19 patients.
Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.
2021 07; 91(?):104801. doi:
10.1016/j.meegid.2021.104801
. [PMID: 33676010] - Junjun Li, Han Jin, Ximei Yan, Dongyan Shao, Xinzhong Hu, Junling Shi. The anti-obesity effects exerted by different fractions of Artemisia sphaerocephala Krasch polysaccharide in diet-induced obese mice.
International journal of biological macromolecules.
2021 Jul; 182(?):825-837. doi:
10.1016/j.ijbiomac.2021.04.070
. [PMID: 33864863] - Rina Saito, Kengo Hayashi, Haruna Nomoto, Misuzu Nakayama, Yousuke Takaoka, Hiroaki Saito, Souhei Yamagami, Toshiya Muto, Minoru Ueda. Extended JAZ degron sequence for plant hormone binding in jasmonate co-receptor of tomato SlCOI1-SlJAZ.
Scientific reports.
2021 06; 11(1):13612. doi:
10.1038/s41598-021-93067-1
. [PMID: 34193940] - Elisabetta Tarentini, Giulia Odorici, Valeria Righi, Alessia Paganelli, Luca Giacomelli, Valentina Mirisola, Adele Mucci, Luisa Benassi, Elisabetta D'Aversa, Claudia Lasagni, Shaniko Kaleci, Eva Reali, Cristina Magnoni. Integrated metabolomic analysis and cytokine profiling define clusters of immuno-metabolic correlation in new-onset psoriasis.
Scientific reports.
2021 05; 11(1):10472. doi:
10.1038/s41598-021-89925-7
. [PMID: 34006909] - Rachel A Elovaris, Vida Bitarafan, Shahram Agah, Sina S Ullrich, Kylie Lange, Michael Horowitz, Christine Feinle-Bisset. Comparative Effects of the Branched-Chain Amino Acids, Leucine, Isoleucine and Valine, on Gastric Emptying, Plasma Glucose, C-Peptide and Glucagon in Healthy Men.
Nutrients.
2021 May; 13(5):. doi:
10.3390/nu13051613
. [PMID: 34064996] - Hai Yen Ta, Lucie Perquis, Cédric Sarazin, Bruno Guiard, Varravaddheay Ong Meang, Fabrice Collin, François Couderc. 3-(4-Carboxybenzoyl)quinoline-2-carboxaldehyde labeling for direct analysis of amino acids in plasma is not suitable for simultaneous quantification of tryptophan, tyrosine, valine, and isoleucine by CE/fluorescence.
Electrophoresis.
2021 05; 42(9-10):1108-1114. doi:
10.1002/elps.202000263
. [PMID: 33469939] - Michael Winn, Michael Rowlinson, Fanghua Wang, Luis Bering, Daniel Francis, Colin Levy, Jason Micklefield. Discovery, characterization and engineering of ligases for amide synthesis.
Nature.
2021 05; 593(7859):391-398. doi:
10.1038/s41586-021-03447-w
. [PMID: 34012085] - Mark J Henderson, Kathleen A Trychta, Shyh-Ming Yang, Susanne Bäck, Adam Yasgar, Emily S Wires, Carina Danchik, Xiaokang Yan, Hideaki Yano, Lei Shi, Kuo-Jen Wu, Amy Q Wang, Dingyin Tao, Gergely Zahoránszky-Kőhalmi, Xin Hu, Xin Xu, David Maloney, Alexey V Zakharov, Ganesha Rai, Fumihiko Urano, Mikko Airavaara, Oksana Gavrilova, Ajit Jadhav, Yun Wang, Anton Simeonov, Brandon K Harvey. A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
Cell reports.
2021 04; 35(4):109040. doi:
10.1016/j.celrep.2021.109040
. [PMID: 33910017] - Jonathan E Fogle, Lola Hudson, Andrea Thomson, Barbara Sherman, Margaret Gruen, B Duncan Lacelles, Brenda M Colby, Gillian Clary, Frank Longo, Rick B Meeker. Improved neurocognitive performance in FIV infected cats following treatment with the p75 neurotrophin receptor ligand LM11A-31.
Journal of neurovirology.
2021 04; 27(2):302-324. doi:
10.1007/s13365-021-00956-2
. [PMID: 33661457] - Danielle A Simmons, Brian D Mills, Robert R Butler Iii, Jason Kuan, Tyne L M McHugh, Carolyn Akers, James Zhou, Wassim Syriani, Maged Grouban, Michael Zeineh, Frank M Longo. Neuroimaging, Urinary, and Plasma Biomarkers of Treatment Response in Huntington's Disease: Preclinical Evidence with the p75NTR Ligand LM11A-31.
Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics.
2021 04; 18(2):1039-1063. doi:
10.1007/s13311-021-01023-8
. [PMID: 33786806] - Longfei Wang, Shuai Cao, Peitong Wang, Kening Lu, Qingxin Song, Fang-Jie Zhao, Z Jeffrey Chen. DNA hypomethylation in tetraploid rice potentiates stress-responsive gene expression for salt tolerance.
Proceedings of the National Academy of Sciences of the United States of America.
2021 03; 118(13):. doi:
10.1073/pnas.2023981118
. [PMID: 33771925] - Maxime M Bos, Neil J Goulding, Matthew A Lee, Amy Hofman, Mariska Bot, René Pool, Lisanne S Vijfhuizen, Xiang Zhang, Chihua Li, Rima Mustafa, Matt J Neville, Ruifang Li-Gao, Stella Trompet, Marian Beekman, Nienke R Biermasz, Dorret I Boomsma, Irene de Boer, Constantinos Christodoulides, Abbas Dehghan, Ko Willems van Dijk, Ian Ford, Mohsen Ghanbari, Bastiaan T Heijmans, M Arfan Ikram, J Wouter Jukema, Dennis O Mook-Kanamori, Fredrik Karpe, Annemarie I Luik, L H Lumey, Arn M J M van den Maagdenberg, Simon P Mooijaart, Renée de Mutsert, Brenda W J H Penninx, Patrick C N Rensen, Rebecca C Richmond, Frits R Rosendaal, Naveed Sattar, Robert A Schoevers, P Eline Slagboom, Gisela M Terwindt, Carisha S Thesing, Kaitlin H Wade, Carolien A Wijsman, Gonneke Willemsen, Aeilko H Zwinderman, Diana van Heemst, Raymond Noordam, Deborah A Lawlor. Investigating the relationships between unfavourable habitual sleep and metabolomic traits: evidence from multi-cohort multivariable regression and Mendelian randomization analyses.
BMC medicine.
2021 03; 19(1):69. doi:
10.1186/s12916-021-01939-0
. [PMID: 33731105]