Thiamine (BioDeep_00000002979)
Secondary id: BioDeep_00000413258
natural product human metabolite PANOMIX_OTCML-2023 blood metabolite BioNovoGene_Lab2019
代谢物信息卡片
化学式: C12H17N4OS (265.1123)
中文名称: 维生素B1, 硫胺 盐酸盐
谱图信息:
最多检出来源 Homo sapiens(blood) 21.66%
Last reviewed on 2024-08-13.
Cite this Page
Thiamine. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/thiamine (retrieved
2024-12-22) (BioDeep RN: BioDeep_00000002979). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: CC1=C(CCO)SC=[N+]1CC1=CN=C(C)N=C1N
InChI: InChI=1S/C12H17N4OS/c1-8-11(3-4-17)18-7-16(8)6-10-5-14-9(2)15-12(10)13/h5,7,17H,3-4,6H2,1-2H3,(H2,13,14,15)/q+1
描述信息
Thiamine, also known as aneurin or vitamin B1, belongs to the class of organic compounds known as thiamines. Thiamines are compounds containing a thiamine moiety, which is structurally characterized by a 3-[(4-Amino-2-methyl-pyrimidin-5-yl)methyl]-4-methyl-thiazol-5-yl backbone. Thiamine exists in all living species, ranging from bacteria to plants to humans. Thiamine biosynthesis occurs in bacteria, some protozoans, plants, and fungi. Thiamine is a vitamin and an essential nutrient meaning the body cannot synthesize it, and it must be obtained from the diet. It is soluble in water and insoluble in alcohol. Thiamine decomposes if heated. Thiamine was first discovered in 1897 by Umetaro Suzuki in Japan when researching how rice bran cured patients of Beriberi. Thiamine was the first B vitamin to be isolated in 1926 and was first made in 1936. Thiamine plays a key role in intracellular glucose metabolism and it is thought that thiamine inhibits the effect of glucose and insulin on arterial smooth muscle cell proliferation. Thiamine plays an important role in helping the body convert carbohydrates and fat into energy. It is essential for normal growth and development and helps to maintain proper functioning of the heart and the nervous and digestive systems. Thiamine cannot be stored in the body; however, once absorbed, the vitamin is concentrated in muscle tissue. Thiamine has antioxidant, erythropoietic, cognition-and mood-modulatory, antiatherosclerotic, putative ergogenic, and detoxification activities. Natural derivatives of thiamine, such as thiamine monophosphate (ThMP), thiamine diphosphate (ThDP), also sometimes called thiamine pyrophosphate (TPP), thiamine triphosphate (ThTP), and adenosine thiamine triphosphate (AThTP), act as coenzymes in addition to performing unique biological functions. Thiamine deficiency can lead to beriberi, Wernicke–Korsakoff syndrome, optic neuropathy, Leighs disease, African seasonal ataxia (or Nigerian seasonal ataxia), and central pontine myelinolysis. In Western countries, thiamine deficiency is seen mainly in chronic alcoholism. Thiamine supplements or thiamine therapy can be used for the treatment of a number of disorders including thiamine and niacin deficiency states, Korsakovs alcoholic psychosis, Wernicke-Korsakov syndrome, delirium, and peripheral neuritis. In humans, thiamine is involved in the metabolic disorder called 2-methyl-3-hydroxybutyryl-CoA dehydrogenase deficiency. Outside of the human body, Thiamine is found in high quantities in whole grains, legumes, pork, fruits, and yeast and fish. Grain processing removes much of the thiamine content in grains, so in many countries cereals and flours are enriched with thiamine.
Thiamine is an essential vitamin. It is found in many foods, some of which are atlantic croaker, wonton wrapper, cereals and cereal products, and turmeric.
A - Alimentary tract and metabolism > A11 - Vitamins > A11D - Vitamin b1, plain and in combination with vitamin b6 and b12 > A11DA - Vitamin b1, plain
Acquisition and generation of the data is financially supported in part by CREST/JST.
D018977 - Micronutrients > D014815 - Vitamins
KEIO_ID T056; [MS2] KO009294
KEIO_ID T056
同义名列表
53 个代谢物同义名
3-[(4-amino-2-methylpyrimidin-5-yl)methyl]-5-(2-hydroxyethyl)-4-methyl-1,3-thiazol-3-ium; 3-(4-AMINO-2-methyl-pyrimidin-5-ylmethyl)-5-(2-hydroxy-ethyl)-4-methyl-thiazol-3-ium; Thiamine hydrochloride; Mononitrate, thiamine; Thiamine mononitrate; Antiberiberi factor; Thiamine(1+) ion; Cernevit-12; Vitamin b 1; Apate drops; Vitaneuron; Thiaminium; Thiadoxine; Vitamin B1; Clotiamina; Bethiazine; Betalin S; Bithiamin; Vinothiam; Vetalin S; Metabolin; Thiaminal; Lixa-beta; Eskaphen; Trophite; Begiolan; Bevitine; Tiaminal; Tiamidon; Thiamine; Aneurin; Benerva; Thiamol; Beatine; Biamine; Slowten; Thiamin; Eskapen; Thiavit; Bevitex; Betaxin; Bivatin; Bequin; Bedome; Bivita; Beuion; Berin; Hybee; Biuno; Bewon; VIB; THD; Vitamin B1
数据库引用编号
42 个数据库交叉引用编号
- ChEBI: CHEBI:18385
- KEGG: C00378
- PubChem: 1130
- HMDB: HMDB0000235
- DrugBank: DB00152
- ChEMBL: CHEMBL1547
- Wikipedia: Thiamine
- MeSH: Thiamine
- MetaCyc: THIAMINE
- KNApSAcK: C00000775
- foodb: FDB008424
- chemspider: 1098
- CAS: 59-43-8
- MoNA: KO001934
- MoNA: PS035004
- MoNA: KO009294
- MoNA: PR100608
- MoNA: KO009296
- MoNA: KO004189
- MoNA: PR100203
- MoNA: KO004190
- MoNA: PS035001
- MoNA: KO001933
- MoNA: KO001935
- MoNA: PS035005
- MoNA: PS035003
- MoNA: PS035006
- MoNA: PS035002
- MoNA: KO004186
- MoNA: KO001936
- MoNA: KO004187
- MoNA: KO004188
- MoNA: KO009295
- MoNA: KO001937
- PMhub: MS000007609
- PDB-CCD: VIB
- 3DMET: B00096
- NIKKAJI: J203.781E
- RefMet: Thiamine
- CAS: 70-16-6
- CAS: 200-425-3
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-203
分类词条
相关代谢途径
Reactome(3)
PlantCyc(0)
代谢反应
435 个相关的代谢反应过程信息。
Reactome(72)
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Vitamin B1 (thiamin) metabolism:
ATP + THMN ⟶ AMP + TPP
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Vitamin B1 (thiamin) metabolism:
ATP + THMN ⟶ AMP + TPP
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Vitamin B1 (thiamin) metabolism:
ATP + THMN ⟶ AMP + TPP
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Vitamin B1 (thiamin) metabolism:
ATP + THMN ⟶ AMP + TPP
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Vitamin B1 (thiamin) metabolism:
ATP + THMN ⟶ AMP + TPP
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
6x(PCCA:PCCB) + ATP + Btn ⟶ 6x(Btn-PCCA:PCCB) + AMP + PPi
- Metabolism of water-soluble vitamins and cofactors:
6x(PCCA:PCCB) + ATP + Btn ⟶ 6x(Btn-PCCA:PCCB) + AMP + PPi
- Vitamin B1 (thiamin) metabolism:
ATP + THMN ⟶ AMP + TPP
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Vitamin B1 (thiamin) metabolism:
ATP + THMN ⟶ AMP + TPP
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Vitamin B1 (thiamin) metabolism:
ATP + THMN ⟶ AMP + TPP
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Vitamin B1 (thiamin) metabolism:
ATP + THMN ⟶ AMP + TPP
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Vitamin B1 (thiamin) metabolism:
ATP + THMN ⟶ AMP + TPP
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Vitamin B1 (thiamin) metabolism:
ATP + THMN ⟶ AMP + TPP
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Vitamin B1 (thiamin) metabolism:
ATP + THMN ⟶ AMP + TPP
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of vitamins and cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Metabolism of water-soluble vitamins and cofactors:
L-Cys + MOCS3:Zn2+ (red.) ⟶ L-Ala + MOCS3-S-S(1-):Zn2+
- Vitamin B1 (thiamin) metabolism:
ATP + THMN ⟶ AMP + TPP
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Vitamin B1 (thiamin) metabolism:
ATP + THMN ⟶ AMP + TPP
- Metabolism:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Metabolism of vitamins and cofactors:
4x(PC:Mn2+) + ATP + Btn ⟶ 4x(Btn-PC:Mn2+) + AMP + PPi
- Metabolism of water-soluble vitamins and cofactors:
4x(PC:Mn2+) + ATP + Btn ⟶ 4x(Btn-PC:Mn2+) + AMP + PPi
- Vitamin B1 (thiamin) metabolism:
ATP + THMN ⟶ AMP + TPP
- Metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Metabolism of vitamins and cofactors:
4x(PC:Mn2+) + ATP + Btn ⟶ 4x(Btn-PC:Mn2+) + AMP + PPi
- Metabolism of water-soluble vitamins and cofactors:
4x(PC:Mn2+) + ATP + Btn ⟶ 4x(Btn-PC:Mn2+) + AMP + PPi
- Vitamin B1 (thiamin) metabolism:
ATP + THMN ⟶ AMP + TPP
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Vitamin B1 (thiamin) metabolism:
ATP + THMN ⟶ AMP + TPP
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Vitamin B1 (thiamin) metabolism:
ATP + THMN ⟶ AMP + TPP
BioCyc(40)
- thiamine salvage IV (yeast):
H2O + thiamine ⟶ 4-amino-2-methyl-5-pyrimidinemethanol + 5-(2-hydroxyethyl)-4-methylthiazole + H+
- thiamin salvage IV:
5-(2-hydroxyethyl)-4-methylthiazole + ATP ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + ADP + H+
- thiamine salvage IV (yeast):
4-amino-2-methyl-5-pyrimidinemethanol + ATP ⟶ ADP + H+ + HMP-P
- thiamine salvage IV (yeast):
5-(2-hydroxyethyl)-4-methylthiazole + ATP ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + ADP + H+
- thiamin salvage III:
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- thiamine salvage III:
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- thiamine salvage I:
ATP + thiamine ⟶ ADP + H+ + thiamine phosphate
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis III (Staphylococcus):
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- thiamine diphosphate biosynthesis IV (eukaryotes):
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- superpathway of thiamin diphosphate biosynthesis III (eukaryotes):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- thiamin salvage III:
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- thiamin diphosphate biosynthesis IV (eukaryotes):
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- thiamine diphosphate biosynthesis IV (eukaryotes):
H2O + thiamine phosphate ⟶ phosphate + thiamine
- thiamine salvage III:
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- thiamine salvage I:
ATP + thiamine ⟶ ADP + H+ + thiamine phosphate
- thiamin salvage I:
ATP + thiamin ⟶ ADP + H+ + thiamin phosphate
- thiamine diphosphate biosynthesis III (Staphylococcus):
2-(2-carboxy-4-methylthiazol-5-yl)ethyl phosphate + H+ + HMP-PP ⟶ CO2 + diphosphate + thiamine phosphate
- thiamin salvage I:
ATP + thiamin ⟶ ADP + H+ + thiamin phosphate
- thiamin salvage I:
ATP + thiamin ⟶ ADP + H+ + thiamin phosphate
- thiamine diphosphate biosynthesis III (Staphylococcus):
2-(2-carboxy-4-methylthiazol-5-yl)ethyl phosphate + H+ + HMP-PP ⟶ CO2 + diphosphate + thiamine phosphate
- thiamine salvage III:
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- thiamine salvage III:
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- thiamin salvage III:
ATP + thiamin ⟶ AMP + H+ + thiamin diphosphate
- thiamin diphosphate biosynthesis IV (eukaryotes):
ATP + thiamin ⟶ AMP + H+ + thiamin diphosphate
- thiamin diphosphate biosynthesis III (Staphylococcus):
2-(2-carboxy-4-methylthiazol-5-yl)ethyl phosphate + 4-amino-2-methyl-5-diphosphomethylpyrimidine + H+ ⟶ CO2 + diphosphate + thiamin phosphate
- thiamin salvage III:
ATP + thiamin ⟶ AMP + H+ + thiamin diphosphate
- thiamin salvage III:
ATP + thiamin ⟶ AMP + H+ + thiamin diphosphate
- thiamin diphosphate biosynthesis III (Staphylococcus):
2-(2-carboxy-4-methylthiazol-5-yl)ethyl phosphate + 4-amino-2-methyl-5-diphosphomethylpyrimidine + H+ ⟶ CO2 + diphosphate + thiamin phosphate
- thiamine salvage III:
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- thiamine diphosphate biosynthesis III (Staphylococcus):
2-(2-carboxy-4-methylthiazol-5-yl)ethyl phosphate + H+ + HMP-PP ⟶ CO2 + diphosphate + thiamine phosphate
- thiamin diphosphate biosynthesis III (Staphylococcus):
2-(2-carboxy-4-methylthiazol-5-yl)ethyl phosphate + H+ + HMP-PP ⟶ CO2 + diphosphate + thiamin phosphate
- thiamine salvage III:
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- thiamine salvage III:
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- thiamine salvage III:
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- thiamine salvage III:
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- thiamine diphosphate biosynthesis III (Staphylococcus):
2-(2-carboxy-4-methylthiazol-5-yl)ethyl phosphate + H+ + HMP-PP ⟶ CO2 + diphosphate + thiamine phosphate
- thiamine salvage III:
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- thiamine salvage III:
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- thiamine diphosphate biosynthesis III (Staphylococcus):
2-(2-carboxy-4-methylthiazol-5-yl)ethyl phosphate + H+ + HMP-PP ⟶ CO2 + diphosphate + thiamine phosphate
WikiPathways(0)
Plant Reactome(3)
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Thiamin biosynthesis:
5-(2-hydroxyethyl)-4-methylthiazole + ATP ⟶ 4-methyl-5-(2-phosphonooxyethyl)thiazole + ADP
INOH(0)
PlantCyc(315)
- thiamine salvage IV (yeast):
4-amino-2-methyl-5-pyrimidinemethanol + ATP ⟶ ADP + H+ + HMP-P
- thiamine salvage IV (yeast):
5-(2-hydroxyethyl)-4-methylthiazole + ATP ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + ADP + H+
- thiamine salvage IV (yeast):
H2O + thiamine ⟶ 4-amino-2-methyl-5-pyrimidinemethanol + 5-(2-hydroxyethyl)-4-methylthiazole + H+
- thiamine salvage IV (yeast):
H2O + thiamine ⟶ 4-amino-2-methyl-5-pyrimidinemethanol + 5-(2-hydroxyethyl)-4-methylthiazole + H+
- thiamine salvage IV (yeast):
5-(2-hydroxyethyl)-4-methylthiazole + ATP ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + ADP + H+
- thiamine salvage IV (yeast):
H2O + thiamine ⟶ 4-amino-2-methyl-5-pyrimidinemethanol + 5-(2-hydroxyethyl)-4-methylthiazole + H+
- thiamine salvage IV (yeast):
H2O + thiamine ⟶ 4-amino-2-methyl-5-pyrimidinemethanol + 5-(2-hydroxyethyl)-4-methylthiazole + H+
- thiamine salvage IV (yeast):
5-(2-hydroxyethyl)-4-methylthiazole + ATP ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + ADP + H+
- thiamine salvage IV (yeast):
H2O + thiamine ⟶ 4-amino-2-methyl-5-pyrimidinemethanol + 5-(2-hydroxyethyl)-4-methylthiazole + H+
- thiamine salvage IV (yeast):
H2O + thiamine ⟶ 4-amino-2-methyl-5-pyrimidinemethanol + 5-(2-hydroxyethyl)-4-methylthiazole + H+
- thiamine salvage IV (yeast):
5-(2-hydroxyethyl)-4-methylthiazole + ATP ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + ADP + H+
- thiamine salvage IV (yeast):
5-(2-hydroxyethyl)-4-methylthiazole + ATP ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + ADP + H+
- thiamine salvage IV (yeast):
5-(2-hydroxyethyl)-4-methylthiazole + ATP ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + ADP + H+
- thiamine salvage IV (yeast):
H2O + thiamine ⟶ 4-amino-2-methyl-5-pyrimidinemethanol + 5-(2-hydroxyethyl)-4-methylthiazole + H+
- thiamine salvage IV (yeast):
5-(2-hydroxyethyl)-4-methylthiazole + ATP ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + ADP + H+
- thiamine salvage IV (yeast):
5-(2-hydroxyethyl)-4-methylthiazole + ATP ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + ADP + H+
- thiamine salvage IV (yeast):
5-(2-hydroxyethyl)-4-methylthiazole + ATP ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + ADP + H+
- thiamine salvage IV (yeast):
5-(2-hydroxyethyl)-4-methylthiazole + ATP ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + ADP + H+
- thiamine salvage IV (yeast):
5-(2-hydroxyethyl)-4-methylthiazole + ATP ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + ADP + H+
- thiamine salvage IV (yeast):
5-(2-hydroxyethyl)-4-methylthiazole + ATP ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + ADP + H+
- thiamine salvage IV (yeast):
H2O + thiamine ⟶ 4-amino-2-methyl-5-pyrimidinemethanol + 5-(2-hydroxyethyl)-4-methylthiazole + H+
- thiamine salvage IV (yeast):
5-(2-hydroxyethyl)-4-methylthiazole + ATP ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + ADP + H+
- thiamine salvage IV (yeast):
H2O + thiamine ⟶ 4-amino-2-methyl-5-pyrimidinemethanol + 5-(2-hydroxyethyl)-4-methylthiazole + H+
- thiamine salvage IV (yeast):
5-(2-hydroxyethyl)-4-methylthiazole + ATP ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + ADP + H+
- thiamine salvage IV (yeast):
5-(2-hydroxyethyl)-4-methylthiazole + ATP ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + ADP + H+
- thiamine salvage IV (yeast):
5-(2-hydroxyethyl)-4-methylthiazole + ATP ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + ADP + H+
- thiamine salvage IV (yeast):
5-(2-hydroxyethyl)-4-methylthiazole + ATP ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + ADP + H+
- thiamine salvage IV (yeast):
5-(2-hydroxyethyl)-4-methylthiazole + ATP ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + ADP + H+
- thiamine salvage IV (yeast):
5-(2-hydroxyethyl)-4-methylthiazole + ATP ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + ADP + H+
- thiamine salvage IV (yeast):
5-(2-hydroxyethyl)-4-methylthiazole + ATP ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + ADP + H+
- thiamine salvage IV (yeast):
5-(2-hydroxyethyl)-4-methylthiazole + ATP ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + ADP + H+
- thiamine salvage IV (yeast):
H2O + thiamine ⟶ 4-amino-2-methyl-5-pyrimidinemethanol + 5-(2-hydroxyethyl)-4-methylthiazole + H+
- thiamine salvage IV (yeast):
5-(2-hydroxyethyl)-4-methylthiazole + ATP ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + ADP + H+
- thiamine salvage IV (yeast):
H2O + thiamine ⟶ 4-amino-2-methyl-5-pyrimidinemethanol + 5-(2-hydroxyethyl)-4-methylthiazole + H+
- thiamine salvage IV (yeast):
H2O + thiamine ⟶ 4-amino-2-methyl-5-pyrimidinemethanol + 5-(2-hydroxyethyl)-4-methylthiazole + H+
- thiamine salvage IV (yeast):
5-(2-hydroxyethyl)-4-methylthiazole + ATP ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + ADP + H+
- thiamine salvage IV (yeast):
5-(2-hydroxyethyl)-4-methylthiazole + ATP ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + ADP + H+
- thiamine salvage IV (yeast):
5-(2-hydroxyethyl)-4-methylthiazole + ATP ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + ADP + H+
- thiamine salvage IV (yeast):
5-(2-hydroxyethyl)-4-methylthiazole + ATP ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + ADP + H+
- thiamine salvage IV (yeast):
4-amino-2-methyl-5-pyrimidinemethanol + ATP ⟶ ADP + H+ + HMP-P
- thiamine salvage IV (yeast):
H2O + thiamine ⟶ 4-amino-2-methyl-5-pyrimidinemethanol + 5-(2-hydroxyethyl)-4-methylthiazole + H+
- thiamine salvage IV (yeast):
5-(2-hydroxyethyl)-4-methylthiazole + ATP ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + ADP + H+
- thiamine salvage IV (yeast):
5-(2-hydroxyethyl)-4-methylthiazole + ATP ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + ADP + H+
- thiamine salvage IV (yeast):
5-(2-hydroxyethyl)-4-methylthiazole + ATP ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + ADP + H+
- thiamine salvage IV (yeast):
H2O + thiamine ⟶ 4-amino-2-methyl-5-pyrimidinemethanol + 5-(2-hydroxyethyl)-4-methylthiazole + H+
- thiamine salvage IV (yeast):
H2O + thiamine ⟶ 4-amino-2-methyl-5-pyrimidinemethanol + 5-(2-hydroxyethyl)-4-methylthiazole + H+
- thiamine salvage IV (yeast):
H2O + thiamine ⟶ 4-amino-2-methyl-5-pyrimidinemethanol + 5-(2-hydroxyethyl)-4-methylthiazole + H+
- thiamine salvage IV (yeast):
5-(2-hydroxyethyl)-4-methylthiazole + ATP ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + ADP + H+
- thiamine salvage IV (yeast):
H2O + thiamine ⟶ 4-amino-2-methyl-5-pyrimidinemethanol + 5-(2-hydroxyethyl)-4-methylthiazole + H+
- thiamine salvage IV (yeast):
H2O + thiamine ⟶ 4-amino-2-methyl-5-pyrimidinemethanol + 5-(2-hydroxyethyl)-4-methylthiazole + H+
- thiamine salvage IV (yeast):
5-(2-hydroxyethyl)-4-methylthiazole + ATP ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + ADP + H+
- thiamine salvage IV (yeast):
5-(2-hydroxyethyl)-4-methylthiazole + ATP ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + ADP + H+
- thiamine salvage IV (yeast):
H2O + thiamine ⟶ 4-amino-2-methyl-5-pyrimidinemethanol + 5-(2-hydroxyethyl)-4-methylthiazole + H+
- thiamine salvage IV (yeast):
H2O + thiamine ⟶ 4-amino-2-methyl-5-pyrimidinemethanol + 5-(2-hydroxyethyl)-4-methylthiazole + H+
- thiamine salvage IV (yeast):
5-(2-hydroxyethyl)-4-methylthiazole + ATP ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + ADP + H+
- thiamine diphosphate salvage IV (yeast):
H2O + thiamine phosphate ⟶ phosphate + thiamine
- thiamine diphosphate salvage IV (yeast):
H2O + thiamine phosphate ⟶ phosphate + thiamine
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- thiamine diphosphate biosynthesis IV (eukaryotes):
H2O + thiamine phosphate ⟶ phosphate + thiamine
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- thiamine diphosphate biosynthesis IV (eukaryotes):
H2O + thiamine phosphate ⟶ phosphate + thiamine
- thiamine salvage III:
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
H2O + thiamine phosphate ⟶ phosphate + thiamine
- thiamine diphosphate biosynthesis IV (eukaryotes):
H2O + thiamine phosphate ⟶ phosphate + thiamine
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
H2O + thiamine phosphate ⟶ phosphate + thiamine
- thiamine diphosphate biosynthesis IV (eukaryotes):
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
H2O + thiamine phosphate ⟶ phosphate + thiamine
- thiamine diphosphate biosynthesis IV (eukaryotes):
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
H2O + thiamine phosphate ⟶ phosphate + thiamine
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
H2O + thiamine phosphate ⟶ phosphate + thiamine
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
H2O + thiamine phosphate ⟶ phosphate + thiamine
- thiamine diphosphate biosynthesis IV (eukaryotes):
H2O + thiamine phosphate ⟶ phosphate + thiamine
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
H2O + thiamine phosphate ⟶ phosphate + thiamine
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- thiamine diphosphate biosynthesis IV (eukaryotes):
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
H2O + thiamine phosphate ⟶ phosphate + thiamine
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
H2O + thiamine phosphate ⟶ phosphate + thiamine
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
H2O + thiamine phosphate ⟶ phosphate + thiamine
- thiamine salvage III:
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
H2O + thiamine phosphate ⟶ phosphate + thiamine
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
H2O + thiamine phosphate ⟶ phosphate + thiamine
- thiamine diphosphate biosynthesis IV (eukaryotes):
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
H2O + thiamine phosphate ⟶ phosphate + thiamine
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine salvage III:
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
H2O + thiamine phosphate ⟶ phosphate + thiamine
- thiamine diphosphate biosynthesis IV (eukaryotes):
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
H2O + thiamine phosphate ⟶ phosphate + thiamine
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- thiamine diphosphate biosynthesis IV (eukaryotes):
H2O + thiamine phosphate ⟶ phosphate + thiamine
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
H2O + thiamine phosphate ⟶ phosphate + thiamine
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
H2O + thiamine phosphate ⟶ phosphate + thiamine
- thiamine diphosphate biosynthesis IV (eukaryotes):
H2O + thiamine phosphate ⟶ phosphate + thiamine
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
H2O + thiamine phosphate ⟶ phosphate + thiamine
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
H2O + thiamine phosphate ⟶ phosphate + thiamine
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
H2O + thiamine phosphate ⟶ phosphate + thiamine
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- thiamine diphosphate biosynthesis IV (eukaryotes):
H2O + thiamine phosphate ⟶ phosphate + thiamine
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
H2O + thiamine phosphate ⟶ phosphate + thiamine
- thiamine diphosphate biosynthesis IV (eukaryotes):
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
H2O + thiamine phosphate ⟶ phosphate + thiamine
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
H2O + thiamine phosphate ⟶ phosphate + thiamine
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- thiamine diphosphate biosynthesis IV (eukaryotes):
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
H2O + thiamine phosphate ⟶ phosphate + thiamine
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
H2O + thiamine phosphate ⟶ phosphate + thiamine
- thiamine diphosphate biosynthesis IV (eukaryotes):
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
H2O + thiamine phosphate ⟶ phosphate + thiamine
- thiamine diphosphate biosynthesis IV (eukaryotes):
H2O + thiamine phosphate ⟶ phosphate + thiamine
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
H2O + thiamine phosphate ⟶ phosphate + thiamine
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine salvage III:
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- thiamine diphosphate biosynthesis IV (eukaryotes):
H2O + thiamine phosphate ⟶ phosphate + thiamine
- thiamine diphosphate biosynthesis IV (eukaryotes):
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
H2O + thiamine phosphate ⟶ phosphate + thiamine
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
H2O + thiamine phosphate ⟶ phosphate + thiamine
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
H2O + thiamine phosphate ⟶ phosphate + thiamine
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
H2O + thiamine phosphate ⟶ phosphate + thiamine
- thiamine diphosphate biosynthesis IV (eukaryotes):
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- thiamine diphosphate biosynthesis IV (eukaryotes):
H2O + thiamine phosphate ⟶ phosphate + thiamine
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
H2O + thiamine phosphate ⟶ phosphate + thiamine
- thiamine diphosphate biosynthesis IV (eukaryotes):
H2O + thiamine phosphate ⟶ phosphate + thiamine
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- thiamine diphosphate biosynthesis IV (eukaryotes):
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- thiamine diphosphate biosynthesis IV (eukaryotes):
H2O + thiamine phosphate ⟶ phosphate + thiamine
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine salvage III:
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- thiamine diphosphate biosynthesis IV (eukaryotes):
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
H2O + thiamine phosphate ⟶ phosphate + thiamine
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
H2O + thiamine phosphate ⟶ phosphate + thiamine
- thiamine diphosphate biosynthesis IV (eukaryotes):
H2O + thiamine phosphate ⟶ phosphate + thiamine
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
H2O + thiamine phosphate ⟶ phosphate + thiamine
- thiamine diphosphate biosynthesis IV (eukaryotes):
H2O + thiamine phosphate ⟶ phosphate + thiamine
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
H2O + thiamine phosphate ⟶ phosphate + thiamine
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
H2O + thiamine phosphate ⟶ phosphate + thiamine
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
H2O + thiamine phosphate ⟶ phosphate + thiamine
- thiamine diphosphate biosynthesis IV (eukaryotes):
H2O + thiamine phosphate ⟶ phosphate + thiamine
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
H2O + thiamine phosphate ⟶ phosphate + thiamine
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
H2O + thiamine phosphate ⟶ phosphate + thiamine
- thiamine diphosphate biosynthesis IV (eukaryotes):
H2O + thiamine phosphate ⟶ phosphate + thiamine
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
H2O + thiamine phosphate ⟶ phosphate + thiamine
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- thiamine diphosphate biosynthesis IV (eukaryotes):
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- thiamine diphosphate biosynthesis IV (eukaryotes):
H2O + thiamine phosphate ⟶ phosphate + thiamine
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- thiamine diphosphate biosynthesis IV (eukaryotes):
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- thiamine diphosphate biosynthesis IV (eukaryotes):
H2O + thiamine phosphate ⟶ phosphate + thiamine
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
H2O + thiamine phosphate ⟶ phosphate + thiamine
- thiamine diphosphate biosynthesis IV (eukaryotes):
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
H2O + thiamine phosphate ⟶ phosphate + thiamine
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- thiamine diphosphate biosynthesis IV (eukaryotes):
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiamine diphosphate biosynthesis IV (eukaryotes):
ATP + thiamine ⟶ AMP + H+ + thiamine diphosphate
- thiamine diphosphate biosynthesis IV (eukaryotes):
H2O + thiamine phosphate ⟶ phosphate + thiamine
COVID-19 Disease Map(0)
PathBank(5)
- Thiamine Metabolism:
Adenosine triphosphate + Thiamine ⟶ Adenosine monophosphate + Thiamine pyrophosphate
- Vitamin B1/Thiamine Metabolism:
Adenosine triphosphate + Thiamine ⟶ Adenosine monophosphate + Hydrogen Ion + Thiamine pyrophosphate
- Thiamine Metabolism:
Adenosine triphosphate + Thiamine ⟶ Adenosine monophosphate + Thiamine pyrophosphate
- Thiamine Metabolism:
Adenosine triphosphate + Thiamine ⟶ Adenosine monophosphate + Thiamine pyrophosphate
- Thiamine Metabolism:
Adenosine triphosphate + Thiamine ⟶ Adenosine monophosphate + Thiamine pyrophosphate
PharmGKB(0)
17 个相关的物种来源信息
- 47037 - Alhagi maurorum: 10.1007/S10600-016-1871-5
- 759841 - Alhagi persarum: 10.1007/S10600-016-1871-5
- 85549 - Artemia salina: 10.1021/JF60200A008
- 3078 - Auxenochlorella pyrenoidosa: 10.1016/J.LFS.2004.10.055
- 3077 - Chlorella vulgaris: 10.1016/J.LFS.2004.10.055
- 7227 - Drosophila melanogaster: 10.1038/S41467-019-11933-Z
- 9606 - Homo sapiens:
- 9606 - Homo sapiens: -
- 4530 - Oryza sativa: 10.1080/10826079308019597
- 3885 - Phaseolus vulgaris: 10.1021/JF60216A029
- 4113 - Solanum tuberosum: 10.1007/BF02854349
- 3562 - Spinacia oleracea: 10.1073/PNAS.88.6.2042
- 32046 - Synechococcus elongatus: 10.1111/1462-2920.12899
- 260142 - Syzygium cumini: 10.1016/S2221-1691(12)60050-1
- 3641 - Theobroma cacao: 10.1515/ZNC-1998-9-1002
- 5691 - Trypanosoma brucei: 10.1371/JOURNAL.PNTD.0001618
- 569774 - 金线莲: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Yifei Lu, Chenqi Xu, Kewei Xie, Bingru Zhao, Minzhou Wang, Cheng Qian, Xuemei Chen, Leyi Gu, Wangshu Wu, Renhua Lu. The relationship between thiamin, folic acid and cognitive function in a rat model of uremia.
Renal failure.
2024 Dec; 46(1):2329257. doi:
10.1080/0886022x.2024.2329257
. [PMID: 38482596] - Viviane Maria de Sousa Fontes, Mércia de Sousa Galvão, Leila Moreira de Carvalho, Fabyan Laís do Nascimento Guedes, Marcos Dos Santos Lima, Taliana Kênia Alencar Bezerra, Marta Suely Madruga. Thiamine, cysteine and xylose added to the Maillard reaction of goat protein hydrolysate potentiates the formation of meat flavoring compounds.
Food chemistry.
2024 Jul; 445(?):138398. doi:
10.1016/j.foodchem.2024.138398
. [PMID: 38394903] - Xiying Xu, Chao Qi, Shuang Xu, Xinhao Fu, Zhiyuan Li, Hong Ren, Qian Qian, Shanshan Guo. Association between thiamine intake and depression: A national cross-sectional study.
Journal of affective disorders.
2024 May; 352(?):259-266. doi:
10.1016/j.jad.2024.02.053
. [PMID: 38367708] - Luiza Avezum, Yann E Madode, Christian Mestres, Nawel Achir, Charlotte Delpech, Morgane Chapron, Olivier Gibert, Loïc Rajjou, Eric Rondet. New insights into the rapid germination process of lentil and cowpea seeds: High thiamine and folate, and low α-galactoside content.
Food chemistry.
2024 May; 439(?):138027. doi:
10.1016/j.foodchem.2023.138027
. [PMID: 38029561] - V M Kodentsova, O V Kosheleva, O A Vrzhesinskaya, G V Guseva, V A Zotov, S N Leonenko, N V Zhilinskaya. [Influence of the rat diet enrichment with oat β-gucans on the assimilation of B group vitamins, mineral elements and lipid metabolism].
Voprosy pitaniia.
2024; 93(1):72-79. doi:
10.33029/0042-8833-2024-93-1-72-79
. [PMID: 38555611] - Abida Kausar, Noreen Zahra, Hina Zahra, Muhammad Bilal Hafeez, Sara Zafer, Abida Shahzadi, Ali Raza, Ivica Djalovic, Pv Vara Prasad. Alleviation of drought stress through foliar application of thiamine in two varieties of pea (Pisum sativum L.).
Plant signaling & behavior.
2023 Dec; 18(1):2186045. doi:
10.1080/15592324.2023.2186045
. [PMID: 37016728] - Jin Yang, Lu Chen, Juan Zhang, Peng Liu, Ming Chen, Zhihui Chen, Kaili Zhong, Jiaqian Liu, Jianping Chen, Jian Yang. TaTHI2 interacts with Ca2+ -dependent protein kinase TaCPK5 to suppress virus infection by regulating ROS accumulation.
Plant biotechnology journal.
2023 Dec; ?(?):. doi:
10.1111/pbi.14270
. [PMID: 38100262] - Yi-Hsin Chung, Ting-Chieh Chen, Wen-Ju Yang, Soon-Ziet Chen, Jia-Ming Chang, Wei-Yu Hsieh, Ming-Hsiun Hsieh. Ectopic expression of a bacterial thiamin monophosphate kinase enhances vitamin B1 biosynthesis in plants.
The Plant journal : for cell and molecular biology.
2023 Nov; ?(?):. doi:
10.1111/tpj.16563
. [PMID: 37996996] - Chengyao Xia, Yuqiang Zhao, Lei Zhang, Xu Li, Yang Cheng, Dongming Wang, Changsheng Xu, Mengyi Qi, Jihong Wang, Xiangrui Guo, Xianfeng Ye, Yan Huang, Danyu Shen, Daolong Dou, Hui Cao, Zhoukun Li, Zhongli Cui. Myxobacteria restrain Phytophthora invasion by scavenging thiamine in soybean rhizosphere via outer membrane vesicle-secreted thiaminase I.
Nature communications.
2023 Sep; 14(1):5646. doi:
10.1038/s41467-023-41247-0
. [PMID: 37704617] - Ryan W Paerl, Nathaniel P Curtis, Meriel J Bittner, Melanie R Cohn, Scott M Gifford, Catherine C Bannon, Elden Rowland, Erin M Bertrand. Use and detection of a vitamin B1 degradation product yields new views of the marine B1 cycle and plankton metabolite exchange.
mBio.
2023 08; 14(4):e0006123. doi:
10.1128/mbio.00061-23
. [PMID: 37377416] - Adam Yasgar, Danielle Bougie, Richard T Eastman, Ruili Huang, Misha Itkin, Jennifer Kouznetsova, Caitlin Lynch, Crystal McKnight, Mitch Miller, Deborah K Ngan, Tyler Peryea, Pranav Shah, Paul Shinn, Menghang Xia, Xin Xu, Alexey V Zakharov, Anton Simeonov. Quantitative Bioactivity Signatures of Dietary Supplements and Natural Products.
ACS pharmacology & translational science.
2023 May; 6(5):683-701. doi:
10.1021/acsptsci.2c00194
. [PMID: 37200814] - Kristen Van Gelder, Edmar R Oliveira-Filho, Jorge Donato García-García, You Hu, Steven D Bruner, Andrew D Hanson. Directed Evolution of Aerotolerance in Sulfide-Dependent Thiazole Synthases.
ACS synthetic biology.
2023 04; 12(4):963-970. doi:
10.1021/acssynbio.2c00512
. [PMID: 36920242] - Layla Al-Kharashi, Hala Attia, Aljazzy Alsaffi, Toka Almasri, Maha Arafa, Iman Hasan, Hanaa Alajami, Rehab Ali, Amira Badr. Pentoxifylline and thiamine ameliorate rhabdomyolysis-induced acute kidney injury in rats via suppressing TLR4/NF-κB and NLRP-3/caspase-1/gasdermin mediated-pyroptosis.
Toxicology and applied pharmacology.
2023 Feb; 461(?):116387. doi:
10.1016/j.taap.2023.116387
. [PMID: 36690085] - Laura M Ketelboeter, Shubhajit Mitra, Prasad Gyaneshwar. A thiamine transporter is required for biofilm formation by Rhizobium sp. IRBG74.
FEMS microbiology letters.
2023 01; 370(?):. doi:
10.1093/femsle/fnad046
. [PMID: 37253601] - Mehmet Kilincer, Hasan Saygin, Mustafa Ozyurek, Asli Baysal. Sorption of thiamin (vitamin B1) onto micro(nano)plastics: pH dependence and sorption models.
Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering.
2023; 58(8):762-772. doi:
10.1080/10934529.2023.2216123
. [PMID: 37272070] - Henrique Moura Dias, Andreia Prata Vieira, Erika Maria de Jesus, Nathalia de Setta, Gesiele Barros, Marie-Anne Van Sluys. Functional and comparative analysis of THI1 gene in grasses with a focus on sugarcane.
PeerJ.
2023; 11(?):e14973. doi:
10.7717/peerj.14973
. [PMID: 37214086] - Ryan G Lim, Osama Al-Dalahmah, Jie Wu, Maxwell P Gold, Jack C Reidling, Guomei Tang, Miriam Adam, David K Dansu, Hye-Jin Park, Patrizia Casaccia, Ricardo Miramontes, Andrea M Reyes-Ortiz, Alice Lau, Richard A Hickman, Fatima Khan, Fahad Paryani, Alice Tang, Kenneth Ofori, Emily Miyoshi, Neethu Michael, Nicolette McClure, Xena E Flowers, Jean Paul Vonsattel, Shawn Davidson, Vilas Menon, Vivek Swarup, Ernest Fraenkel, James E Goldman, Leslie M Thompson. Huntington disease oligodendrocyte maturation deficits revealed by single-nucleus RNAseq are rescued by thiamine-biotin supplementation.
Nature communications.
2022 12; 13(1):7791. doi:
10.1038/s41467-022-35388-x
. [PMID: 36543778] - Birgitta Ryback, Miriam Bortfeld-Miller, Julia A Vorholt. Metabolic adaptation to vitamin auxotrophy by leaf-associated bacteria.
The ISME journal.
2022 12; 16(12):2712-2724. doi:
10.1038/s41396-022-01303-x
. [PMID: 35987782] - M Sathiyabama, M Gandhi, M Indhumathi. Suppression of dry root rot disease caused by Rhizoctonia bataticola (Taub.) Butler in chickpea plants by application of thiamine loaded chitosan nanoparticles.
Microbial pathogenesis.
2022 Dec; 173(Pt B):105893. doi:
10.1016/j.micpath.2022.105893
. [PMID: 36417974] - Julian Bleicher, Elmar E Ebner, Kathrine H Bak. Formation and Analysis of Volatile and Odor Compounds in Meat-A Review.
Molecules (Basel, Switzerland).
2022 Oct; 27(19):. doi:
10.3390/molecules27196703
. [PMID: 36235239] - Xinyang Li, Yingyi Mao, Shuang Liu, Jin Wang, Xiang Li, Yanrong Zhao, David R Hill, Shuo Wang. Vitamins, Vegetables and Metal Elements Are Positively Associated with Breast Milk Oligosaccharide Composition among Mothers in Tianjin, China.
Nutrients.
2022 Oct; 14(19):. doi:
10.3390/nu14194131
. [PMID: 36235783] - Depeng Wang, Yabing Meng, Fangang Meng. Genome-centric metagenomics insights into functional divergence and horizontal gene transfer of denitrifying bacteria in anammox consortia.
Water research.
2022 Oct; 224(?):119062. doi:
10.1016/j.watres.2022.119062
. [PMID: 36116192] - Serap Andac-Ozturk, Gökçen Garipoğlu, Jale Çatak, Mustafa Yaman. Investigation of the vitamins B1, B2, and B6 vitamers bioaccessibilities of canned, dried legumes after in vitro gastrointestinal digestion system.
Food research international (Ottawa, Ont.).
2022 10; 160(?):111671. doi:
10.1016/j.foodres.2022.111671
. [PMID: 36076445] - Roberta Vitali, Clara Prioreschi, Laura Lorenzo Rebenaque, Eleonora Colantoni, Daniela Giovannini, Sarah Frusciante, Gianfranco Diretto, Francisco Marco-Jiménez, Mariateresa Mancuso, Arianna Casciati, Simonetta Pazzaglia. Gut-Brain Axis: Insights from Hippocampal Neurogenesis and Brain Tumor Development in a Mouse Model of Experimental Colitis Induced by Dextran Sodium Sulfate.
International journal of molecular sciences.
2022 Sep; 23(19):. doi:
10.3390/ijms231911495
. [PMID: 36232813] - Marcel Llavero-Pasquina, Katrin Geisler, Andre Holzer, Payam Mehrshahi, Gonzalo I Mendoza-Ochoa, Shelby A Newsad, Matthew P Davey, Alison G Smith. Thiamine metabolism genes in diatoms are not regulated by thiamine despite the presence of predicted riboswitches.
The New phytologist.
2022 09; 235(5):1853-1867. doi:
10.1111/nph.18296
. [PMID: 35653609] - Wei-Yu Hsieh, Hsin-Mei Wang, Yi-Hsin Chung, Kim-Teng Lee, Hong-Sheng Liao, Ming-Hsiun Hsieh. THIAMIN REQUIRING2 is involved in thiamin diphosphate biosynthesis and homeostasis.
The Plant journal : for cell and molecular biology.
2022 09; 111(5):1383-1396. doi:
10.1111/tpj.15895
. [PMID: 35791282] - Tanner B Call, Emma K Davis, Joseph D Bean, Skyler G Lemmon, John M Chaston. Bacterial Metabolism and Transport Genes Are Associated with the Preference of Drosophila melanogaster for Dietary Yeast.
Applied and environmental microbiology.
2022 08; 88(16):e0072022. doi:
10.1128/aem.00720-22
. [PMID: 35913151] - Yanshen Nie, Li Yu, Lianlian Mao, Wenxuan Zou, Xiufeng Zhang, Jie Zhao. Vitamin B1 THIAMIN REQUIRING1 synthase mediates the maintenance of chloroplast function by regulating sugar and fatty acid metabolism in rice.
Journal of integrative plant biology.
2022 Aug; 64(8):1575-1595. doi:
10.1111/jipb.13283
. [PMID: 35603832] - Tomoko Fujii, Yugeesh R Lankadeva, Rinaldo Bellomo. Update on vitamin C administration in critical illness.
Current opinion in critical care.
2022 Aug; 28(4):374-380. doi:
10.1097/mcc.0000000000000951
. [PMID: 35797532] - Weixi Li, Xinyue Mi, Xuanxiang Jin, Daiwei Zhang, Guozhong Zhu, Xiaoguang Shang, Dayong Zhang, Wangzhen Guo. Thiamine functions as a key activator for modulating plant health and broad-spectrum tolerance in cotton.
The Plant journal : for cell and molecular biology.
2022 07; 111(2):374-390. doi:
10.1111/tpj.15793
. [PMID: 35506325] - Eva Laverdure, Catherine Sperlich, Susan Fox. Refractory immune TTP following Pfizer-BioNTech COVID-19 vaccine successfully salvaged with caplacizumab.
Journal of thrombosis and haemostasis : JTH.
2022 Jul; 20(7):1696-1698. doi:
10.1111/jth.15751
. [PMID: 35510743] - Mahtab Ghanbari Rad, Mohammadreza Sharifi, Rokhsareh Meamar, Nepton Soltani. The role of pancreas to improve hyperglycemia in STZ-induced diabetic rats by thiamine disulfide.
Nutrition & diabetes.
2022 06; 12(1):32. doi:
10.1038/s41387-022-00211-5
. [PMID: 35725834] - Ying Liu, Ziwei Qin, Ning Chen, Zhigang Bu, Yuanzhu Yang, Xiaochun Hu, Heping Zheng, Zhuoyi Zhu, Ting Xu, Yan Gao, Shuqi Niu, Junjie Xing, Jianzhong Lin, Xuanming Liu, Yonghua Zhu. The Vital Role of ShTHIC from the Endophyte OsiSh-2 in Thiamine Biosynthesis and Blast Resistance in the OsiSh-2-Rice Symbiont.
Journal of agricultural and food chemistry.
2022 Jun; 70(23):6993-7003. doi:
10.1021/acs.jafc.2c00776
. [PMID: 35667655] - Takahiro Yamashiro, Tomoya Yasujima, Hiroaki Yuasa. Animal species differences in the pyridoxine transport function of SLC19A3: Absence of Slc19a3-mediated pyridoxine uptake in the rat small intestine.
Drug metabolism and pharmacokinetics.
2022 Jun; 44(?):100456. doi:
10.1016/j.dmpk.2022.100456
. [PMID: 35512554] - Elaheh Amirani, Esmat Aghadavod, Rana Shafabakhsh, Zatollah Asemi, Zohreh Tabassi, Ida Panahandeh, Fatemeh Naderi, Alireza Abed. Anti-inflammatory and antioxidative effects of thiamin supplements in patients with gestational diabetes mellitus.
The journal of maternal-fetal & neonatal medicine : the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstetricians.
2022 Jun; 35(11):2085-2090. doi:
10.1080/14767058.2020.1779212
. [PMID: 32722956] - Prachi Saluja, Nitesh Gautam, Sisira Yadala, Anand N Venkata. Thrombotic thrombocytopenic purpura (TTP) after COVID-19 vaccination: A systematic review of reported cases.
Thrombosis research.
2022 06; 214(?):115-121. doi:
10.1016/j.thromres.2022.04.020
. [PMID: 35533526] - Kieran V Allowitz, John J Yoo, Justin R Taylor, Omar A Baloch, Kyra Harames, Kota V Ramana. Therapeutic potential of vitamin B1 derivative benfotiamine from diabetes to COVID-19.
Future medicinal chemistry.
2022 06; 14(11):809-826. doi:
10.4155/fmc-2022-0040
. [PMID: 35535731] - Lucile Equey, Philipp K A Agyeman, Rosemarie Veraguth, Serge Rezzi, Luregn J Schlapbach, Eric Giannoni. Serum Ascorbic Acid and Thiamine Concentrations in Sepsis: Secondary Analysis of the Swiss Pediatric Sepsis Study.
Pediatric critical care medicine : a journal of the Society of Critical Care Medicine and the World Federation of Pediatric Intensive and Critical Care Societies.
2022 05; 23(5):390-394. doi:
10.1097/pcc.0000000000002911
. [PMID: 35583617] - Donogh Maguire, Alana Burns, Dinesh Talwar, Anthony Catchpole, Fiona Stefanowicz, David P Ross, Peter Galloway, Alastair Ireland, Gordon Robson, Michael Adamson, Lesley Orr, Joanna-Lee Kerr, Xenofon Roussis, Eoghan Colgan, Ewan Forrest, David Young, Donald C McMillan. Randomised trial of intravenous thiamine and/or magnesium sulphate administration on erythrocyte transketolase activity, lactate concentrations and alcohol withdrawal scores.
Scientific reports.
2022 04; 12(1):6941. doi:
10.1038/s41598-022-10970-x
. [PMID: 35484175] - Leilani Hernandez, Taylor Brockman, Tej Mehta. Identification of Wernicke Encephalopathy in a Patient Presenting With Altered Mental Status and Dehydration.
WMJ : official publication of the State Medical Society of Wisconsin.
2022 Apr; 121(1):E10-E14. doi:
NULL
. [PMID: 35442587] - Simon Strobbe, Jana Verstraete, Teresa B Fitzpatrick, Maria Faustino, Tiago F Lourenço, M Margarida Oliveira, Christophe Stove, Dominique Van Der Straeten. A novel panel of yeast assays for the assessment of thiamin and its biosynthetic intermediates in plant tissues.
The New phytologist.
2022 04; 234(2):748-763. doi:
10.1111/nph.17974
. [PMID: 35037254] - Ayed Al-Anezi, Vania Sotirova-Koulli, Osama Shalaby, Ahmed Ibrahim, Nehad Abdulmotagalli, Ramy Youssef, Mohamed Hossam El-Din. Biotin-thiamine responsive basal ganglia disease in the era of COVID-19 outbreak diagnosis not to be missed: A case report.
Brain & development.
2022 Apr; 44(4):303-307. doi:
10.1016/j.braindev.2021.12.003
. [PMID: 34953623] - Nuno A G Graça, Bérangère S Joly, Jan Voorberg, Karen Vanhoorelbeke, Nicolas Béranger, Agnès Veyradier, Paul Coppo. TTP: From empiricism for an enigmatic disease to targeted molecular therapies.
British journal of haematology.
2022 04; 197(2):156-170. doi:
10.1111/bjh.18040
. [PMID: 35146746] - Marja Keinänen, Soili Nikonen, Reijo Käkelä, Tiina Ritvanen, Mervi Rokka, Timo Myllylä, Jukka Pönni, Pekka J Vuorinen. High Lipid Content of Prey Fish and n-3 PUFA Peroxidation Impair the Thiamine Status of Feeding-Migrating Atlantic Salmon (Salmo salar) and Is Reflected in Hepatic Biochemical Indices.
Biomolecules.
2022 03; 12(4):. doi:
10.3390/biom12040526
. [PMID: 35454115] - Yazan Zayed, Bashar N Alzghoul, Momen Banifadel, Hima Venigandla, Ryan Hyde, Selina Sutchu, Majd Khasawneh, Zea Borok, Daniel Urbine, Michael Jantz, Raju Reddy. Vitamin C, Thiamine, and Hydrocortisone in the Treatment of Sepsis: A Meta-Analysis and Trial Sequential Analysis of Randomized Controlled Trials.
Journal of intensive care medicine.
2022 Mar; 37(3):327-336. doi:
10.1177/0885066620987809
. [PMID: 33511898] - Senthil Sukumar, Max Brodsky, Sarah Hussain, Lisa Yanek, Alison Moliterno, Robert Brodsky, Spero R Cataland, Shruti Chaturvedi. Cardiovascular disease is a leading cause of mortality among TTP survivors in clinical remission.
Blood advances.
2022 02; 6(4):1264-1270. doi:
10.1182/bloodadvances.2020004169
. [PMID: 34461629] - Marcel Hrubša, Tomáš Siatka, Iveta Nejmanová, Marie Vopršalová, Lenka Kujovská Krčmová, Kateřina Matoušová, Lenka Javorská, Kateřina Macáková, Laura Mercolini, Fernando Remião, Marek Máťuš, Přemysl Mladěnka, On Behalf Of The Oemonom. Biological Properties of Vitamins of the B-Complex, Part 1: Vitamins B1, B2, B3, and B5.
Nutrients.
2022 Jan; 14(3):. doi:
10.3390/nu14030484
. [PMID: 35276844] - Renuka Mopuru, Shruti Chaturvedi, Bryn M Burkholder. Relapsing Thrombotic Thrombocytopenic Purpura (TTP) in a Patient Treated with Infliximab for Chronic Uveitis.
Ocular immunology and inflammation.
2022 Jan; 30(1):241-243. doi:
10.1080/09273948.2020.1797117
. [PMID: 32945712] - O A Vrzhesinskaya, S N Leonenko, V M Kodentsova, N A Beketova, O V Kosheleva, V V Pilipenko, O A Plotnikova, R I Alekseeva, Kh Kh Sharafetdinov. [Vitamin supply of patients with type 2 diabetes mellitus complicated by nephropathy].
Voprosy pitaniia.
2022; 91(2):58-71. doi:
10.33029/0042-8833-2022-91-2-58-71
. [PMID: 35596636] - Karolina M Czajka, Kabwe Nkongolo. Transcriptome analysis of trembling aspen (Populus tremuloides) under nickel stress.
PloS one.
2022; 17(10):e0274740. doi:
10.1371/journal.pone.0274740
. [PMID: 36227867] - Munifa Jabeen, Nudrat Aisha Akram, Muhammad Ashraf, Anshika Tyagi, Mohamed A El-Sheikh, Parvaiz Ahmad. Thiamin stimulates growth, yield quality and key biochemical processes of cauliflower (Brassica oleracea L. var. Botrytis) under arid conditions.
PloS one.
2022; 17(5):e0266372. doi:
10.1371/journal.pone.0266372
. [PMID: 35613077] - Jinlan Yang, Yulan Gao, Li Yang. Capillary-based fluorescence microsensor with polyoxometalates as nanozyme for rapid and ultrasensitive detection of artemisinin.
Mikrochimica acta.
2021 12; 189(1):40. doi:
10.1007/s00604-021-05126-z
. [PMID: 34964917] - Xiu-Hong Zhang, Jin-Xiong Chen, Kai-Long Fu, Xuan-Bin Huang. [Clinical observation on treatment of functional dyspepsia by injection of vitamin B1 into Zusanli (ST36) and Hegu (LI4)].
Zhen ci yan jiu = Acupuncture research.
2021 Dec; 46(12):1043-7. doi:
10.13702/j.1000-0607.20210660
. [PMID: 34970882] - Renhua Lu, Le-Yi Gu, Weiming Zhang, Yongping Guo, Xiujuan Zang, Yan Zhou, Ling Yu, Shuting Pan, Huihua Pang, Shang Liu, Kewei Xie, Ping Li, Xiaojun Zeng, Yifei Lu. Protocol for thiamine and folic acid in the treatment of cognitive impairment in maintenance haemodialysis patients: a prospective, randomised, placebo-controlled, double-blind, multicentre study.
BMJ open.
2021 12; 11(12):e050605. doi:
10.1136/bmjopen-2021-050605
. [PMID: 34907051] - Ruchika Bhawal, Qin Fu, Elizabeth T Anderson, Gary E Gibson, Sheng Zhang. Serum Metabolomic and Lipidomic Profiling Reveals Novel Biomarkers of Efficacy for Benfotiamine in Alzheimer's Disease.
International journal of molecular sciences.
2021 Dec; 22(24):. doi:
10.3390/ijms222413188
. [PMID: 34947984] - Renhua Lu, Yan Fang, Yijun Zhou, Miaolin Che, Jianxiao Shen, Qian Liu, Haifen Zhang, Shuting Pan, Yan Lin, Qin Wang, Shan Mou, Zhaohui Ni, Leyi Gu. A pilot study of thiamin and folic acid in hemodialysis patients with cognitive impairment.
Renal failure.
2021 Dec; 43(1):766-773. doi:
10.1080/0886022x.2021.1914656
. [PMID: 33913373] - Benjamin Assouline, Anna Faivre, Thomas Verissimo, Frédéric Sangla, Lena Berchtold, Raphaël Giraud, Karim Bendjelid, Sebastian Sgardello, Nadia Elia, Jérôme Pugin, Sophie de Seigneux, David Legouis. Thiamine, Ascorbic Acid, and Hydrocortisone As a Metabolic Resuscitation Cocktail in Sepsis: A Meta-Analysis of Randomized Controlled Trials With Trial Sequential Analysis.
Critical care medicine.
2021 12; 49(12):2112-2120. doi:
10.1097/ccm.0000000000005262
. [PMID: 34582409] - Y Ma, C Wang, M Elmhadi, H Zhang, Y Han, B Shen, B L He, X Y Liu, H R Wang. Thiamine ameliorates metabolic disorders induced by a long-term high-concentrate diet and promotes rumen epithelial development in goats.
Journal of dairy science.
2021 Nov; 104(11):11522-11536. doi:
10.3168/jds.2021-20425
. [PMID: 34304871] - Emily K Hess, Jennifer M Reinhart, Melinda J Anderson, Amber S Jannasch, Sandra D Taylor. Pharmacokinetics of thiamine (vitamin B1) in adult horses after administration of three single intravenous doses.
Journal of veterinary pharmacology and therapeutics.
2021 Nov; 44(6):937-944. doi:
10.1111/jvp.13007
. [PMID: 34407222] - Zhixia Yao, Yaosheng Liu, Yongxing Diao, Guangxing Hu, Yuhong Qian, Zhuang Li. Fluorometry detection for trypsin via inner filter effect between cytochrome C and in-situ formed fluorescent thiochrome.
Talanta.
2021 Nov; 234(?):122614. doi:
10.1016/j.talanta.2021.122614
. [PMID: 34364423] - Florian Leonardus Rudolfus Lucas, Tjemme Rinze Cornelis Piso, Nieck Jordy van der Heide, Nicole Stéphanie Galenkamp, Jos Hermans, Carsten Wloka, Giovanni Maglia. Automated Electrical Quantification of Vitamin B1 in a Bodily Fluid using an Engineered Nanopore Sensor.
Angewandte Chemie (International ed. in English).
2021 10; 60(42):22849-22855. doi:
10.1002/anie.202107807
. [PMID: 34390104] - Xiaochen Yuan, Gayle C McGhee, Suzanne M Slack, George W Sundin. A Novel Signaling Pathway Connects Thiamine Biosynthesis, Bacterial Respiration, and Production of the Exopolysaccharide Amylovoran in Erwinia amylovora.
Molecular plant-microbe interactions : MPMI.
2021 Oct; 34(10):1193-1208. doi:
10.1094/mpmi-04-21-0095-r
. [PMID: 34081536] - Mugagga Kalyesubula, Ramgopal Mopuri, Alexander Rosov, Guy Van Bommel, Hay Dvir. Metabolic Effects of Vitamin B1 Therapy under Overnutrition and Undernutrition Conditions in Sheep.
Nutrients.
2021 Sep; 13(10):. doi:
10.3390/nu13103463
. [PMID: 34684464] - Jaya Joshi, Qiang Li, Jorge D García-García, Bryan J Leong, You Hu, Steven D Bruner, Andrew D Hanson. Structure and function of aerotolerant, multiple-turnover THI4 thiazole synthases.
The Biochemical journal.
2021 09; 478(17):3265-3279. doi:
10.1042/bcj20210565
. [PMID: 34409984] - Aliza Mittal, Sarbesh Tiwari, Binit Sureka, Kuldeep Singh. Wernicke's encephalopathy - An oddball complication of nephrotic syndrome.
Saudi journal of kidney diseases and transplantation : an official publication of the Saudi Center for Organ Transplantation, Saudi Arabia.
2021 Sep; 32(5):1456-1460. doi:
10.4103/1319-2442.344767
. [PMID: 35532717] - Michael Self, Jason Signorelli, Daniel Lasoff, Andrew Lafree, Christopher Coyne, Stephen R Hayden, Gabriel Wardi. A BERIBERI UNHEALTHY LATTE: ENCEPHALOPATHY AND SHOCK FROM SEVERE NUTRITIONAL DEFICIENCY.
The Journal of emergency medicine.
2021 09; 61(3):314-319. doi:
10.1016/j.jemermed.2021.03.010
. [PMID: 33836911] - Chenyang Chang, Kaiyuan Luo, Huifang Zhu, Guoping Deng, Qiannan Gao. [Therapeutic effect of hydrocortisone combined with vitamin C and vitamin B1 on patients with sepsis: a Meta-analysis].
Zhonghua wei zhong bing ji jiu yi xue.
2021 Sep; 33(9):1040-1046. doi:
10.3760/cma.j.cn121430-20210728-01101
. [PMID: 34839858] - Yohei Iimura, Tomohiro Kurokawa, Shohei Andoh, Yoshiaki Kanemoto, Toyotaka Kawamata, Kentaro Yazawa, Aki Sato, Kazuaki Yokoyama, Yoichi Imai, Giichiro Tsurita, Yuka Ahiko, Susumu Aikou, Dai Shida, Masanori Nojima, Arinobu Tojo, Munetoshi Sugiura, Seiichiro Kuroda. Association between thiamine decrease and neuropsychiatric symptoms in gastrointestinal and hematological cancer patients receiving chemotherapy.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2021 Sep; 141(?):111929. doi:
10.1016/j.biopha.2021.111929
. [PMID: 34328118] - O S Vlasova, F A Bichkaeva. Age-related changes in the parameters of carbohydrate metabolism and supply of vitamins B1, B2 in residents of two northern regions.
Klinicheskaia laboratornaia diagnostika.
2021 Aug; 66(8):465-471. doi:
10.51620/0869-2084-2021-66-8-465-471
. [PMID: 34388316] - Esther Shan Lin Hor, Gurpreet Pal Singh, Nurul Akhmar Omar, Vincent Russell. Atypical neuroleptic malignant syndrome and non-alcoholic Wernicke's encephalopathy.
BMJ case reports.
2021 Aug; 14(8):. doi:
10.1136/bcr-2021-244082
. [PMID: 34353834] - Simon Strobbe, Jana Verstraete, Christophe Stove, Dominique Van Der Straeten. Metabolic engineering provides insight into the regulation of thiamin biosynthesis in plants.
Plant physiology.
2021 08; 186(4):1832-1847. doi:
10.1093/plphys/kiab198
. [PMID: 33944954] - Peter V Minorsky. On the Inside.
Plant physiology.
2021 Aug; 186(4):1747-1749. doi:
10.1093/plphys/kiab265
. [PMID: 35237806] - Hiroshi Ito, Mayumi Ishida, Kumi Itami, Akira Yoshioka, Izumi Sato, Nozomu Uchida, Nobuyuki Onizawa, Hideki Onishi. Wernicke encephalopathy in a lung cancer patient receiving home medical care.
Palliative & supportive care.
2021 08; 19(4):501-503. doi:
10.1017/s1478951521000900
. [PMID: 34294180] - Vasileios Stolakis, Charis Liapi, Hussam Al-Humadi, Konstantinos Kalafatakis, Vasiliki Gkanti, Alexios Bimpis, Nikolina Skandali, Smaragda Tsela, Stamatios Theocharis, Apostolos Zarros, Stylianos Tsakiris. Effects of gestational thiamine-deprivation and/or exposure to ethanol on crucial offspring rat brain enzyme activities.
The journal of maternal-fetal & neonatal medicine : the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstetricians.
2021 Aug; 34(15):2458-2466. doi:
10.1080/14767058.2019.1667973
. [PMID: 31514558] - Mette M Berger, Marcus Broman, Lui Forni, Marlies Ostermann, Elisabeth De Waele, Paul E Wischmeyer. Nutrients and micronutrients at risk during renal replacement therapy: a scoping review.
Current opinion in critical care.
2021 08; 27(4):367-377. doi:
10.1097/mcc.0000000000000851
. [PMID: 34039873] - Alexandre R Lima, Florinda Gama, Viana Castañeda-Loaiza, Camila Costa, Lisa M Schüler, Tamára Santos, Miguel Salazar, Carla Nunes, Rui M S Cruz, João Varela, Luísa Barreira. Nutritional and Functional Evaluation of Inula crithmoides and Mesembryanthemum nodiflorum Grown in Different Salinities for Human Consumption.
Molecules (Basel, Switzerland).
2021 Jul; 26(15):. doi:
10.3390/molecules26154543
. [PMID: 34361696] - Nandan Prasad, Anne V Grossestreuer, Nuala J Meyer, Sarah M Perman, Mark E Mikkelsen, Judd Hollander, David F Gaieski. The relationship between vitamin C or thiamine levels and outcomes for severe sepsis patients admitted to the ICU.
Scientific reports.
2021 07; 11(1):15114. doi:
10.1038/s41598-021-94473-1
. [PMID: 34302025] - David M Wong, Lauren Young, Katarzyna A Dembek. Blood thiamine (vitamin B1 ), ascorbic acid (vitamin C), and cortisol concentrations in healthy and ill neonatal foals.
Journal of veterinary internal medicine.
2021 Jul; 35(4):1988-1994. doi:
10.1111/jvim.16188
. [PMID: 34056771] - Laurent Coulbault, Ludivine Ritz, François Vabret, Coralie Lannuzel, Céline Boudehent, Marie Nowoczyn, Hélène Beaunieux, Anne Lise Pitel. Thiamine and phosphate esters concentrations in whole blood and serum of patients with alcohol use disorder: a relation with cognitive deficits.
Nutritional neuroscience.
2021 Jul; 24(7):530-541. doi:
10.1080/1028415x.2019.1652438
. [PMID: 31419185] - Khalid Al Sulaiman, Ohoud Aljuhani, Maram Al Dossari, Asma Alshahrani, Aisha Alharbi, Rahmah Algarni, Majed Al Jeraisy, Shmeylan Al Harbi, Abdulmalik Al Katheri, Fahad Al Eidan, Abdulkareem M Al Bekairy, Nouf Al Qahtani, Mashael Al Muqrin, Ramesh Vishwakarma, Ghassan Al Ghamdi. Evaluation of thiamine as adjunctive therapy in COVID-19 critically ill patients: a two-center propensity score matched study.
Critical care (London, England).
2021 06; 25(1):223. doi:
10.1186/s13054-021-03648-9
. [PMID: 34193235] - Michał Szczyrek, Paulina Bitkowska, Patryk Chunowski, Paulina Czuchryta, Paweł Krawczyk, Janusz Milanowski. Diet, Microbiome, and Cancer Immunotherapy-A Comprehensive Review.
Nutrients.
2021 Jun; 13(7):. doi:
10.3390/nu13072217
. [PMID: 34203292] - Munifa Jabeen, Nudrat Aisha Akram, Muhammad Ashraf, Mohammed Nasser Alyemeni, Parvaiz Ahmad. Thiamin stimulates growth and secondary metabolites in turnip (Brassica rapa L.) leaf and root under drought stress.
Physiologia plantarum.
2021 Jun; 172(2):1399-1411. doi:
10.1111/ppl.13215
. [PMID: 32949410] - Zengzheng Ge, Jiewu Huang, Yawei Liu, Jun Xiang, Yanxia Gao, Joseph Harold Walline, Xin Lu, Shiyuan Yu, Lina Zhao, Yi Li. Thiamine combined with vitamin C in sepsis or septic shock: a systematic review and meta-analysis.
European journal of emergency medicine : official journal of the European Society for Emergency Medicine.
2021 Jun; 28(3):189-195. doi:
10.1097/mej.0000000000000812
. [PMID: 33709993] - Simon Strobbe, Jana Verstraete, Christophe Stove, Dominique Van Der Straeten. Metabolic engineering of rice endosperm towards higher vitamin B1 accumulation.
Plant biotechnology journal.
2021 06; 19(6):1253-1267. doi:
10.1111/pbi.13545
. [PMID: 33448624] - Piotr Zięba, Agnieszka Sękara, Emilia Bernaś, Agata Krakowska, Katarzyna Sułkowska-Ziaja, Edward Kunicki, Małgorzata Suchanek, Bożena Muszyńska. Supplementation with Magnesium Salts-A Strategy to Increase Nutraceutical Value of Pleurotus djamor Fruiting Bodies.
Molecules (Basel, Switzerland).
2021 May; 26(11):. doi:
10.3390/molecules26113273
. [PMID: 34071646] - Donogh Maguire, Anthony Catchpole, Owen Sheerins, Dinesh Talwar, Alana Burns, Mark Blyth, Andrew Shaw, Bryn Jones, Colin Drury, Johann Harten, Innes Smith, Donald C McMillan. The relation between acute changes in the systemic inflammatory response and circulating thiamine and magnesium concentrations after elective knee arthroplasty.
Scientific reports.
2021 05; 11(1):11271. doi:
10.1038/s41598-021-90591-y
. [PMID: 34050237] - Filippo Mori, Ilaria Nardini, Andrea Caricasole, Novinyo Serge Amega, Claudio Farina. Characterization of a plasma-derived double-viral-inactivated factor VIII concentrate (antihaemophilic factor [human]): Focus on TTP treatment.
Haemophilia : the official journal of the World Federation of Hemophilia.
2021 May; 27(3):e409-e411. doi:
10.1111/hae.14260
. [PMID: 33529361] - Sami Akbulut, Parviz Abbasov, Serdar Karakas, Aysun Bay Karabulut, Sezai Yilmaz. Evaluation of Serum Thiamine and Pyridoxine Levels in Patients Undergoing Liver Transplant: A Prospective Study.
Experimental and clinical transplantation : official journal of the Middle East Society for Organ Transplantation.
2021 05; 19(5):457-461. doi:
10.6002/ect.2017.0102
. [PMID: 29292683] - T Mouillot, M-C Brindisi, C Chambrier, S Audia, L Brondel. [Refeeding syndrome].
La Revue de medecine interne.
2021 May; 42(5):346-354. doi:
10.1016/j.revmed.2020.12.012
. [PMID: 33549330] - Ahmet Sevki Taskiran, Mustafa Ergul. The modulator action of thiamine against pentylenetetrazole-induced seizures, apoptosis, nitric oxide, and oxidative stress in rats and SH-SY5Y neuronal cell line.
Chemico-biological interactions.
2021 May; 340(?):109447. doi:
10.1016/j.cbi.2021.109447
. [PMID: 33771525] - Kate Porter, John K Lodge. Determination of selected water-soluble vitamins (thiamine, riboflavin, nicotinamide and pyridoxine) from a food matrix using hydrophilic interaction liquid chromatography coupled with mass spectroscopy.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2021 May; 1171(?):122541. doi:
10.1016/j.jchromb.2021.122541
. [PMID: 33773258] - Stefan Müller, Thomas Wiesmann, Hinnerk Wulf, Christian Arndt. [Vitamin C - New Option in Sepsis Therapy?].
Anasthesiologie, Intensivmedizin, Notfallmedizin, Schmerztherapie : AINS.
2021 May; 56(5):374-382. doi:
10.1055/a-1109-4363
. [PMID: 34038976] - Mugagga Kalyesubula, Ramgopal Mopuri, Jimmy Asiku, Alexander Rosov, Sara Yosefi, Nir Edery, Samuel Bocobza, Uzi Moallem, Hay Dvir. High-dose vitamin B1 therapy prevents the development of experimental fatty liver driven by overnutrition.
Disease models & mechanisms.
2021 03; 14(3):. doi:
10.1242/dmm.048355
. [PMID: 33608323] - Jana Verstraete, Simon Strobbe, Dominique Van Der Straeten, Christophe Stove. An optimized LC-MS/MS method as a pivotal tool to steer thiamine biofortification strategies in rice.
Talanta.
2021 Mar; 224(?):121905. doi:
10.1016/j.talanta.2020.121905
. [PMID: 33379109] - Pathum Sookaromdee, Viroj Wiwanitkit. Hydroxychloroquine, TTP, COVID-19, and SLE.
Turkish journal of haematology : official journal of Turkish Society of Haematology.
2021 02; 38(1):99-100. doi:
10.4274/tjh.galenos.2021.2020.0770
. [PMID: 33401889] - James N George. TTP: the evolution of clinical practice.
Blood.
2021 02; 137(6):719-720. doi:
10.1182/blood.2020009654
. [PMID: 33570615] - Paul E Marik, Pierre Kory, Joseph Varon, Jose Iglesias, G Umberto Meduri. MATH+ protocol for the treatment of SARS-CoV-2 infection: the scientific rationale.
Expert review of anti-infective therapy.
2021 02; 19(2):129-135. doi:
10.1080/14787210.2020.1808462
. [PMID: 32809870] - Qinati Feyissa, Fei Xu, Zina Ibrahim, Ying Li, Kevin L Xu, Zihan Guo, Justen Ahmad, Jaroslav G Vostal. Synergistic bactericidal effects of pairs of photosensitizer molecules activated by ultraviolet A light against bacteria in plasma.
Transfusion.
2021 02; 61(2):594-602. doi:
10.1111/trf.16180
. [PMID: 33219568] - Ping-Han Hsieh, Yi-Hsin Chung, Kim-Teng Lee, Shi-Yun Wang, Chung-An Lu, Ming-Hsiun Hsieh. The rice PALE1 homolog is involved in the biosynthesis of vitamin B1.
Plant biotechnology journal.
2021 02; 19(2):218-220. doi:
10.1111/pbi.13465
. [PMID: 32777168]