Tryptophol (BioDeep_00000001223)

 

Secondary id: BioDeep_00000400087

human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite BioNovoGene_Lab2019 natural product


代谢物信息卡片


3-(2-Hydroxyethyl)-1H-indole

化学式: C10H11NO (161.0841)
中文名称: 3-(2-羟乙基)吲哚, 色醇, 色氨酸
谱图信息: 最多检出来源 Homo sapiens(blood) 15.64%

Reviewed

Last reviewed on 2024-06-29.

Cite this Page

Tryptophol. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/tryptophol (retrieved 2024-12-22) (BioDeep RN: BioDeep_00000001223). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: C1=CC=C2C(=C1)C(=CN2)CCO
InChI: InChI=1S/C10H11NO/c12-6-5-8-7-11-10-4-2-1-3-9(8)10/h1-4,7,11-12H,5-6H2

描述信息

Tryptophol, also known as indole-3-ethanol, is an indolyl alcohol that is ethanol substituted by a 1H-indol-3-yl group at position 2. It has a role as a Saccharomyces cerevisiae metabolite, an auxin and a plant metabolite. Tryptophol is a catabolite of tryptophan converted by the gut microbiota. After absorption through the intestinal epithelium, tryptophan catabolites enter the bloodstream and are later excreted in the urine (PMID:30120222). Tryptophol production was negatively associated with interferon-gamma production (IFNγ) which suggests that tryptophol has anti-inflammatory properties (PMID:27814509). Tryptophol has also been identified as the hypnotic agent in trypanosomal sleeping sickness, and because it is formed in vivo after ethanol or disulfiram treatment, it is also associated with the study of alcoholism (PMID:7241135).
Indole-3-ethanol is a dietary indole present in cruciferous vegetables that has been shown to influence estradiol metabolism in humans and may provide a new chemopreventive approach to estrogen-dependent diseases. (PMID 2342128)

Tryptophol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=526-55-6 (retrieved 2024-06-29) (CAS RN: 526-55-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Tryptophol (Indole-3-ethanol) is an endogenous metabolite.
Tryptophol (Indole-3-ethanol) is an endogenous metabolite.

同义名列表

29 个代谢物同义名

3-(2-Hydroxyethyl)-1H-indole; 3-(beta-Hydroxyethyl)indole; 2-(1H-indol-3-yl)ethan-1-ol; 3-(2-Hydroxyethyl)indole; 3-(b-Hydroxyethyl)indole; 3-(β-Hydroxyethyl)indole; 2-(1H-indol-3-yl)Ethanol; beta-indol-3-Ylethanol; beta-(3-Indole)ethanol; 2-(indol-3-yl)Ethanol; 2-(3-Indolyl)ethanol; 1H-Indolyl-3-ethanol; 1H-Indole-3-ethanol; b-(3-Indole)ethanol; 2-(3-Indolylethanol; β-(3-Indole)ethanol; Indole-3-ethanol; 3-Indolylethanol; 3-Indole ethanol; 3-Indoleethanol; DL-Tryptophanol; Indole ethanol; Indoleethanol; Tryptophanol; Tryptophol; IEA; Tryptophanol; Indole-3-ethanol; Tryptophol



数据库引用编号

27 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(2)

PlantCyc(0)

代谢反应

10 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(8)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(2)

PharmGKB(0)

110 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 6 AHR, CASP3, CASP8, CYP2D6, IDO1, KYNU
Peripheral membrane protein 3 CYP1B1, CYP27A1, SQLE
Endoplasmic reticulum membrane 4 CYP1A2, CYP1B1, CYP2D6, SQLE
Mitochondrion membrane 1 CYP27A1
Nucleus 4 AHR, ATF1, CASP3, CASP8
cytosol 7 ACOX1, AHR, AKR1A1, CASP3, CASP8, IDO1, KYNU
nucleoplasm 5 AHR, ATF1, CASP3, CASP8, KYNU
RNA polymerase II transcription regulator complex 1 ATF1
Cell membrane 2 EFNA5, GLP1R
lamellipodium 1 CASP8
Multi-pass membrane protein 1 GLP1R
Synapse 1 AKR1A1
cell surface 1 TNFRSF10B
glutamatergic synapse 1 CASP3
Golgi membrane 1 INS
mitochondrial inner membrane 1 CYP27A1
neuronal cell body 1 CASP3
Cytoplasm, cytosol 3 AKR1A1, IDO1, KYNU
plasma membrane 3 EFNA5, GLP1R, TNFRSF10B
Membrane 6 ACOX1, CYP1B1, CYP2D6, GLP1R, SQLE, TNFRSF10B
apical plasma membrane 1 AKR1A1
caveola 1 EFNA5
extracellular exosome 1 AKR1A1
endoplasmic reticulum 2 CYP2D6, SQLE
extracellular space 3 AKR1A1, IL22, INS
adherens junction 1 EFNA5
mitochondrion 5 CASP8, CYP1B1, CYP27A1, CYP2D6, KYNU
protein-containing complex 2 AHR, CASP8
intracellular membrane-bounded organelle 4 CYP1A2, CYP1B1, CYP2D6, SQLE
Microsome membrane 4 CYP1A2, CYP1B1, CYP2D6, SQLE
postsynaptic density 1 CASP3
Secreted 2 IL22, INS
extracellular region 2 IL22, INS
Single-pass membrane protein 1 CYP2D6
mitochondrial outer membrane 1 CASP8
mitochondrial matrix 1 CYP27A1
transcription regulator complex 1 AHR
external side of plasma membrane 1 EFNA5
Apical cell membrane 1 AKR1A1
Cell projection, lamellipodium 1 CASP8
Mitochondrion inner membrane 1 CYP27A1
GABA-ergic synapse 1 EFNA5
Peroxisome 1 ACOX1
basement membrane 1 EFNA5
peroxisomal matrix 1 ACOX1
peroxisomal membrane 1 ACOX1
chromatin 2 AHR, ATF1
stereocilium bundle 1 IDO1
cytoskeleton 1 CASP8
Lipid-anchor, GPI-anchor 1 EFNA5
endosome lumen 1 INS
Membrane, caveola 1 EFNA5
aryl hydrocarbon receptor complex 1 AHR
cell body 1 CASP8
side of membrane 1 EFNA5
secretory granule lumen 1 INS
Golgi lumen 1 INS
endoplasmic reticulum lumen 1 INS
transport vesicle 1 INS
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
CD95 death-inducing signaling complex 1 CASP8
death-inducing signaling complex 2 CASP3, CASP8
ripoptosome 1 CASP8
smooth muscle contractile fiber 1 IDO1
ATF4-CREB1 transcription factor complex 1 ATF1
ATF1-ATF4 transcription factor complex 1 ATF1
nuclear aryl hydrocarbon receptor complex 1 AHR
cytosolic aryl hydrocarbon receptor complex 1 AHR


文献列表

  • Kumudini M Meepagala, Caleb M Anderson, Natascha Techen, Stephen O Duke. Pantoea ananatis, a plant growth stimulating bacterium, and its metabolites isolated from Hydrocotyle umbellata (dollarweed). Plant signaling & behavior. 2024 Dec; 19(1):2331894. doi: 10.1080/15592324.2024.2331894. [PMID: 38516998]
  • Jing Zhou, Huiling Wei, Shu-Ming Li. Colletotriauxins A-D, New Plant Growth Inhibitors from the Phytopathogenic Fungus Colletotrichum gloeosporioides. Journal of agricultural and food chemistry. 2023 Jul; ?(?):. doi: 10.1021/acs.jafc.3c03143. [PMID: 37434536]
  • Rosiane Dos Santos, Raquel P Morais-Urano, Rosilene M Marçal, Geraldo H Silva, Mário F C Santos. Acetylcholinesterase and butyrylcholinesterase inhibition by nectriapyrone and tryptophol isolated from endophytic fungus Phomopsis sp. Natural product research. 2022 Aug; 36(16):4153-4158. doi: 10.1080/14786419.2021.1960327. [PMID: 34498969]
  • Yueqin Fan, Kefei Yu, Huabao Zheng, Yinyan Chen, Ruojin Zhao, Yiyi Li, Zhanwang Zheng. A high-yielding strain of indole-3-acetic acid isolated from food waste compost: metabolic pathways, optimization of fermentation conditions, and application. Environmental technology. 2022 Jun; ?(?):1-11. doi: 10.1080/09593330.2022.2082889. [PMID: 35678156]
  • Jiahui Shao, Yucong Li, Zunfeng Li, Zhihui Xu, Weibing Xun, Nan Zhang, Haichao Feng, Youzhi Miao, Qirong Shen, Ruifu Zhang. Participating mechanism of a major contributing gene ysnE for auxin biosynthesis in Bacillus amyloliquefaciens SQR9. Journal of basic microbiology. 2021 Jun; 61(6):569-575. doi: 10.1002/jobm.202100098. [PMID: 33914927]
  • Antonio Ruiz-Gonzalez, Adam J Clancy, Kwang-Leong Choy. Rapid detection of free and bound toxins using molecularly imprinted silica/graphene oxide hybrids. Chemical communications (Cambridge, England). 2021 Apr; 57(33):4043-4046. doi: 10.1039/d1cc00572c. [PMID: 33885678]
  • Hardik Naik Jinal, Krishnan Sakthivel, Natarajan Amaresan. Characterisation of antagonistic Bacillus paralicheniformis (strain EAL) by LC-MS, antimicrobial peptide genes, and ISR determinants. Antonie van Leeuwenhoek. 2020 Aug; 113(8):1167-1177. doi: 10.1007/s10482-020-01423-4. [PMID: 32410087]
  • Lulu Shao, Ping Wu, Liangxiong Xu, Jinghua Xue, Hanxiang Li, Xiaoyi Wei. Colletotryptins A-F, new dimeric tryptophol derivatives from the endophytic fungus Colletotrichum sp. SC1355. Fitoterapia. 2020 Mar; 141(?):104465. doi: 10.1016/j.fitote.2019.104465. [PMID: 31870947]
  • Kun Luo, Caro-Lyne DesRoches, Anne Johnston, Linda J Harris, Hui-Yan Zhao, Thérèse Ouellet. Multiple metabolic pathways for metabolism of l-tryptophan in Fusarium graminearum. Canadian journal of microbiology. 2017 Nov; 63(11):921-927. doi: 10.1139/cjm-2017-0383. [PMID: 28926717]
  • M Soledade C Pedras, Vijay K Sarma-Mamillapalle. Metabolism and metabolites of dithiocarbamates in the plant pathogenic fungus Leptosphaeria maculans. Journal of agricultural and food chemistry. 2012 Aug; 60(32):7792-8. doi: 10.1021/jf302038a. [PMID: 22823278]
  • Md Mujahid, Ch Sasikala, Ch V Ramana. Aniline-induced tryptophan production and identification of indole derivatives from three purple bacteria. Current microbiology. 2010 Oct; 61(4):285-90. doi: 10.1007/s00284-010-9609-2. [PMID: 20852980]
  • Laura J Quittenden, Noel W Davies, Jason A Smith, Peter P Molesworth, Nathan D Tivendale, John J Ross. Auxin biosynthesis in pea: characterization of the tryptamine pathway. Plant physiology. 2009 Nov; 151(3):1130-8. doi: 10.1104/pp.109.141507. [PMID: 19710233]
  • Véronique Chagué, Rudy Maor, Amir Sharon. CgOpt1, a putative oligopeptide transporter from Colletotrichum gloeosporioides that is involved in responses to auxin and pathogenicity. BMC microbiology. 2009 Aug; 9(?):173. doi: 10.1186/1471-2180-9-173. [PMID: 19698103]
  • Hexon Angel Contreras-Cornejo, Lourdes Macías-Rodríguez, Carlos Cortés-Penagos, José López-Bucio. Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant physiology. 2009 Mar; 149(3):1579-92. doi: 10.1104/pp.108.130369. [PMID: 19176721]
  • Ivan Kosalec, Olivier Puel, Marcel Delaforge, Nevenka Kopjar, Roberto Antolovic, Dubravko Jelic, Biserka Matica, Pierre Galtier, Stjepan Pepeljnjak. Isolation and cytotoxicity of low-molecular-weight metabolites of Candida albicans. Frontiers in bioscience : a journal and virtual library. 2008 May; 13(?):6893-904. doi: 10.2741/3197. [PMID: 18508703]
  • Mandira Malhotra, Sheela Srivastava. An ipdC gene knock-out of Azospirillum brasilense strain SM and its implications on indole-3-acetic acid biosynthesis and plant growth promotion. Antonie van Leeuwenhoek. 2008 May; 93(4):425-33. doi: 10.1007/s10482-007-9207-x. [PMID: 17952626]
  • Shyuichiro Inagaki, Shigeru Morimura, Kazunobu Gondo, Yueqin Tang, Hiroshi Akutagawa, Kenji Kida. Isolation of tryptophol as an apoptosis-inducing component of vinegar produced from boiled extract of black soybean in human monoblastic leukemia U937 cells. Bioscience, biotechnology, and biochemistry. 2007 Feb; 71(2):371-9. doi: 10.1271/bbb.60336. [PMID: 17284845]
  • M Soledade C Pedras, Mukund Jha. Toward the control of Leptosphaeria maculans: design, syntheses, biological activity, and metabolism of potential detoxification inhibitors of the crucifer phytoalexin brassinin. Bioorganic & medicinal chemistry. 2006 Jul; 14(14):4958-79. doi: 10.1016/j.bmc.2006.03.014. [PMID: 16616505]
  • Matthew A Churchward, R Hussain Butt, John C Lang, Kimberly K Hsu, Jens R Coorssen. Enhanced detergent extraction for analysis of membrane proteomes by two-dimensional gel electrophoresis. Proteome science. 2005 Jun; 3(1):5. doi: 10.1186/1477-5956-3-5. [PMID: 15941475]
  • Olivier Vandeputte, Sevgi Oden, Adeline Mol, Danny Vereecke, Koen Goethals, Mondher El Jaziri, Els Prinsen. Biosynthesis of auxin by the gram-positive phytopathogen Rhodococcus fascians is controlled by compounds specific to infected plant tissues. Applied and environmental microbiology. 2005 Mar; 71(3):1169-77. doi: 10.1128/aem.71.3.1169-1177.2005. [PMID: 15746315]
  • Kuang Ren Chung, Turksen Shilts, Umran Ertürk, L W Timmer, Peter P Ueng. Indole derivatives produced by the fungus Colletotrichum acutatum causing lime anthracnose and postbloom fruit drop of citrus. FEMS microbiology letters. 2003 Sep; 226(1):23-30. doi: 10.1016/s0378-1097(03)00605-0. [PMID: 13129603]
  • Q Yue, C J Miller, J F White, M D Richardson. Isolation and characterization of fungal inhibitors from Epichloë festucae. Journal of agricultural and food chemistry. 2000 Oct; 48(10):4687-92. doi: 10.1021/jf990685q. [PMID: 11052720]
  • J E Hall, J R Seed. Increased urinary excretion of aromatic amino acid catabolites by Microtus montanus chronically infected with Trypanosoma brucei gambiense. Comparative biochemistry and physiology. B, Comparative biochemistry. 1984; 77(4):755-60. doi: 10.1016/0305-0491(84)90309-2. [PMID: 6375946]
  • A Moshtaghfard, I Smith. Acyltryptophols reversibly inhibit the uptake of thymidine after phytohaemagglutinin transformation of human lymphocytes. Journal of neural transmission. 1983; 56(1):43-52. doi: 10.1007/bf01243373. [PMID: 6854309]
  • E M Cornford, P D Crane, L D Braun, W D Bocash, A M Nyerges, W H Oldendorf. Reduction in brain glucose utilization rate after tryptophol (3-indole ethanol) treatment. Journal of neurochemistry. 1981 May; 36(5):1758-65. doi: 10.1111/j.1471-4159.1981.tb00428.x. [PMID: 7241135]
  • E M Cornford, W D Bocash, L D Braun, P D Crane, W H Oldendorf, A J MacInnis. Rapid distribution of tryptophol (3-indole ethanol) to the brain and other tissues. The Journal of clinical investigation. 1979 Jun; 63(6):1241-8. doi: 10.1172/jci109419. [PMID: 447842]