L-Glutamic acid (BioDeep_00000000342)

 

Secondary id: BioDeep_00000014820, BioDeep_00000398137, BioDeep_00000398611, BioDeep_00000400245, BioDeep_00001868016

natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite


代谢物信息卡片


(1S)-2-[(3-O-beta-D-Glucopyranosyl-beta-D-galactopyranosyl)oxy]-1-{[(9E)-octadec-9-enoyloxy]methyl}ethyl (10E)-nonadec-10-enoic acid

化学式: C5H9NO4 (147.0531554)
中文名称: DL-谷氨酸, L-谷氨酸, 谷氨酸
谱图信息: 最多检出来源 Homo sapiens(blood) 0.01%

Reviewed

Last reviewed on 2024-06-29.

Cite this Page

L-Glutamic acid. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/l-glutamic_acid (retrieved 2024-09-17) (BioDeep RN: BioDeep_00000000342). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: C(CC(=O)O)C(C(=O)O)N
InChI: InChI=1S/C5H9NO4/c6-3(5(9)10)1-2-4(7)8/h3H,1-2,6H2,(H,7,8)(H,9,10)

描述信息

Glutamic acid (Glu), also known as L-glutamic acid or as glutamate, the name of its anion, is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. L-glutamic acid is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Glutamic acid is found in all organisms ranging from bacteria to plants to animals. It is classified as an acidic, charged (at physiological pH), aliphatic amino acid. In humans it is a non-essential amino acid and can be synthesized via alanine or aspartic acid via alpha-ketoglutarate and the action of various transaminases. Glutamate also plays an important role in the bodys disposal of excess or waste nitrogen. Glutamate undergoes deamination, an oxidative reaction catalysed by glutamate dehydrogenase leading to alpha-ketoglutarate. In many respects glutamate is a key molecule in cellular metabolism. Glutamate is the most abundant fast excitatory neurotransmitter in the mammalian nervous system. At chemical synapses, glutamate is stored in vesicles. Nerve impulses trigger release of glutamate from the pre-synaptic cell. In the opposing post-synaptic cell, glutamate receptors, such as the NMDA receptor, bind glutamate and are activated. Because of its role in synaptic plasticity, it is believed that glutamic acid is involved in cognitive functions like learning and memory in the brain. Glutamate transporters are found in neuronal and glial membranes. They rapidly remove glutamate from the extracellular space. In brain injury or disease, they can work in reverse and excess glutamate can accumulate outside cells. This process causes calcium ions to enter cells via NMDA receptor channels, leading to neuronal damage and eventual cell death, and is called excitotoxicity. The mechanisms of cell death include: Damage to mitochondria from excessively high intracellular Ca2+. Glu/Ca2+-mediated promotion of transcription factors for pro-apoptotic genes, or downregulation of transcription factors for anti-apoptotic genes. Excitotoxicity due to glutamate occurs as part of the ischemic cascade and is associated with stroke and diseases like amyotrophic lateral sclerosis, lathyrism, and Alzheimers disease. Glutamic acid has been implicated in epileptic seizures. Microinjection of glutamic acid into neurons produces spontaneous depolarization around one second apart, and this firing pattern is similar to what is known as paroxysmal depolarizing shift in epileptic attacks. This change in the resting membrane potential at seizure foci could cause spontaneous opening of voltage activated calcium channels, leading to glutamic acid release and further depolarization (http://en.wikipedia.org/wiki/Glutamic_acid). Glutamate was discovered in 1866 when it was extracted from wheat gluten (from where it got its name. Glutamate has an important role as a food additive and food flavoring agent. In 1908, Japanese researcher Kikunae Ikeda identified brown crystals left behind after the evaporation of a large amount of kombu broth (a Japanese soup) as glutamic acid. These crystals, when tasted, reproduced a salty, savory flavor detected in many foods, most especially in seaweed. Professor Ikeda termed this flavor umami. He then patented a method of mass-producing a crystalline salt of glutamic acid, monosodium glutamate.
L-glutamic acid is an optically active form of glutamic acid having L-configuration. It has a role as a nutraceutical, a micronutrient, an Escherichia coli metabolite, a mouse metabolite, a ferroptosis inducer and a neurotransmitter. It is a glutamine family amino acid, a proteinogenic amino acid, a glutamic acid and a L-alpha-amino acid. It is a conjugate acid of a L-glutamate(1-). It is an enantiomer of a D-glutamic acid.
A peptide that is a homopolymer of glutamic acid.
L-Glutamic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655).
Glutamic acid (Glu), also referred to as glutamate (the anion), is one of the 20 proteinogenic amino acids. It is not among the essential amino acids. Glutamate is a key molecule in cellular metabolism. In humans, dietary proteins are broken down by digestion into amino acids, which serves as metabolic fuel or other functional roles in the body. Glutamate is the most abundant fast excitatory neurotransmitter in the mammalian nervous system. At chemical synapses, glutamate is stored in vesicles. Nerve impulses trigger release of glutamate from the pre-synaptic cell. In the opposing post-synaptic cell, glutamate receptors, such as the NMDA receptor, bind glutamate and are activated. Because of its role in synaptic plasticity, it is believed that glutamic acid is involved in cognitive functions like learning and memory in the brain. Glutamate transporters are found in neuronal and glial membranes. They rapidly remove glutamate from the extracellular space. In brain injury or disease, they can work in reverse and excess glutamate can accumulate outside cells. This process causes calcium ions to enter cells via NMDA receptor channels, leading to neuronal damage and eventual cell death, and is called excitotoxicity. The mechanisms of cell death include: * Damage to mitochondria from excessively high intracellular Ca2+. * Glu/Ca2+-mediated promotion of transcription factors for pro-apoptotic genes, or downregulation of transcription factors for anti-apoptotic genes. Excitotoxicity due to glutamate occurs as part of the ischemic cascade and is associated with stroke and diseases like amyotrophic lateral sclerosis, lathyrism, and Alzheimers disease. glutamic acid has been implicated in epileptic seizures. Microinjection of glutamic acid into neurons produces spontaneous depolarization around one second apart, and this firing pattern is similar to what is known as paroxysmal depolarizing shift in epileptic attacks. This change in the resting membrane potential at seizure foci could cause spontaneous opening of voltage activated calcium channels, leading to glutamic acid release and further depolarization.
A non-essential amino acid naturally occurring in the L-form. Glutamic acid is the most common excitatory neurotransmitter in the CENTRAL NERVOUS SYSTEM.
See also: Monosodium Glutamate (active moiety of); Glatiramer Acetate (monomer of); Glatiramer (monomer of) ... View More ...
obtained from acid hydrolysis of proteins. Since 1965 the industrial source of glutamic acid for MSG production has been bacterial fermentation of carbohydrate sources such as molasses and corn starch hydrolysate in the presence of a nitrogen source such as ammonium salts or urea. Annual production approx. 350000t worldwide in 1988. Seasoning additive in food manuf. (as Na, K and NH4 salts). Dietary supplement, nutrient

Glutamic acid (symbol Glu or E;[4] the anionic form is known as glutamate) is an α-amino acid that is used by almost all living beings in the biosynthesis of proteins. It is a non-essential nutrient for humans, meaning that the human body can synthesize enough for its use. It is also the most abundant excitatory neurotransmitter in the vertebrate nervous system. It serves as the precursor for the synthesis of the inhibitory gamma-aminobutyric acid (GABA) in GABAergic neurons.

Its molecular formula is C
5H
9NO
4. Glutamic acid exists in two optically isomeric forms; the dextrorotatory l-form is usually obtained by hydrolysis of gluten or from the waste waters of beet-sugar manufacture or by fermentation.[5][full citation needed] Its molecular structure could be idealized as HOOC−CH(NH
2)−(CH
2)2−COOH, with two carboxyl groups −COOH and one amino group −NH
2. However, in the solid state and mildly acidic water solutions, the molecule assumes an electrically neutral zwitterion structure −OOC−CH(NH+
3)−(CH
2)2−COOH. It is encoded by the codons GAA or GAG.

The acid can lose one proton from its second carboxyl group to form the conjugate base, the singly-negative anion glutamate −OOC−CH(NH+
3)−(CH
2)2−COO−. This form of the compound is prevalent in neutral solutions. The glutamate neurotransmitter plays the principal role in neural activation.[6] This anion creates the savory umami flavor of foods and is found in glutamate flavorings such as MSG. In Europe, it is classified as food additive E620. In highly alkaline solutions the doubly negative anion −OOC−CH(NH
2)−(CH
2)2−COO− prevails. The radical corresponding to glutamate is called glutamyl.

The one-letter symbol E for glutamate was assigned in alphabetical sequence to D for aspartate, being larger by one methylene –CH2– group.[7]
DL-Glutamic acid is the conjugate acid of Glutamic acid, which acts as a fundamental metabolite. Comparing with the second phase of polymorphs α and β L-Glutamic acid, DL-Glutamic acid presents better stability[1].
DL-Glutamic acid is the conjugate acid of Glutamic acid, which acts as a fundamental metabolite. Comparing with the second phase of polymorphs α and β L-Glutamic acid, DL-Glutamic acid presents better stability[1].
L-Glutamic acid acts as an excitatory transmitter and an agonist at all subtypes of glutamate receptors (metabotropic, kainate, NMDA, and AMPA). L-Glutamic acid shows a direct activating effect on the release of DA from dopaminergic terminals.
L-Glutamic acid is an excitatory amino acid neurotransmitter that acts as an agonist for all subtypes of glutamate receptors (metabolic rhodophylline, NMDA, and AMPA). L-Glutamic acid has an agonist effect on the release of DA from dopaminergic nerve endings. L-Glutamic acid can be used in the study of neurological diseases[1][2][3][4][5].
L-Glutamic acid acts as an excitatory transmitter and an agonist at all subtypes of glutamate receptors (metabotropic, kainate, NMDA, and AMPA). L-Glutamic acid shows a direct activating effect on the release of DA from dopaminergic terminals.

同义名列表

272 个代谢物同义名

(1S)-2-[(3-O-beta-D-Glucopyranosyl-beta-D-galactopyranosyl)oxy]-1-{[(9E)-octadec-9-enoyloxy]methyl}ethyl (10E)-nonadec-10-enoic acid; (1S)-2-[(3-O-b-D-Glucopyranosyl-b-D-galactopyranosyl)oxy]-1-{[(9E)-octadec-9-enoyloxy]methyl}ethyl (10E)-nonadec-10-enoic acid; (1S)-2-[(3-O-Β-D-glucopyranosyl-β-D-galactopyranosyl)oxy]-1-{[(9E)-octadec-9-enoyloxy]methyl}ethyl (10E)-nonadec-10-enoic acid; (1S)-2-[(3-O-Β-D-glucopyranosyl-β-D-galactopyranosyl)oxy]-1-{[(9E)-octadec-9-enoyloxy]methyl}ethyl (10E)-nonadec-10-enoate; (1S)-2-[(3-O-b-D-Glucopyranosyl-b-D-galactopyranosyl)oxy]-1-{[(9E)-octadec-9-enoyloxy]methyl}ethyl (10E)-nonadec-10-enoate; (3R,4S,5R)-5-[(1R)-1-Carboxy-2,2-difluoro-1-(phosphonooxy)ethoxy]-4-hydroxy-3-(phosphonooxy)cyclohex-1-ene-1-carboxylate; L-Glutamic acid, from non-animal source, meets EP testing specifications, suitable for cell culture, 98.5-100.5\\%; N-[(3alpha,5beta,7alpha,12alpha)-3,7,12-trihydroxy-24-oxocholan-24-yl]glycine; 3alpha,7alpha,12alpha-Trihydroxy-N-(carboxymethyl)-5beta-cholan-24-amide; N-(Carboxymethyl)-3alpha,7alpha,12alpha-trihydroxy-5beta-cholan-24-amide; Glutamic acid, United States Pharmacopeia (USP) Reference Standard; 3alpha,7alpha,12alpha-Trihydroxy-5beta-cholanic acid-24-glycine; N-[(3a,5b,7a,12a)-3,7,12-Trihydroxy-24-oxocholan-24-yl]glycine; N-[(3Α,5β,7α,12α)-3,7,12-trihydroxy-24-oxocholan-24-yl]glycine; Glutamic acid, European Pharmacopoeia (EP) Reference Standard; 3alpha,7alpha,12alpha-trihydroxy-5beta-cholan-24-oylglycine; L-Glutamic acid, certified reference material, TraceCERT(R); 3Α,7α,12α-trihydroxy-N-(carboxymethyl)-5β-cholan-24-amide; N-(Carboxymethyl)-3α,7α,12α-trihydroxy-5β-cholan-24-amide; L-Glutamic acid, >=99\\%, FCC, natural sourced, FG; 3Α,7α,12α-trihydroxy-5β-cholanic acid-24-glycine; L-Glutamic acid, Vetec(TM) reagent grade, >=99\\%; L-Glutamic acid, ReagentPlus(R), >=99\\% (HPLC); L-Glutamic acid, JIS special grade, >=99.0\\%; 3Α,7α,12α-trihydroxy-5β-cholan-24-oylglycine; L-Glutamic acid, tested according to Ph.Eur.; 3a,7a,12a-Trihydroxy-5b-cholan-24-oylglycine; (S)-1-Aminopropane-1,3-dicarboxylic acid; L-Glutamic acid, BioUltra, >=99.5\\% (NT); LYSINE ACETATE IMPURITY B [EP IMPURITY]; 3-Hydroxyestra-1,3,5(10)-triene-17-one; (2S)-2-aminopentanedioic acid;H-Glu-OH; 3-Hydroxyoestra-1,3,5(10)-trien-17-one; 3-Hydroxy-1,3,5(10)-estratrien-17-one; 1-amino-propane-1,3-dicarboxylic acid; 3-Hydroxyestra-1,3,5(10)-trien-17-one; 3-Hydroxy-17-keto-estra-1,3,5-triene; 1-Aminopropane-1,3-dicarboxylic acid; L-Glutamic acid, non-animal source; 1-amino-propane-1,3-dicarboxylate; (S)-2-AMINO-1,5-PENTANEDIOIC ACID; D1,3,5(10)-Estratrien-3-ol-17-one; Pentanedioic acid, 2-amino-, (S)-; Pentanedioic acid, 2-amino-, (S); (2R)-2,3-Dihydroxypropanoic acid; alpha,beta-Hydroxypropionic acid; ALANINE IMPURITY B [EP IMPURITY]; 1,3,5(10)-Estratrien-3-ol-17-one; 1-Aminopropane-1,3-dicarboxylate; Glutamic Acid (L-glutamic acid); L (+)-glutamic acid, alpha-form; (R)-2,3-Dihydroxypropanoic acid; 2-Aminopentanedioic acid, (S)-; alpha-Aminoglutaric acid (VAN); Glycoreductodehydrocholic acid; Acide glutamique [INN-French]; Envision conditioner PDD 9020; Acidum glutamicum [INN-Latin]; Acido glutamico [INN-Spanish]; Acide glutamique (INN-French); 2-Acetamido-2-deoxy-D-glucose; Glycocholic Acid, Sodium Salt; (2S)-2-Aminopentanedioic acid; D-2,3-Dihydroxypropanoic acid; Acido glutamico (INN-Spanish); 2 Acetamido 2 deoxy D glucose; Acidum glutamicum (INN-Latin); alpha,beta-Hydroxypropionate; GLUTAMIC ACID [EP MONOGRAPH]; GLUTAMIC ACID (EP MONOGRAPH); (S)-2-Aminopentanedioic acid; Glutamic acid, L- (7CI,8CI); S)-2-Aminopentanedioic acid; L-2-amino-pentanedioic acid; L-Glutamic acid, 99\\%, FCC; 2 Acetamido 2 deoxyglucose; L-alpha-Aminoglutaric acid; 2-Acetamido-2-deoxyglucose; 2-Amino-pentanedioic acid; (2S)-2-aminopentanedioate; Glutamic Acid, (D)-Isomer; Estrone, (8 alpha)-isomer; Α,β-hydroxypropionic acid; a,b-Hydroxypropionic acid; 2-aminopentanedioic acid; Estrone, (9 beta)-isomer; alpha-aminoglutaric acid; Vortech brand OF estrone; (S)-2-Aminopentanedioate; Glutamic Acid [USAN:INN]; beta-Aminoethyl alcohol; L-Glutamic acid, 98.5\\%; 1-Amino-2-hydroxyethane; L-alpha-Aminoglutarate; GLUTAMIC ACID (USP-RS); L-GLUTAMIC ACID [FHFI]; Hauck brand OF estrone; L-2-Aminoglutaric acid; L-a-Aminoglutaric acid; N-Acetyl-D-glucosamine; GLUTAMIC ACID [USP-RS]; beta-Hydroxyethylamine; Polyglutamic acid(PGA); L-Glutamic acid (JP17); GLUTAMIC ACID [WHO-DD]; N Acetyl D glucosamine; Hyrex brand OF estrone; L-Glutamic acid (9CI); .alpha.-Glutamic acid; (S)-(+)-Glutamic acid; Α,β-hydroxypropionate; Glutaminic acid (VAN); GLUTAMIC ACID [VANDF]; Gamma-L-Glutamic Acid; L-GLUTAMIC ACID [JAN]; L-GLUTAMIC ACID [FCC]; a,b-Hydroxypropionate; L-Glutamate, Aluminum; Estrone, (+-)-isomer; GLUTAMIC ACID [USAN]; 2-Aminoglutaric acid; Aluminum L Glutamate; alpha-Aminoglutarate; b-Aminoethyl alcohol; Glutamate, Potassium; [3h]-l-glutamic acid; a-Aminoglutaric acid; 2-aminopentanedioate; GLUTAMIC ACID [INCI]; Β-aminoethyl alcohol; Aluminum L-Glutamate; L-Glutamic acid-13C5; 2-Aminoethyl alcohol; GLUTAMIC ACID [INN]; N-Acetylchitosamine; alpha-Glutamic acid; L-[14C(U)]glutamate; (+)-L-Glutamic acid; Glutamic acid (H-3); Acidum glutaminicum; Glutamic acid (USP); Β-hydroxyethylamine; Glutamic acid, (S)-; L-(+)-glutamic acid; 2-Hydroxyethylamine; b-Hydroxyethylamine; 2-Hydroxyethanamine; Glutamic acid (VAN); Potassium Glutamate; Glycocholate Sodium; aminoglutaric acid; L-a-Aminoglutarate; Follicular hormone; L(+)-Glutamic acid; GLUTAMIC ACID [MI]; N-choloyl-Glycine; (S)-(+)-Glutamate; Glycylcholic acid; Acidum glutamicum; (R)-Glyceric acid; 2-Amino-1-ethanol; beta-Ethanolamine; L-Acido glutamico; Glutamic acid, L-; (S)-Glutamic acid; (L)-glutamic acid; 2-Aminoethan-1-ol; beta-Aminoethanol; Acetylglucosamine; L-Glutaminic acid; a-Aminoglutarate; 2-Aminoglutarate; MONOETHANOLAMINE; Monoaethanolamin; DL-Glutamic acid; L-Glutaminsaeure; Acide glutamique; N-Choloylglycine; L-glutamic acid; D-Glyceric acid; Acido glutamico; L-Glutamic adid; alpha-Glutamate; glutaminic acid; L Glutamic Acid; 2-Amino-ethanol; Glycine Cholate; D-Glutamiensuur; L-glutamic-acid; R-Glyceric acid; L-(+)-Glutamate; a-Glutamic acid; UNII-3KX376GY7L; aminoglutarate; L-Glutamic,(S); 2-Ethanolamine; b-Ethanolamine; b-Aminoethanol; 2 Aminoethanol; 2-aminoethanol; Β-aminoethanol; Β-ethanolamine; Glutamate, L-; BPBio1_001132; Glycylcholate; (R)-Glycerate; L-Glutaminate; Cholylglycine; Lopac0_000529; Glutamic Acid; (S)-glutamate; PDSP1_000128; PDSP2_000127; glycocholate; HSCI1_000269; Aethanolamin; Aminoethanol; PDSP1_001539; Tox21_113053; Ethylolamine; PDSP2_001523; L-gluatmate; L Glutamate; Glutaminate; (+)-Estrone; CAS-56-86-0; L-glutamate; D Glutamate; R-Glycerate; D-Glutamate; a-Glutamate; D-Glycerate; 3KX376GY7L; Estrovarin; Folliculin; Glutamicol; Glutaminol; H-Glycinol; L-Glutamic; Glutamidex; glutamate; AI3-18472; Glycerate; glutacid; Kestrone; H-Glu-OH; Glycinol; Colamine; Glutaton; D-GlcNAc; Oestrone; (S)-Glu; Aciglut; C5H9NO4; Glusate; Olamine; Unigen; Wehgen; D-GroA; H-Glu; L-glu; 1ftj; glut; 1xff; 1ii5; MEA; glt; glu; Hea; ETA; E; Glutamic acid



数据库引用编号

62 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

825 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(4)

Plant Reactome(146)

  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide

INOH(42)

PlantCyc(0)

COVID-19 Disease Map(2)

PathBank(631)

PharmGKB(0)

107 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Jingbin Chen, Yali Liu, Yonggui Song, Huihui Liang, Genhua Zhu, Bike Zhang, Liangliang Liao, Jian Luo, Ming Yang, Dan Su. Neuro-stimulating effect of Citri Reticulata Pericarpium Viride essential oil through regulating Glu/NMDAR on olfactory bulb to improve anxiety-like behavior. Journal of ethnopharmacology. 2024 Sep; 331(?):118332. doi: 10.1016/j.jep.2024.118332. [PMID: 38735421]
  • Parham Khoshbakht Marvi, Syed Rahin Ahmed, Poushali Das, Raja Ghosh, Seshasai Srinivasan, Amin Reza Rajabzadeh. Prunella vulgaris-phytosynthesized platinum nanoparticles: Insights into nanozymatic activity for H2O2 and glutamate detection and antioxidant capacity. Talanta. 2024 Jul; 274(?):125998. doi: 10.1016/j.talanta.2024.125998. [PMID: 38574541]
  • Cheng-Wei Lu, Tzu-Yu Lin, Kuan-Ming Chiu, Ming-Yi Lee, Su-Jane Wang. Gypenoside XVII Reduces Synaptic Glutamate Release and Protects against Excitotoxic Injury in Rats. Biomolecules. 2024 May; 14(5):. doi: 10.3390/biom14050589. [PMID: 38785996]
  • Giulia Leni, Gabriele Rocchetti, Terenzio Bertuzzi, Alessio Abate, Alessandra Scansani, Federico Froldi, Aldo Prandini. Volatile compounds, gamma-glutamyl-peptides and free amino acids as biomarkers of long-ripened protected designation of origin Coppa Piacentina. Food chemistry. 2024 May; 440(?):138225. doi: 10.1016/j.foodchem.2023.138225. [PMID: 38134826]
  • Anton Möllerke, Diogo Montes Vidal, Hans Petter Leinaas, Stefan Schulz. Socialane, a Nonaprenyl Terpene Hydrocarbon Surface Lipid from the Collembola Hypogastrura socialis. Chemistry (Weinheim an der Bergstrasse, Germany). 2024 May; 30(27):e202400272. doi: 10.1002/chem.202400272. [PMID: 38445549]
  • Tenghan Ling, Aiping Yin, Yan Cao, Jiali Li, Hengxi Li, Ying Zhou, Xiaobing Guo, Jinghui Li, Ruilin Zhang, Haiying Wu, Ping Li. Purinergic Astrocyte Signaling Driven by TNF-α After Cannabidiol Administration Restores Normal Synaptic Remodeling Following Traumatic Brain Injury. Neuroscience. 2024 May; 545(?):31-46. doi: 10.1016/j.neuroscience.2024.03.002. [PMID: 38460903]
  • Fuming He, Baojun Gao, Xin Cheng, Jiao Zhai, Xinqing Zhang, Chuanlun Yang, Tian Jiewei. High-level production of poly-γ-glutamic acid by a newly isolated Bacillus sp. YJY-8 and potential use in increasing the production of tomato. Preparative biochemistry & biotechnology. 2024 May; 54(5):637-646. doi: 10.1080/10826068.2023.2261058. [PMID: 37768129]
  • Raissa Bayker Vieira Silva, Valdeci Geraldo Coelho Júnior, Adolfo de Paula Mattos Júnior, Henrique Julidori Garcia, Ester Siqueira Caixeta Nogueira, Talita Sarah Mazzoni, Juliana Ramos Martins, Lívia Maria Rosatto Moda, Angel Roberto Barchuk. Farnesol, a component of plant-derived honeybee-collected resins, shows JH-like effects in Apis mellifera workers. Journal of insect physiology. 2024 05; 154(?):104627. doi: 10.1016/j.jinsphys.2024.104627. [PMID: 38373613]
  • Stanislav Jabinski, Wesley D M Rangel, Marek Kopáček, Veronika Jílková, Jan Jansa, Travis B Meador. Constraining activity and growth substrate of fungal decomposers via assimilation patterns of inorganic carbon and water into lipid biomarkers. Applied and environmental microbiology. 2024 Apr; 90(4):e0206523. doi: 10.1128/aem.02065-23. [PMID: 38527003]
  • Jinpeng Li, Xingbei Liu, Shumin Chang, Wei Chu, Jingchen Lin, Hui Zhou, Zhuoran Hu, Mancang Zhang, Mingming Xin, Yingyin Yao, Weilong Guo, Xiaodong Xie, Huiru Peng, Zhongfu Ni, Qixin Sun, Yu Long, Zhaorong Hu. The potassium transporter TaNHX2 interacts with TaGAD1 to promote drought tolerance via modulating stomatal aperture in wheat. Science advances. 2024 Apr; 10(15):eadk4027. doi: 10.1126/sciadv.adk4027. [PMID: 38608020]
  • František Sedlák, Aleš Kvasnička, Barbora Marešová, Radana Brumarová, Dana Dobešová, Kateřina Dostálová, Karolína Šrámková, Martin Pehr, Pavel Šácha, David Friedecký, Jan Konvalinka. Parallel Metabolomics and Lipidomics of a PSMA/GCPII Deficient Mouse Model Reveal Alteration of NAAG Levels and Brain Lipid Composition. ACS chemical neuroscience. 2024 Apr; 15(7):1342-1355. doi: 10.1021/acschemneuro.3c00494. [PMID: 38377674]
  • Ting Shen, Baocheng Tian, Wei Liu, Xuesong Yang, Qi Sheng, Mengxin Li, Haiyan Wang, Xiuwen Wang, Huihui Zhou, Yanchun Han, Chen Ding, Sixiang Sai. Transdermal administration of farnesol-ethosomes enhances the treatment of cutaneous candidiasis induced by Candida albicans in mice. Microbiology spectrum. 2024 Apr; 12(4):e0424723. doi: 10.1128/spectrum.04247-23. [PMID: 38415658]
  • Lei Zhang, Xin Yue Bai, Ke Yao Sun, Xuan Li, Zhao Qi Zhang, Yi Ding Liu, Yang Xiang, Xiao Long Liu. A New Perspective in the Treatment of Ischemic Stroke: Ferroptosis. Neurochemical research. 2024 Apr; 49(4):815-833. doi: 10.1007/s11064-023-04096-3. [PMID: 38170383]
  • Giuseppe Forlani, Giuseppe Sabbioni, Simone Barera, Dietmar Funck. A complex array of factors regulate the activity of Arabidopsis thaliana δ1 -pyrroline-5-carboxylate synthetase isoenzymes to ensure their specific role in plant cell metabolism. Plant, cell & environment. 2024 Apr; 47(4):1348-1362. doi: 10.1111/pce.14817. [PMID: 38223941]
  • Samantha Vivia The, James P Santiago, Clara Pappenberger, Ulrich Z Hammes, Mechthild Tegeder. UMAMIT44 is a key player in glutamate export from Arabidopsis chloroplasts. The Plant cell. 2024 Mar; 36(4):1119-1139. doi: 10.1093/plcell/koad310. [PMID: 38092462]
  • Raul Sanchez-Muñoz. Highway to cell: Unravelling the main player in Arabidopsis chloroplast glutamate export. The Plant cell. 2024 Mar; 36(4):805-806. doi: 10.1093/plcell/koad322. [PMID: 38134387]
  • Siyu Zhang, Dong Wang, Yawen Ding, Fuyang Song, Yong Li, Jin Zeng, Yujiong Wang. Injury of Macrophages Induced by Clostridium perfringens Type C Exotoxins. International journal of molecular sciences. 2024 Mar; 25(7):. doi: 10.3390/ijms25073718. [PMID: 38612529]
  • Pei Wang, Miao Liu, Changhong Lv, Zhen Tian, Ruichi Li, Yifan Li, Yalin Zhang, Jiyuan Liu. Identifying the Key Role of Plutella xylostella General Odorant Binding Protein 2 in Perceiving a Larval Attractant, (E,E)-2,6-Farnesol. Journal of agricultural and food chemistry. 2024 Mar; 72(11):5690-5698. doi: 10.1021/acs.jafc.4c00621. [PMID: 38447177]
  • Zhen Guo, Jian Wang, Tianqing Chen, Haiou Zhang, Xiandong Hou, Juan Li. Effects of γ-polyglutamic acid supplementation on alfalfa growth and rhizosphere soil microorganisms in sandy soil. Scientific reports. 2024 03; 14(1):6440. doi: 10.1038/s41598-024-57197-6. [PMID: 38499631]
  • Hongqian Zhang, Xue Gao, Qian Sun, Xiaoxue Dong, Zongwei Zhu, Chuanxu Yang. Incorporation of poly(γ-glutamic acid) in lipid nanoparticles for enhanced mRNA delivery efficiency in vitro and in vivo. Acta biomaterialia. 2024 Mar; 177(?):361-376. doi: 10.1016/j.actbio.2024.02.004. [PMID: 38342193]
  • Namita Nabar, Tamara G Dacoba, Gil Covarrubias, Denisse Romero-Cruz, Paula T Hammond. Electrostatic adsorption of polyanions onto lipid nanoparticles controls uptake, trafficking, and transfection of RNA and DNA therapies. Proceedings of the National Academy of Sciences of the United States of America. 2024 Mar; 121(11):e2307809121. doi: 10.1073/pnas.2307809121. [PMID: 38437543]
  • Ju-Bin Kang, Hyun-Kyoung Son, Dong-Ju Park, Yeung-Bae Jin, Fawad-Ali Shah, Phil-Ok Koh. Modulation of thioredoxin by chlorogenic acid in an ischemic stroke model and glutamate-exposed neurons. Neuroscience letters. 2024 Mar; 825(?):137701. doi: 10.1016/j.neulet.2024.137701. [PMID: 38395190]
  • Yueruxin Jin, Canying Li, Shuran Zhang, Jiaqi Liu, Miao Wang, Yan Guo, Hengping Xu, Yonghong Ge. Sucrose, cell wall, and polyamine metabolisms involve in preserving postharvest quality of 'Zaosu' pear fruit by L-glutamate treatment. Plant physiology and biochemistry : PPB. 2024 Mar; 208(?):108455. doi: 10.1016/j.plaphy.2024.108455. [PMID: 38428157]
  • Ying Li, Weijie Zhang, Chao Tang, Chen Wang, Changhui Liu, Qian Chen, Kai Yang, Yian Gu, Peng Lei, Hong Xu, Rui Wang. Antidiabetic effects and mechanism of γ-polyglutamic acid on type II diabetes mice. International journal of biological macromolecules. 2024 Mar; 261(Pt 1):129809. doi: 10.1016/j.ijbiomac.2024.129809. [PMID: 38290633]
  • Carlos Jonnathan Castro-Juárez, Silvia Luna-Suárez, Flor de Fátima Rosas-Cárdenas, Nemesio Villa-Ruano. Hernandulcin Production in Elicited Hairy Roots of Phyla scaberrima: Toward Sustainable Production of a Non-Caloric Sweetener with Nutraceutical Properties. Chemistry & biodiversity. 2024 Mar; 21(3):e202302095. doi: 10.1002/cbdv.202302095. [PMID: 38334300]
  • Tomasz Skalski, Ewelina Zając, Elżbieta Jędrszczyk, Katarzyna Papaj, Joanna Kohyt, Artur Góra, Anna Kasprzycka, Divine Shytum, Barbara Skowera, Agnieszka Ziernicka-Wojtaszek. Effects of γ-polyglutamic acid on grassland sandy soil properties and plant functional traits exposed to drought stress. Scientific reports. 2024 02; 14(1):3769. doi: 10.1038/s41598-024-54459-1. [PMID: 38355917]
  • Li Ren. The mechanistic basis for the rapid antidepressant-like effects of ketamine: From neural circuits to molecular pathways. Progress in neuro-psychopharmacology & biological psychiatry. 2024 Feb; 129(?):110910. doi: 10.1016/j.pnpbp.2023.110910. [PMID: 38061484]
  • Yangxia Han, Manchang Kou, Kaijun Quan, Juanjuan Wang, Haixia Zhang, Hirotaka Ihara, Makoto Takafuji, Hongdeng Qiu. Enantioselective Glutamic Acid Discrimination and Nanobiological Imaging by Chiral Fluorescent Silicon Nanoparticles. Analytical chemistry. 2024 02; 96(5):2173-2182. doi: 10.1021/acs.analchem.3c05150. [PMID: 38261544]
  • Sarathadevi Rajendran, Patrick Silcock, Phil Bremer. Volatile Organic Compounds (VOCs) Produced by Levilactobacillus brevis WLP672 Fermentation in Defined Media Supplemented with Different Amino Acids. Molecules (Basel, Switzerland). 2024 Feb; 29(4):. doi: 10.3390/molecules29040753. [PMID: 38398505]
  • Ji-Yun Kang, Ji-Yeon Gu, Dong-Cheol Baek, Chang-Gue Son, Jin-Seok Lee. A Capsicum annuum L. seed extract exerts anti-neuroexcitotoxicity in HT22 hippocampal neurons. Food & function. 2024 Feb; ?(?):. doi: 10.1039/d3fo04501c. [PMID: 38305768]
  • Delin Yan, Lei Huang, Zhiqing Mei, Han Bao, Yaman Xie, Cunyi Yang, Xiangyang Gao. Untargeted metabolomics revealed the effect of soybean metabolites on poly(γ-glutamic acid) production in fermented natto and its metabolic pathway. Journal of the science of food and agriculture. 2024 Feb; 104(3):1298-1307. doi: 10.1002/jsfa.13011. [PMID: 37782527]
  • Fengqing Wang, Yanmei Chen, Jia Zheng, Can Yang, Li Li, Rong Li, Meilin Shi, Zhongxuan Li. Preparation of potential organic fertilizer rich in γ-polyglutamic acid via microbial fermentation using brewer's spent grain as basic substrate. Bioresource technology. 2024 Feb; 394(?):130216. doi: 10.1016/j.biortech.2023.130216. [PMID: 38122994]
  • Yoichiro Kasuga, Ailing Hu, Zenji Kawakami, Masahiro Tabuchi, Takuji Yamaguchi, Hiroyuki Kobayashi, Shigaku Ikeda. Suppressive effect of Yokukansan on glutamate released from canine keratinocytes. Open veterinary journal. 2024 Feb; 14(2):683-691. doi: 10.5455/ovj.2024.v14.i2.8. [PMID: 38549576]
  • Xi Zhang, Hong Zheng, Zhitao Ni, Yuyin Shen, Die Wang, Wenqing Li, Liangcai Zhao, Chen Li, Hongchang Gao. Fibroblast growth factor 21 alleviates diabetes-induced cognitive decline. Cerebral cortex (New York, N.Y. : 1991). 2024 01; 34(2):. doi: 10.1093/cercor/bhad502. [PMID: 38220573]
  • Xiaorui Xing, Qin Sun, Ruwen Wang, Yibing Wang, Ru Wang. Impacts of glutamate, an exercise-responsive metabolite on insulin signaling. Life sciences. 2024 Jan; ?(?):122471. doi: 10.1016/j.lfs.2024.122471. [PMID: 38301875]
  • Ruyan Gao, Tahir Ali, Zizhen Liu, Axiang Li, Liangliang Hao, Liufang He, Xiaoming Yu, Shupeng Li. Ceftriaxone averts neuroinflammation and relieves depressive-like behaviors via GLT-1/TrkB signaling. Biochemical and biophysical research communications. 2024 Jan; 701(?):149550. doi: 10.1016/j.bbrc.2024.149550. [PMID: 38310688]
  • Tzu-Kang Lin, Kun-Chieh Yeh, Ming-Shang Pai, Pei-Wen Hsieh, Su-Jane Wang. Ursolic acid inhibits the synaptic release of glutamate and prevents glutamate excitotoxicity in rats. European journal of pharmacology. 2024 Jan; 963(?):176280. doi: 10.1016/j.ejphar.2023.176280. [PMID: 38113967]
  • Huizhen Sun, Shanshan Wei, Yanchun Gong, Kaizhi Ding, Shan Tang, Wei Sun, Chunhua Yuan, Liping Huang, Zhibing Liu, Chong Chen, Lihua Yao. Neuroprotective effects of cordycepin inhibit glutamate-induced apoptosis in hippocampal neurons. Cell stress & chaperones. 2024 Jan; ?(?):. doi: 10.1016/j.cstres.2024.01.001. [PMID: 38219840]
  • Shreya Banerjee, Rakesh Sarkar, Arpita Mukherjee, Suvrotoa Mitra, Animesh Gope, Mamta Chawla-Sarkar. Rotavirus-induced lncRNA SLC7A11-AS1 promotes ferroptosis by targeting cystine/glutamate antiporter xCT (SLC7A11) to facilitate virus infection. Virus research. 2024 01; 339(?):199261. doi: 10.1016/j.virusres.2023.199261. [PMID: 37923170]
  • Mengran Wang, Tingting Xuan, Haining Li, Jing An, Tianhui Hao, Jiang Cheng. Protective effect of FXN overexpression on ferroptosis in L-Glu-induced SH-SY5Y cells. Acta histochemica. 2024 Jan; 126(1):152135. doi: 10.1016/j.acthis.2024.152135. [PMID: 38266318]
  • Anqi Ge, Qi He, Da Zhao, Yuwei Li, Junpeng Chen, Ying Deng, Wang Xiang, Hongqiao Fan, Shiting Wu, Yan Li, Lifang Liu, Yue Wang. Mechanism of ferroptosis in breast cancer and research progress of natural compounds regulating ferroptosis. Journal of cellular and molecular medicine. 2024 01; 28(1):e18044. doi: 10.1111/jcmm.18044. [PMID: 38140764]
  • Bei Zhang, Lei Qi, Xinhua Xie, Yue Shen, Jiahui Li, Bobo Zhang, Hongshuai Zhu. Emulsifying properties of O/W emulsion stabilized by soy protein isolate and γ-polyglutamic acid electrostatic complex. Journal of food science. 2024 Jan; 89(1):174-185. doi: 10.1111/1750-3841.16873. [PMID: 38051023]
  • Xin Jin, Hangyi Wu, Jie Yu, Yanni Cao, Lanyi Zhang, Zhenhai Zhang, Huixia Lv. Glutamate affects self-assembly, protein corona, and anti-4 T1 tumor effects of melittin/vitamin E-succinic acid-(glutamate)n nanoparticles. Journal of controlled release : official journal of the Controlled Release Society. 2024 Jan; 365(?):802-817. doi: 10.1016/j.jconrel.2023.12.013. [PMID: 38092255]
  • Lenka Vlasatikova, Michal Zeman, Magdalena Crhanova, Jitka Matiasovicova, Daniela Karasova, Marcela Faldynova, Hana Prikrylova, Alena Sebkova, Ivan Rychlik. Colonization of chickens with competitive exclusion products results in extensive differences in metabolite composition in cecal digesta. Poultry science. 2024 Jan; 103(1):103217. doi: 10.1016/j.psj.2023.103217. [PMID: 37980752]
  • Danuta Jantas, Piotr Warszyński, Władysław Lasoń. Carnosic Acid Shows Higher Neuroprotective Efficiency than Edaravone or Ebselen in In Vitro Models of Neuronal Cell Damage. Molecules (Basel, Switzerland). 2023 Dec; 29(1):. doi: 10.3390/molecules29010119. [PMID: 38202702]
  • Kim-Teng Lee, Hong-Sheng Liao, Ming-Hsiun Hsieh. Glutamine Metabolism, Sensing and Signaling in Plants. Plant & cell physiology. 2023 Dec; 64(12):1466-1481. doi: 10.1093/pcp/pcad054. [PMID: 37243703]
  • Jill Romer, Katharina Gutbrod, Antonia Schuppener, Michael Melzer, Stefanie J Müller-Schüssele, Andreas J Meyer, Peter Dörmann. Tocopherol and phylloquinone biosynthesis in chloroplasts requires the phytol kinase VTE5 and the farnesol kinase FOLK. The Plant cell. 2023 Dec; ?(?):. doi: 10.1093/plcell/koad316. [PMID: 38124486]
  • Jiang-Ping Wei, Zi-Xuan Zhao, Jing Zeng, Fang-Hong Shang, Lei Hua, Yong Yang, Xiao-Mei Zhang. [Yigong Powder regulates CXCL12/CXCR4 signaling to reduce glutamate release and prevent cognitive decline in mouse model of aging]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2023 Dec; 48(23):6483-6491. doi: 10.19540/j.cnki.cjcmm.20230811.702. [PMID: 38212005]
  • M Oqal, E Qnais, A Alqudah, O Gammoh. Analgesic effect of the flavonoid herbacetin in nociception animal models. European review for medical and pharmacological sciences. 2023 Dec; 27(23):11236-11248. doi: 10.26355/eurrev_202312_34563. [PMID: 38095373]
  • Wanli You, Jinglin Zhang, Xueyin Ru, Feng Xu, Zhengguo Wu, Peng Jin, Yonghua Zheng, Shifeng Cao. CmCML11 interacts with CmCAMTA5 to enhance γ-aminobutyric acid (GABA) accumulation by regulating GABA shunt in fresh-cut cantaloupe. Plant physiology and biochemistry : PPB. 2023 Nov; 206(?):108217. doi: 10.1016/j.plaphy.2023.108217. [PMID: 38039581]
  • Hongxing Tang, Kejun He, Kun Zhao, Chen Zheng, Weichi Wu, Weilin Jin, Lixuan Yang, Baoshu Xie. Protective effects of Hinokitiol on neuronal ferroptosis by activating the KEAP1/NRF-2/HO-1 pathway in traumatic brain injury. Journal of neurotrauma. 2023 Nov; ?(?):. doi: 10.1089/neu.2023.0150. [PMID: 37962273]
  • Yung-Chih Kuo, Sheng-Yuan Lin, Sourav De, Rajendiran Rajesh. Regeneration of Pancreatic Cells Using Optimized Nanoparticles and l-Glutamic Acid-Gelatin Scaffolds with Controlled Topography and Grafted Activin A/BMP4. ACS biomaterials science & engineering. 2023 11; 9(11):6208-6224. doi: 10.1021/acsbiomaterials.3c00791. [PMID: 37882705]
  • Guglielmina Froldi, Francesco Benetti, Andrea Mondin, Marco Roverso, Elisa Pangrazzi, Francine Medjiofack Djeujo, Paolo Pastore. Pterodon emarginatus Seed Preparations: Antiradical Activity, Chemical Characterization, and In Silico ADMET Parameters of β-caryophyllene and Farnesol. Molecules (Basel, Switzerland). 2023 Nov; 28(22):. doi: 10.3390/molecules28227494. [PMID: 38005216]
  • Bo Jing, Wenjuan Shi, Lu Liu, Ying Wang. Poly-γ-glutamic acid improved biological nitrogen fixation, water-nitrogen productivity, and nitrate residue in cotton/soybean intercropping. Journal of the science of food and agriculture. 2023 Nov; 103(14):7284-7292. doi: 10.1002/jsfa.12814. [PMID: 37378640]
  • Danni Xie, Caiyou Song, Tao Qin, Zhenwei Zhai, Jie Cai, Jingyi Dai, Tao Sun, Ying Xu. Moschus ameliorates glutamate-induced cellular damage by regulating autophagy and apoptosis pathway. Scientific reports. 2023 10; 13(1):18586. doi: 10.1038/s41598-023-45878-7. [PMID: 37903904]
  • Rodrigo Santos-Pascual, Iván Campoy, David Sanz Mata, María Jesús Martínez, Alicia Prieto, Jorge Barriuso. Deciphering the molecular components of the quorum sensing system in the fungus Ophiostoma piceae. Microbiology spectrum. 2023 Oct; ?(?):e0029023. doi: 10.1128/spectrum.00290-23. [PMID: 37796004]
  • Chen Han, Haiying Bao. Therapeutic effects and mechanisms of Inonotus hispidus extract and active monomer compounds in a rat mammary gland hyperplasia model. Journal of ethnopharmacology. 2023 Oct; 319(Pt 2):117274. doi: 10.1016/j.jep.2023.117274. [PMID: 37797875]
  • Sherrye T Glaser, Kalani Jayanetti, Saida Oubraim, Andrew Hillowe, Elena Frank, Jason Jong, Liqun Wang, Hehe Wang, Iwao Ojima, Samir Haj-Dahmane, Martin Kaczocha. Fatty acid binding proteins are novel modulators of synaptic epoxyeicosatrienoic acid signaling in the brain. Scientific reports. 2023 Sep; 13(1):15234. doi: 10.1038/s41598-023-42504-4. [PMID: 37709856]
  • Yi Lu, Xin Gao, Shadi A D Mohammed, Tianyu Wang, Jiaqi Fu, Yu Wang, Yang Nan, Fang Lu, Shumin Liu. Efficacy and mechanism study of Baichanting compound, a combination of Acanthopanax senticosus (Rupr. and Maxim.) Harms, Paeonia lactiflora Pall and Uncaria rhynchophylla (Miq.) Miq. ex Havil, on Parkinson's disease based on metagenomics and metabolomics. Journal of ethnopharmacology. 2023 Sep; ?(?):117182. doi: 10.1016/j.jep.2023.117182. [PMID: 37714224]
  • Cosimo Taiti, Giacomo Di Matteo, Mattia Spano, Vittorio Vinciguerra, Elisa Masi, Luisa Mannina, Stefania Garzoli. Metabolomic Approach Based on Analytical Techniques for the Detection of Secondary Metabolites from Humulus lupulus L. Dried Leaves. International journal of molecular sciences. 2023 Sep; 24(18):. doi: 10.3390/ijms241813732. [PMID: 37762036]
  • Huiting Yang, Xiaohong Gu, Huihui Chen, Qingfei Zeng, Zhigang Mao, You Ge. Omics techniques reveal the toxicity mechanisms of three antiepileptic drugs to juvenile zebrafish (Danio rerio) brain and liver. Aquatic toxicology (Amsterdam, Netherlands). 2023 Sep; 262(?):106668. doi: 10.1016/j.aquatox.2023.106668. [PMID: 37659109]
  • Aditya Kumar, Ankush Prasad, Michaela Sedlářová, Pavel Pospíšil. Malondialdehyde enhances PsbP protein release during heat stress in Arabidopsis. Plant physiology and biochemistry : PPB. 2023 Sep; 202(?):107984. doi: 10.1016/j.plaphy.2023.107984. [PMID: 37669610]
  • Pinghui Wei, Guoge Han, Meiqin He, Yan Wang. Retinal Neurotransmitter Alteration in Response to Dopamine D2 Receptor Antagonist from Myopic Guinea Pigs. ACS chemical neuroscience. 2023 Aug; ?(?):. doi: 10.1021/acschemneuro.3c00099. [PMID: 37647579]
  • Zhaolong Pan, Jan-Lars Van den Bossche, Eva Rodriguez-Aznar, Pauline Janssen, Olaya Lara, Gamze Ates, Ann Massie, Diedert Luc De Paep, Isabelle Houbracken, Marco Mambretti, Ilse Rooman. Pancreatic acinar cell fate relies on system xC- to prevent ferroptosis during stress. Cell death & disease. 2023 08; 14(8):536. doi: 10.1038/s41419-023-06063-w. [PMID: 37604805]
  • S B Caine, S Plant, K Furbish, M Yerton, E Smaragdi, B Niclou, J M Lorusso, J Y Chang, C Bitter, A Basu, S Miller, C-Y Huang, R Komson, D Liu, S Behar, M Thomsen. Sprague Dawley rats from different vendors vary in the modulation of prepulse inhibition of startle (PPI) by dopamine, acetylcholine, and glutamate drugs. Psychopharmacology. 2023 Aug; ?(?):. doi: 10.1007/s00213-023-06444-1. [PMID: 37580441]
  • Mohammad Keimasi, Kowsar Salehifard, Sayyed Jafar Hoseini, Fariba Esmaeili, Noushin Mirshah Jafar Esfahani, Mohammadreza Amirsadri, Mohammadjavad Keimasi, Majid Moradmand, Mohammad Reza Mofid. Purified Native Protein Extracted from the Venom of Agelena orientalis Attenuates Memory Defects in the Rat Model of Glutamate-Induced Excitotoxicity. The protein journal. 2023 Aug; ?(?):. doi: 10.1007/s10930-023-10140-6. [PMID: 37531037]
  • P A Perez-Corredor, P Oluwatomilayo-Ojo, J A Gutierrez-Vargas, G P Cardona-Gómez. Obesity induces extracellular vesicle release from the endothelium as a contributor to brain damage after cerebral ischemia in rats. Nutritional neuroscience. 2023 Aug; 26(8):680-695. doi: 10.1080/1028415x.2022.2078173. [PMID: 36039918]
  • Yang Liu, Amei Tang, Ming Liu, Changjun Xu, Feng Cao, Changfu Yang. Tuberostemonine may enhance the function of the SLC7A11/glutamate antiporter to restrain the ferroptosis to alleviate pulmonary fibrosis. Journal of ethnopharmacology. 2023 Aug; 318(Pt B):116983. doi: 10.1016/j.jep.2023.116983. [PMID: 37532076]
  • Tanya Denne, Lila C Winfrey, Cindy Moore, Chase Whitner, Theresa D'Silva, Amala Soumyanath, Lynne Shinto, Amie Hiller, Charles K Meshul. Recovery of motor function is associated with rescue of glutamate biomarkers in the striatum and motor cortex following treatment with Mucuna pruriens in a murine model of Parkinsons disease. Molecular and cellular neurosciences. 2023 Jul; 126(?):103883. doi: 10.1016/j.mcn.2023.103883. [PMID: 37527694]
  • Mauricio Tavares Jacques, Viviane de Souza, Flávio Augusto Rocha Barbosa, Rômulo Faria Santos Canto, Samantha Cristiane Lopes, Rui Daniel Prediger, Antônio Luiz Braga, Michael Aschner, Marcelo Farina. Novel Probucol Analogue, 4,4'-Diselanediylbis (2,6-Di-tert-Butylphenol), Prevents Oxidative Glutamate Neurotoxicity In Vitro and Confers Neuroprotection in a Rodent Model of Ischemic Stroke. ACS chemical neuroscience. 2023 Jul; ?(?):. doi: 10.1021/acschemneuro.3c00138. [PMID: 37499207]
  • Ramóna Pap, Edina Pandur, Gergely Jánosa, Katalin Sipos, Ferenc Rómeó Fritz, Tamás Nagy, Attila Agócs, József Deli. Protective Effects of 3'-Epilutein and 3'-Oxolutein against Glutamate-Induced Neuronal Damage. International journal of molecular sciences. 2023 Jul; 24(15):. doi: 10.3390/ijms241512008. [PMID: 37569384]
  • Marta Grzechowiak, Joanna Sliwiak, Mariusz Jaskolski, Milosz Ruszkowski. Structural and functional studies of Arabidopsis thaliana glutamate dehydrogenase isoform 2 demonstrate enzyme dynamics and identify its calcium binding site. Plant physiology and biochemistry : PPB. 2023 Jul; 201(?):107895. doi: 10.1016/j.plaphy.2023.107895. [PMID: 37478728]
  • Namho Kim, Ji Hye Lee, Yeonho Song, Jeong-Hyung Lee, George C Schatz, Hyonseok Hwang. Molecular Dynamics Simulation Study of the Protonation State Dependence of Glutamic Acid Transport through a Cyclic Peptide Nanotube. The journal of physical chemistry. B. 2023 07; 127(27):6061-6072. doi: 10.1021/acs.jpcb.3c02285. [PMID: 37369069]
  • Pradeep K Anand, Jagdeep Kaur. Rv3539 (PPE63) of Mycobacterium Tuberculosis Promotes Survival of Mycobacterium Smegmatis in Human Macrophages Cell Line via Cell Wall Modulation of Bacteria and Altering Host's Immune Response. Current microbiology. 2023 Jul; 80(8):267. doi: 10.1007/s00284-023-03360-7. [PMID: 37401981]
  • Yaron Caspi, Chrysoula K Pantazopoulou, Jeanine J Prompers, Corné M J Pieterse, Hilleke Hulshoff Pol, Kaisa Kajala. Why did glutamate, GABA, and melatonin become intercellular signalling molecules in plants?. eLife. 2023 Jun; 12(?):. doi: 10.7554/elife.83361. [PMID: 37338964]
  • Chunni Chen, Linlin Yang, Mengru Li, Li Gao, Xuemei Qin, Guanhua Du, Yuzhi Zhou. Study on the targeted regulation of Scutellaria baicalensis leaf on glutamine-glutamate metabolism and glutathione synthesis in the liver of D-gal ageing rats. The Journal of pharmacy and pharmacology. 2023 Jun; ?(?):. doi: 10.1093/jpp/rgad050. [PMID: 37329511]
  • Xin Zhang, Weijie Xue, Changbo Zhang, Changrong Wang, Yongchun Huang, Yanting Wang, Liangcai Peng, Zhongqi Liu. Cadmium pollution leads to selectivity loss of glutamate receptor channels for permeation of Ca2+/Mn2+/Fe2+/Zn2+ over Cd2+ in rice plant. Journal of hazardous materials. 2023 06; 452(?):131342. doi: 10.1016/j.jhazmat.2023.131342. [PMID: 37023578]
  • Sheikh Azimullah, Mohamed Fizur Nagoor Meeran, Khatija Ayoob, Seenipandi Arunachalam, Shreesh Ojha, Rami Beiram. Tannic Acid Mitigates Rotenone-Induced Dopaminergic Neurodegeneration by Inhibiting Inflammation, Oxidative Stress, Apoptosis, and Glutamate Toxicity in Rats. International journal of molecular sciences. 2023 Jun; 24(12):. doi: 10.3390/ijms24129876. [PMID: 37373023]
  • Jannatul Fardus, Shahadat Hossain, Md Mahfuzur Rob, Masayuki Fujita. ʟ-glutamic acid modulates antioxidant defense systems and nutrient homeostasis in lentil (Lens culinaris Medik.) under copper toxicity. Environmental science and pollution research international. 2023 Jun; ?(?):. doi: 10.1007/s11356-023-27993-0. [PMID: 37270757]
  • Fei Kang, Qilin Lv, Jingbiao Fan, Yun Zhang, Yuling Song, Xueqin Ren, Shuwen Hu. Ameliorative effect of calcium poly(aspartic acid) (PASP-Ca) and calcium poly-γ-glutamic acid (γ-PGA-Ca) on soil acidity in different horizons. Environmental science and pollution research international. 2023 Jun; 30(30):75681-75693. doi: 10.1007/s11356-023-27713-8. [PMID: 37222895]
  • Kasumi Takeuchi, Masayo Ogiso, Tomohiro Morohoshi, Shigemi Seo. Glutamate Positively Regulates Chitinase Activity and the Biocontrol Efficacy of Pseudomonas protegens. Molecular plant-microbe interactions : MPMI. 2023 Jun; 36(6):323-333. doi: 10.1094/mpmi-09-22-0178-r. [PMID: 36749296]
  • Rafael Short Ferreira, Paulo Roberto Ribeiro, Juliana Helena Castro E Silva, Juliana Bender Hoppe, Monique Marylin Alves de Almeida, Beatriz Correia de Lima Ferreira, Gustavo Borges Andrade, Suzana Braga de Souza, Luzimar Gonzaga Ferdandez, Maria de Fátima Dias Costa, Christianne Gazzana Salbego, Andrea Domenico Rivera, Aline Longoni, Adriano Martimbianco de Assis, Francesca Pieropan, José Cláudio Fonseca Moreira, Silvia Lima Costa, Arthur Morgan Butt, Victor Diogenes Amaral da Silva. Amburana cearensis seed extract stimulates astrocyte glutamate homeostatic mechanisms in hippocampal brain slices and protects oligodendrocytes against ischemia. BMC complementary medicine and therapies. 2023 May; 23(1):154. doi: 10.1186/s12906-023-03959-0. [PMID: 37170258]
  • Cheng-Wei Lu, Tzu-Yu Lin, Pei-Wen Hsieh, Kuan-Ming Chiu, Ming-Yi Lee, Su-Jane Wang. Cynarin, a caffeoylquinic acid derivative in artichoke, inhibits exocytotic glutamate release from rat cortical nerve terminals (synaptosomes). Neurochemistry international. 2023 May; 167(?):105537. doi: 10.1016/j.neuint.2023.105537. [PMID: 37164158]
  • Anchalee Prasansuklab, Suporn Sukjamnong, Atsadang Theerasri, Valerie W Hu, Tewarit Sarachana, Tewin Tencomnao. Transcriptomic analysis of glutamate-induced HT22 neurotoxicity as a model for screening anti-Alzheimer's drugs. Scientific reports. 2023 05; 13(1):7225. doi: 10.1038/s41598-023-34183-y. [PMID: 37142620]
  • Xiaonan Zhang, Mengxue Xia, Yingjie Wu, Fang Zhang. Branched-Chain Amino Acids Metabolism and Their Roles in Retinopathy: From Relevance to Mechanism. Nutrients. 2023 Apr; 15(9):. doi: 10.3390/nu15092161. [PMID: 37432261]
  • Wu Li, Zifei Yan, Nan Zhang, Zhiyong Zhang, Xiaohong Xiang. Novel role of PE_PGRS47 in the alteration of mycobacterial cell wall integrity and drug resistance. Archives of microbiology. 2023 Apr; 205(5):174. doi: 10.1007/s00203-023-03515-x. [PMID: 37022460]
  • M V Kustova, I I Prokofiev, V N Perfilova, E A Muzyko, V E Zavadskaya, S V Varlamova, A S Kucheryavenko, I N Tyurenkov, O S Vasilyeva. The role of iNOS inhibition in the mechanism of the cardioprotective effect of new GABA and glutamic acid derivatives in the model of acute alcoholic myocardial injury in rats. Biomeditsinskaia khimiia. 2023 Apr; 69(2):112-124. doi: 10.18097/pbmc20236902112. [PMID: 37132493]
  • Pei-Shin Gu, Kuan-Wen Su, Kuo-Wei Yeh, Jing-Long Huang, Fu-Sung Lo, Chih-Yung Chiu. Metabolomics Analysis Reveals Molecular Signatures of Metabolic Complexity in Children with Hypercholesterolemia. Nutrients. 2023 Mar; 15(7):. doi: 10.3390/nu15071726. [PMID: 37049565]
  • Ritesh Kumar, Gayatri Tripathi, Isha Goyal, Jaydeep Sharma, Ruchi Tiwari, Rinchuila Shimphrui, Neelam K Sarkar, Anil Grover. Insights into genomic variations in rice Hsp100 genes across diverse rice accessions. Planta. 2023 Mar; 257(5):91. doi: 10.1007/s00425-023-04123-1. [PMID: 36995438]
  • Deirdre H McLachlan. Plant physiology: Untangling the roles of glutamate and turgor pressure. Current biology : CB. 2023 03; 33(6):R221-R223. doi: 10.1016/j.cub.2023.02.026. [PMID: 36977382]
  • Matteo Grenzi, Stefano Buratti, Ambra Selene Parmagnani, Ilaria Abdel Aziz, Iwona Bernacka-Wojcik, Francesca Resentini, Jan Šimura, Fabrizio Gandolfo Doccula, Andrea Alfieri, Laura Luoni, Karin Ljung, Maria Cristina Bonza, Eleni Stavrinidou, Alex Costa. Long-distance turgor pressure changes induce local activation of plant glutamate receptor-like channels. Current biology : CB. 2023 03; 33(6):1019-1035.e8. doi: 10.1016/j.cub.2023.01.042. [PMID: 36796359]
  • Wei Shen, Yanlin Tao, Fang Zheng, Houyuan Zhou, Hui Wu, Hailian Shi, Fei Huang, Xiaojun Wu. The alteration of gut microbiota in venlafaxine-ameliorated chronic unpredictable mild stress-induced depression in mice. Behavioural brain research. 2023 Mar; 446(?):114399. doi: 10.1016/j.bbr.2023.114399. [PMID: 36963638]
  • Canying Li, Chenyang Zhang, Jiaxin Liu, Linhong Qu, Yonghong Ge. l-Glutamate maintains the quality of apple fruit by mediating carotenoid, sorbitol and sucrose metabolisms. Journal of the science of food and agriculture. 2023 Mar; ?(?):. doi: 10.1002/jsfa.12566. [PMID: 36944028]
  • Xin Tang, Jingyu Wen, Li Mu, Ziwei Gao, Jingxian Weng, Xiaokang Li, Xiangang Hu. Regulation of arsenite toxicity in lettuce by pyrite and glutamic acid and the related mechanism. The Science of the total environment. 2023 Mar; 877(?):162928. doi: 10.1016/j.scitotenv.2023.162928. [PMID: 36934948]
  • Fanrong Zeng, Muhammad Mudassir Nazir, Temoor Ahmed, Muhammad Noman, Shafaqat Ali, Muhammad Rizwan, Mohammad Shah Alam, Jonas Lwalaba Wa Lwalaba, Guoping Zhang. Calcium and L-glutamate present the opposite role in managing arsenic in barley. Environmental pollution (Barking, Essex : 1987). 2023 Mar; 321(?):121141. doi: 10.1016/j.envpol.2023.121141. [PMID: 36702433]
  • José Miguel Valderrama-Martín, Francisco Ortigosa, Juan Carlos Aledo, Concepción Ávila, Francisco M Cánovas, Rafael A Cañas. Pine has two glutamine synthetase paralogs, GS1b.1 and GS1b.2, exhibiting distinct biochemical properties. The Plant journal : for cell and molecular biology. 2023 03; 113(6):1330-1347. doi: 10.1111/tpj.16113. [PMID: 36658761]
  • Dawei Chen, Yating Liang, Jiaojiao Liang, Feifei Shen, Yue Cheng, Hengxian Qu, Yunchao Wa, Congcong Guo, Ruixia Gu, Jianya Qian, Xia Chen, Chenchen Zhang, Chengran Guan. Beneficial effects of Lactobacillus rhamnosus hsryfm 1301 fermented milk on rats with nonalcoholic fatty liver disease. Journal of dairy science. 2023 Mar; 106(3):1533-1548. doi: 10.3168/jds.2022-22383. [PMID: 36710180]
  • Xiaojuan Sun, Hongbo Deng, Tengyun Shu, Min Xu, Lihua Su, Haizhou Li. Study on Chemical Constituents of Panax notoginseng Leaves. Molecules (Basel, Switzerland). 2023 Feb; 28(5):. doi: 10.3390/molecules28052194. [PMID: 36903439]
  • Aifang Cheng, Yan Zhang, Jin Sun, Duli Huang, Jordy Evan Sulaiman, Xin Huang, Long Wu, Wenkang Ye, Chuanhai Wu, Hei-Ning Lam, Yusheng Shi, Pei-Yuan Qian. Pterosin sesquiterpenoids from Pteris laeta Wall. ex Ettingsh. Protect cells from glutamate excitotoxicity by modulating mitochondrial signals. Journal of ethnopharmacology. 2023 Feb; ?(?):116308. doi: 10.1016/j.jep.2023.116308. [PMID: 36822346]