Epicatechin (BioDeep_00000000020)
Secondary id: BioDeep_00000000763, BioDeep_00000338337, BioDeep_00000398019, BioDeep_00000410524, BioDeep_00000621567, BioDeep_00000859356
natural product human metabolite PANOMIX_OTCML-2023 blood metabolite BioNovoGene_Lab2019
代谢物信息卡片
化学式: C15H14O6 (290.079)
中文名称: (-)-表儿茶素, 表儿茶素
谱图信息:
最多检出来源 Homo sapiens(blood) 42.36%
Last reviewed on 2024-07-09.
Cite this Page
Epicatechin. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/epicatechin (retrieved
2024-12-22) (BioDeep RN: BioDeep_00000000020). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: c1(cc(c2c(c1)O[C@@H]([C@@H](C2)O)c1cc(c(cc1)O)O)O)O
InChI: InChI=1/C15H14O6/c16-8-4-11(18)9-6-13(20)15(21-14(9)5-8)7-1-2-10(17)12(19)3-7/h1-5,13,15-20H,6H2/t13-,15-/m1/s1
描述信息
Epicatechin is an antioxidant flavonoid, occurring especially in woody plants as both (+)-catechin and (-)-epicatechin (cis) forms. Catechin is a tannin peculiar to green and white tea because the black tea oxidation process reduces catechins in black tea. Catechin is a powerful, water soluble polyphenol and antioxidant that is easily oxidized. Several thousand types are available in the plant world. As many as two thousand are known to have a flavon structure and are called flavonoids. Catechin is one of them. Green tea is manufactured from fresh, unfermented tea leaves; the oxidation of catechins is minimal, and hence they are able to serve as antioxidants. Researchers believe that catechin is effective because it easily sticks to proteins, blocking bacteria from adhering to cell walls and disrupting their ability to destroy them. Viruses have hooks on their surfaces and can attach to cell walls. The catechin in green tea prevents viruses from adhering and causing harm. Catechin reacts with toxins created by harmful bacteria (many of which belong to the protein family) and harmful metals such as lead, mercury, chrome, and cadmium. From its NMR espectra, there is a doubt on 2 and 3 atoms configuration. It seems to be that they are in trans position.
Epicatechin, also known as (+)-cyanidanol-3 or 2,3-cis-epicatechin, is a member of the class of compounds known as catechins. Catechins are compounds containing a catechin moiety, which is a 3,4-dihydro-2-chromene-3,5.7-tiol. Thus, epicatechin is considered to be a flavonoid lipid molecule. Epicatechin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Epicatechin can be found in cashew nut, which makes epicatechin a potential biomarker for the consumption of this food product. Epicatechin can be found primarily in blood, feces, and urine, as well as throughout most human tissues. Epicatechin is a flavan-3-ol, a type of natural phenol and antioxidant. It is a plant secondary metabolite. It belongs to the group of flavan-3-ols (or simply flavanols), part of the chemical family of flavonoids .
(-)-epicatechin is a catechin with (2R,3R)-configuration. It has a role as an antioxidant. It is a polyphenol and a catechin. It is an enantiomer of a (+)-epicatechin.
Epicatechin has been used in trials studying the treatment of Pre-diabetes.
(-)-Epicatechin is a natural product found in Visnea mocanera, Litsea rotundifolia, and other organisms with data available.
An antioxidant flavonoid, occurring especially in woody plants as both (+)-catechin and (-)-epicatechin (cis) forms.
See also: Crofelemer (monomer of); Bilberry (part of); Cats Claw (part of) ... View More ...
A catechin with (2R,3R)-configuration.
[Raw Data] CB030_(-)-Epicatechin_pos_20eV_CB000016.txt
[Raw Data] CB030_(-)-Epicatechin_pos_50eV_CB000016.txt
[Raw Data] CB030_(-)-Epicatechin_pos_40eV_CB000016.txt
[Raw Data] CB030_(-)-Epicatechin_pos_10eV_CB000016.txt
[Raw Data] CB030_(-)-Epicatechin_pos_30eV_CB000016.txt
[Raw Data] CB030_(-)-Epicatechin_neg_50eV_000009.txt
[Raw Data] CB030_(-)-Epicatechin_neg_30eV_000009.txt
[Raw Data] CB030_(-)-Epicatechin_neg_10eV_000009.txt
[Raw Data] CB030_(-)-Epicatechin_neg_40eV_000009.txt
[Raw Data] CB030_(-)-Epicatechin_neg_20eV_000009.txt
Epicatechin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=490-46-0 (retrieved 2024-07-09) (CAS RN: 490-46-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
(-)-Epicatechin inhibits cyclooxygenase-1 (COX-1) with an IC50 of 3.2 μM. (-)-Epicatechin inhibits the IL-1β-induced expression of iNOS by blocking the nuclear localization of the p65 subunit of NF-κB.
(-)-Epicatechin inhibits cyclooxygenase-1 (COX-1) with an IC50 of 3.2 μM. (-)-Epicatechin inhibits the IL-1β-induced expression of iNOS by blocking the nuclear localization of the p65 subunit of NF-κB.
(-)-Epicatechin inhibits cyclooxygenase-1 (COX-1) with an IC50 of 3.2 μM. (-)-Epicatechin inhibits the IL-1β-induced expression of iNOS by blocking the nuclear localization of the p65 subunit of NF-κB.
(-)-Epicatechin inhibits cyclooxygenase-1 (COX-1) with an IC50 of 3.2 μM. (-)-Epicatechin inhibits the IL-1β-induced expression of iNOS by blocking the nuclear localization of the p65 subunit of NF-κB.
同义名列表
94 个代谢物同义名
2-(3,4-dihydroxyphenyl)-2,3,4-trihydro-3,5,7-trihydroxychromene; (-)-EPICATECHIN(EG) (CONSTITUENT OF POWDERED DECAFFEINATED GREEN TEA EXTRACT); 2H-1-Benzopyran-3,5,7-triol, 2-(3,4-dihydroxyphenyl)-3,4-dihydro-, (2R-cis)-; 2H-1-Benzopyran-3,5,7-triol, 2-(3,4-dihydroxyphenyl)-3,4-dihydro-, (2R,3R)-; 2H-1-Benzopyran-3,5,7-triol, 2-(3,4-dihydroxyphenyl)-3,4-dihydro-,(2R,3R)-; (-)-EPICATECHIN (CONSTITUENT OF GRAPE SEEDS OLIGOMERIC PROANTHOCYANIDINS); (2R-cis)-2-(3,4-Dihydroxyphenyl)-3,4-dihydro-2H-1-benzopyran-3,5,7-triol; (2R,3R)-2-(3,4-dihydroxyphenyl)-3,4-dihydro-2H-1-benzopyran-3,5,7-triol; (2R,3R)-2-(3,4-dihydroxyphenyl)-3,4-dihydro-2H-chromene-3,5,7-triol; 2-(3,4-Dihydroxyphenyl)-2,3,4-trihydro-3,5,7-trihydroxychromene; Epicatechin, primary pharmaceutical reference standard; (-)-EPICATECHIN (CONSTITUENT OF MARITIME PINE) [DSC]; (2R,3R)-2-(3,4-dihydroxyphenyl)chromane-3,5,7-triol; (2R,3R)-2-(3,4-Dihydroxyphenyl)-3,5,7-chromanetriol; (2R,3R)-2-(3,4-Dihydroxyphenyl)chroman-3,5,7-triol; (-)-EPICATECHIN (CONSTITUENT OF MARITIME PINE); (-)-Epicatechin, >=98\\% (HPLC), from green tea; (-)-(2R:3R)-5,7,3,4-Tetrahydroxyflavan-3-ol; (-)-cis-3,3,4,5,7-Pentahydroxyflavane; (-)-Epicatechin, analytical standard; CF3BA0C2-DE1B-44AB-A4D3-800F017221BA; (-)-Epicatechin, >=90\\% (HPLC); 3,3,4,5,7-Pentahydroxyflavane; (-)-EPICATECHIN (USP-RS); (-)-EPICATECHIN [USP-RS]; (2R,3R)-(-)-Epicatechin; 3,3,4,5,7-Flavanpentol; L-EPICATECHIN [WHO-DD]; (-)-cis-Epicatechin; 2,3-cis-epicatechin; L-Epicatechin ,(S); Epicatechol, (-)-; Spectrum2_000675; Epigallocatechin; BCBcMAP01_000224; L(-)-Epicatechin; Spectrum5_000929; Spectrum3_000243; (+)-Cyanidanol-3; .alpha. Catechin; (-)-epi catechin; Spectrum4_000949; Acid, catechinic; Acid, catechuic; ent-Epicatechin; (-)-Epicatechol; Catechinic Acid; Epicatechin-(-); UNII-34PHS7TU43; (-)-Epicatechin; Tox21_110101_1; (+)-Cyanidanol; alpha-catechin; (-)epicatechin; Catechuic Acid; l-Acacatechin; Teacatechin I; Oprea1_209947; L-Epicatechin; DivK1c_006363; l-Epicatechol; Tox21_110101; (+)-Catechin; epi-Catechin; ACon1_001106; Cyanidanol 3; Cyanidanol-3; KBio2_000639; epi-Catechol; KBio2_005775; KBio3_001126; KBio2_003207; KBio1_001307; Acacatechin; SMP1_000115; Epicatechin; Epicatechol; Cianidanol; KSC-10-144; 34PHS7TU43; Catechin; Catergen; CHEBI:90; Colatein; C15H14O6; Kakaol; KB-53; KB 53; Zyma; KB53; 28E; (-)-3 3 4 5 7-Pentahydroxyflavan; L-Epicatechin; (-)-Epicatechin
数据库引用编号
48 个数据库交叉引用编号
- ChEBI: CHEBI:90
- KEGG: C09727
- PubChem: 72276
- HMDB: HMDB0001871
- Metlin: METLIN3420
- DrugBank: DB12039
- ChEMBL: CHEMBL583912
- Wikipedia: Catechin
- LipidMAPS: LMPK12020003
- MeSH: Catechin
- ChemIDplus: 0000490460
- MetaCyc: CPD-7630
- KNApSAcK: C00000956
- foodb: FDB003761
- chemspider: 65230
- CAS: 490-46-0
- MoNA: FIO00069
- MoNA: PR020002
- MoNA: PS045702
- MoNA: FIO00071
- MoNA: PS045704
- MoNA: FIO00068
- MoNA: PB001339
- MoNA: FIO00075
- MoNA: PB001337
- MoNA: FIO00076
- MoNA: FIO00072
- MoNA: PB001338
- MoNA: PS045703
- MoNA: PR100689
- MoNA: PB001340
- MoNA: PS045701
- MoNA: FIO00070
- MoNA: FIO00073
- MoNA: FIO00074
- MoNA: PR100264
- MoNA: FIO00067
- medchemexpress: HY-N0001
- MetaboLights: MTBLC90
- PDB-CCD: 28E
- 3DMET: B03226
- NIKKAJI: J21.603H
- RefMet: Epicatechin
- LOTUS: LTS0265245
- wikidata: Q23050136
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-696
- PubChem: 11915
- KNApSAcK: 90
分类词条
相关代谢途径
Reactome(0)
PlantCyc(3)
代谢反应
41 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(3)
- 2,3-cis-flavanols biosynthesis:
(-)-epicatechin + NADP+ ⟶ H+ + NADPH + cyanidin
- 2,3-cis-flavanols biosynthesis:
(-)-epicatechin + NADP+ ⟶ H+ + NADPH + cyanidin
- galloylated catechin biosynthesis:
(-)-epicatechin + 1-O-galloyl-β-D-glucose ⟶ (-)-epicatechin-3-O-gallate + D-glucopyranose
Plant Reactome(0)
INOH(0)
PlantCyc(36)
- galloylated catechin biosynthesis:
UDP-α-D-glucose + gallate ⟶ 1-O-galloyl-β-D-glucose + UDP
- proanthocyanidins biosynthesis from flavanols:
NAD(P)+ + a (2R,3R)-flavan-3-ol ⟶ H+ + NAD(P)H + an anthocyanidin with a 3-hydroxy group
- 2,3-cis-flavanols biosynthesis:
(-)-epiafzelechin + NADP+ ⟶ H+ + NADPH + pelargonidin
- 2,3-cis-flavanols biosynthesis:
(-)-epiafzelechin + NADP+ ⟶ H+ + NADPH + pelargonidin
- 2,3-cis-flavanols biosynthesis:
(-)-epicatechin + NADP+ ⟶ H+ + NADPH + cyanidin
- proanthocyanidins biosynthesis from flavanols:
UDP-α-D-glucose + a (2R,3R)-flavan-3-ol ⟶ H+ + UDP + a (2R,3R)-flavan-3-ol-3'-O-glucoside
- proanthocyanidins biosynthesis from flavanols:
2-oxoglutarate + O2 + a (2R,3S,4S)-leucoanthocyanidin ⟶ CO2 + H2O + a (4S)- 2,3-dehydroflavan-3,4-diol + succinate
- 2,3-cis-flavanols biosynthesis:
(-)-epiafzelechin + NADP+ ⟶ H+ + NADPH + pelargonidin
- 2,3-cis-flavanols biosynthesis:
(-)-epiafzelechin + NADP+ ⟶ H+ + NADPH + pelargonidin
- 2,3-cis-flavanols biosynthesis:
(-)-epiafzelechin + NADP+ ⟶ H+ + NADPH + pelargonidin
- proanthocyanidins biosynthesis from flavanols:
2-oxoglutarate + O2 + a (2R,3S,4S)-leucoanthocyanidin ⟶ CO2 + H2O + a (4S)- 2,3-dehydroflavan-3,4-diol + succinate
- 2,3-cis-flavanols biosynthesis:
(-)-epiafzelechin + NADP+ ⟶ H+ + NADPH + pelargonidin
- 2,3-cis-flavanols biosynthesis:
(-)-epiafzelechin + NADP+ ⟶ H+ + NADPH + pelargonidin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- 2,3-cis-flavanols biosynthesis:
(-)-epiafzelechin + NADP+ ⟶ H+ + NADPH + pelargonidin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- 2,3-cis-flavanols biosynthesis:
(-)-epiafzelechin + NADP+ ⟶ H+ + NADPH + pelargonidin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- 2,3-cis-flavanols biosynthesis:
(-)-epicatechin + NADP+ ⟶ H+ + NADPH + cyanidin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- 2,3-cis-flavanols biosynthesis:
(-)-epicatechin + NADP+ ⟶ H+ + NADPH + cyanidin
- 2,3-cis-flavanols biosynthesis:
(-)-epicatechin + NADP+ ⟶ H+ + NADPH + cyanidin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- 2,3-cis-flavanols biosynthesis:
(-)-epicatechin + NADP+ ⟶ H+ + NADPH + cyanidin
- galloylated catechin biosynthesis:
(-)-epicatechin + 1-O-galloyl-β-D-glucose ⟶ (-)-epicatechin-3-O-gallate + D-glucopyranose
- proanthocyanidins biosynthesis from flavanols:
UDP-α-D-glucose + a (2R,3R)-flavan-3-ol ⟶ H+ + UDP + a (2R,3R)-flavan-3-ol-3'-O-glucoside
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- 2,3-cis-flavanols biosynthesis:
(-)-epicatechin + NADP+ ⟶ H+ + NADPH + cyanidin
- 2,3-cis-flavanols biosynthesis:
(-)-epicatechin + NADP+ ⟶ H+ + NADPH + cyanidin
- 2,3-cis-flavanols biosynthesis:
(-)-epicatechin + NADP+ ⟶ H+ + NADPH + cyanidin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- proanthocyanidins biosynthesis from flavanols:
O2 + a (2R,3R)-flavan-3-ol-3'-O-glucoside + a (2R,3S)-flavan-3-ol-3'-O-glucoside ⟶ β-D-glucopyranose + H2O + a proanthocyanidin
- 2,3-cis-flavanols biosynthesis:
(-)-epicatechin + NADP+ ⟶ H+ + NADPH + cyanidin
- proanthocyanidins biosynthesis from flavanols:
UDP-α-D-glucose + a (2R,3R)-flavan-3-ol ⟶ H+ + UDP + a (2R,3R)-flavan-3-ol-3'-O-glucoside
COVID-19 Disease Map(0)
PharmGKB(0)
449 个相关的物种来源信息
- 126358 - Abeliophyllum distichum: 10.1016/S0031-9422(97)01134-5
- 3631 - Abutilon theophrasti: 10.1007/BF01012523
- 204988 - Acacia adunca: 10.1016/S0031-9422(00)85959-2
- 205021 - Acacia aneura: 10.1016/S0031-9422(00)85959-2
- 138511 - Acacia aulacocarpa: 10.1016/S0031-9422(00)85959-2
- 383632 - Acacia baileyana: 10.1016/S0031-9422(00)85959-2
- 1174742 - Acacia binervia: 10.1016/S0031-9422(00)85959-2
- 139006 - Acacia calamifolia: 10.1016/S0031-9422(00)85959-2
- 1173640 - Acacia cheelii: 10.1016/S0031-9422(00)85959-2
- 1174755 - Acacia clunies-rossiae: 10.1016/S0031-9422(00)85959-2
- 1174758 - Acacia complanata: 10.1016/S0031-9422(00)85959-2
- 1173642 - Acacia concurrens: 10.1016/S0031-9422(00)85959-2
- 3809 - Acacia confusa: 10.1002/JCCS.200000178
- 205042 - Acacia dealbata:
- 205356 - Acacia deanei: 10.1016/S0031-9422(00)85959-2
- 694541 - Acacia doratoxylon: 10.1016/S0031-9422(00)85959-2
- 139008 - Acacia falciformis: 10.1016/S0031-9422(00)85959-2
- 21010 - Acacia fimbriata: 10.1016/S0031-9422(00)85959-2
- 866001 - Acacia floribunda: 10.1016/S0031-9422(00)85959-2
- 1120457 - Acacia implexa: 10.1016/S0031-9422(00)85959-2
- 1120458 - Acacia ixiophylla: 10.1071/CH9680425
- 383647 - Acacia mabellae: 10.1016/S0031-9422(00)85959-2
- 224085 - Acacia mangium: 10.1016/S0031-9422(00)85959-2
- 139012 - Acacia mearnsii: 10.1039/P19930002467
- 138028 - Acacia melanoxylon: 10.1016/S0031-9422(00)85959-2
- 383648 - Acacia mollifolia:
- 866003 - Acacia obtusifolia: 10.1016/S0031-9422(00)85959-2
- 1173659 - Acacia omalophylla: 10.1016/S0031-9422(00)85959-2
- 139013 - Acacia oswaldii: 10.1016/S0031-9422(00)85959-2
- 1173660 - Acacia pendula: 10.1016/S0031-9422(00)85959-2
- 1174874 - Acacia pubifolia: 10.1016/S0031-9422(00)85959-2
- 880440 - Acacia pycnantha: 10.1016/S0031-9422(00)85959-2
- 1280823 - Acacia pycnostachya: 10.1016/S0031-9422(00)85959-2
- 1050817 - Acacia retinodes: 10.1016/S0031-9422(00)85959-2
- 694556 - Acacia rigens: 10.1016/S0031-9422(00)85959-2
- 1378425 - Acacia trineura: 10.1016/S0031-9422(00)85959-2
- 1120475 - Acacia verniciflua: 10.1016/S0031-9422(00)85959-2
- 171204 - Acer barbinerve: 10.1007/S10600-011-0016-0
- 171213 - Acer nikoense:
- 64478 - Actinidia arguta:
- 3625 - Actinidia chinensis:
- 307252 - Aesculus californica:
- 43364 - Aesculus hippocastanum: 10.1248/CPB.35.4717
- 872542 - Aglaomorpha fortunei: 10.1248/CPB.56.46
- 883772 - Aiouea montana:
- 371650 - Albizia lebbeck: 10.1016/S0031-9422(97)00489-5
- 218100 - Alhagi sparsifolia: 10.1007/BF02291536
- 109061 - Alnus hirsuta: 10.3724/SP.J.1009.2012.00084
- 97723 - Alpinia zerumbet:
- 178805 - Ampelopsis glandulosa var. brevipedunculata: 10.1016/0031-9422(93)85418-Q
- 714442 - Ampelopsis japonica: 10.1007/S11418-006-0119-2
- 171929 - Anacardium occidentale: 10.1021/JF061478A
- 4615 - Ananas comosus:
- 28473 - Anchomanes difformis: 10.17660/ACTAHORTIC.1980.96.44
- 301862 - Annona reticulata: 10.1021/JF000549H
- 13339 - Apocynum cannabinum:
- 377125 - Apocynum venetum:
- 377125 - Apocynum venetum L.: -
- 3702 - Arabidopsis thaliana: 10.1104/PP.109.148031
- 3818 - Arachis hypogaea: 10.1021/JF061478A
- 84000 - Arbutus andrachne: 10.1017/CBO9781107252806.053
- 84005 - Arbutus unedo: 10.1177/1934578X1000500721
- 4217 - Arctium lappa: 10.1007/978-1-4613-1855-2_22
- 4217 - Arctium lappa: 10.1007/978-3-540-71095-0_1382
- 4217 - Arctium lappa: 10.1016/J.JPBA.2009.03.018
- 4217 - Arctium lappa: 10.1016/J.PHYMED.2009.04.005
- 4217 - Arctium lappa: 10.1016/S0031-9422(00)89550-3
- 4217 - Arctium lappa: 10.1248/BPB.19.1515
- 4217 - Arctium lappa: 10.1248/CPB.44.2300
- 13345 - Ardisia crenata: 10.3389/FMOLB.2021.683671
- 184783 - Areca catechu:
- 184783 - Areca catechu L.: -
- 69404 - Atractylodes chinensis ( DC. ) Koidz.: -
- 41486 - AtrActylodes lancea (Thunb. )DC.: -
- 28974 - Averrhoa carambola: 10.1007/S11418-008-0239-Y
- 124943 - Azadirachta indica:
- 577683 - Banisteriopsis caapi: 10.1016/J.JEP.2009.10.030
- 1227988 - Bauhinia racemosa: 10.1016/J.EJMECH.2012.01.057
- 1045245 - Begonia fagifolia: 10.1002/ARDP.19843170808
- 1226760 - Berchemia floribunda: 10.1248/CPB.40.851
- 1226761 - Berchemia racemosa: 10.1248/CPB.40.851
- 1642475 - Bergia capensis: 10.1016/0031-9422(96)00004-0
- 171445 - Berneuxia thibetica: 10.1016/S0928-3420(99)80023-8
- 3645 - Bertholletia excelsa: 10.1021/JF061478A
- 3504 - Betula: 10.1016/0031-9422(89)80370-X
- 38787 - Betula pubescens: 10.1016/0305-1978(94)00092-U
- 1835378 - Brosimum acutifolium: 10.1016/S0031-9422(98)80094-0
- 191880 - Burkea africana: 10.1002/PTR.936
- 1027102 - Byrsonima coccolobifolia: 10.1021/NP400717M
- 4270 - Byrsonima crassifolia:
- 13385 - Calluna vulgaris: 10.1016/0031-9422(82)80150-7
- 2806806 - Caloncoba glauca: 10.1016/0031-9422(93)85433-R
- 158927 - Calophyllum inophyllum: 10.1016/S0031-9422(00)94795-2
- 1407748 - Camellia crassicolumna: 10.1021/JF802974M
- 153142 - Camellia irrawadiensis: 10.1248/CPB.57.1284
- 4443 - Camellia japonica:
- 4442 - Camellia sinensis:
- 182317 - Camellia taliensis: 10.1248/CPB.57.1284
- 1321791 - Campylospermum flavum: 10.1016/J.PHYTOCHEM.2010.08.006
- 1108177 - Campylotropis hirtella: 10.1055/S-0042-102660
- 4072 - Capsicum annuum: 10.1021/JF000549H
- 32201 - Carya illinoinensis: 10.1021/JF061478A
- 53852 - Cassia fistula:
- 508996 - Cassia javanica: 10.1248/CPB.38.888
- 167390 - Castanopsis hystrix: 10.1016/0031-9422(93)85419-R
- 1824952 - Cecropia glaziovii:
- 1958848 - Cecropia hololeuca: 10.1078/0944-7113-00003
- 1472306 - Cecropia pachystachya: 10.1078/0944-7113-00003
- 489977 - Celastrus angulatus: 10.1016/S0031-9422(00)95117-3
- 489978 - Celastrus flagellaris: 10.1080/10286020.2011.641535
- 85181 - Celastrus orbiculatus: 10.1021/NP000251L
- 994668 - Celastrus paniculatus: 10.1021/NP000251L
- 1486496 - Centaurea arenaria: 10.1002/PTR.3187
- 363423 - Centaurea deflexa: 10.1016/J.EJMECH.2011.03.011
- 75648 - Centaurea imperialis: 10.1016/0031-9422(81)85287-9
- 41536 - Centaurea melitensis: 10.1016/J.PHYTOCHEM.2006.08.012
- 41536 - Centaurea melitensis: 10.1016/S0305-1978(01)00062-X
- 75633 - Centaurea nigra: 10.1016/S0305-1978(02)00227-2
- 145513 - Centaurea raphanina: 10.1590/S0102-695X2007000200003
- 363450 - Centaurea sclerolepis: 10.1177/1934578X0600100403
- 13411 - Ceratiola ericoides: 10.1016/S0031-9422(00)81505-8
- 320146 - Chaenomeles japonica: 10.1248/CPB.50.1124
- 36622 - Chaenomeles sinensis:
- 187461 - Chamaecyparis formosensis: 10.3390/MOLECULES23030604
- 128292 - Chimarrhis turbinata: 10.1590/S0103-50532005000800008
- 221251 - Chrysophyllum cainito: 10.1021/JF011178N
- 3827 - Cicer arietinum: 10.1021/JF000549H
- 119260 - Cinnamomum aromaticum:
- 397101 - Cinnamomum bejolghota:
- 1155220 - Cinnamomum iners:
- 1132458 - Cinnamomum kotoense: 10.1021/NP060107L
- 337469 - Cinnamomum philippinense: 10.1021/NP1002274
- 119266 - Cinnamomum sieboldii: 10.1248/CPB.33.4338
- 977953 - Cinnamomum subavenium:
- 1755856 - Cinnamomum tenuifolium: 10.1021/NP900225P
- 489016 - Cinnamomum triplinerve:
- 128608 - Cinnamomum verum:
- 191224 - Cistus creticus: 10.1055/S-2006-957368
- 13442 - Coffea: 10.1021/JF000026+
- 93760 - Cola acuminata: 10.1021/JF0721038
- 82457 - Cola nitida: 10.1021/JF0721038
- 401069 - Coleogyne ramosissima:
- 162715 - Colophospermum mopane: 10.1039/J39660001644
- 13450 - Corylus: 10.1021/JF061478A
- 1851000 - Cotoneaster orbicularis: 10.1016/S0031-9422(99)00598-1
- 23159 - Crataegus:
- 298643 - Crataegus laevigata:
- 140997 - Crataegus monogyna:
- 510735 - Crataegus pinnatifida Bge.: -
- 510735 - Crataegus pinnatifida Bge. var.major N.E.Br.: -
- 510738 - Crataegus rhipidophylla:
- 198761 - Cratoxylum formosum: 10.1016/0031-9422(96)00111-2
- 212293 - Croton insularis:
- 323063 - Croton lechleri:
- 29743 - Cryptocarya obovata: 10.1021/NP030510H
- 3369 - Cryptomeria japonica:
- 3663 - Cucurbita pepo: 10.1021/JF000549H
- 681428 - Cupania latifolia: 10.1248/CPB.53.1037
- 3397 - Cycas circinalis: 10.1055/S-0029-1240743
- 36609 - Cydonia: 10.1021/JF000549H
- 76433 - Cyperus longus:
- 450026 - Dalbergia frutescens: 10.1021/NP000010D
- 2753873 - Daphne feddei: 10.1021/NP8004166
- 32239 - Dasiphora fruticosa: 10.1007/BF00565058
- 4039 - Daucus carota: 10.1021/JF000549H
- 328196 - Davallia divaricata:
- 29639 - Davallia mariesii: 10.1248/CPB.38.2620
- 328206 - Davallia trichomanoides: 10.1248/CPB.38.2620
- 557061 - Delavaya toxocarpa: 10.4028/WWW.SCIENTIFIC.NET/AMR.554-556.1845
- 327901 - Detarium microcarpum:
- 397678 - Dicranopteris pedata: 10.1248/CPB.38.856
- 128017 - Dimocarpus longan: 10.1021/JF801155J
- 35874 - Dioscorea bulbifera: 10.1002/CBDV.201000279
- 323663 - Dioscorea cirrhosa: 10.1248/CPB.33.3293
- 35925 - Diospyros kaki:
- 984801 - Dorstenia contrajerva: 10.1016/S0367-326X(00)00328-2
- 124949 - Ekebergia capensis: 10.1016/0031-9422(96)00004-0
- 276777 - Elaeagnus glabra: 10.1271/BBB1961.51.139
- 489316 - Entada phaseoloides: 10.1002/CBDV.201100002
- 33152 - Ephedra sinica: 10.1016/S0031-9422(00)83018-6
- 270431 - Erica arborea: 10.1016/J.FITOTE.2007.03.024
- 1489645 - Erythroxylum cambodianum: 10.1002/CHIN.200543206
- 2589508 - Erythroxylum passerinum: 10.1016/J.PHYTOCHEM.2007.05.007
- 188493 - Etlingera elatior: 10.1021/JF991294E
- 384959 - Euclea crispa: 10.1016/S0254-6299(15)30298-2
- 2291126 - Fagopyrum acutatum: 10.1016/J.JEP.2005.02.029
- 516549 - Fagopyrum dibotrys: 10.1016/J.JEP.2005.02.029
- 3617 - Fagopyrum esculentum:
- 3494 - Ficus carica: 10.1021/JF000549H
- 66385 - Ficus microcarpa: 10.1016/J.BMCL.2010.12.025
- 205692 - Forsythia koreana: 10.1016/S0031-9422(00)83456-1
- 205692 - Forsythia koreana: 10.1016/S0031-9422(97)01134-5
- 205694 - Forsythia ovata: 10.1248/CPB.36.3667
- 126418 - Forsythia suspensa: 10.1002/RCM.2875
- 205691 - Forsythia viridissima: 10.1016/S0031-9422(00)83456-1
- 205691 - Forsythia viridissima: 10.1016/S0031-9422(97)01134-5
- 3746 - Fragaria:
- 57918 - Fragaria vesca:
- 373155 - Gaillardia aestivalis: 10.1016/S0031-9422(00)95216-6
- 469923 - Garcinia celebica: 10.1016/J.PHYTOCHEM.2009.04.024
- 231905 - Garcinia dulcis: 10.1016/J.PHYTOCHEM.2005.06.025
- 58228 - Garcinia mangostana:
- 345239 - Geranium thunbergii: 10.1248/CPB.34.941
- 3311 - Ginkgo biloba: 10.3389/FPLS.2019.00983
- 3311 - Ginkgo biloba L.: -
- 66093 - Gleditsia japonica: 10.1080/14786410701192637
- 3847 - Glycine max:
- 3635 - Gossypium hirsutum:
- 93772 - Guazuma ulmifolia: 10.1016/0031-9422(95)00855-1
- 228003 - Gymnosporia arbutifolia: 10.1016/S0031-9422(01)00277-1
- 992706 - Gymnosporia heterophylla: 10.1016/S0031-9422(01)00277-1
- 489993 - Gymnosporia pyria: 10.1021/NP000084P
- 2419554 - Hedysarum theinum: 10.1007/S10600-008-0009-9
- 229543 - Hibiscus cannabinus: 10.1007/BF00574392
- 123425 - Hippocratea volubilis: 10.1016/S0378-8741(01)00414-7
- 9606 - Homo sapiens: -
- 3486 - Humulus lupulus:
- 282539 - Hypericum erectum: 10.1055/S-2006-961020
- 673928 - Hypericum hirsutum: 10.1007/BF01134639
- 269006 - Hypericum maculatum: 10.1177/1934578X0800300227
- 684760 - Hypericum monogynum: 10.1201/9781420023305-8
- 212239 - Hypericum patulum: 10.1016/S0031-9422(96)00651-6
- 65561 - Hypericum perforatum:
- 282558 - Hypericum triquetrifolium: 10.1016/S0367-326X(02)00162-4
- 43503 - Ixora coccinea:
- 51240 - Juglans regia: 10.1021/JF061478A
- 758917 - Juniperus excelsa: 10.1016/0031-9422(92)83631-8
- 124781 - Kadsura heteroclita: 10.1016/J.PHYTOCHEM.2007.11.019
- 61147 - Kandelia candel:
- 125586 - Koenigia alpina: 10.1007/BF00599015
- 457182 - Koenigia coriaria: 10.1007/BF00565756
- 53891 - Kummerowia stipulacea: 10.1016/S0031-9422(00)94508-4
- 4236 - Lactuca sativa: 10.1021/JF000549H
- 123599 - Larix gmelinii: 10.1016/S0031-9422(00)84524-0
- 85223 - Laurus nobilis: 10.1016/S0031-9422(97)00563-3
- 3864 - Lens culinaris:
- 23253 - Leptarrhena pyrolifolia: 10.1016/0031-9422(93)85116-9
- 556514 - Lespedeza bicolor: 10.1016/S0031-9422(00)94508-4
- 50140 - Ligaria cuneifolia: 10.1076/PHBI.36.2.131.4604
- 545644 - Lindera aggregata: 10.1177/1934578X1501001229
- 128640 - Lindera umbellata:
- 151069 - Litchi chinensis:
- 136122 - Litsea glutinosa: 10.1271/BBB.90701
- 1009485 - Litsea rotundifolia: 10.1080/1028602031000111969
- 1679436 - Litsea szemaois: 10.1007/S10600-011-9852-1
- 670087 - Lophira lanceolata: 10.1021/NP050169W
- 47247 - Lotus corniculatus: 10.1016/0031-9422(95)00602-8
- 347994 - Lotus pedunculatus: 10.1016/S0031-9422(97)00198-2
- 181288 - Lotus uliginosus: 10.1016/S0031-9422(97)00198-2
- 3871 - Lupinus angustifolius: 10.1016/S0031-9422(00)89597-7
- 49153 - Lyonia ovalifolia: 10.1016/0031-9422(73)85143-X
- 4329 - Macadamia: 10.1021/JF061478A
- 128685 - Machilus thunbergii: 10.1016/0031-9422(91)84145-I
- 3749 - Malus: 10.1021/JF025993U
- 3750 - Malus domestica:
- 283210 - Malus pumila:
- 198777 - Mammea americana: 10.1055/S-2005-871257
- 387710 - Mandevilla martiana: 10.1002/PTR.865
- 29780 - Mangifera indica:
- 3741 - Manilkara zapota: 10.1021/NP020576X
- 281856 - Margyricarpus pinnatus:
- 281886 - Margyricarpus setosus:
- 98504 - Matricaria chamomilla: 10.1111/J.1365-2621.2005.TB08304.X
- 490002 - Maytenus boaria:
- 490005 - Maytenus disticha: 10.1515/ZNC-1999-1-223
- 3879 - Medicago sativa: 10.1021/JF00028A012
- 36616 - Mespilus germanica: 10.1021/JF000549H
- 210380 - Mesua ferrea:
- 3371 - Metasequoia glyptostroboides: 10.1002/J.1537-2197.1986.TB10906.X
- 1387640 - Mezoneuron benthamianum: 10.1076/1388-0209(200009)3841-AFT284
- 1089417 - Microtropis fokienensis: 10.1021/NP060369N
- 1249038 - Miliusa balansae: 10.1016/J.BMCL.2015.07.056
- 1993599 - Millettia brandisiana: 10.1021/NP0703904
- 170351 - Mitragyna speciosa: 10.1016/S0031-9422(00)83771-1
- 3673 - Momordica charantia: 10.3390/MOLECULES23020469
- 1081520 - Monteverdia ilicifolia: 10.1590/S0103-50532010000200009
- 1825736 - Muehlenbeckia hastulata: 10.1515/ZNC-2002-9-1008
- 4640 - Musa:
- 1317686 - Musanga cecropioides: 10.1078/0944-7113-00003
- 36012 - Nageia nagi: 10.1271/BBB.56.1302
- 215991 - Nelia pillansii: 10.1016/S0031-9422(00)83483-4
- 1501052 - Ochna afzelii: 10.1076/PHBI.41.2.92.14245
- 1365881 - Ocotea porosa: 10.1016/S0031-9422(00)94800-3
- 3942 - Oenothera biennis: 10.1021/JF010526I
- 872937 - Onobrychis cyri: 10.1021/JF00031A010
- 3882 - Onobrychis viciifolia: 10.1021/JF00031A010
- 196747 - Onopordum acaulon: 10.1016/0031-9422(92)83742-H
- 297478 - Onopordum illyricum: 10.1021/NP990098Z
- 345127 - Parthenocissus tricuspidata:
- 392747 - Paullinia cupana:
- 2708928 - Pavetta owariensis: 10.1016/0031-9422(91)84150-Q
- 198785 - Pentadesma butyracea: 10.1055/S-0030-1250384
- 3435 - Persea americana:
- 46901 - Persicaria hydropiper: 10.1016/S0031-9422(98)00426-9
- 653097 - Phanera vahlii: 10.1016/J.EJMECH.2012.01.057
- 3885 - Phaseolus vulgaris:
- 42345 - Phoenix dactylifera: 10.1007/BF02896679
- 446188 - Phoenix loureiroi var. loureiroi: 10.1016/J.PHYTOCHEM.2009.06.006
- 296036 - Phyllanthus emblica:
- 319589 - Phyllanthus klotzschianus: 10.1016/S0305-1978(97)00061-6
- 296034 - Phyllanthus niruri: 10.1016/0031-9422(92)80352-F
- 50184 - Phyllocladus trichomanoides:
- 3329 - Picea abies:
- 2058695 - Pinalia floribunda:
- 3337 - Pinus: 10.1021/JF061478A
- 55513 - Pistacia vera: 10.1021/JF061478A
- 3888 - Pisum sativum: 10.1021/JF000549H
- 33090 - Plants: -
- 122832 - Platanus orientalis: 10.1023/B:CONC.0000025479.07578.5D
- 41506 - Plectocephalus americanus: 10.1016/J.PHYTOCHEM.2006.08.012
- 41506 - Plectocephalus americanus: 10.1016/S0305-1978(01)00062-X
- 57940 - Potentilla erecta: 10.1248/BPB.17.1613
- 1308043 - Prinsepia utilis: 10.1016/0031-9422(82)83196-8
- 13230 - Prosopis juliflora: 10.1080/14786410801940968
- 36596 - Prunus armeniaca: 10.1021/JF000549H
- 42229 - Prunus avium:
- 3758 - Prunus domestica:
- 3755 - Prunus dulcis: 10.1021/JF061478A
- 32242 - Prunus laurocerasus: 10.1016/S0031-9422(00)80522-1
- 97306 - Prunus maximowiczii: 10.1016/0031-9422(91)84190-4
- 102107 - Prunus mume: 10.1016/J.BMCL.2014.01.028
- 97307 - Prunus padus: 10.1248/CPB.37.3301
- 3760 - Prunus persica:
- 323851 - Prunus persica var. nucipersica: 10.1021/JF0104681
- 114937 - Prunus spinosa: 10.1021/NP50082A008
- 1926489 - Prunus ssiori: 10.1248/CPB.37.3301
- 3357 - Pseudotsuga menziesii:
- 999591 - Psorospermum febrifugum: 10.1016/S0031-9422(00)84902-X
- 180039 - Psychotria punctata: 10.3389/FMOLB.2021.683671
- 1071187 - Pterocarpus marsupium:
- 22663 - Punica granatum:
- 193309 - Pyracantha coccinea: 10.1016/0031-9422(93)85108-4
- 23211 - Pyrus communis:
- 103489 - Quercus glauca: 10.1016/0031-9422(92)83300-N
- 478951 - Quercus marilandica: 10.1016/S0031-9422(00)94785-X
- 103491 - Quercus miyagii: 10.1016/S0031-9422(00)82371-7
- 38942 - Quercus robur: 10.1007/BF02249631
- 72169 - Rhamnus lycioides: 10.1016/0378-8741(90)90009-I
- 3620 - Rheum: 10.1248/CPB.34.4083
- 284363 - Rheum australe: 10.1021/NP0301442
- 98588 - Rhizophora stylosa:
- 666566 - Rhodiola semenovii:
- 880079 - Rhododendron dauricum: 10.1007/S10600-010-9649-7
- 344754 - Rhododendron decorum: 10.1007/S10600-009-9245-X
- 401655 - Rhododendron mucronatum: 10.1271/BBB.57.2122
- 182159 - Rhododendron spinuliferum: 10.1007/S10600-009-9410-2
- 298662 - Rhus glabra:
- 255348 - Rhus typhina: 10.1007/BF00633406
- 78511 - Ribes nigrum:
- 175228 - Ribes rubrum: 10.1021/JF000549H
- 117262 - Rosa henryi: 10.1248/CPB.40.1997
- 74645 - Rosa rugosa: 10.1016/J.BMCL.2013.12.098
- 23216 - Rubus: 10.1021/JF000549H
- 420769 - Rubus adenotrichos: 10.1021/JF071475D
- 57936 - Rubus chamaemorus: 10.1021/JF049450R
- 190226 - Rubus glaucus: 10.1021/JF071475D
- 32247 - Rubus idaeus: 10.1021/JF049450R
- 41241 - Rumex acetosa: 10.1016/J.FITOTE.2009.08.015
- 174651 - Rumex japonicus: 10.1016/J.PHYTOCHEM.2007.05.032
- 1009589 - Salacia chinensis:
- 1565083 - Salacia reticulata:
- 2878180 - Salix sieboldiana: 10.1016/S0031-9422(00)83128-3
- 1073321 - Saraca asoca:
- 200489 - Saussurea involucrata: 10.1080/10286020.2010.499856
- 254913 - Saussurea laniceps: 10.1002/HLCA.200790096
- 254913 - Saussurea laniceps: 10.1016/S1875-5364(11)60016-2
- 2893703 - Saussurea macrota: 10.1002/CHIN.200516160
- 137893 - Saussurea medusa: 10.1016/S0031-9422(01)00429-0
- 137893 - Saussurea medusa: 10.1016/S0304-3835(00)00499-7
- 137893 - Saussurea medusa: 10.1248/CPB.53.1416
- 446849 - Saussurea salicifolia: 10.1016/J.FCT.2010.05.056
- 238549 - Schisandra lancifolia: 10.1248/CPB.58.852
- 20342 - Schotia brachypetala: 10.1039/P19740000961
- 162899 - Schotia latifolia: 10.1080/13880200490510856
- 28979 - Sciadopitys verticillata: 10.1002/J.1537-2197.1986.TB10906.X
- 1146880 - Scurrula atropurpurea: 10.1248/CPB.51.343
- 123477 - Semialarium mexicanum: 10.1016/S0378-8741(01)00414-7
- 138017 - Senegalia catechu: 10.1021/JF0531499
- 875646 - Senegalia polyacantha: 10.1021/JF0531499
- 28980 - Sequoia sempervirens: 10.1002/J.1537-2197.1986.TB10906.X
- 99814 - Sequoiadendron giganteum: 10.1002/J.1537-2197.1986.TB10906.X
- 49657 - Smilax china: 10.1002/HLCA.200790184
- 1045139 - Smilax corbularia: 10.1016/J.PHYTOCHEM.2010.12.018
- 2821074 - Sohnreyia excelsa:
- 4081 - Solanum lycopersicum: 10.1021/JF000549H
- 4111 - Solanum melongena: 10.1021/JF000549H
- 765745 - Sorbus decora: 10.1021/NP1003005
- 4558 - Sorghum bicolor: 10.1016/S0031-9422(00)81304-7
- 409512 - Spiraea hypericifolia: 10.1007/BF00563836
- 167472 - Stachyurus himalaicus: 10.1007/S10600-011-9847-Y
- 1968 - Streptomyces cellulosae: 10.1186/S12906-018-2154-4
- 58860 - Tamarindus indica: 10.1021/JF00048A004
- 2803980 - Taraxacum hallaisanense: 10.1007/BF02986020
- 28982 - Taxodium distichum: 10.1002/J.1537-2197.1986.TB10906.X
- 99806 - Taxus cuspidata: 10.1055/S-2006-960453
- 450917 - Tectaria subtriphylla: 10.1016/S0031-9422(00)90858-6
- 1924228 - Terminalia glabrescens: 10.1590/S0103-50532003000300021
- 3641 - Theobroma cacao:
- 108881 - Theobroma grandiflorum: 10.1021/NP034002J
- 13727 - Thujopsis dolabrata: 10.1248/CPB.35.1105
- 443222 - Toona sinensis:
- 50189 - Torreya nucifera: 10.1055/S-2001-15804
- 276781 - Trachelospermum asiaticum: 10.1016/0031-9422(72)80115-8
- 276781 - Trachelospermum asiaticum: 10.1248/CPB.34.4340
- 276781 - Trachelospermum asiaticum: 10.1248/YAKUSHI1947.93.4_539
- 429296 - Trachelospermum axillare: 10.1016/0031-9422(93)85183-R
- 947960 - Trachelospermum gracilipes: 10.1016/0031-9422(72)80115-8
- 69389 - Trachelospermum jasminoides: 10.1248/YAKUSHI1947.93.4_539
- 63057 - Trema orientale: 10.1076/PHBI.39.3.202.5930
- 1640457 - Trichilia catigua: 10.1590/S0103-50532011001100010
- 308429 - Tripterospermum chinense: 10.1007/S10600-008-9113-0
- 4565 - Triticum aestivum: 10.1021/JF000549H
- 93694 - Tsuga chinensis: 10.1002/JCCS.198500075
- 379307 - Typha capensis:
- 4733 - Typha latifolia: 10.1271/BBB1961.52.595
- 1891678 - Uncaria elliptica:
- 170183 - Uncaria guianensis: 10.1078/0944-7113-00117
- 714512 - Uncaria hirsuta Havil.: -
- 43575 - Uncaria rhynchophylla:
- 714514 - Uncaria sessilifructus Roxb.: -
- 655181 - Uncaria sinensis: 10.1142/S0192415X01000198
- 128375 - Uncaria tomentosa:
- 429299 - Urceola micrantha: 10.1021/NP010414L
- 472369 - Vaccinium angustifolium: 10.1016/J.PHYMED.2006.08.005
- 13750 - Vaccinium macrocarpon:
- 2946492 - Vaccinium pahalae: 10.1007/S11627-000-0088-1
- 180767 - Vaccinium reticulatum: 10.1007/S11627-000-0088-1
- 180772 - Vaccinium vitis-idaea: 10.1248/CPB.36.33
- 138024 - Vachellia karroo: 10.1016/J.SAJB.2011.09.001
- 138033 - Vachellia nilotica: 10.1055/S-2007-969797
- 32250 - Vauquelinia corymbosa: 10.3390/MOLECULES200815330
- 85293 - Viburnum opulus: 10.3390/MOLECULES15074599
- 3906 - Vicia faba:
- 3914 - Vigna angularis Ohwi et Ohashi: -
- 1007890 - Visnea mocanera: 10.1021/JF9505335
- 29760 - Vitis vinifera:
- 29760 - Vitis vinifera: 10.3389/FMICB.2017.00457
- 1679371 - Walsura yunnanensis: 10.4268/CJCMM20140519
- 671526 - Waltheria indica: 10.1248/BPB.28.912
- 3922 - Wisteria floribunda:
- 54882 - Wisteriopsis reticulata: 10.1021/JF903216R
- 86683 - Woodwardia orientalis: 10.1248/CPB.41.1803
- 99658 - Xanthoceras sorbifolium: 10.1021/NP9902441
- 1489966 - Xylopia vielana: 10.1016/S0031-9422(00)00344-7
- 354529 - Zanthoxylum piperitum: 10.1271/BBB.50669
- 326968 - Ziziphus jujuba:
- 157914 - Ziziphus mauritiana: 10.1016/J.BSE.2013.04.001
- 33090 - 茶: -
- 569774 - 金线莲: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Lihui Xiang, Chen Zhu, Jiajia Qian, Xiaochen Zhou, Miao Wang, Zhenshuo Song, Changsong Chen, Wenquan Yu, Lin Chen, Lanting Zeng. Positive contributions of the stem to the formation of white tea quality-related metabolites during withering.
Food chemistry.
2024 Aug; 449(?):139173. doi:
10.1016/j.foodchem.2024.139173
. [PMID: 38593722] - Lin Chen, Jingyi Wang, Yijun Yang, Huajie Wang, Anan Xu, Junhui Ma, Yuefei Wang, Ping Xu. Identifying the temporal contributors and their interactions during dynamic formation of black tea cream.
Food chemistry.
2024 Aug; 448(?):139138. doi:
10.1016/j.foodchem.2024.139138
. [PMID: 38569407] - Xiujuan Chen, Yongyong Wang, Yue Chen, Jun Dai, Shuiyuan Cheng, Xiaoqiang Chen. Formation, physicochemical properties, and biological activities of theabrownins.
Food chemistry.
2024 Aug; 448(?):139140. doi:
10.1016/j.foodchem.2024.139140
. [PMID: 38574720] - Zhi-Quan Li, Xiao-Li Yin, Hui-Wen Gu, Zhi-Xin Peng, Baomiao Ding, Zhenshun Li, Ying Chen, Wanjun Long, Haiyan Fu, Yuanbin She. Discrimination and prediction of Qingzhuan tea storage year using quantitative chemical profile combined with multivariate analysis: Advantages of MRMHR based targeted quantification metabolomics.
Food chemistry.
2024 Aug; 448(?):139088. doi:
10.1016/j.foodchem.2024.139088
. [PMID: 38547707] - Mingyu Pan, Wenfeng Geng, Yuanxiao Wang, Makoto Tsunoda, Jiatong Liu, Yingxia Zhang, Haimei Yang, Lu-Shuang Li, Shiwen Song, Jinqiang Liang, Yanting Song. Simultaneous determination of five constituents of areca nut extract in rat plasma using UPLC-MS/MS and its application in a pharmacokinetic study.
Journal of pharmaceutical and biomedical analysis.
2024 Aug; 245(?):116158. doi:
10.1016/j.jpba.2024.116158
. [PMID: 38643703] - Hongzhe Zeng, Changwei Liu, Liwei Wan, Liyuan Peng, Shuai Wen, Wenwen Fang, Hongyu Chen, Kuofei Wang, Xiaomei Yang, Jian'an Huang, Zhonghua Liu. (-)-Epicatechin ameliorates type 2 diabetes mellitus by reshaping the gut microbiota and Gut-Liver axis in GK rats.
Food chemistry.
2024 Jul; 447(?):138916. doi:
10.1016/j.foodchem.2024.138916
. [PMID: 38461723] - Jiao Feng, Jiayun Zhuang, Qianlian Chen, Hongzheng Lin, Qiang Chu, Ping Chen, Fang Wang, Bugui Yu, Zhilong Hao. The effect of maturity of tea leaves and processing methods on the formation of milky flavor in white tea - A metabolomic study.
Food chemistry.
2024 Jul; 447(?):139080. doi:
10.1016/j.foodchem.2024.139080
. [PMID: 38520904] - He Peng, Xiaojian Lin, Ying Wang, Jiajun Chen, Qian Zhao, Shengjia Chen, Qi Cheng, Chaojie Chen, Tingting Sang, Hongyu Zhou, Jun Xiao, Wen Wang, Liu Fang, Xingya Wang. Epigallocatechin gallate suppresses mitotic clonal expansion and adipogenic differentiation of preadipocytes through impeding JAK2/STAT3-mediated transcriptional cascades.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2024 Jul; 129(?):155563. doi:
10.1016/j.phymed.2024.155563
. [PMID: 38552377] - Li He, Lisheng Peng, Lianan Wang, Xiaoyan Jiang, Xinfeng Sun, Haiwen Li, Tong Lin, Zhulin Wu, Sen Lin. Investigation of folate-modified EGCG-loaded thermosensitive nanospheres inducing immunogenic cell death and damage-associated molecular patterns in hepatocellular carcinoma.
Biochemical and biophysical research communications.
2024 Jun; 714(?):149976. doi:
10.1016/j.bbrc.2024.149976
. [PMID: 38677007] - Xiang Dong, Wenying Li, Changzhu Li, Otobong Donald Akan, Chancan Liao, Jie Cao, Lin Zhang. Integrated transcriptomics and metabolomics revealed the mechanism of catechin biosynthesis in response to lead stress in tung tree (Vernicia fordii).
The Science of the total environment.
2024 Jun; 930(?):172796. doi:
10.1016/j.scitotenv.2024.172796
. [PMID: 38692325] - Serhat Kocer, Omer Utku Copur, Canan Ece Tamer, Senem Suna, Seda Kayahan, Erdinc Uysal, Semra Cavus, Ozgur Akman. Optimization and characterization of chestnut shell pigment extract obtained microwave assisted extraction by response surface methodology.
Food chemistry.
2024 Jun; 443(?):138424. doi:
10.1016/j.foodchem.2024.138424
. [PMID: 38301551] - Jingwen Xu, Hezhen Zhang, Mengyu Deng, Haotong Guo, Lifan Cui, Zhengqin Liu, Jing Xu. Formation mechanism of quinoa protein hydrolysate-EGCG complexes at different pH conditions and its effect on the protein hydrolysate-lipid co-oxidation in emulsions.
Food research international (Ottawa, Ont.).
2024 Jun; 186(?):114365. doi:
10.1016/j.foodres.2024.114365
. [PMID: 38729700] - Feng Wei, Delin Li, Xiaodong Chen, Yubing Li, Yuting Zeng, Yilin Cai, Youtao Zeng, Yu Chen, Xiao Ma, Jinhao Zeng. Therapeutic effects of epigallocatechin-3-gallate for inflammatory bowel disease: A preclinical meta-analysis.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2024 Jun; 128(?):155408. doi:
10.1016/j.phymed.2024.155408
. [PMID: 38503153] - Asako Narai-Kanayama, Sumio Hayakawa, Takayuki Yoshino, Futa Honda, Hiroko Matsuda, Yumiko Oishi. Differential effects of theasinensins and epigallocatechin-3-O-gallate on phospholipid bilayer structure and liposomal aggregation.
Biochimica et biophysica acta. Biomembranes.
2024 Jun; 1866(5):184312. doi:
10.1016/j.bbamem.2024.184312
. [PMID: 38579959] - Jiayan Zeng, Yanmin Weng, Tianli Lai, Lan Chen, Ying Li, Qiqi Huang, Saiyi Zhong, Shibiao Wan, Lianxiang Luo. Procyanidin alleviates ferroptosis and inflammation of LPS-induced RAW264.7 cell via the Nrf2/HO-1 pathway.
Naunyn-Schmiedeberg's archives of pharmacology.
2024 Jun; 397(6):4055-4067. doi:
10.1007/s00210-023-02854-2
. [PMID: 38010399] - Lu Lu, Lu Wang, Ruyi Liu, Yingbin Zhang, Xinqiang Zheng, Jianliang Lu, Xinchao Wang, Jianhui Ye. An efficient artificial intelligence algorithm for predicting the sensory quality of green and black teas based on the key chemical indices.
Food chemistry.
2024 May; 441(?):138341. doi:
10.1016/j.foodchem.2023.138341
. [PMID: 38176147] - Ziqiong Zhou, Yan Li, Fangyuan Wang, Guanghao Zhu, Shenglan Qi, Haonan Wang, Yuhe Ma, Rong Zhu, Yuejuan Zheng, Guangbo Ge, Ping Wang. Bioactive components and mechanisms of Pu-erh tea in improving levodopa metabolism in rats through COMT inhibition.
Food & function.
2024 May; 15(10):5287-5299. doi:
10.1039/d4fo00538d
. [PMID: 38639730] - Xiwen Zhang, Zhihao Huo, Xiaotong Jia, Yuanyuan Xiong, Baohua Li, Liangyou Zhang, Xin Li, Xianhong Li, Yinrui Fang, Xin Dong, Gangyi Chen. (+)-Catechin ameliorates diabetic nephropathy injury by inhibiting endoplasmic reticulum stress-related NLRP3-mediated inflammation.
Food & function.
2024 May; 15(10):5450-5465. doi:
10.1039/d3fo05400d
. [PMID: 38687305] - Karolina Jafernik, Paweł Kubica, Marta Sharafan, Aleksandra Kruk, Magdalena Anna Malinowska, Sebastian Granica, Agnieszka Szopa. Phenolic compound profiling and antioxidant potential of different types of Schisandra henryi in vitro cultures.
Applied microbiology and biotechnology.
2024 May; 108(1):322. doi:
10.1007/s00253-024-13159-6
. [PMID: 38713216] - Jilai Cui, Bin Wu, Jie Zhou. Changes in amino acids, catechins and alkaloids during the storage of oolong tea and their relationship with antibacterial effect.
Scientific reports.
2024 05; 14(1):10424. doi:
10.1038/s41598-024-60951-5
. [PMID: 38710752] - Adam J Lewis, Amanda C Richards, Alejandra A Mendez, Bijaya K Dhakal, Tiffani A Jones, Jamie L Sundsbak, Danelle S Eto, Alexis A Rousek, Matthew A Mulvey. Plant phenolics inhibit focal adhesion kinase and suppress host cell invasion by uropathogenic Escherichia coli.
Infection and immunity.
2024 May; 92(5):e0008024. doi:
10.1128/iai.00080-24
. [PMID: 38534100] - Zhaoxian Zhang, Yaoyi Jia, Chenghui Zhang, Zikang Zhang, Fangsha Jin, Dandan Pan, Daxiang Li, Xiangwei Wu. Efficacy of epigallocatechin gallate (EGCG) and its underlying mechanism in preventing bisphenol-A-induced metabolic disorders in mice.
Journal of hazardous materials.
2024 May; 469(?):134098. doi:
10.1016/j.jhazmat.2024.134098
. [PMID: 38522198] - Wei Hu, Mingchun Wen, Zisheng Han, Xue-Ling Gao, Jia-Ping Ke, Mengting Zhu, Xinlin Wei, Yong Cheng, Xiaochun Wan, Yundong Shao, Liang Zhang. Revealing the variances in color formation and bioactivities of seven catechin monomers throughout the enzymatic reaction by colorimetric and mass spectrometry.
Food research international (Ottawa, Ont.).
2024 May; 184(?):114266. doi:
10.1016/j.foodres.2024.114266
. [PMID: 38609242] - Pingping Wang, Xianghua Chai, Chun Chen, Xuejuan Duan, Kegang Wu, Xiong Fu. Enhanced in vitro bioavailability of resveratrol-loaded emulsion stabilized by β-lactoglobulin-catechin with excellent antioxidant activity.
International journal of biological macromolecules.
2024 May; 267(Pt 1):131304. doi:
10.1016/j.ijbiomac.2024.131304
. [PMID: 38569999] - Viviana Teresa Orlandi, Fabrizio Bolognese, Luca Chiodaroli, Ilaria Armenia, Enrico Caruso, Miryam Chiara Malacarne. Antibiofilm Activity of Combretum micranthum G. Don Catechin-Sugar Phytocomplex on Pseudomonas aeruginosa.
Molecules (Basel, Switzerland).
2024 May; 29(9):. doi:
10.3390/molecules29092091
. [PMID: 38731582] - Jian Zhao, Zhongling Chen, Lingxi Li, Baoshan Sun. UHPLC-MS/MS analysis and protective effects on neurodegenerative diseases of phenolic compounds in different parts of Diospyros kaki L. cv. Mopan.
Food research international (Ottawa, Ont.).
2024 May; 184(?):114251. doi:
10.1016/j.foodres.2024.114251
. [PMID: 38609229] - Zihao Qiu, Jinmei Liao, Jiahao Chen, Ansheng Li, Minyao Lin, Hongmei Liu, Wei Huang, Binmei Sun, Jing Liu, Shaoqun Liu, Peng Zheng. Comprehensive analysis of fresh tea (Camellia sinensis cv. Lingtou Dancong) leaf quality under different nitrogen fertilization regimes.
Food chemistry.
2024 May; 439(?):138127. doi:
10.1016/j.foodchem.2023.138127
. [PMID: 38064834] - Tie Hu, Fa-Jia Hu, Huang Huang, Ze-Yu Zhang, Ya-Mei Qiao, Wen-Xiong Huang, Yi-Cheng Wang, Xin-Yi Tang, Song-Qing Lai. Epigallocatechin-3-gallate confers protection against myocardial ischemia/reperfusion injury by inhibiting ferroptosis, apoptosis, and autophagy via modulation of 14-3-3η.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2024 May; 174(?):116542. doi:
10.1016/j.biopha.2024.116542
. [PMID: 38574620] - Yong Chen, Chen Xie, Yining Lei, Dan Ye, Le Wang, Fang Xiong, Hui Wu, Qiang He, Hongfu Zhou, Ling Li, Jun Xing, Cai Wang, Min Zheng. Theabrownin from Qingzhuan tea prevents high-fat diet-induced MASLD via regulating intestinal microbiota.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2024 May; 174(?):116582. doi:
10.1016/j.biopha.2024.116582
. [PMID: 38642504] - Zhongting Lu, Yan Zheng, Juan Zheng, Qijian Liang, Qingcai Zhen, Mengjie Cui, Haoru Yang, Haotian Wu, Cuixia Tian, Kangming Zhu, Chunyong Bian, Lei Du, Hao Wu, Xin Guo. Theabrownin from Fu Brick tea ameliorates high-fat induced insulin resistance, hepatic steatosis, and inflammation in mice by altering the composition and metabolites of gut microbiota.
Food & function.
2024 Apr; 15(8):4421-4435. doi:
10.1039/d3fo05459d
. [PMID: 38563324] - Zhiyuan Lin, Weidong Dai, Shanshan Hu, Dan Chen, Han Yan, Liang Zeng, Zhi Lin. Stored white tea ameliorates DSS-induced ulcerative colitis in mice by modulating the composition of the gut microbiota and intestinal metabolites.
Food & function.
2024 Apr; 15(8):4262-4275. doi:
10.1039/d3fo05176e
. [PMID: 38526548] - Yue Xiao, Dongmei Yang, Haoran Zhang, Huan Guo, Ying Liao, Changhong Lian, Yuqin Yao, Hong Gao, Yina Huang. Theabrownin as a Potential Prebiotic Compound Regulates Lipid Metabolism via the Gut Microbiota, Microbiota-Derived Metabolites, and Hepatic FoxO/PPAR Signaling Pathways.
Journal of agricultural and food chemistry.
2024 Apr; 72(15):8506-8520. doi:
10.1021/acs.jafc.3c08541
. [PMID: 38567990] - Sapna I, A Jayadeep. Enzyme-treated red rice (Oryza sativa L.) bran extracts mitigate inflammatory markers in RAW 264.7 macrophage cells and exhibit anti-inflammatory efficacy greater/comparable to ferulic acid, catechin, γ-tocopherol, and γ-oryzanol.
Journal of ethnopharmacology.
2024 Apr; 323(?):117616. doi:
10.1016/j.jep.2023.117616
. [PMID: 38142877] - Vinícius de C Oliveira, Sarah de O Rodrigues, Sabrinna M T Souto, Geraldo A da Silva, Wagner Vilegas, Bárbara Garcia Ferri, Ahmed M El-Gazzar, Gaber El-Saber Batiha, Mohamed H Mahmoud, Marcelo J D Silva, Jorge P Pagnossa, Marcelo A da Silva. Chemical profile and evaluation of the pharmacological activity of the dry extract and fraction of ethyl acetate obtained from the leaves of Mimosa caesalpiniifolia.
Journal of ethnopharmacology.
2024 Apr; 323(?):117716. doi:
10.1016/j.jep.2024.117716
. [PMID: 38190955] - Min Zeng, Joanna K Hodges, Avinash Pokala, Mona Khalafi, Geoffrey Y Sasaki, Jillian Pierson, Sisi Cao, Guy Brock, Zhongtang Yu, Jiangjiang Zhu, Yael Vodovotz, Richard S Bruno. A green tea extract confection decreases circulating endotoxin and fasting glucose by improving gut barrier function but without affecting systemic inflammation: A double-blind, placebo-controlled randomized trial in healthy adults and adults with metabolic syndrome.
Nutrition research (New York, N.Y.).
2024 Apr; 124(?):94-110. doi:
10.1016/j.nutres.2024.02.001
. [PMID: 38430822] - Zhi-Wei Ren, Hong-Jing Pan, Cheng Hu, Miao-Miao Le, Yan-Hua Long, Qian Xu, Zhong-Wen Xie, Tie-Jun Ling. Rolling forms the diversities of small molecular nonvolatile metabolite profile and consequently shapes the bacterial community structure for Keemun black tea.
Food research international (Ottawa, Ont.).
2024 Apr; 181(?):114094. doi:
10.1016/j.foodres.2024.114094
. [PMID: 38448096] - Chenlu Ma, Youfa Xie, Xin Huang, Lu Zhang, David Julian McClements, Liqiang Zou, Wei Liu. Encapsulation of (-)-epigallocatechin gallate (EGCG) within phospholipid-based nanovesicles using W/O emulsion-transfer methods: Masking bitterness and delaying release of EGCG.
Food chemistry.
2024 Mar; 437(Pt 2):137913. doi:
10.1016/j.foodchem.2023.137913
. [PMID: 37939421] - Dong-Jun Lee, Jin-Hyun Kim, Tae-Ho Lee, Myung-Eun Park, Byung-Ohg Ahn, So-Jin Lee, Jeong-Yong Cho, Chang-Kug Kim. Selection of Catechin Biosynthesis-Related Genes and Functional Analysis from Chromosome-Level Genome Assembly in C. sinensis L. Variety 'Sangmok'.
International journal of molecular sciences.
2024 Mar; 25(7):. doi:
10.3390/ijms25073634
. [PMID: 38612446] - Chunli Zhao, Changbin Wang, Yongqiang Zhou, Tao Hu, Yan Zhang, Xiang Lv, Jiaxin Li, Ying Zhou. Discovery of Potential Anti-Microbial Molecules and Spectrum Correlation Effect of Ardisia crenata Sims via High-Performance Liquid Chromatography Fingerprints and Molecular Docking.
Molecules (Basel, Switzerland).
2024 Mar; 29(5):. doi:
10.3390/molecules29051178
. [PMID: 38474690] - Charlène Sirvins, Pascale Goupy, Aurélie Promeyrat, Claire Dufour. C-Nitrosation, C-Nitration, and Coupling of Flavonoids with N-Acetyltryptophan Limit This Amine N-Nitrosation in a Simulated Cured and Cooked Meat.
Journal of agricultural and food chemistry.
2024 Mar; 72(9):4777-4787. doi:
10.1021/acs.jafc.3c08445
. [PMID: 38377948] - Magdalena Lasota, Paulina Lechwar, Wirginia Kukula-Koch, Marcin Czop, Karolina Czech, Katarzyna Gaweł-Bęben. Pulp or Peel? Comparative Analysis of the Phytochemical Content and Selected Cosmetic-Related Properties of Annona cherimola L., Diospyros kaki Thumb., Cydonia oblonga Mill. and Fortunella margarita Swingle Pulp and Peel Extracts.
Molecules (Basel, Switzerland).
2024 Mar; 29(5):. doi:
10.3390/molecules29051133
. [PMID: 38474645] - Jacob Lessard-Lord, Charlène Roussel, Valérie Guay, Yves Desjardins. Assessing the Gut Microbiota's Ability to Metabolize Oligomeric and Polymeric Flavan-3-ols from Aronia and Cranberry.
Molecular nutrition & food research.
2024 Mar; 68(5):e2300641. doi:
10.1002/mnfr.202300641
. [PMID: 38350729] - Kesar Singh, R N Yadava, Ritu Yadav. Antioxidant isolation and characterization from the plant Tradescantia spathacea Sw. of the Commelinaceae family.
Natural product research.
2024 Mar; 38(6):1016-1023. doi:
10.1080/14786419.2023.2213806
. [PMID: 37194669] - Aziz Zouhri, Toufik Bouddine, Naoual El Menyiy, Yahya El-Mernissi, Hassan Laaroussi, Mohamed Chebaibi, Hassan Amhamdi, Abdelhay Elharrak, Hiba-Allah Nafidi, Baye Sitotaw, Yousef A Bin Jardan, Mohammed Bourhia, Lhoussain Hajji. Chemical composition and potential antioxidant, anti-inflammatory, and analgesic efficacy of Cistus albidus L.
Acta pharmaceutica (Zagreb, Croatia).
2024 Mar; 74(1):81-99. doi:
10.2478/acph-2024-0002
. [PMID: 38554388] - Victoria O Oyanna, Baron J Bechtold, Katherine D Lynch, M Ridge Call, Tyler N Graf, Nicholas H Oberlies, John D Clarke. Green Tea Catechins Decrease Solubility of Raloxifene In Vitro and Its Systemic Exposure in Mice.
Pharmaceutical research.
2024 Mar; 41(3):557-566. doi:
10.1007/s11095-024-03662-w
. [PMID: 38302834] - Xiangchun Zhang, Xiangde Yang, Jianyun Ruan, Hongping Chen. Epigallocatechin gallate (EGCG) nanoselenium application improves tea quality (Camellia sinensis L.) and soil quality index without losing microbial diversity: A pot experiment under field condition.
The Science of the total environment.
2024 Mar; 914(?):169923. doi:
10.1016/j.scitotenv.2024.169923
. [PMID: 38199344] - Huimin Yong, Zeyu Wang, Jinbao Huang, Jun Liu. Preparation, characterization and application of antioxidant packaging films based on chitosan-epicatechin gallate conjugates with different substitution degrees.
International journal of biological macromolecules.
2024 Mar; 260(Pt 2):129568. doi:
10.1016/j.ijbiomac.2024.129568
. [PMID: 38246436] - Yara Nabil Salem, Zainab A Sheribah, Mohie K Sharaf El-Din, Mona El Sayed Fathy. A novel optimized eco-friendly simple spectrofluorimetric method for the determination of total catechins in green tea extract: Application to commercial tablet.
Luminescence : the journal of biological and chemical luminescence.
2024 Mar; 39(3):e4727. doi:
10.1002/bio.4727
. [PMID: 38527806] - Yameng Wang, Shibei Ge, Golam Jalal Ahammed, Haina Gao, Keyin Shen, Qianying Wang, Wenli Wang, Shuangchen Chen, Xin Li. Epigallocatechin-3-gallate-induced tolerance to cadmium stress involves increased flavonoid synthesis and nutrient homeostasis in tomato roots.
Plant physiology and biochemistry : PPB.
2024 Mar; 208(?):108468. doi:
10.1016/j.plaphy.2024.108468
. [PMID: 38507840] - Yanxia Yu, Chunying Zuo, Mingrui Li, Yuanyuan Tang, Lingxi Li, Fang Wang, Shuting Zhang, Baoshan Sun. Novel l-Cysteine Incomplete Degradation Method for Preparation of Procyanidin B2-3'-O-Gallate and Exploration of its in Vitro Anti-inflammatory Activity and in Vivo Tissue Distribution.
Journal of agricultural and food chemistry.
2024 Feb; 72(8):4023-4034. doi:
10.1021/acs.jafc.3c05616
. [PMID: 38357881] - Muneeba Zubair Alam, Clinton Emeka Okonkwo, João P Cachaneski-Lopes, Carlos F O Graeff, Augusto Batagin-Neto, Saeed Tariq, Sabu Varghese, Matthew J O'Connor, Abuzar E Albadri, J Beau W Webber, Mohammed Tarique, Mutamed Ayyash, Afaf Kamal-Eldin. Date fruit melanin is primarily based on (-)-epicatechin proanthocyanidin oligomers.
Scientific reports.
2024 02; 14(1):4863. doi:
10.1038/s41598-024-55467-x
. [PMID: 38418836] - Jasmin Bayer, Petra Högger. Development and validation of a LC-MS/MS method for the quantification of phenolic compounds in human saliva after intake of a procyanidin-rich pine bark extract.
Journal of pharmaceutical and biomedical analysis.
2024 Feb; 239(?):115914. doi:
10.1016/j.jpba.2023.115914
. [PMID: 38101241] - Zaizhi Liu, Haibin Liao, Yanting Dai, Yanlong Qi, Zhengrong Zou. Characterization and Anti-Ultraviolet Radiation Activity of Proanthocyanidin-Rich Extracts from Cinnamomum camphora by Ultrasonic-Assisted Method.
Molecules (Basel, Switzerland).
2024 Feb; 29(4):. doi:
10.3390/molecules29040796
. [PMID: 38398548] - Shuxuan Li, Yao Zhi, Wentao Mu, Mingqian Li, Guoyue Lv. Exploring the effects of epigallocatechin gallate on lipid metabolism in the rat steatotic liver during normothermic machine perfusion: Insights from lipidomics and RNA sequencing.
European journal of pharmacology.
2024 Feb; 964(?):176300. doi:
10.1016/j.ejphar.2023.176300
. [PMID: 38141939] - Ximing Wu, Yijun Wang, Dongxu Wang, Ziqi Wang, Mingchuan Yang, Lumin Yang, Fuming Wang, Wei Wang, Xiangchun Zhang. Formation of EGCG oxidation self-assembled nanoparticles and their antioxidant activity in vitro and hepatic REDOX regulation activity in vivo.
Food & function.
2024 Feb; ?(?):. doi:
10.1039/d3fo05309a
. [PMID: 38315103] - Weilong Kong, Ping Zhao, Qing Zhang, Jingjing Yang, Qiufang Zhu, Yanbing Zhang, Xuming Deng, Xiao Chen, Jinke Lin, Xingtan Zhang. Chromatin accessibility mediated transcriptome changes contribute to flavor substance alterations and jasmonic acid hyperaccumulation during oolong tea withering process.
The Plant journal : for cell and molecular biology.
2024 Feb; 117(3):679-693. doi:
10.1111/tpj.16521
. [PMID: 37921032] - Mingchuan Yang, Ximing Wu, Yufeng He, Xiuli Li, Lumin Yang, Tingting Song, Fuming Wang, Chung S Yang, Jinsong Zhang. EGCG oxidation-derived polymers induce apoptosis in digestive tract cancer cells via regulating the renin-angiotensin system.
Food & function.
2024 Jan; ?(?):. doi:
10.1039/d3fo03795a
. [PMID: 38293823] - Nicolette Frank, Douglas Dickinson, William Garcia, Yutao Liu, Hongfang Yu, Jingwen Cai, Sahaj Patel, Bo Yao, Xiaocui Jiang, Stephen Hsu. Feasibility Study of Developing a Saline-Based Antiviral Nanoformulation Containing Lipid-Soluble EGCG: A Potential Nasal Drug to Treat Long COVID.
Viruses.
2024 01; 16(2):. doi:
10.3390/v16020196
. [PMID: 38399972] - Silvia Tejada, Fiorella Sarubbo, Manuel Jiménez-García, Margarida R Ramis, Margalida Monserrat-Mesquida, Maria Magdalena Quetglas-Llabrés, Xavier Capó, Susana Esteban, Antoni Sureda, David Moranta. Mitigating Age-Related Cognitive Decline and Oxidative Status in Rats Treated with Catechin and Polyphenon-60.
Nutrients.
2024 Jan; 16(3):. doi:
10.3390/nu16030368
. [PMID: 38337652] - Mayuree Kanlayavattanakul, Mattaka Khongkow, Wannita Klinngam, Puxvadee Chaikul, Nattaya Lourith, Piyaporn Chueamchaitrakun. Recent insights into catechins-rich Assam tea extract for photoaging and senescent ageing.
Scientific reports.
2024 01; 14(1):2253. doi:
10.1038/s41598-024-52781-2
. [PMID: 38279010] - Kong Junhong, Tsai Yun, Shui Guangxing, Ding Yuhan, Xiang Qian, Zhang Haowen. (-)-Epicatechin protects against myocardial ischemia/reperfusion injury via autophagy-dependent ferroptosis.
Aging.
2024 Jan; 15(?):. doi:
10.18632/aging.205477
. [PMID: 38277217] - Qingwei Cao, Suhuan Mei, Arshad Mehmood, Yu Sun, Xiumin Chen. Inhibition of pancreatic lipase by coffee leaves-derived polyphenols: A mechanistic study.
Food chemistry.
2024 Jan; 444(?):138514. doi:
10.1016/j.foodchem.2024.138514
. [PMID: 38310782] - Chris Krebs Danilevicz, Lolita Schneider Pizzolato, Sara Elis Bianchi, Gabriela Meirelles, Valquiria Linck Bassani, Ionara Rodrigues Siqueira. Pharmacological evaluation of a traditional Brazilian medicinal plant, Monteverdia ilicifolia. Part I - Preclinical safety study.
Journal of ethnopharmacology.
2024 Jan; 324(?):117806. doi:
10.1016/j.jep.2024.117806
. [PMID: 38278373] - Jie Wang, Zhen Li. Effects of processing technology on tea quality analyzed using high-resolution mass spectrometry-based metabolomics.
Food chemistry.
2024 Jan; 443(?):138548. doi:
10.1016/j.foodchem.2024.138548
. [PMID: 38277939] - Kunlin Ou, Quan Zhang, Feifei Xi, Huizhen Ni, Jiebo Lu, Xuejing Lyu, Chonggang Wang, Qiyuan Li, Qin Wang. Prenatal EGCG consumption impacts hepatic glycogen synthesis and lipid metabolism in adult mice.
International journal of biological macromolecules.
2024 Jan; 260(Pt 1):129491. doi:
10.1016/j.ijbiomac.2024.129491
. [PMID: 38228202] - Zahra Mostofinejad, Eleonora Cremonini, Jiye Kang, Patricia I Oteiza. Effects of (-)-epicatechin on hepatic triglyceride metabolism.
Food & function.
2024 Jan; 15(1):326-337. doi:
10.1039/d3fo03666a
. [PMID: 38086683] - Ana Paula Dias Moreno, Priscyla Daniely Marcato, Letícia Bueno Silva, Sérgio Luiz de Souza Salvador, Marina Constante Gabriel Del Arco, Juliana Cristina Biazzoto de Moraes, Roberto Santana da Silva, Andiara De Rossi. Antibacterial Activity of Epigallocatechin-3-gallate (EGCG) Loaded Lipid-chitosan Hybrid Nanoparticle against Planktonic Microorganisms.
Journal of oleo science.
2024; 73(5):709-716. doi:
10.5650/jos.ess23155
. [PMID: 38692893] - Hamza Bouakline, Saliha Bouknana, Mohammed Merzouki, Imane Ziani, Allal Challioui, Mohamed Bnouham, Abdesselam Tahani, Ali El Bachiri. The Phenolic Content of Pistacia lentiscus Leaf Extract and Its Antioxidant and Antidiabetic Properties.
TheScientificWorldJournal.
2024; 2024(?):1998870. doi:
10.1155/2024/1998870
. [PMID: 38356989] - Yi Fang, Jun Wang, Yu Cao, Wenrui Liu, Lianxiang Duan, Jing Hu, Jinghua Peng. The Antiobesity Effects and Potential Mechanisms of Theaflavins.
Journal of medicinal food.
2024 Jan; 27(1):1-11. doi:
10.1089/jmf.2023.k.0180
. [PMID: 38060708] - Teng Fan, Yuanyuan Huang, Zeyu Liu, Jinsheng Huang, Bin Ke, Yuming Rong, Huijuan Qiu, Bei Zhang. Unveiling the Mechanism of the ChaiShao Shugan Formula Against Triple-Negative Breast Cancer.
Drug design, development and therapy.
2024; 18(?):1115-1131. doi:
10.2147/dddt.s394287
. [PMID: 38618280] - Dwinder Sidhu, M Vasundhara, Priyankar Dey. The intestinal-level metabolic benefits of green tea catechins: Mechanistic insights from pre-clinical and clinical studies.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2024 Jan; 123(?):155207. doi:
10.1016/j.phymed.2023.155207
. [PMID: 38000106] - Takashi Tanaka. [Dynamic Chemistry of Tannins].
Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan.
2024; 144(2):183-195. doi:
10.1248/yakushi.23-00170
. [PMID: 38296496] - Yun Li, Liya Niu, Leiyan Wu, Dongming Li, Chao Sun, Jianhui Xiao. Polyphenol-fortified extruded sweet potato starch vermicelli: Slow-releasing polyphenols is the main factor that reduces the starch digestibility.
International journal of biological macromolecules.
2023 Dec; 253(Pt 8):127584. doi:
10.1016/j.ijbiomac.2023.127584
. [PMID: 37866571] - Yongling Ning, Zhiying Yuan, Qing Wang, Jia He, Weidong Zhu, Dan-Ni Ren, Da Wo. Epigallocatechin-3-gallate promotes wound healing response in diabetic mice by activating keratinocytes and promoting re-epithelialization.
Phytotherapy research : PTR.
2023 Dec; ?(?):. doi:
10.1002/ptr.8099
. [PMID: 38140774] - James Line, Serat-E Ali, Sophie Grice, Tai Rao, Dean J Naisbitt. Investigating the Immune Basis of Green Tea Extract Induced Liver Injury in Healthy Donors Expressing HLA-B*35:01.
Chemical research in toxicology.
2023 Dec; 36(12):1872-1875. doi:
10.1021/acs.chemrestox.3c00253
. [PMID: 38055372] - Natividad Chaves, Laura Nogales, Ismael Montero-Fernández, José Blanco-Salas, Juan Carlos Alías. Mediterranean Shrub Species as a Source of Biomolecules against Neurodegenerative Diseases.
Molecules (Basel, Switzerland).
2023 Dec; 28(24):. doi:
10.3390/molecules28248133
. [PMID: 38138621] - Maha K A Khalifa, Somaia A Abdel-Sattar, Omnya M Amin, Neveen A Kohaf, Heba S Zaky, Marwa A Abd El-Fattah, Kamilia H A Mohammed, Noha M Badawi, Ihab Mansoor, Heba A Eassa. Effectiveness of epigallocatechin gallate nanoparticles on the in-vivo treatment of Alzheimer's disease in a rat/mouse model: a systematic review.
Daru : journal of Faculty of Pharmacy, Tehran University of Medical Sciences.
2023 Dec; ?(?):. doi:
10.1007/s40199-023-00494-8
. [PMID: 38079104] - Dan-Yang Shi, Yu Zheng, Qiang-Sheng Guo, Can Gong, Xu Xu, Jian-Ping Gao. Determination of total phenol and six polyphenolic components in the polyphenol extract of Cinnamomi cortex by quantitative nuclear magnetic resonance spectroscopy.
Analytical methods : advancing methods and applications.
2023 12; 15(47):6561-6570. doi:
10.1039/d3ay01501g
. [PMID: 38009205] - Yashika Gandhi, Hemant Rawat, Daljeet Singh Dhanjal, Vijay Kumar, Vaibhav Charde, Hemant Soni, Sujeet K Mishra, Gagandeep Singh, Simranjeet Singh, Preeti Sharma, Santosh K Shakya, C V Narsimhaji, Ajay K Meena, Arjun Singh, Ravindra Singh, Naryanam Srikanth, Rabinarayan Acharya. A Comparative Analysis of Phytochemicals, Metal Ions, Volatile Metabolites in Heart Wood, Stem Bark and Leaves of Salix alba L. along with in Vitro Antioxidant, Antacid, Antimicrobial Activities for Sake of Environment Conservation by Substitution of Stem Bark With Leaf.
Chemistry & biodiversity.
2023 Dec; 20(12):e202301234. doi:
10.1002/cbdv.202301234
. [PMID: 37867394] - Feng Zhou, Xu-Yang Liu, Lin-Lin Liu, Yan Hou, Zisheng Han, Liang Zhang. Integrated metabolomics and transcriptomic analysis reveals metabolic changes of flavor compounds of Camellia assamica host plant after parasitized by Viscumarticulatum.
Plant physiology and biochemistry : PPB.
2023 Dec; 205(?):108157. doi:
10.1016/j.plaphy.2023.108157
. [PMID: 37939544] - Yuming Wei, Xuchao Yin, Mengjie Zhao, Jixin Zhang, Tiehan Li, Yiyi Zhang, Yujie Wang, Jingming Ning. Metabolomics analysis reveals the mechanism underlying the improvement in the color and taste of yellow tea after optimized yellowing.
Food chemistry.
2023 Dec; 428(?):136785. doi:
10.1016/j.foodchem.2023.136785
. [PMID: 37467693] - Fabio Esposito, Nicolino Pala, Mauro Carcelli, Samuel T Boateng, Paolo S D'Aquila, Alberto Mariani, Sandro Satta, Jean Christopher Chamcheu, Mario Sechi, Vanna Sanna. α-Glucosidase inhibition by green, white and oolong teas: in vitro activity and computational studies.
Journal of enzyme inhibition and medicinal chemistry.
2023 Dec; 38(1):2236802. doi:
10.1080/14756366.2023.2236802
. [PMID: 37470394] - Bailey R Meyer, Haley M White, Jared D McCormack, Emily D Niemeyer. Catechin Composition, Phenolic Content, and Antioxidant Properties of Commercially-Available Bagged, Gunpowder, and Matcha Green Teas.
Plant foods for human nutrition (Dordrecht, Netherlands).
2023 Dec; 78(4):662-669. doi:
10.1007/s11130-023-01121-2
. [PMID: 37923855] - Guangyao Zhang, Xinxin Bi, Lingli Li, Yue Zheng, Duoduo Zheng, Xinyan Peng, Na Jia, Dengyong Liu. Catechins affect the oil-holding capacity of meat batters by changing the structure and emulsifying properties of surface proteins at the fat globules.
International journal of biological macromolecules.
2023 Dec; 252(?):126474. doi:
10.1016/j.ijbiomac.2023.126474
. [PMID: 37625755] - Yifan Li, Jixin Zhang, Huiyan Jia, Yue Pan, Yong-Quan Xu, Yujie Wang, Wei-Wei Deng. Metabolite analysis and sensory evaluation reveal the effect of roasting on the characteristic flavor of large-leaf yellow tea.
Food chemistry.
2023 Nov; 427(?):136711. doi:
10.1016/j.foodchem.2023.136711
. [PMID: 37390734] - Hong Xu, Xu Zhong, Taotao Wang, Shanshan Wu, Huanan Guan, Dongxu Wang. (-)-Epigallocatechin-3-Gallate Reduces Perfluorodecanoic Acid-Exacerbated Adiposity and Hepatic Lipid Accumulation in High-Fat Diet-Fed Male C57BL/6J Mice.
Molecules (Basel, Switzerland).
2023 Nov; 28(23):. doi:
10.3390/molecules28237832
. [PMID: 38067561] - Oyinlola O Olaokun, Muhammad S Zubair. Antidiabetic Activity, Molecular Docking, and ADMET Properties of Compounds Isolated from Bioactive Ethyl Acetate Fraction of Ficus lutea Leaf Extract.
Molecules (Basel, Switzerland).
2023 Nov; 28(23):. doi:
10.3390/molecules28237717
. [PMID: 38067448] - Piao Yu, Feng Xu, Hongmei Wu, Xiangpei Wang, Qin Ding, Mei Zhang, Rongze Fang, Ping Qin. Anti-Ulcerative Colitis Effects and Active Ingredients in Ethyl Acetate Extract from Decoction of Sargentodoxa cuneata.
Molecules (Basel, Switzerland).
2023 Nov; 28(22):. doi:
10.3390/molecules28227663
. [PMID: 38005385] - Yue Zhu, Seyit Yuzuak, Xiaoyan Sun, De-Yu Xie. Identification and biosynthesis of plant papanridins, a group of novel oligomeric flavonoids.
Molecular plant.
2023 11; 16(11):1773-1793. doi:
10.1016/j.molp.2023.09.015
. [PMID: 37749887] - Tomasz Sawicki, Wioletta Błaszczak, Piotr Latocha. In vitro anticholinergic and antiglycaemic properties of frost-hardy Actinidia fruit extracts and their polyphenol profile, L-ascorbic acid content and antioxidant capacity.
Food research international (Ottawa, Ont.).
2023 Nov; 173(Pt 1):113324. doi:
10.1016/j.foodres.2023.113324
. [PMID: 37803635] - Javier Antileo-Laurie, Cristina Theoduloz, Alberto Burgos-Edwards, Felipe Jiménez-Aspee, Katherine Márquez, Marlene Fischer, Guillermo Schmeda-Hirschmann. Antioxidant capacity and inhibition of metabolic syndrome-associated enzymes by Cryptocarya alba fruits.
Food research international (Ottawa, Ont.).
2023 11; 173(Pt 2):113343. doi:
10.1016/j.foodres.2023.113343
. [PMID: 37803697] - Ramon S B Ferreira, Fabiane O Farias, Erick J S de Araujo, Julian Martínez, Eduardo A C Batista. Deep eutectic solvents as an alternative for extraction of flavonoids from soybean (Glycine max (L) Merrill) and okara: An experimental and computational approach based on COSMO-SAC model.
Food research international (Ottawa, Ont.).
2023 Nov; 173(Pt 1):113266. doi:
10.1016/j.foodres.2023.113266
. [PMID: 37803579] - Fan Xia, Suling Sun, Shuyang Li, Wei Jiang, Li Xia, Hongzhi Wang, Xueran Chen. Chinese herb related molecules Catechins, Caudatin and Cucurbitacin-I inhibit the proliferation of glioblastoma by activating KDELR2-mediated endoplasmic reticulum stress.
Biochemical and biophysical research communications.
2023 Oct; 687(?):149196. doi:
10.1016/j.bbrc.2023.149196
. [PMID: 37939504] - Serena Carpentieri, Giovanna Ferrari, Francesco Donsì. All-natural wheat gliadin-gum arabic nanocarriers for encapsulation and delivery of grape by-products phenolics obtained through different extraction procedures.
Food chemistry.
2023 Oct; 424(?):136385. doi:
10.1016/j.foodchem.2023.136385
. [PMID: 37247597] - Nagisa Mori, Neil Murphy, Norie Sawada, David Achaintre, Taiki Yamaji, Augustin Scalbert, Junko Ishihara, Ribeka Takachi, Kazutoshi Nakamura, Junta Tanaka, Motoki Iwasaki, Hiroyasu Iso, Manami Inoue, Marc J Gunter, Shoichiro Tsugane. Reproducibility and dietary correlates of plasma polyphenols in the JPHC-NEXT Protocol Area study.
European journal of clinical nutrition.
2023 Oct; ?(?):. doi:
10.1038/s41430-023-01349-w
. [PMID: 37891229] - Guoping Lai, Mingchun Wen, Zongde Jiang, Feng Zhou, Hui-Xia Huo, Mengting Zhu, Zisheng Han, Zixin Zhao, Chi-Tang Ho, Liang Zhang. Novel Oxidation Oligomer of Chlorogenic Acid and (-)-Epigallocatechin and Its Quantitative Analysis during the Processing of Keemun Black Tea.
Journal of agricultural and food chemistry.
2023 Oct; 71(42):15745-15753. doi:
10.1021/acs.jafc.3c04571
. [PMID: 37816159] - Juan Song, Xudong Yu, Chengzhi Lv, Dong Wang. Single-step assembly of lipid-gelatin-epigallocatechin-3-gallate hybrid nanoparticles for cancer therapy.
Anti-cancer drugs.
2023 10; 34(9):1010-1017. doi:
10.1097/cad.0000000000001484
. [PMID: 36728959] - Qiuting Yu, Ning Zhang, Xiaowen Gan, Linglin Chen, Rui Wang, Ronggan Liang, Jie Jian. EGCG attenuated acute myocardial infarction by inhibiting ferroptosis via miR-450b-5p/ACSL4 axis.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2023 Oct; 119(?):154999. doi:
10.1016/j.phymed.2023.154999
. [PMID: 37597361] - Bruhan Kaggwa, Godwin Anywar, Edson Ireeta Munanura, Raphael Wangalwa, Henry Kyeyune, Hedmon Okella, Fadhiru Pakoyo Kamba, Ogwang Patrick Engeu. Application of the herbal chemical marker ranking system (Herb MaRS) to the standardization of herbal raw materials: a case study.
BMC complementary medicine and therapies.
2023 Sep; 23(1):348. doi:
10.1186/s12906-023-04178-3
. [PMID: 37777721]