Uric acid (BioDeep_00000001480)
Secondary id: BioDeep_00000229641, BioDeep_00000400018, BioDeep_00000405237
natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite Toxin BioNovoGene_Lab2019 Volatile Flavor Compounds
代谢物信息卡片
化学式: C5H4N4O3 (168.0283394)
中文名称: 尿酸
谱图信息:
最多检出来源 Viridiplantae(plant) 0.35%
Last reviewed on 2024-07-17.
Cite this Page
Uric acid. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/uric_acid (retrieved
2024-11-21) (BioDeep RN: BioDeep_00000001480). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: c1(=O)[nH]c(=O)c2c([nH]1)[nH]c(=O)[nH]2
InChI: InChI=1S/C5H4N4O3/c10-3-1-2(7-4(11)6-1)8-5(12)9-3/h(H4,6,7,8,9,10,11,12)
描述信息
Uric acid is a heterocyclic purine derivative that is the final oxidation product of purine metabolism. It is a weak acid distributed throughout the extracellular fluid as sodium urate. Uric acid is produced by the enzyme xanthine oxidase, which oxidizes oxypurines such as xanthine into uric acid. In most mammals, except humans and higher primates, the enzyme uricase further oxidizes uric acid to allantoin. Interestingly, during the Miocene epoch (~15-20 million years ago), two distinct mutations in the primate genome occurred that led to a nonfunctioning uricase gene. Consequently, humans, apes, and certain New World monkeys have much higher uric acid levels (>120 μM) compared with other mammals (<<120 uM). The loss of uricase in higher primates parallels the similar loss of the ability to synthesize ascorbic acid vitamin C. This may be because in higher primates uric acid partially replaces ascorbic acid. Like ascorbic acid, uric acid is an antioxidant. In fact, in primates, uric acid is the major antioxidant in serum and is thought to be a major factor in lengthening life-span and decreasing age-specific cancer rates in humans and other primates (PMID: 6947260). Uric acid is also the end product of nitrogen metabolism in birds and reptiles. In these animal species, it is excreted in feces as a dry mass. In humans and other mammals, the amount of urate in the blood depends on the dietary intake of purines, the level of endogenous urate biosynthesis, and the rate of urate excretion. Several kidney urate transporters are involved in the regulation of plasma urate levels. These include the urate transporter 1 (URAT1), which controls the reabsorption of urate as well as a number of organic ion transporters (OAT), such as OAT1 and OAT3, and the ATP-dependent urate export transporter MRP4. URAT1 is believed to be most critical in the regulation of plasma urate levels. (PMID: 17890445) High levels of plasma uric acid lead to a condition called hyperuricemia while low levels are associated with a condition called hypouricemia. Hyperuricemia has been defined as a uric acid concentration greater than 380 μM, while hypouricemia is generally defined as a urate concentration of less than 120 μM. Hyperuricemia can arise from a number of factors, including both acute and chronic causes. Acute causes of hyperuricemia include the intake of large amounts of alcohol, tumor lysis syndrome and a diet that is rich in purines or proteins. Chronic hyperuricemia can arise from a reduction in the kidney’s glomerular filtration rate, a decrease in the excretion of urate or an increase in overall tubular absorption in the kidneys. Hyperuricemia has been linked to a number of diseases and conditions, including gout, hypertension, cardiovascular disease, myocardial infarction, stroke, and renal disease. Uric acid has been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID: 22626821). Many of the causes of hyperuricemia are correctable either with lifestyle changes or drugs. Lifestyle changes include reducing weight and reducing the consumption of protein, purines, and alcohol. There are two kinds of drugs that can be used to treat chronic hyperuricemia. Xanthine oxidase inhibitors, such as allopurinol, inhibit the production of urate by blocking urate synthesis. Alternately, uricosuric drugs, such as probenecid, sulfinpyrazone, and benzpromarone, are used to reduce the serum urate concentration through the inhibition of the URAT1 transporter. (PMID: 17890445). Uric acid (especially crystalline uric acid) is also thought to be an essential initiator and amplifier of allergic inflammation for asthma and peanut allergies (PMID: 21474346).
Uric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=69-93-2 (retrieved 2024-07-17) (CAS RN: 69-93-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Uric acid, scavenger of oxygen radical, is a very important antioxidant that help maintains the stability of blood pressure and antioxidant stress. Uric acid can remove reactive oxygen species (ROS) such as singlet oxygen and peroxynitrite, inhibiting lipid peroxidation[1][2].
Uric acid, scavenger of oxygen radical, is a very important antioxidant that help maintains the stability of blood pressure and antioxidant stress. Uric acid can remove reactive oxygen species (ROS) such as singlet oxygen and peroxynitrite, inhibiting lipid peroxidation[1][2].
同义名列表
34 个代谢物同义名
2,3,6,7,8,9-hexahydro-1H-purine-2,6,8-trione; Purine-2,6,8(1H,3H,9H)-trione; Monohydrate, monosodium urate; Urate monohydrate, monosodium; Sodium acid urate monohydrate; Monosodium urate monohydrate; Urate monohydrate, sodium; Monohydrate, sodium urate; Sodium urate monohydrate; 2,6,8-Trihydroxypurine; 1H-Purine-2,6,8-triol; Urate, ammonium acid; Acid urate, ammonium; Ammonium acid urate; 2,6,8-Trioxopurine; Acid urate, sodium; 2,6,8-Trioxypurine; Urate, sodium acid; Urate, monosodium; Sodium acid urate; Urate, potassium; Monosodium urate; Potassium urate; Urate, sodium; Trioxopurine; Sodium Urate; Lithic acid; Acid, uric; uric acid; Lithate; Urate; Uric acid; Uric acid; Urate
数据库引用编号
36 个数据库交叉引用编号
- ChEBI: CHEBI:62589
- ChEBI: CHEBI:46817
- ChEBI: CHEBI:27226
- ChEBI: CHEBI:46811
- ChEBI: CHEBI:46814
- ChEBI: CHEBI:46823
- ChEBI: CHEBI:17775
- KEGG: C00366
- PubChem: 1175
- HMDB: HMDB0000289
- Metlin: METLIN88
- DrugBank: DB08844
- ChEMBL: CHEMBL792
- Wikipedia: Uric_acid
- MeSH: Uric Acid
- MetaCyc: URATE
- KNApSAcK: C00007301
- foodb: FDB015350
- chemspider: 1142
- CAS: 69-93-2
- MoNA: PS114507
- MoNA: PS114502
- MoNA: RP013602
- MoNA: PS114501
- MoNA: RP013601
- PMhub: MS000000609
- PDB-CCD: 8HX
- PDB-CCD: URC
- 3DMET: B00094
- NIKKAJI: J2.372H
- RefMet: Uric acid
- medchemexpress: HY-B2130
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-12
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-786
- PubChem: 3657
- KNApSAcK: 17775
分类词条
相关代谢途径
Reactome(17)
- Metabolism
- Disease
- Transport of small molecules
- SLC-mediated transmembrane transport
- Transport of bile salts and organic acids, metal ions and amine compounds
- Purine metabolism
- Urate synthesis
- Organic cation/anion/zwitterion transport
- Organic anion transport
- Ion channel transport
- Stimuli-sensing channels
- Nucleotide metabolism
- Nucleotide catabolism
- Purine catabolism
- Disorders of transmembrane transporters
- SLC transporter disorders
- Defective SLC22A12 causes renal hypouricemia 1 (RHUC1)
PlantCyc(11)
- superpathway of purines degradation in plants
- Organic Nitrogen Assimilation
- inosine 5'-phosphate degradation
- adenosine nucleotides degradation I
- ureide biosynthesis
- purine nucleotides degradation I (plants)
- guanosine nucleotides degradation II
- nucleobase ascorbate transport I
- urate conversion to allantoin I
- superpathway of guanosine nucleotides degradation (plants)
- guanosine nucleotides degradation I
代谢反应
1112 个相关的代谢反应过程信息。
Reactome(60)
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Nucleotide metabolism:
H2O + XTP ⟶ PPi + XMP
- Nucleobase catabolism:
H2O + XTP ⟶ PPi + XMP
- Purine catabolism:
H2O + XTP ⟶ PPi + XMP
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide catabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Purine catabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide catabolism:
H+ + TPNH + Ura ⟶ Hydrouracil + TPN
- Purine catabolism:
H2O + Hyp + Oxygen ⟶ H2O2 + XAN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide catabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Purine catabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Nucleotide metabolism:
ATP + Thy-dRib ⟶ ADP + TMP
- Nucleotide catabolism:
H+ + TPNH + Ura ⟶ Hydrouracil + TPN
- Purine catabolism:
H2O + Hyp + Oxygen ⟶ H2O2 + XAN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide catabolism:
H+ + TPNH + Ura ⟶ Hydrouracil + TPN
- Purine catabolism:
H2O + Hyp + Oxygen ⟶ H2O2 + XAN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide catabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Purine catabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Metabolism:
H2O + PBG ⟶ HMBL + ammonia
- Nucleotide metabolism:
CAP + L-Asp ⟶ N-carb-L-Asp + Pi
- Purine metabolism:
ATP + CAIR + L-Asp ⟶ ADP + Pi + SAICAR
- Urate synthesis:
Ino + Pi ⟶ Hyp + R1P
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide catabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Purine catabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide catabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Purine catabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Nucleotide metabolism:
H2O + XTP ⟶ PPi + XMP
- Nucleobase catabolism:
H2O + XTP ⟶ PPi + XMP
- Purine catabolism:
H2O + XTP ⟶ PPi + XMP
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide catabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Purine catabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide catabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Purine catabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Nucleotide metabolism:
H2O + XTP ⟶ PPi + XMP
- Nucleobase catabolism:
H2O + XTP ⟶ PPi + XMP
- Purine catabolism:
H2O + XTP ⟶ PPi + XMP
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Nucleotide metabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Nucleotide catabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Purine catabolism:
AMP + H2O ⟶ Ade-Rib + Pi
BioCyc(1)
- salvage pathways of adenine, hypoxanthine, and their nucleosides:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
WikiPathways(4)
- Purine metabolism and related disorders:
Adenine ⟶ AMP
- Molybdenum cofactor (Moco) biosynthesis:
Xanthine ⟶ urate
- Purine metabolism:
Adenine ⟶ AMP
- Metabolic Epileptic Disorders:
P-enolpyruvate ⟶ Pyruvate
Plant Reactome(219)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + dioxygen + urate ⟶ 5-hydroxyisourate + H2O2
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + dioxygen + urate ⟶ 5-hydroxyisourate + H2O2
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + dioxygen + urate ⟶ 5-hydroxyisourate + H2O2
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + dioxygen + urate ⟶ 5-hydroxyisourate + H2O2
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + IMP + NAD ⟶ NADH + XMP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + IMP + NAD ⟶ NADH + XMP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + IMP + NAD ⟶ NADH + XMP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + dioxygen + urate ⟶ 5-hydroxyisourate + H2O2
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + dioxygen + urate ⟶ 5-hydroxyisourate + H2O2
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + IMP + NAD ⟶ NADH + XMP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + dioxygen + urate ⟶ 5-hydroxyisourate + H2O2
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
5-hydroxy-2-oxo-4-ureido-2,5-dihydro-1H imidazole-5-carboxylate ⟶ allantoin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + dioxygen + urate ⟶ 5-hydroxyisourate + H2O2
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
INOH(1)
- Purine nucleotides and Nucleosides metabolism ( Purine nucleotides and Nucleosides metabolism ):
H2O + XTP ⟶ Pyrophosphate + XMP
PlantCyc(777)
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- adenosine nucleotides degradation I:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- purine nucleotides degradation I (plants):
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- guanosine nucleotides degradation II:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- superpathway of guanosine nucleotides degradation (plants):
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- superpathway of purines degradation in plants:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- urate conversion to allantoin II:
H+ + NADH + O2 + urate ⟶ (S)-5-hydroxyisourate + H2O + NAD+
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- inosine 5'-phosphate degradation:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- guanosine nucleotides degradation II:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- adenosine nucleotides degradation I:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- superpathway of purines degradation in plants:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- nucleobase ascorbate transport I:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- ureide biosynthesis:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- superpathway of guanosine nucleotides degradation (plants):
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- guanosine nucleotides degradation I:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- purine nucleotides degradation I (plants):
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- superpathway of guanosine nucleotides degradation (plants):
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- purine nucleotides degradation I (plants):
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- urate conversion to allantoin II:
H+ + NADH + O2 + urate ⟶ (S)-5-hydroxyisourate + H2O + NAD+
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- superpathway of purines degradation in plants:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- inosine 5'-phosphate degradation:
phosphate + xanthosine ⟶ α-D-ribose-1-phosphate + xanthine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- ureide biosynthesis:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- Organic Nitrogen Assimilation:
H2O + O2 + urate ⟶ CO2 + allantoin + hydrogen peroxide
- Organic Nitrogen Assimilation:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- Organic Nitrogen Assimilation:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- Organic Nitrogen Assimilation:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- Organic Nitrogen Assimilation:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- Organic Nitrogen Assimilation:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- Organic Nitrogen Assimilation:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- Organic Nitrogen Assimilation:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- Organic Nitrogen Assimilation:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- Organic Nitrogen Assimilation:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- Organic Nitrogen Assimilation:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- Organic Nitrogen Assimilation:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- Organic Nitrogen Assimilation:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- guanosine nucleotides degradation II:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- guanosine nucleotides degradation I:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- adenosine nucleotides degradation I:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of purines degradation in plants:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- Organic Nitrogen Assimilation:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- Organic Nitrogen Assimilation:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- Organic Nitrogen Assimilation:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- Organic Nitrogen Assimilation:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- Organic Nitrogen Assimilation:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- Organic Nitrogen Assimilation:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- adenosine nucleotides degradation II:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- adenosine nucleotides degradation I:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- inosine 5'-phosphate degradation:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- ureide biosynthesis:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- guanosine nucleotides degradation II:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- Organic Nitrogen Assimilation:
NAD+ + glu ⟶ 2-oxoglutarate + H+ + NADH + gln
COVID-19 Disease Map(0)
PathBank(50)
- Purine Metabolism:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Adenosine Deaminase Deficiency:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Adenylosuccinate Lyase Deficiency:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Gout or Kelley-Seegmiller Syndrome:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Lesch-Nyhan Syndrome (LNS):
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Molybdenum Cofactor Deficiency:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Xanthine Dehydrogenase Deficiency (Xanthinuria):
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Purine Nucleoside Phosphorylase Deficiency:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- AICA-Ribosiduria:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Azathioprine Action Pathway:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Mercaptopurine Action Pathway:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Thioguanine Action Pathway:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Xanthinuria Type I:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Xanthinuria Type II:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Adenine Phosphoribosyltransferase Deficiency (APRT):
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Mitochondrial DNA Depletion Syndrome-3:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Myoadenylate Deaminase Deficiency:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Adenosine Nucleotides Degradation:
Adenosine monophosphate + Water ⟶ Adenosine + Phosphate
- AMP Degradation (Hypoxanthine Route):
Adenosine monophosphate + Hydrogen Ion + Water ⟶ Ammonium + Inosinic acid
- Urate Degradation to Ureidoglycolate:
5-hydroxy-2-oxo-4-ureido-2,5-dihydro-1H-imidazole-5-carboxylate + Hydrogen Ion ⟶ Allantoin + Carbon dioxide
- Urate Degradation to Glyoxylate:
5-hydroxy-2-oxo-4-ureido-2,5-dihydro-1H-imidazole-5-carboxylate + Hydrogen Ion ⟶ Allantoin + Carbon dioxide
- Purine Metabolism:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Adenosine Deaminase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Adenylosuccinate Lyase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- AICA-Ribosiduria:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Gout or Kelley-Seegmiller Syndrome:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Xanthine Dehydrogenase Deficiency (Xanthinuria):
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Lesch-Nyhan Syndrome (LNS):
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Molybdenum Cofactor Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Purine Nucleoside Phosphorylase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Xanthinuria Type I:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Xanthinuria Type II:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Adenine Phosphoribosyltransferase Deficiency (APRT):
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Mitochondrial DNA Depletion Syndrome:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Myoadenylate Deaminase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Purine Metabolism:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Purine Metabolism:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Adenosine Deaminase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Adenylosuccinate Lyase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- AICA-Ribosiduria:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Gout or Kelley-Seegmiller Syndrome:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Xanthine Dehydrogenase Deficiency (Xanthinuria):
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Lesch-Nyhan Syndrome (LNS):
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Molybdenum Cofactor Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Purine Nucleoside Phosphorylase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Xanthinuria Type I:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Xanthinuria Type II:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Adenine Phosphoribosyltransferase Deficiency (APRT):
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Mitochondrial DNA Depletion Syndrome:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Myoadenylate Deaminase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
PharmGKB(0)
17 个相关的物种来源信息
- 3702 - Arabidopsis thaliana:
- 7227 - Drosophila melanogaster: 10.1038/S41467-019-11933-Z
- 3039 - Euglena gracilis: 10.3389/FBIOE.2021.662655
- 6536 - Helix pomatia: 10.1515/BCHM2.1963.332.1.319
- 9606 - Homo sapiens:
- 9606 - Homo sapiens: -
- 645164 - Lotus burttii: 10.1111/J.1365-3040.2010.02266.X
- 47247 - Lotus corniculatus: 10.1111/J.1365-3040.2010.02266.X
- 181267 - Lotus creticus: 10.1111/J.1365-3040.2010.02266.X
- 264956 - Lotus filicaulis: 10.1111/J.1365-3040.2010.02266.X
- 34305 - Lotus japonicus:
- 347996 - Lotus tenuis: 10.1111/J.1365-3040.2010.02266.X
- 159736 - Macrobrachium nipponense: 10.3389/FPHYS.2018.00076
- 2096 - Mycoplasma gallisepticum: 10.1128/MSYSTEMS.00055-17
- 6359 - Platynereis dumerilii: 10.1007/PL00001807
- 5691 - Trypanosoma brucei:
- 29760 - Vitis vinifera: 10.1016/J.DIB.2020.106469
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Jin Xu, Xiao Du, Shilan Zhang, Xueyan Zang, Zixi Xiao, Rongkai Su, Xiadie Huang, Ling Liu. Diagnostic value of uric acid to high-density lipoprotein cholesterol ratio in abdominal aortic aneurysms.
Annals of medicine.
2024 Dec; 56(1):2357224. doi:
10.1080/07853890.2024.2357224
. [PMID: 38779715] - Yizeng Xu, Fang Lu, Meng Wang, Lingchen Wang, Chaoyang Ye, Shuohui Yang, Chen Wang. Shen Shuai II recipe improves renal hypoxia to attenuate renal injury in 5/6 renal ablation/infarction rats and effect evaluation using blood oxygenation level-dependent functional magnetic resonance imaging.
Renal failure.
2024 Dec; 46(1):2338565. doi:
10.1080/0886022x.2024.2338565
. [PMID: 38622926] - Xiongying Yu, Shuaiwei Ren, Jun Zhou, Yongcui Liao, Yousheng Huang, Huanhuan Dong. A potential therapeutic agent for the treatment of hyperuricemia and gout: 3,4-Dihydroxy-5-nitrobenzaldehyde phenylthiosemicarbazide.
European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.
2024 Jul; 198(?):106778. doi:
10.1016/j.ejps.2024.106778
. [PMID: 38653341] - Yuchao Liu, Yunqi Han, Yuquan Liu, Congying Huang, Wanze Feng, Hongwei Cui, Minhui Li. Xanthoceras sorbifolium leaves alleviate hyperuricemic nephropathy by inhibiting the PI3K/AKT signaling pathway to regulate uric acid transport.
Journal of ethnopharmacology.
2024 Jun; 327(?):117946. doi:
10.1016/j.jep.2024.117946
. [PMID: 38447615] - Ying-Ling Zhang, Si-Min Chen, Yi-Jie Song, Md Ariful Islam, Pei-Li Rao, Meng-Jie Zhu, Wen-Yi Gu, Yu Xu, Hong-Xi Xu. Red ginseng ameliorates lipotoxicity-induced renal fibrosis in hyperuricemia mice.
Journal of ethnopharmacology.
2024 Jun; 327(?):118014. doi:
10.1016/j.jep.2024.118014
. [PMID: 38460576] - Wen Huang, Min Zhang, Qiong Qiu, Jing Zhang, Chao Hua, Geliang Chen, Hua Xie. Metabolomics of human umbilical vein endothelial cell-based analysis of the relationship between hyperuricemia and dyslipidemia.
Nutrition, metabolism, and cardiovascular diseases : NMCD.
2024 Jun; 34(6):1528-1537. doi:
10.1016/j.numecd.2024.02.001
. [PMID: 38508990] - Ali Ashkbari, Hossein-Ali Nikbakht, Saeid Amirkhanlou, Ghazaleh Elahi, Marjan Salahi, Sareh Ebrahimi, Saeed Golfiroozi, Seyed Ahmad Hosseini, Mousa Ghelichi-Ghojogh. Impact of Ramadan fasting on lipid profile, uric acid, and HbA1c in CKD: A systematic review and meta-analysis.
Primary care diabetes.
2024 Jun; 18(3):277-283. doi:
10.1016/j.pcd.2024.03.007
. [PMID: 38616441] - Yan Yang, Xiao-Yan Shen, Hai-Xia Tang, Hong Liu, Yi Wen. Sex differences in the association of the uric acid to high-density lipoprotein cholesterol ratio with coronary artery disease risk among Chinese nondialysis patients with CKD stages 3-5.
Nutrition, metabolism, and cardiovascular diseases : NMCD.
2024 Jun; 34(6):1546-1553. doi:
10.1016/j.numecd.2024.03.003
. [PMID: 38555242] - Chanda Javed, Razia Noreen, Samia Gul Niazi, Mubin Mustafa Kiyani, Qurat Ul Ain. Anti-gouty arthritis and anti-inflammatory effects of curcumin nanoparticles in monosodium urate crystals induced Balb/C mice.
Inflammopharmacology.
2024 Jun; 32(3):1929-1940. doi:
10.1007/s10787-024-01450-x
. [PMID: 38556563] - Wen-Wen Liu, Hong-Jing Dong, Zhe Zhang, Xin-Hui Ma, Shuang Liu, Wei Huang, Xiao Wang. Analyzing chemical composition of Sargentodoxae caulis water extract and their hypouricemia effect in hyperuricemic mice.
Fitoterapia.
2024 Jun; 175(?):105926. doi:
10.1016/j.fitote.2024.105926
. [PMID: 38537887] - Xiayan Yu, Wenjing Qiang, Kexin Gong, Yidan Cao, Shuangqin Yan, Guopeng Gao, Fangbiao Tao, Beibei Zhu. No role of the third-trimester inflammatory factors in the association of gestational diabetes mellitus with postpartum cardiometabolic indicators.
BMC pregnancy and childbirth.
2024 May; 24(1):361. doi:
10.1186/s12884-024-06563-3
. [PMID: 38750471] - Shuangling Yang, Haimei Liu, Xian-Ming Fang, Fuman Yan, Yaxing Zhang. Signaling pathways in uric acid homeostasis and gout: From pathogenesis to therapeutic interventions.
International immunopharmacology.
2024 May; 132(?):111932. doi:
10.1016/j.intimp.2024.111932
. [PMID: 38560961] - Jinlong Zhao, Bangxin Sha, Lingfeng Zeng, Yaoxing Dou, Hetao Huang, Guihong Liang, Jianke Pan, Kunhao Hong, Guanghui Zhou, Weiyi Yang, Jun Liu. J-shaped association of serum uric acid concentrations with all-cause mortality in individuals with osteoarthritis: A prospective cohort study.
Joint bone spine.
2024 May; 91(3):105679. doi:
10.1016/j.jbspin.2023.105679
. [PMID: 38143017] - Qijun Sun, Xiaoyu Xu, Meng Wu, Na Niu, Ligang Chen. Rational Biomimetic Construction of Lignin-based Carbon Nanozyme for Identification of Uric Acid in Human Urine.
Talanta.
2024 May; 271(?):125657. doi:
10.1016/j.talanta.2024.125657
. [PMID: 38218056] - Jin Jin Yang, Hongpeng Yu, Kegang Wu, Dong He, Huadan Zhang, Zheng Xiang Cui, Xianghua Chai, Xuejuan Duan. Potential Anti-Gouty Arthritis of Citronella Essential Oil and Nutmeg Essential Oil through Reducing Oxidative Stress and Inhibiting PI3K/Akt/mTOR Activation-Induced NLRP3 Activity.
Chemistry & biodiversity.
2024 May; 21(5):e202400448. doi:
10.1002/cbdv.202400448
. [PMID: 38498112] - Yajie Xu, Pan Chen, Long Sun, Yan Zou, Lixing Zhang, Wanghai Tang, Tingji Zhang, Jinlin Huo, Jin Zhou. Effect and mechanism of Yiqing decoction on hyperuricemia rats.
Cellular and molecular biology (Noisy-le-Grand, France).
2024 Apr; 70(4):217-224. doi:
10.14715/cmb/2024.70.4.34
. [PMID: 38678602] - Xiaoqian Wang, Yunjie Sheng, Jiaqi Guan, Fengling Zhang, Chenghua Lou. Sanmiao wan alleviates inflammation and exhibits hypouricemic effect in an acute gouty arthritis rat model.
Journal of ethnopharmacology.
2024 Apr; 324(?):117764. doi:
10.1016/j.jep.2024.117764
. [PMID: 38219882] - Ximing Yu, Shilu Dou, Liaodong Lu, Meng Wang, Zhongfeng Li, Dongwei Wang. Relationship between lipid metabolism, coagulation and other blood indices and etiology and staging of non-traumatic femoral head necrosis: a multivariate logistic regression-based analysis.
Journal of orthopaedic surgery and research.
2024 Apr; 19(1):251. doi:
10.1186/s13018-024-04715-x
. [PMID: 38643101] - Ying Wang, Yanling Chen, Yuqing Song, Hong Chen, Xin Guo, Ling Ma, Huan Liu. The Impact of mHealth-Based Continuous Care on Disease Knowledge, Treatment Compliance, and Serum Uric Acid Levels in Chinese Patients With Gout: Randomized Controlled Trial.
JMIR mHealth and uHealth.
2024 Apr; 12(?):e47012. doi:
10.2196/47012
. [PMID: 38623741] - Yong Wu, Shuwen Pang, Jing Guo, Jie Yang, Rui Ou. Assessment of the efficacy of alkaline water in conjunction with conventional medication for the treatment of chronic gouty arthritis: A randomized controlled study.
Medicine.
2024 Apr; 103(14):e37589. doi:
10.1097/md.0000000000037589
. [PMID: 38579090] - R I I Noor, M A H Miah, M K Alam, M M Khan, M A Rahman, L Fardaus, E Mondal, A A Sakib, M K Islam, M Fatima. Serum Uric Acid and Serum Lipid Levels in Patients with Acute Ischemic Stroke Admitted in Mymensingh Medical College Hospital.
Mymensingh medical journal : MMJ.
2024 Apr; 33(2):402-410. doi:
"
. [PMID: 38557518] - Wanting Fu, Ziyuan Liu, Yingzhou Wang, Xindi Li, Xiang Yu, Yang Li, Zejun Yu, Yinsheng Qiu, Zhinan Mei, Lingyun Xu. Baicalin inhibits monosodium urate crystal-induced pyroptosis in renal tubular epithelial cell line through Panx-1/P2X7 pathways: Molecular docking, molecular dynamics, and in vitro experiments.
Chemical biology & drug design.
2024 Apr; 103(4):e14522. doi:
10.1111/cbdd.14522
. [PMID: 38580458] - Chen Xueying, Zhang Hua, Zhao Lujing, Li Ruomeng, Dai Wen, Chen Anyong, Gao Ronghua, Guo Ying, Zhang Shufang, Yang Guoliang, Liu Lixin, Wang Shijun, Zhang Shaohui, Gan Lijun. Which patients with coronary artery disease should include oral nitrates on their discharge medication list?.
Acta cardiologica.
2024 Apr; 79(2):136-148. doi:
10.1080/00015385.2023.2271763
. [PMID: 37961760] - Upinder Kaur, Bhairav Kumar Pathak, Tharik Jalal Meerashahib, Dondapati Venkata Vamshi Krishna, Sankha Shubhra Chakrabarti. Should Glucokinase be Given a Chance in Diabetes Therapeutics? A Clinical-Pharmacological Review of Dorzagliatin and Lessons Learned So Far.
Clinical drug investigation.
2024 Apr; 44(4):223-250. doi:
10.1007/s40261-024-01351-5
. [PMID: 38460077] - Zhi-Peng Feng, Xiao-Yan Wang, Hong-Yi Xin, Shao-Li Huang, Hong-Yu Huang, Qiang Xin, Xi-He Zhang, Hong-Wu Xin. Gut microbiota plays a significant role in gout.
Journal of medical microbiology.
2024 Apr; 73(4):. doi:
10.1099/jmm.0.001824
. [PMID: 38629677] - Eun Hye Lee, Ji Young Kim, Hye Ran Yang. Sex-specific differences in ectopic fat and metabolic characteristics of paediatric nonalcoholic fatty liver disease.
International journal of obesity (2005).
2024 Apr; 48(4):486-494. doi:
10.1038/s41366-023-01439-6
. [PMID: 38114813] - Niqin Xiao, Zhaohu Xie, Zhiyan He, Yundong Xu, Shuyu Zhen, Yuanyuan Wei, Xiaoyu Zhang, Jiayan Shen, Jian Wang, Yadan Tian, Jinlian Zuo, Jiangyun Peng, Zhaofu Li. Pathogenesis of gout: Exploring more therapeutic target.
International journal of rheumatic diseases.
2024 Apr; 27(4):e15147. doi:
10.1111/1756-185x.15147
. [PMID: 38644732] - Chen Sun, Yanmin Liu, Wei Huang, Yang Chen, Yusheng Deng, Jiamin Yuan, Lili Deng, Ning Xu, Xiaoxiao Shang, Chuyang Wang, Zhimin Yang, Li Huang, Qinwei Qiu. Uric acid, high density lipoprotein cholesterol levels and their ratio are related to microbial enterotypes and serum metabolites in females with a blood stasis constitution.
Lipids in health and disease.
2024 Mar; 23(1):90. doi:
10.1186/s12944-024-02066-4
. [PMID: 38539207] - Boštjan Jakše, Uroš Godnov, Zlatko Fras, Nataša Fidler Mis. Associations of Dietary Intake with Cardiovascular Risk in Long-Term 'Plant-Based Eaters': A Secondary Analysis of a Cross-Sectional Study.
Nutrients.
2024 Mar; 16(6):. doi:
10.3390/nu16060796
. [PMID: 38542706] - Hidekatsu Yanai, Hiroki Adachi, Mariko Hakoshima, Sakura Iida, Hisayuki Katsuyama. A Possible Therapeutic Application of the Selective Inhibitor of Urate Transporter 1, Dotinurad, for Metabolic Syndrome, Chronic Kidney Disease, and Cardiovascular Disease.
Cells.
2024 Mar; 13(5):. doi:
10.3390/cells13050450
. [PMID: 38474414] - Haibo Wang, Zewen Chu, Tengyang Ni, Dawei Chen, Xiaojun Dai, Wei Jiang, Masataka Sunagawa, Yanqing Liu. Effect and mechanism of aqueous extract of Chinese herbal prescription (TFK) in treating gout arthritis.
Journal of ethnopharmacology.
2024 Mar; 321(?):117527. doi:
10.1016/j.jep.2023.117527
. [PMID: 38056535] - Deshi Chen, Cihang Lu, Kang Chen, Tingting Liu, Yongze Li, Zhongyan Shan, Weiping Teng. Association between anthropometric indices and hyperuricemia: a nationwide study in China.
Clinical rheumatology.
2024 Mar; 43(3):907-920. doi:
10.1007/s10067-024-06884-w
. [PMID: 38315297] - Guangwei Pan, Yijia Liu, Lu Yu, Rongrong Yang, Tong Yang, Yang Wang, Jinyu Su, Zhu Li, Qi Cheng, Sheng Gao, Lin Li, Chunquan Yu. Relationship Between Serum Uric Acid and Carotid Plaque in Patients With Coronary Artery Disease by Sex and Blood Pressure Status.
Angiology.
2024 Mar; 75(3):274-280. doi:
10.1177/00033197221150614
. [PMID: 36617727] - Li Fang, Rong Shen, Yao Lu, Xiangfeng Xu, Fang Huang. Tetrandrine alleviates inflammation and promotes macrophage M2 polarization in gouty arthritis by NF-κB-mediated Lcp1.
Cellular and molecular biology (Noisy-le-Grand, France).
2024 Feb; 70(2):205-211. doi:
10.14715/cmb/2024.70.2.29
. [PMID: 38430024] - Shasha Hu, Sihui He, Jianyong Zhang, Wukai Ma, Hongling Geng, Zhiying Zhan, Xueming Yao, Li Zhong, Jiaxin Wei, Xia Qiu, Ertao Jia. Association between patient adherence and treat-to-target in gout: A cross-sectional study.
Medicine.
2024 Feb; 103(8):e37228. doi:
10.1097/md.0000000000037228
. [PMID: 38394537] - Yunjiang Yu, Runan Chen, Zhenchi Li, Kai Luo, Mark Patrick Taylor, Chaojie Hao, Qian Chen, Yang Zhou, Hongxuan Kuang, Guocheng Hu, Xichao Chen, Hongyan Li, Chenyin Dong, Guang-Hui Dong. Associations of urinary zinc exposure with blood lipid profiles and dyslipidemia: Mediating effect of serum uric acid.
The Science of the total environment.
2024 Feb; 912(?):168951. doi:
10.1016/j.scitotenv.2023.168951
. [PMID: 38042193] - Valérie Tikhonoff, Edoardo Casiglia, Agostino Virdis, Guido Grassi, Fabio Angeli, Marcello Arca, Carlo M Barbagallo, Michele Bombelli, Federica Cappelli, Rosario Cianci, Arrigo F G Cicero, Massimo Cirillo, Pietro Cirillo, Raffaella Dell'oro, Lanfranco D'elia, Giovambattista Desideri, Claudio Ferri, Ferruccio Galletti, Loreto Gesualdo, Cristina Giannattasio, Guido Iaccarino, Francesca Mallamaci, Alessandro Maloberti, Stefano Masi, Maria Masulli, Alberto Mazza, Alessandro Mengozzi, Maria Lorenza Muiesan, Pietro Nazzaro, Paolo Palatini, Gianfranco Parati, Roberto Pontremoli, Fosca Quarti-Trevano, Marcello Rattazzi, Gianpaolo Reboldi, Giulia Rivasi, Elisa Russo, Massimo Salvetti, Pier Luigi Temporelli, Giuliano Tocci, Andrea Ungar, Paolo Verdecchia, Francesca Viazzi, Massimo Volpe, Claudio Borghi. Prognostic Value and Relative Cutoffs of Triglycerides Predicting Cardiovascular Outcome in a Large Regional-Based Italian Database.
Journal of the American Heart Association.
2024 Feb; 13(3):e030319. doi:
10.1161/jaha.123.030319
. [PMID: 38293920] - Linmeng Tang, Dehong Yang, Zhiwei Liu, Yaohui Wang, Xu Yang, Yujia Liu, Dongbin Chen, Zheng Tang, Yongping Huang. Functional characterization of Bmcap in uric acid metabolism in the silkworm.
Insect science.
2024 Feb; 31(1):147-156. doi:
10.1111/1744-7917.13236
. [PMID: 37358054] - Fang Congcong, Zhu Xiaoliang, Zhang Yongjian, Q I Huan, Zhang Yingjie. Combination of allopurinol with Dahuang Mudan Tang significantly improve kidney function and alleviate oxidative stress and inflammation of chronic kidney disease stage Ⅰ-Ⅲ patients with hyperuricemia.
Journal of traditional Chinese medicine = Chung i tsa chih ying wen pan.
2024 Feb; 44(1):182-187. doi:
10.19852/j.cnki.jtcm.20231121.001
. [PMID: 38213253] - Jiana Du, Na Wang, Dehong Yu, Pei He, Yu Gao, Yanbei Tu, Yanfang Li. Data mining-guided alleviation of hyperuricemia by Paeonia veitchii Lynch through inhibition of xanthine oxidase and regulation of renal urate transporters.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2024 Feb; 124(?):155305. doi:
10.1016/j.phymed.2023.155305
. [PMID: 38176275] - Z-T Wang, W-T Tan, M-M Meng, H Su, Q Li, C-M Guo, J Wang, H Liu. The correlation between Helicobacter pylori infection and iron deficiency anemia in women.
European review for medical and pharmacological sciences.
2024 Feb; 28(4):1541-1553. doi:
10.26355/eurrev_202402_35483
. [PMID: 38436187] - Qin Shao, Jing Wang. The Role of Ultrasound Semi-Quantitative Scoring in the Diagnosis and Assessment of Gout and Hyperuricemia.
Journal of ultrasound in medicine : official journal of the American Institute of Ultrasound in Medicine.
2024 Feb; 43(2):281-291. doi:
10.1002/jum.16358
. [PMID: 37853928] - Alexander E Berezin, Tetiana A Berezina. Plausible prediction of renoprotective effects of sodium-glucose cotransporter-2 inhibitors in patients with chronic kidney diseases.
The Journal of international medical research.
2024 Feb; 52(2):3000605241227659. doi:
10.1177/03000605241227659
. [PMID: 38329077] - Feifan Liu, Fanyi Shen, Yuanmei Bai, Yan Wan, Lijie Zheng, Jinglin He, Yuhuan Xie, Peixin Guo. Mechanism of DaiTongXiao in the treatment of gouty arthritis through the NLRP3 signaling pathway.
Journal of ethnopharmacology.
2024 Jan; 319(Pt 3):117313. doi:
10.1016/j.jep.2023.117313
. [PMID: 37924998] - Zhong-Yuan Cheng, Shang-Ao Gong, Ping-Kang Chen, Zong-Chao Yu, Chen Qiu, Ji-Xin Lin, Jia-Bin Mo, Long Qian, You-Zhen Feng, Xiang-Ran Cai. Using intravoxel incoherent motion imaging to evaluate uric acid-induced renal injury and efficacy after treatment.
The British journal of radiology.
2024 Jan; 97(1153):274-282. doi:
10.1093/bjr/tqad037
. [PMID: 38263841] - Linli Zhang, Fan Zhang, Yan Bai, Liuyan Huang, Yifei Zhong, Xianwen Zhang. Effects of sodium-glucose cotransporter-2 (SGLT-2) inhibitors on serum uric acid levels in patients with chronic kidney disease: a systematic review and network meta-analysis.
BMJ open diabetes research & care.
2024 Jan; 12(1):. doi:
10.1136/bmjdrc-2023-003836
. [PMID: 38238025] - Jungeun Kim, Sun Yeop Lee, Jihye Lee, Sanghyuk Yoon, Eun Gyo Kim, Eunbyeol Lee, Nayoung Kim, Sol Lee, Ho Gym, Sang-In Park. Effects of uric acid on ischemic diseases, stratified by lipid levels: a drug-target, nonlinear Mendelian randomization study.
Scientific reports.
2024 01; 14(1):1338. doi:
10.1038/s41598-024-51724-1
. [PMID: 38228698] - Nan Ma, Shengbao Cai, Yilin Sun, Chuanqi Chu. Chinese Sumac (Rhus chinensis Mill.) Fruits Prevent Hyperuricemia and Uric Acid Nephropathy in Mice Fed a High-Purine Yeast Diet.
Nutrients.
2024 Jan; 16(2):. doi:
10.3390/nu16020184
. [PMID: 38257077] - Ya-Fei Liu, Liang Han, Yin-Hong Geng, Huan-Huan Wang, Jia-Hui Yan, Sheng-Hao Tu. Nonlinearity association between hyperuricemia and all-cause mortality in patients with chronic kidney disease.
Scientific reports.
2024 01; 14(1):673. doi:
10.1038/s41598-023-51010-6
. [PMID: 38182707] - Ya-Xi Shang, Shu-Feng Wei, Ke-Peng Yang, Yuan Liu, Su Wei, Xia Dong, Xin-Chang Wang, Zhi-Min Xie, Ru-Lu Fang, Li-Na Liang, Xiu-Feng Li, Lei Xu, Mu-Zhi Chen, Kai-Xian Zhang, Ji-Yong Huang, Le Wang, You-Guo Yang, Hong-Li Liao, Gui-E Xing, Yu-Ping Zheng, Xiao-Fen Li, Jing-Lian Lin, Cheng-Qian Shi, Yong-Ping Zeng, Li-Dan Mo, Fan Sun, Xiao-Peng Li, Zhuo Zhang, Kai Chen, Zhao-Chun He, Jian-Ping Liu. Efficacy of Qingpeng ointment (a Tibetan medicine) for acute gouty arthritis: a multi-center, randomized, double-blind, placebo-controlled trial.
BMC complementary medicine and therapies.
2024 Jan; 24(1):21. doi:
10.1186/s12906-023-04328-7
. [PMID: 38178115] - Ning Gu, Zhijiang Liu, Zhenglong Wang, Changyin Shen, Wei Zhang, Hongqin Tian, Xi Wang, Shuangya Yang, Ranzun Zhao, Bei Shi. Association Between Serum Uric Acid Levels and Neoatherosclerosis.
International heart journal.
2024; 65(1):4-12. doi:
10.1536/ihj.23-058
. [PMID: 38296578] - Pui-Ying Leong, Huang-Hsi Chen, Shuo-Yan Gau, Chia-Yin Chen, Yi-Chang Su, James Cheng-Chung Wei. Traditional Chinese medicine in the treatment of patients with hyperuricemia: A randomized placebo-controlled double-blinded clinical trial.
International journal of rheumatic diseases.
2024 Jan; 27(1):e14986. doi:
10.1111/1756-185x.14986
. [PMID: 38014453] - Fatma Ben Mansour, Habib Ayadi, Jos van Pelt, Abdelfattah Elfeki, Khaled Bellassoued. Antioxidant and Protective Effect of Ocimum basilicum Seeds Extract on Renal Toxicity Induced by Carbon Tetrachloride in Rats.
Journal of medicinal food.
2024 Jan; 27(1):60-71. doi:
10.1089/jmf.2023.0184
. [PMID: 38150214] - Li Yuguang, Yu Chang, Hongwei Li, Fangqi Li, Qing Zou, Xiangliang Liu, Xiao Chen, Jiuwei Cui. Inflammation mediates the relationship between diet quality assessed by healthy eating index-2015 and metabolic syndrome.
Frontiers in endocrinology.
2024; 15(?):1293850. doi:
10.3389/fendo.2024.1293850
. [PMID: 38379861] - Xianghao Lin, Xiaojuan Zou, Baifei Hu, Dongyun Sheng, Tianxiang Zhu, Mingzhu Yin, Hui Xia, Haiming Hu, Hongtao Liu. Bi Xie Fen Qing Yin decoction alleviates potassium oxonate and adenine induced-hyperuricemic nephropathy in mice by modulating gut microbiota and intestinal metabolites.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2024 Jan; 170(?):116022. doi:
10.1016/j.biopha.2023.116022
. [PMID: 38147734] - W-W Liu, G-B Yang, Z-Y Liu, Y Guo, L-X Duan, J-H Yuan, L Liao, C-F Zhang, J-R Lu, J Hu, J Chen. Factors influencing the occurrence of hyperuricemia and poor cardiac and renal outcomes in chronic kidney disease.
European review for medical and pharmacological sciences.
2024 Jan; 28(1):342-349. doi:
10.26355/eurrev_202401_34922
. [PMID: 38235885] - Jian Xiong, Yuxin Sun, Hui Huang, Yu Liu, Fayang Ling, Yin Wei, Qianhua Zheng, Wenchuan Qi, Fanrong Liang. The Causal Relationship between Angina Pectoris and Gout Based on Two Sample Mendelian Randomization.
Pain research & management.
2024; 2024(?):4564596. doi:
10.1155/2024/4564596
. [PMID: 38633818] - Csongor I Vágási, Orsolya Vincze, Marie Adámková, Tereza Kauzálová, Ádám Z Lendvai, Laura I Pătraş, Janka Pénzes, Péter L Pap, Tomáš Albrecht, Oldřich Tomášek. Songbirds avoid the oxidative stress costs of high blood glucose levels: a comparative study.
The Journal of experimental biology.
2024 Jan; 227(1):. doi:
10.1242/jeb.246848
. [PMID: 38054362] - Remi Yoshikata, Khin Zay Yar Myint, Junichi Taguchi. Comparison of blood and urine concentrations of equol by LC‒MS/MS method and factors associated with equol production in 466 Japanese men and women.
PloS one.
2024; 19(3):e0288946. doi:
10.1371/journal.pone.0288946
. [PMID: 38536793] - Abolfazl Akbari, Mahya Razmi, Mahdi Rafiee, Gerald F Watts, Amirhossein Sahebkar. The Effect of Statin Therapy on Serum Uric Acid Levels: A Systematic Review and Meta-analysis.
Current medicinal chemistry.
2024; 31(13):1726-1739. doi:
10.2174/0929867330666230207124516
. [PMID: 36748810] - Zheng Lv, Boyang Wang, Bianli Wang, Huimin Zhang. In vivo comprehensive metabolite profiling of esculetin and esculin derived from chicory in hyperuricemia rats using ultra-high-performance liquid chromatography coupled with quadrupole-orbitrap high-resolution mass spectrometry.
Journal of separation science.
2024 Jan; 47(1):e2300664. doi:
10.1002/jssc.202300664
. [PMID: 38010472] - Oluwafemi Adeleke Ojo, Akingbolabo Daniel Ogunlakin, Christopher Oloruntoba Akintayo, Olaoluwa Sesan Olukiran, Juliana Bunmi Adetunji, Omolola Adenike Ajayi-Odoko, Theophilus Oghenenyoreme Ogwa, Olorunfemi Raphael Molehin, Omolara Olajumoke Ojo, Ramzi A Mothana, Abdullah R Alanzi. Spilanthes filicaulis (Schumach. & Thonn.) C.D. Adams leaves protects against streptozotocin-induced diabetic nephropathy.
PloS one.
2024; 19(4):e0301992. doi:
10.1371/journal.pone.0301992
. [PMID: 38640098] - Dayuan Zhong, Hui Cheng. Application of Mendelian randomization in the discovery of risk factors for coronary heart disease from 2009 to 2023: A bibliometric review.
Clinical cardiology.
2024 Jan; 47(1):e24154. doi:
10.1002/clc.24154
. [PMID: 37724687] - Ahmed I Abd El Maksoud, Ahmed A Al-Karmalawy, Dalia ElEbeedy, Aml Ghanem, Yasmin Rasheed, Ibrahim A Ibrahim, Reem A Elghaish, Amany Belal, Mona A Raslan, Rehab F Taher. Symbiotic Antidiabetic Effect of Lactobacillus casei and the Bioactive Extract of Cleome droserifolia (Forssk.) Del. on Mice with Type 2 Diabetes Induced by Alloxan.
Chemistry & biodiversity.
2024 Jan; 21(1):e202301397. doi:
10.1002/cbdv.202301397
. [PMID: 38078801] - Ling-Juan Zhu, Jian-Min Shi, Tao Wang, Chao Yu, Wei Zhou, Hui-Hui Bao, Xiao-Shu Cheng. [Association Between Plasma Homocysteine Level and Hyperuricemia in Elderly Patients With Hypertension].
Zhongguo yi xue ke xue yuan xue bao. Acta Academiae Medicinae Sinicae.
2023 Dec; 45(6):897-901. doi:
10.3881/j.issn.1000-503x.15732
. [PMID: 38173099] - Jie Zhou, Min Zhang, Qionghong Xie, Ningxin Xu, Mingxin Li, Ming Zhang, Chuanming Hao. Recurrent exercise-induced acute kidney injury associated with hypouricemia: a case report and literature review.
BMC nephrology.
2023 12; 24(1):384. doi:
10.1186/s12882-023-03378-w
. [PMID: 38129773] - Roland Eghoghosoa Akhigbe, Bayo-Olugbami Adedamola Aminat, Tunmise Maryanne Akhigbe, Moses Agbomhere Hamed. Glutamine Alleviates I/R-Induced Intestinal Injury and Dysmotility Via the Downregulation of Xanthine Oxidase/Uric Acid Signaling and Lactate Generation in Wistar Rats.
The Journal of surgical research.
2023 Dec; 295(?):431-441. doi:
10.1016/j.jss.2023.11.041
. [PMID: 38070257] - Jiangsha Wang, Jie Zhou, Zhengping Shao, Xi Chen, Zhenhai Yu, Wenyan Zhao. Association between serum uric acid and homocysteine levels among adults in the United States: a cross-sectional study.
BMC cardiovascular disorders.
2023 12; 23(1):599. doi:
10.1186/s12872-023-03586-0
. [PMID: 38066416] - Silvia Fernandez-Crespo, Nestor Vazquez-Agra, Ana-Teresa Marques-Afonso, Anton Cruces-Sande, Miguel-Angel Martinez-Olmos, David Araujo-Vilar, Alvaro Hermida-Ameijeiras. The value of waist circumference as a preditor of cardiovascular risk in adult patients with classic phenylketonuria.
Medicina clinica.
2023 12; 161(11):470-475. doi:
10.1016/j.medcli.2023.06.027
. [PMID: 37541939] - Jiabao Zhou, Chuanxu Wang, Xuming Zhang, Zhiyuan Wu, Yansheng Wu, Dongdong Li, Jiandong Gao. Shizhifang ameliorates pyroptosis of renal tubular epithelial cells in hyperuricemia through inhibiting NLRP3 inflammasome.
Journal of ethnopharmacology.
2023 Dec; 317(?):116777. doi:
10.1016/j.jep.2023.116777
. [PMID: 37311502] - Aleš Kvasnička, David Friedecký, Radana Brumarová, Markéta Pavlíková, Kateřina Pavelcová, Jana Mašínová, Lenka Hasíková, Jakub Závada, Karel Pavelka, Pavel Ješina, Blanka Stibůrková. Alterations in lipidome profiles distinguish early-onset hyperuricemia, gout, and the effect of urate-lowering treatment.
Arthritis research & therapy.
2023 12; 25(1):234. doi:
10.1186/s13075-023-03204-6
. [PMID: 38042879] - Till Uhlig, Lars Fridtjof Karoliussen, Joseph Sexton, Tore K Kvien, Espen A Haavardsholm, Hilde Berner Hammer. Lifestyle factors predict gout outcomes: Results from the NOR-Gout longitudinal 2-year treat-to-target study.
RMD open.
2023 12; 9(4):. doi:
10.1136/rmdopen-2023-003600
. [PMID: 38053463] - Elizabeth Enohnyket Besong, Tunmise Maryanne Akhigbe, Precious Jesutofunmi Ashonibare, Abimbola Ayoola Oladipo, Jacinta Nkechi Obimma, Moses Agbomhere Hamed, Damilare Hakeem Adeyemi, Roland Eghoghosoa Akhigbe. Zinc improves sexual performance and erectile function by preventing penile oxidative injury and upregulating circulating testosterone in lead-exposed rats.
Redox report : communications in free radical research.
2023 Dec; 28(1):2225675. doi:
10.1080/13510002.2023.2225675
. [PMID: 37345699] - C-Q Yan, C Liang, Z-R Lan, C Su, S-Y Xiong, Y-X Yang, J-M Chen, S-L Tang, J-S Huang, Z-H Zhang, M-J Luo, Z-H Xiao. Comparison of the efficacy of febuxostat vs. benzbromarone in the treatment of gout: a meta-analysis in Chinese gout patients.
European review for medical and pharmacological sciences.
2023 Dec; 27(24):11988-12003. doi:
10.26355/eurrev_202312_34797
. [PMID: 38164861] - Shouhai Wu, Meixia Yan, Junyi Liu, Yizhen Li, Ruimin Tian, Chuang Li, Lihuang Huang, Zhisheng Lu, Peng Xu, Wei Mao. Clerodendranthus spicatus inhibits epithelial-mesenchymal transition of renal tubular cells through the NF-κB/Snail signalling pathway in hyperuricaemia nephropathy.
Pharmaceutical biology.
2023 Dec; 61(1):1274-1285. doi:
10.1080/13880209.2023.2243086
. [PMID: 37599625] - E E Besong, P J Ashonibare, O O Obembe, M A Folawiyo, D H Adeyemi, M A Hamed, T M Akhigbe, R E Akhigbe. Zinc protects against lead-induced testicular damage via modulation of steroidogenic and xanthine oxidase/uric acid/caspase 3-mediated apoptotic signaling in male Wistar rats.
The aging male : the official journal of the International Society for the Study of the Aging Male.
2023 Dec; 26(1):2224428. doi:
10.1080/13685538.2023.2224428
. [PMID: 37351853] - Hui Jiang, DianZe Song, Xiaoqin Zhou, Feng Chen, Qingqing Yu, Long Ren, Qian Dai, Mei Zeng. Maresin1 ameliorates MSU crystal-induced inflammation by upregulating Prdx5 expression.
Molecular medicine (Cambridge, Mass.).
2023 Nov; 29(1):158. doi:
10.1186/s10020-023-00756-w
. [PMID: 37996809] - Shuning Zhang, Ji Yang. Factors influencing TCM syndrome types of acute cerebral infarction: A binomial logistic regression analysis.
Medicine.
2023 Nov; 102(46):e36080. doi:
10.1097/md.0000000000036080
. [PMID: 37986281] - Bingxuan Kong, Fangqu Liu, Shuangxia Zhang, Yuanjue Wu, Yan Li, Jingfan Xiong, Yuhan Tang, Yanyan Li, Ping Yao. Associations between dietary patterns and serum uric acid concentrations in children and adolescents: a cross-sectional study.
Food & function.
2023 Oct; 14(21):9803-9814. doi:
10.1039/d3fo03043a
. [PMID: 37850253] - Sumei Li, Shouping Yuan, Guoxin Lin, Jintian Zhang. Effects of a two meals-a-day ketogenic diet on newly diagnosed obese patients with type 2 diabetes mellitus: A retrospective observational study.
Medicine.
2023 Oct; 102(43):e35753. doi:
10.1097/md.0000000000035753
. [PMID: 37904380] - Danhui Mao, Jin Feng, Yangzilin Zhou, Honggang Li. Analysis of different plant- and animal-based dietary patterns and their relationship with serum uric acid levels in Chinese adults.
Nutrition journal.
2023 Oct; 22(1):53. doi:
10.1186/s12937-023-00885-2
. [PMID: 37891672] - Xiaoqian Li, Yongqing Gu, Lihong Ren, Qingqing Cai, Yan Qiu, Jie He, Wei Qu, Wei Ji. Study of hispidulin in the treatment of uric acid nephropathy based on NF-κB signaling pathway.
Chemical biology & drug design.
2023 Oct; ?(?):. doi:
10.1111/cbdd.14367
. [PMID: 37880153] - Kongyong Cui, Yanjun Song, Dong Yin, Weihua Song, Hongjian Wang, Chenggang Zhu, Lei Feng, Rui Fu, Lei Jia, Ye Lu, Dong Zhang, Chenxi Song, Yuejin Yang, Qiuting Dong, Kefei Dou. Uric Acid Levels, Number of Standard Modifiable Cardiovascular Risk Factors, and Prognosis in Patients With Coronary Artery Disease: A Large Cohort Study in Asia.
Journal of the American Heart Association.
2023 10; 12(20):e030625. doi:
10.1161/jaha.123.030625
. [PMID: 37804199] - Ghizlane Nouioura, Tayeb Kettani, Meryem Tourabi, Layla Tahiri Elousrouti, Omkulthom Al Kamaly, Samar Zuhair Alshawwa, Abdelaaty A Shahat, Abdulsalam Alhalmi, Badiaa Lyoussi, Elhoussine Derwich. The Protective Potential of Petroselinum crispum (Mill.) Fuss. on Paracetamol-Induced Hepatio-Renal Toxicity and Antiproteinuric Effect: A Biochemical, Hematological, and Histopathological Study.
Medicina (Kaunas, Lithuania).
2023 Oct; 59(10):. doi:
10.3390/medicina59101814
. [PMID: 37893532] - Shanshan Liu, Yongting Liu, Xue Wu, Zhengqi Liu. Metabolomic analysis for asymptomatic hyperuricemia and gout based on a combination of dried blood spot sampling and mass spectrometry technology.
Journal of orthopaedic surgery and research.
2023 Oct; 18(1):769. doi:
10.1186/s13018-023-04240-3
. [PMID: 37821971] - Yu Cheng Huang, Si Liang Chen, Ying Dong, Ying Shi. Association between elevated serum uric acid levels and high estimated glomerular filtration rate with reduced risk of low muscle strength in older people: a retrospective cohort study.
BMC geriatrics.
2023 10; 23(1):652. doi:
10.1186/s12877-023-04374-3
. [PMID: 37821826] - Wenchen Yu, Yi Xiong, Mengnan Liu, Deyong Zeng, Haitian Zhao, Jiaren Liu, Weihong Lu. Structural analysis and attenuates hyperuricemic nephropathy of dextran from the Imperata cylindrica Beauv. var. major (Nees) C. E. Hubb.
Carbohydrate polymers.
2023 Oct; 317(?):121064. doi:
10.1016/j.carbpol.2023.121064
. [PMID: 37364951] - Meixi Lu, Jiyuan Yin, Tianshu Xu, Xuan Dai, Tianyuan Liu, Yueyi Zhang, Shan Wang, Yage Liu, Hanfen Shi, Yanfei Zhang, Fangfang Mo, Vasily Sukhorukov, Alexander N Orekhov, Sihua Gao, Lili Wang, Dongwei Zhang. Fuling-Zexie formula attenuates hyperuricemia-induced nephropathy and inhibits JAK2/STAT3 signaling and NLRP3 inflammasome activation in mice.
Journal of ethnopharmacology.
2023 Oct; 319(Pt 2):117262. doi:
10.1016/j.jep.2023.117262
. [PMID: 37788785] - Nabil Abbas Soliman, Sherif Wajih Mansour, Mohamed Ahmed Ammar, Noura Ahmed Hassan, Rehab Hamed Abdallah Mohamed. Possible role of pomegranate fruit in reversing renal damage in rats exposed to Phenylhydrazine.
Open veterinary journal.
2023 Oct; 13(10):1268-1276. doi:
10.5455/ovj.2023.v13.i10.5
. [PMID: 38027401] - Xiuju Peng, Xiaotong Li, Bing Xie, Yaoyao Lai, Alejandro Sosnik, Hamza Boucetta, Zhongjian Chen, Wei He. Gout therapeutics and drug delivery.
Journal of controlled release : official journal of the Controlled Release Society.
2023 10; 362(?):728-754. doi:
10.1016/j.jconrel.2023.09.011
. [PMID: 37690697] - Meijuan Dong, Kun An, Li Mao. High levels of uric acid inhibit BAT thermogenic capacity through regulation of AMPK.
American journal of physiology. Endocrinology and metabolism.
2023 10; 325(4):E376-E389. doi:
10.1152/ajpendo.00092.2023
. [PMID: 37732807] - Zheng-Long Li, Shu-Min Wang, Huan Wang. Honey Mushroom, Armillaria mellea (Agaricomycetes) and Its Fermentation Products Target Regulation of OAT1/OAT3 Proteins to Reduce Hyperuricemia in Mice.
Frontiers in bioscience (Landmark edition).
2023 Sep; 28(9):228. doi:
10.31083/j.fbl2809228
. [PMID: 37796687] - E E Besong, T M Akhigbe, J N Obimma, O O Obembe, R E Akhigbe. Acetate Abates Arsenic-Induced Male Reproductive Toxicity by Suppressing HDAC and Uric Acid-Driven Oxido-inflammatory NFkB/iNOS/NO Response in Rats.
Biological trace element research.
2023 Sep; ?(?):. doi:
10.1007/s12011-023-03860-4
. [PMID: 37726447] - Dlovan Ali Jalal, Barna Vásárhelyi, Béla Blaha, Zoltán Tóth, Tamás Géza Szabó, Béla Gyarmati. Interrelationship of hemoglobin A1c level lipid profile, uric acid, C-reactive protein levels and age in a large hospital database.
Molecular and cellular probes.
2023 Sep; ?(?):101933. doi:
10.1016/j.mcp.2023.101933
. [PMID: 37722548] - Su Hyeon Choi, Ho-Sueb Song, Jihye Hwang. Herbal medicine for external use in acute gouty arthritis: A PRISMA-compliant systematic review and meta-analysis.
Medicine.
2023 Sep; 102(37):e34936. doi:
10.1097/md.0000000000034936
. [PMID: 37713880] - Sara Arefhosseini, Helda Tutunchi, Shahrzad Tavakkoli, Seyed Rafie Arefhosseini, Mehrangiz Ebrahimi-Mameghani. Association of neck circumference-related indices with metabolic, atherogenic and liver function biomarkers in patients with non-alcoholic fatty liver disease: a cross-sectional study.
BMJ open.
2023 09; 13(9):e073452. doi:
10.1136/bmjopen-2023-073452
. [PMID: 37699622] - Andrew M South, Joseph Rigdon, Saroja Voruganti, Jeanette M Stafford, Dana Dabelea, Santica Marcovina, Amy K Mottl, Cate Pihoker, Elaine M Urbina, Elizabeth T Jensen. Uric Acid is Not Associated with Cardiovascular Health in Youth with Type 1 Diabetes: SEARCH for Diabetes in Youth Study.
The Journal of clinical endocrinology and metabolism.
2023 Sep; ?(?):. doi:
10.1210/clinem/dgad534
. [PMID: 37690117] - Pragya Malla, Madhav Prasad Khanal, Asmita Pokhrel, Bishesh Sah, Sonam Pathak, Anukul Subedi, Srijana Sapkota. Correlation of Serum Uric Acid and Lipid Profile in Patients with Type 2 Diabetes Mellitus.
Journal of Nepal Health Research Council.
2023 Sep; 21(1):170-174. doi:
10.33314/jnhrc.v21i1.4781
. [PMID: 37742168] - Abnoos Mokhtari Ardekani, Zahra Hamidi Nava, Burhan Abdullah Zaman, Sahar Vahdat, Amir-Hossein Lame-Jouybari, Azam Mivefroshan. The association between lipid profile, oxidized LDL and the components of metabolic syndrome with serum mineral status and kidney function in individuals with obesity.
BMC research notes.
2023 Sep; 16(1):196. doi:
10.1186/s13104-023-06472-2
. [PMID: 37670399]