Deoxyguanosine (BioDeep_00000001697)
Secondary id: BioDeep_00000399623, BioDeep_00000405198
natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite BioNovoGene_Lab2019
代谢物信息卡片
化学式: C10H13N5O4 (267.0967)
中文名称: 2′-脱氧鸟苷 水合物, 脱氧鸟苷, 2'-Deoxyguanosine 一水合物, 2'-脱氧鸟苷
谱图信息:
最多检出来源 Homo sapiens(feces) 17.31%
分子结构信息
SMILES: C1C(C(OC1N2C=NC3=C2N=C(NC3=O)N)CO)O
InChI: InChI=1S/C10H13N5O4/c11-10-13-8-7(9(18)14-10)12-3-15(8)6-1-4(17)5(2-16)19-6/h3-6,16-17H,1-2H2,(H3,11,13,14,18)
描述信息
Deoxyguanosine, also known as dG, belongs to the class of organic compounds known as purine 2-deoxyribonucleosides. Purine 2-deoxyribonucleosides are compounds consisting of a purine linked to a ribose which lacks a hydroxyl group at position 2’. Deoxyguanosine is a nucleoside consisting of the base guanine and the sugar deoxyribose. Deoxyguanosine is one of the four deoxyribonucleosides that make up DNA. Deoxyguanosine exists in all living species, ranging from bacteria to plants to humans. Deoxyguanosine participates in a number of enzymatic reactions. In particular, deoxyguanosine can be biosynthesized from 2-deoxyguanosine 5-monophosphate through the enzyme known as cytosolic purine 5-nucleotidase. In addition, deoxyguanosine can be converted into 2-deoxyguanosine 5-monophosphate (dGMP); which is mediated by the enzyme deoxyguanosine kinase. Deoxyguanosine is involved in the rare, inherited metabolic disorder called the purine nucleoside phosphorylase deficiency (PNP deficiency). In particular PNP deficiency is characterized by elevated levels of dGTP (deoxyguanosine triphosphate). PNP accounts for approximately 4\\\\% of patients with severe combined immunodeficiency (PMID: 1931007). PNP-deficient patients suffer from recurrent infections, usually beginning in the first year of life. Two thirds of patients have evidence of neurologic disorders with spasticity, developmental delay and mental retardation. Deoxyguanosine can be converted to 8-hydroxy-deoxyguanosine (8-OHdG) due to hydroxyl radical attack at the C8 of guanine. 8-hydroxy-deoxyguanosine is a sensitive marker of the DNA damage This damage, if left unrepaired, has been proposed to contribute to mutagenicity and cancer promotion.
Isolated from plants, e.g. Phaseolus vulgaris (kidney bean)
COVID info from COVID-19 Disease Map
KEIO_ID D057; [MS2] KO008942
KEIO_ID D057
Corona-virus
Coronavirus
SARS-CoV-2
COVID-19
SARS-CoV
COVID19
SARS2
SARS
2’-Deoxyguanosine (Deoxyguanosine) is a purine nucleoside with a variety of biological activities. 2’-Deoxyguanosine can induce DNA division in mouse thymus cells. 2’-Deoxyguanosine is a potent cell division inhibitor in plant cells[1][2][3].
2'-Deoxyguanosine (Deoxyguanosine) is deoxyguanosine.
同义名列表
22 个代谢物同义名
2-amino-9-[(2R,4S,5R)-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-6,9-dihydro-1H-purin-6-one; 2-Amino-9-(2-deoxy-9-beta-D-ribofuranosyl)-9H-purin-6-ol; 9-(2-Deoxy-beta-delta-erythro-pentofuranosyl)-guanine; 2-Amino-9-(2-deoxy-9-b-D-ribofuranosyl)-9H-purin-6-ol; 2-Amino-9-(2-deoxy-9-β-D-ribofuranosyl)-9H-purin-6-ol; 9-(2-Deoxy-beta-delta-erythro-pentofuranosyl)guanine; 9-(2-Deoxy-beta-D-erythro-pentofuranosyl)-guanine; 9-(2-Deoxy-β-D-erythro-pentofuranosyl)-guanine; 9-(2-Deoxy-b-D-erythro-pentofuranosyl)-guanine; 9-(2-Deoxy-b-D-erythro-pentofuranosyl)guanine; 2-Deoxyguanosine monohydrate; Guanine deoxy nucleoside; Guanine deoxyriboside; 2-Deoxy-guanosine; 2-Deoxyguanosine; Desoxyguanosine; Deoxyguanosine; dG; Deoxyguanosine; Deoxyguanosine; 2'-Deoxyguanosine; 2'-Deoxyguanosine
数据库引用编号
50 个数据库交叉引用编号
- ChEBI: CHEBI:17172
- KEGG: C00330
- PubChem: 135398592
- PubChem: 135402018
- PubChem: 187790
- PubChem: 3624
- HMDB: HMDB0000085
- Metlin: METLIN3395
- ChEMBL: CHEMBL68908
- Wikipedia: Deoxyguanosine
- MeSH: Deoxyguanosine
- MetaCyc: DEOXYGUANOSINE
- foodb: FDB012064
- chemspider: 163230
- CAS: 663615-45-0
- CAS: 686353-29-7
- CAS: 38559-49-8
- CAS: 961-07-9
- MoNA: PS014603
- MoNA: KO000620
- MoNA: KO008942
- MoNA: PS014605
- MoNA: PS014609
- MoNA: PS014602
- MoNA: PS014601
- MoNA: PS014604
- MoNA: PS014607
- MoNA: KO002710
- MoNA: KO002707
- MoNA: KO000622
- MoNA: KO000619
- MoNA: KO002709
- MoNA: KO000623
- MoNA: KO008943
- MoNA: PS014608
- MoNA: KO000621
- MoNA: KO002706
- MoNA: PS014610
- MoNA: KO002708
- PMhub: MS000001001
- PDB-CCD: GNG
- PDB-CCD: L1J
- 3DMET: B01219
- NIKKAJI: J13.863K
- RefMet: Deoxyguanosine
- medchemexpress: HY-17563
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-237
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-964
- KNApSAcK: 17172
- LOTUS: LTS0130265
分类词条
相关代谢途径
Reactome(0)
BioCyc(6)
代谢反应
223 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(41)
- salvage pathways of guanine, xanthine, and their nucleosides:
H2O + guanine ⟶ ammonia + xanthine
- purine deoxyribonucleosides degradation:
2'-deoxyadenosine + H+ + H2O ⟶ 2'-deoxyinosine + ammonium
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides degradation II:
2'-deoxyadenosine + H+ + H2O ⟶ 2'-deoxyinosine + ammonium
- purine deoxyribonucleosides degradation I:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides degradation I:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides degradation I:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- purine deoxyribonucleosides degradation I:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- purine deoxyribonucleosides degradation I:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides degradation I:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- purine deoxyribonucleosides degradation I:
2'-deoxyadenosine + H+ + H2O ⟶ 2'-deoxyinosine + ammonium
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + H+ + H2O ⟶ 2'-deoxyinosine + ammonium
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides degradation I:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- purine deoxyribonucleosides degradation I:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides degradation I:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides degradation I:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- purine deoxyribonucleosides degradation I:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- purine deoxyribonucleosides degradation I:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides degradation I:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
- superpathway of purine deoxyribonucleosides degradation:
2'-deoxyadenosine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + adenine
WikiPathways(4)
- Purine metabolism:
P1,P4-Bis(5'-xanthosyl) tetraphosphate ⟶ XTP
- Purine metabolism and related disorders:
Adenine ⟶ AMP
- Purine metabolism:
Adenine ⟶ AMP
- Genetic causes of porto-sinusoidal vascular disease:
2'-deoxyadenosine ⟶ 2'-deoxyadenosine 5'-monophosphate(2 )
Plant Reactome(0)
INOH(2)
- Purine nucleotides and Nucleosides metabolism ( Purine nucleotides and Nucleosides metabolism ):
H2O + XTP ⟶ Pyrophosphate + XMP
- Deoxy-guanosine + Orthophosphate = 2-Deoxy-D-ribose 1-phosphate + Guanine ( Purine nucleotides and Nucleosides metabolism ):
2-Deoxy-D-ribose 1-phosphate + Guanine ⟶ Deoxy-guanosine + Orthophosphate
PlantCyc(127)
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyguanosine + ATP ⟶ ADP + H+ + dGMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyguanosine + ATP ⟶ ADP + H+ + dGMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
ATP + dGMP ⟶ ADP + dGDP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyguanosine + ATP ⟶ ADP + H+ + dGMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
- purine deoxyribonucleosides salvage:
2'-deoxyadenosine + ATP ⟶ ADP + H+ + dAMP
COVID-19 Disease Map(2)
- @COVID-19 Disease
Map["name"]:
2-Methyl-3-acetoacetyl-CoA + Coenzyme A ⟶ Acetyl-CoA + Propanoyl-CoA
- @COVID-19 Disease
Map["name"]:
Adenosine + Pi ⟶ Adenine + _alpha_-D-Ribose 1-phosphate
PathBank(47)
- Purine Metabolism:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Adenosine Deaminase Deficiency:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Adenylosuccinate Lyase Deficiency:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Gout or Kelley-Seegmiller Syndrome:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Lesch-Nyhan Syndrome (LNS):
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Molybdenum Cofactor Deficiency:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Xanthine Dehydrogenase Deficiency (Xanthinuria):
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Purine Nucleoside Phosphorylase Deficiency:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- AICA-Ribosiduria:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Azathioprine Action Pathway:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Mercaptopurine Action Pathway:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Thioguanine Action Pathway:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Xanthinuria Type I:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Xanthinuria Type II:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Adenine Phosphoribosyltransferase Deficiency (APRT):
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Mitochondrial DNA Depletion Syndrome-3:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Myoadenylate Deaminase Deficiency:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Purine Metabolism:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Adenosine Deaminase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Adenylosuccinate Lyase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- AICA-Ribosiduria:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Gout or Kelley-Seegmiller Syndrome:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Xanthine Dehydrogenase Deficiency (Xanthinuria):
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Lesch-Nyhan Syndrome (LNS):
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Molybdenum Cofactor Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Purine Nucleoside Phosphorylase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Xanthinuria Type I:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Xanthinuria Type II:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Adenine Phosphoribosyltransferase Deficiency (APRT):
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Mitochondrial DNA Depletion Syndrome:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Myoadenylate Deaminase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Purine Metabolism:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Purine Metabolism:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Adenosine Deaminase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Adenylosuccinate Lyase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- AICA-Ribosiduria:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Gout or Kelley-Seegmiller Syndrome:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Xanthine Dehydrogenase Deficiency (Xanthinuria):
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Lesch-Nyhan Syndrome (LNS):
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Molybdenum Cofactor Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Purine Nucleoside Phosphorylase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Xanthinuria Type I:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Xanthinuria Type II:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Adenine Phosphoribosyltransferase Deficiency (APRT):
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Mitochondrial DNA Depletion Syndrome:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Myoadenylate Deaminase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Purine Deoxyribonucleosides Degradation:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
PharmGKB(0)
51 个相关的物种来源信息
- 6656 - Arthropoda: LTS0130265
- 7601 - Asterias: LTS0130265
- 7603 - Asterias forbesi: 10.1021/NP50070A042
- 7603 - Asterias forbesi: LTS0130265
- 7600 - Asteriidae: LTS0130265
- 7588 - Asteroidea: LTS0130265
- 2 - Bacteria: LTS0130265
- 6658 - Branchiopoda: LTS0130265
- 7711 - Chordata: LTS0130265
- 232938 - Ctenodiscidae: LTS0130265
- 232940 - Ctenodiscus: LTS0130265
- 232941 - Ctenodiscus crispatus:
- 232941 - Ctenodiscus crispatus: 10.1007/BF00703498
- 232941 - Ctenodiscus crispatus: 10.1007/BF00707067
- 232941 - Ctenodiscus crispatus: LTS0130265
- 6668 - Daphnia: LTS0130265
- 6669 - Daphnia pulex: 10.1038/SREP25125
- 6669 - Daphnia pulex: LTS0130265
- 77658 - Daphniidae: LTS0130265
- 7227 - Drosophila melanogaster: 10.1038/S41467-019-11933-Z
- 7586 - Echinodermata: LTS0130265
- 543 - Enterobacteriaceae: LTS0130265
- 561 - Escherichia: LTS0130265
- 562 - Escherichia coli: LTS0130265
- 2759 - Eukaryota: LTS0130265
- 1236 - Gammaproteobacteria: LTS0130265
- 9604 - Hominidae: LTS0130265
- 9605 - Homo: LTS0130265
- 9606 - Homo sapiens:
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1038/NBT.2488
- 9606 - Homo sapiens: LTS0130265
- 43054 - Leptasterias: LTS0130265
- 59564 - Leptasterias polaris: 10.1007/BF00707067
- 59564 - Leptasterias polaris: LTS0130265
- 40674 - Mammalia: LTS0130265
- 33208 - Metazoa: LTS0130265
- 10066 - Muridae: LTS0130265
- 10088 - Mus: LTS0130265
- 10090 - Mus musculus: LTS0130265
- 10090 - Mus musculus: NA
- 1883 - Streptomyces: LTS0130265
- 1890 - Streptomyces antibioticus: 10.7164/ANTIBIOTICS.45.1914
- 1890 - Streptomyces antibioticus: LTS0130265
- 2062 - Streptomycetaceae: LTS0130265
- 662 - Vibrio: LTS0130265
- 669 - Vibrio harveyi: 10.1021/NP5009762
- 669 - Vibrio harveyi: LTS0130265
- 641 - Vibrionaceae: LTS0130265
- 29760 - Vitis vinifera: 10.1016/J.DIB.2020.106469
- 569774 - 金线莲: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Anika, Shamsher Singh, Rimpi. Neuroprotective effects of Embelin in an ethidium bromide-induced multiple sclerosis in rats: Modulation of p38 MAPK signaling pathway.
International immunopharmacology.
2024 Mar; 129(?):111639. doi:
10.1016/j.intimp.2024.111639
. [PMID: 38335654] - Manish Kumar Gupta, Sanjana Senthilkumar, Latha Rangan. 3, 5-Dihydroxy 4', 7-dimethoxyflavone-DNA interaction study for nucleic acid detection and differential cell staining.
International journal of biological macromolecules.
2024 Mar; 261(Pt 1):129713. doi:
10.1016/j.ijbiomac.2024.129713
. [PMID: 38281518] - Yizhi Fu, Plamen P Christov, Philip J Kingsley, Robyn M Richie-Jannetta, Lawrence J Marnett, Michael P Stone. Base-Displaced Intercalated Structure of the 3-(2-Deoxy-β-D-erythropentofuranosyl)-pyrimido[1,2-f]purine-6,10(3H,5H)-dione (6-oxo-M1dG) Lesion in DNA.
Chemical research in toxicology.
2023 12; 36(12):1947-1960. doi:
10.1021/acs.chemrestox.3c00226
. [PMID: 37989274] - Ying Liu, Rui Zhu, Xinwei Liu, Dengzhou Li, Mengyu Guo, Bing Fei, Yanying Ren, Xiaojuan You, Yongwei Li. Effect of piperine on the inhibitory potential of MexAB-OprM efflux pump and imipenem resistance in carbapenem-resistant Pseudomonas aeruginosa.
Microbial pathogenesis.
2023 Dec; 185(?):106397. doi:
10.1016/j.micpath.2023.106397
. [PMID: 37852553] - Payel Paul, Sarita Sarkar, Debabrata Ghosh Dastidar, Aditya Shukla, Sharmistha Das, Sudipta Chatterjee, Poulomi Chakraborty, Prosun Tribedi. 1, 4-naphthoquinone efficiently facilitates the disintegration of pre-existing biofilm of Staphylococcus aureus through eDNA intercalation.
Folia microbiologica.
2023 Dec; 68(6):843-854. doi:
10.1007/s12223-023-01053-z
. [PMID: 37142893] - Nikoline S Olsen, Tue K Nielsen, Liang Cui, Peter Dedon, Horst Neve, Lars H Hansen, Witold Kot. A novel Queuovirinae lineage of Pseudomonas aeruginosa phages encode dPreQ0 DNA modifications with a single GA motif that provide restriction and CRISPR Cas9 protection in vitro.
Nucleic acids research.
2023 09; 51(16):8663-8676. doi:
10.1093/nar/gkad622
. [PMID: 37503841] - Yuki Mizuno, Yohei Inaba, Hiroaki Masuoka, Mihoko Kibe, Satoko Kosaka, Kazumi Natsuhara, Kazuhiro Hirayama, Nouhak Inthavong, Sengchanh Kounnavong, Shinsuke Tomita, Masahiro Umezaki. Impact of modernization on oxidative stress among indigenous populations in northern Laos.
American journal of biological anthropology.
2023 07; 181(3):352-363. doi:
10.1002/ajpa.24722
. [PMID: 36919625] - Wei Liu, Linling Yu, Min Zhou, Zi Ye, Ruyi Liang, Qiyou Tan, Jiahao Song, Jixuan Ma, Dongming Wang, Bin Wang, Weihong Chen. Cross-sectional and Longitudinal Associations Between Propylene Oxide Exposure and Lung Function Among Chinese Community Residents: Roles of Oxidative DNA Damage, Lipid Peroxidation, and Protein Carbonylation.
Chest.
2023 Jun; 163(6):1395-1409. doi:
10.1016/j.chest.2022.12.004
. [PMID: 36528066] - Dhama Al-Sallami, Amjed Alsultan, Kadhim Hassan Abbas, Simon R Clarke. Evaluation of efflux pump inhibitory activity of some plant extracts and using them as adjuvants to potentiate the inhibitory activity of some antibiotics against Staphylococcus aureus.
Open veterinary journal.
2023 01; 13(1):42-47. doi:
10.5455/ovj.2023.v13.i1.5
. [PMID: 36777436] - Hossam El Din H Abdelhafez, Amr A Abdallah, Asmaa A El-Dahshan, Yasser A Abd El-Baset, Osama M Morsy, Mohamed Bedair M Ahmed. Ameliorative effects of the phytochemicals in dates (Phoenix dactylifera) against the toxicological changes induced by fipronil in male albino rats.
Toxicology.
2022 10; 480(?):153313. doi:
10.1016/j.tox.2022.153313
. [PMID: 36113622] - Dmitri Konorev, Lihua Yao, Robert J Turesky. Multi-DNA Adduct and Abasic Site Quantitation In Vivo by Nano-Liquid Chromatography/High-Resolution Orbitrap Tandem Mass Spectrometry: Methodology for Biomonitoring Colorectal DNA Damage.
Chemical research in toxicology.
2022 09; 35(9):1519-1532. doi:
10.1021/acs.chemrestox.2c00177
. [PMID: 36066083] - Xiao-Ya Lin, Yan-Xiang Liu, Ying-Jie Zhang, Hui-Min Shen, Ying Guo. Polycyclic aromatic hydrocarbon exposure and DNA oxidative damage of workers in workshops of a petrochemical group.
Chemosphere.
2022 Sep; 303(Pt 2):135076. doi:
10.1016/j.chemosphere.2022.135076
. [PMID: 35649444] - Chongchong Lu, Qingbin Wang, Yanke Jiang, Min Zhang, Xuanlin Meng, Yang Li, Baoyou Liu, Ziyi Yin, Haifeng Liu, Chune Peng, Fuchuan Li, Yingzhe Yue, Mingxia Hao, Yurong Sui, Lulu Wang, Guodong Cheng, Jianzhu Liu, Zhaohui Chu, Changxiang Zhu, Hansong Dong, Xinhua Ding. Discovery of a novel nucleoside immune signaling molecule 2'-deoxyguanosine in microbes and plants.
Journal of advanced research.
2022 Jul; ?(?):. doi:
10.1016/j.jare.2022.06.014
. [PMID: 35811061] - Negar Shahsavari, Boyuan Wang, Yu Imai, Miho Mori, Sangkeun Son, Libang Liang, Nils Böhringer, Sylvie Manuse, Michael F Gates, Madeleine Morrissette, Rachel Corsetti, Josh L Espinoza, Chris L Dupont, Michael T Laub, Kim Lewis. A Silent Operon of Photorhabdus luminescens Encodes a Prodrug Mimic of GTP.
mBio.
2022 06; 13(3):e0070022. doi:
10.1128/mbio.00700-22
. [PMID: 35575547] - Ying Li, Honglin Wen, Xizhen Ge. Opposite motion of the Central Helices of efflux pump KmrA is important for its export efficiency.
Microbial pathogenesis.
2022 Jun; 167(?):105570. doi:
10.1016/j.micpath.2022.105570
. [PMID: 35550844] - Anders Jorgensen, Kristin Köhler-Forsberg, Trine Henriksen, Allan Weimann, Ivan Brandslund, Christina Ellervik, Henrik E Poulsen, Gitte Moos Knudsen, Vibe G Frokjaer, Martin B Jorgensen. Systemic DNA and RNA damage from oxidation after serotonergic treatment of unipolar depression.
Translational psychiatry.
2022 05; 12(1):204. doi:
10.1038/s41398-022-01969-z
. [PMID: 35577781] - Avery S Ward, Chia-Heng Hsiung, Daniel G Kesterson, Vasudeva G Kamath, Edward E McKee. Entecavir competitively inhibits deoxyguanosine and deoxyadenosine phosphorylation in isolated mitochondria and the perfused rat heart.
The Journal of biological chemistry.
2022 05; 298(5):101876. doi:
10.1016/j.jbc.2022.101876
. [PMID: 35358513] - Ben Schöttker, Emil L Larsen, Allan Weimann, Trine Henriksen, Hermann Brenner, Henrik E Poulsen. Associations of urinary metabolites of oxidized DNA and RNA with the incidence of diabetes mellitus using UPLC-MS/MS and ELISA methods.
Free radical biology & medicine.
2022 04; 183(?):51-59. doi:
10.1016/j.freeradbiomed.2022.03.007
. [PMID: 35307553] - Ata Rafiee, Juana Maria Delgado-Saborit, Peter D Sly, Hoda Amiri, Shamim Mosalaei, Mohammad Hoseini. Health consequences of disinfection against SARS-CoV-2: Exploring oxidative stress damage using a biomonitoring approach.
The Science of the total environment.
2022 Mar; 814(?):152832. doi:
10.1016/j.scitotenv.2021.152832
. [PMID: 34986424] - Flóra Jozefíková, Spyros Perontsis, Katarína Koňáriková, Ľubomír Švorc, Milan Mazúr, George Psomas, Ján Moncol. In vitro biological activity of copper(II) complexes with NSAIDs and nicotinamide: Characterization, DNA- and BSA-interaction study and anticancer activity.
Journal of inorganic biochemistry.
2022 03; 228(?):111696. doi:
10.1016/j.jinorgbio.2021.111696
. [PMID: 35030390] - Dimitrios N Zisimopoulos, Electra Kalaitzopoulou, Marianna Skipitari, Polyxeni Papadea, Nikolaos T Panagopoulos, Georgios Salahas, Christos D Georgiou. Detection of superoxide radical in all biological systems by Thin Layer Chromatography.
Archives of biochemistry and biophysics.
2022 02; 716(?):109110. doi:
10.1016/j.abb.2021.109110
. [PMID: 34958749] - Jianyuan Zhao, Qian Liu, Dongrong Yi, Quanjie Li, SaiSai Guo, Ling Ma, Yongxin Zhang, Dongxin Dong, Fei Guo, Zhenlong Liu, Tao Wei, Xiaoyu Li, Shan Cen. 5-Iodotubercidin inhibits SARS-CoV-2 RNA synthesis.
Antiviral research.
2022 02; 198(?):105254. doi:
10.1016/j.antiviral.2022.105254
. [PMID: 35101534] - Manisha B Walunj, Seergazhi G Srivatsan. Heterocycle-modified 2'-Deoxyguanosine Nucleolipid Analogs Stabilize Guanosine Gels and Self-assemble to Form Green Fluorescent Gels.
Chemistry, an Asian journal.
2022 Jan; 17(2):e202101163. doi:
10.1002/asia.202101163
. [PMID: 34817121] - Peter Mukli, Dee H Wu, Tamas Csipo, Cameron D Owens, Agnes Lipecz, Frigyes Samuel Racz, Fouad A Zouein, Adam Tabak, Anna Csiszar, Zoltan Ungvari, Panayiotis D Tsitouras, Andriy Yabluchanskiy. Urinary Biomarkers of Oxidative Stress in Aging: Implications for Prediction of Accelerated Biological Age in Prospective Cohort Studies.
Oxidative medicine and cellular longevity.
2022; 2022(?):6110226. doi:
10.1155/2022/6110226
. [PMID: 35571254] - Plamen P Christov, Robyn Richie-Jannetta, Philip J Kingsley, Anoop Vemulapalli, Kwangho Kim, Gary A Sulikowski, Carmelo J Rizzo, Amit Ketkar, Robert L Eoff, Carol A Rouzer, Lawrence J Marnett. Site-Specific Synthesis of Oligonucleotides Containing 6-Oxo-M1dG, the Genomic Metabolite of M1dG, and Liquid Chromatography-Tandem Mass Spectrometry Analysis of Its In Vitro Bypass by Human Polymerase ι.
Chemical research in toxicology.
2021 12; 34(12):2567-2578. doi:
10.1021/acs.chemrestox.1c00334
. [PMID: 34860508] - Kiook Baek, Minho Kim, Kyeongmin Kwak. Exposure to diesel engine exhausts and increase of urinary 8-hydroxy-2'-deoxyguanosine among Male tank maintenance workers in the Republic of Korea Army.
Industrial health.
2021 Nov; 59(6):403-414. doi:
10.2486/indhealth.2021-0022
. [PMID: 34588383] - Ali Erdal Gunes, Ozgur Yılmaz, Celal Erbas, Seyda Nur Dagli, Hakim Celik. High serum 8-hydroxy-2'-deoxyguanosine levels predict DNA damage and aging in professional divers.
Revista da Associacao Medica Brasileira (1992).
2021 Nov; 67(11):1701-1705. doi:
10.1590/1806-9282.20210748
. [PMID: 34909901] - Yanfeng Sun, Yanjian Wan, Ying Jiang, Huaiji Wang. Urinary concentrations of acetaminophen in young children in central and south China: Repeated measurements and associations with 8-hydroxy-guanosine and 8-hydroxy-2'-deoxyguanosine.
The Science of the total environment.
2021 Sep; 787(?):147614. doi:
10.1016/j.scitotenv.2021.147614
. [PMID: 33992949] - Sema Merve Altıngöz, Şivge Kurgan, Canan Önder, Muhittin A Serdar, Uğur Ünlütürk, Metin Uyanık, Nilgün Başkal, Dimitris N Tatakis, Meral Günhan. Salivary and serum oxidative stress biomarkers and advanced glycation end products in periodontitis patients with or without diabetes: A cross-sectional study.
Journal of periodontology.
2021 09; 92(9):1274-1285. doi:
10.1002/jper.20-0406
. [PMID: 33277933] - Trine Henriksen, Allan Weimann, Emil List Larsen, Henrik Enghusen Poulsen. Quantification of 8-oxo-7,8-dihydro-2'-deoxyguanosine and 8-oxo-7,8-dihydro-guanosine concentrations in urine and plasma for estimating 24-h urinary output.
Free radical biology & medicine.
2021 08; 172(?):350-357. doi:
10.1016/j.freeradbiomed.2021.06.014
. [PMID: 34166769] - Soqrat Omari Shekaftik, Nafiseh Nasirzadeh. 8-Hydroxy-2'-deoxyguanosine (8-OHdG) as a biomarker of oxidative DNA damage induced by occupational exposure to nanomaterials: a systematic review.
Nanotoxicology.
2021 08; 15(6):850-864. doi:
10.1080/17435390.2021.1936254
. [PMID: 34171202] - Amany Ibrahim Mustafa, Rana Atef Khashaba, Eman Fawzy, Shimaa Mohamad AbdElRahman Baghdady, Shymaa Mostafa Rezk. Cross talk between oxidative stress and inflammation in alopecia areata.
Journal of cosmetic dermatology.
2021 Jul; 20(7):2305-2310. doi:
10.1111/jocd.13814
. [PMID: 33099870] - Mu-Rong Chao, Mark D Evans, Chiung-Wen Hu, Yunhee Ji, Peter Møller, Pavel Rossner, Marcus S Cooke. Biomarkers of nucleic acid oxidation - A summary state-of-the-art.
Redox biology.
2021 06; 42(?):101872. doi:
10.1016/j.redox.2021.101872
. [PMID: 33579665] - Luis Pla, Félix Sancenón, M Carmen Martínez-Bisbal, Celia Bañuls, Nuria Estañ, Marina Botello-Marabotto, Elena Aznar, Guillermo Sáez, Sara Santiago-Felipe, Ramón Martínez-Máñez. A new 8-oxo-7,8-2'deoxyguanosine nanoporous anodic alumina aptasensor for colorectal cancer diagnosis in blood and urine.
Nanoscale.
2021 May; 13(18):8648-8657. doi:
10.1039/d0nr07948k
. [PMID: 33942038] - Mai Hashimoto, Kazuaki Taguchi, Shuhei Imoto, Keishi Yamasaki, Hiroaki Mitsuya, Masaki Otagiri. Pharmacokinetics of 4'-cyano-2'-deoxyguanosine, a novel nucleoside analog inhibitor of the resistant hepatitis B virus, in a rat model of chronic kidney disease.
Journal of infection and chemotherapy : official journal of the Japan Society of Chemotherapy.
2021 May; 27(5):702-706. doi:
10.1016/j.jiac.2020.12.014
. [PMID: 33386259] - Hivi M Mahmoud, Ardawan F Ali, Dhia J Al-Timimi. Relationship Between Zinc Status and DNA Oxidative Damage in Patients with Type 2 Diabetes Mellitus.
Biological trace element research.
2021 Apr; 199(4):1276-1279. doi:
10.1007/s12011-020-02267-9
. [PMID: 32666431] - Linchen He, Yan Lin, Drew Day, Yanbo Teng, Xiangtian Wang, Xing Lucy Liu, Erik Yan, Jicheng Gong, Jian Qin, Xiaoli Wang, Jianbang Xiang, Jinhan Mo, Yinping Zhang, Junfeng Jim Zhang. Nitrated Polycyclic Aromatic Hydrocarbons and Arachidonic Acid Metabolisms Relevant to Cardiovascular Pathophysiology: Findings from a Panel Study in Healthy Adults.
Environmental science & technology.
2021 03; 55(6):3867-3875. doi:
10.1021/acs.est.0c08150
. [PMID: 33621071] - Wenjing Song, Yanjian Wan, Ying Jiang, Zhengdan Liu, Qi Wang. Urinary concentrations of 2,4-D in repeated samples from 0-7 year old healthy children in central and south China.
Chemosphere.
2021 Mar; 267(?):129225. doi:
10.1016/j.chemosphere.2020.129225
. [PMID: 33341734] - Chung-Kuan Wu, Chia-Lin Wu, Tzong-Shyuan Lee, Yu Ru Kou, Der-Cherng Tarng. Renal Tubular Epithelial TRPA1 Acts as An Oxidative Stress Sensor to Mediate Ischemia-Reperfusion-Induced Kidney Injury through MAPKs/NF-κB Signaling.
International journal of molecular sciences.
2021 Feb; 22(5):. doi:
10.3390/ijms22052309
. [PMID: 33669091] - Wei Hu, Yanhua Wang, Ting Wang, Qianpeng Ji, Qiang Jia, Tao Meng, Sai Ma, Zhihu Zhang, Yanbo Li, Rui Chen, Yufei Dai, Yang Luan, Zhiwei Sun, Shuguang Leng, Huawei Duan, Yuxin Zheng. Ambient particulate matter compositions and increased oxidative stress: Exposure-response analysis among high-level exposed population.
Environment international.
2021 02; 147(?):106341. doi:
10.1016/j.envint.2020.106341
. [PMID: 33383389] - Jonas Nascimento de Sousa, Aylla Beatriz Melo de Oliveira, Andressa Kelly Ferreira, E Silva, Leide Maria Soares de Sousa, Melissa Carvalho França Rocha, José Pinto de, Siqueira Júnior, Glenn William Kaatz, Jackson Roberto Guedes da Silva Almeida, João Sammy Nery de Souza, Humberto Medeiros Barreto. Modulation of the resistance to norfloxacin in Staphylococcus aureus by Bauhinia forficata link.
Natural product research.
2021 Feb; 35(4):681-685. doi:
10.1080/14786419.2019.1590714
. [PMID: 30938178] - Pratibha P Ghodke, Jyotirling R Mali, Amritraj Patra, Carmelo J Rizzo, F Peter Guengerich, Martin Egli. Enzymatic bypass and the structural basis of miscoding opposite the DNA adduct 1,N2-ethenodeoxyguanosine by human DNA translesion polymerase η.
The Journal of biological chemistry.
2021 Jan; 296(?):100642. doi:
10.1016/j.jbc.2021.100642
. [PMID: 33839151] - Ana C J de Araújo, Priscilla R Freitas, Cristina R Dos Santos Barbosa, Débora F Muniz, Jaime Ribeiro-Filho, Saulo R Tintino, José P S Júnior, José M B Filho, Gabriela R de Sousa, Henrique D M Coutinho. Modulation of Drug Resistance by Limonene: Inhibition of Efflux Pumps in Staphylococcus aureus Strains RN-4220 and IS-58.
Current drug metabolism.
2021; 22(2):110-113. doi:
10.2174/1389200221999210104204718
. [PMID: 33397229] - Angélica B Sanchez, Camila C M Garcia, Paolo Di Mascio, Marisa H G Medeiros. Detection of DNA Adduct Formation in Rat Lungs by a Micro-HPLC/MS/MS Approach.
Methods in molecular biology (Clifton, N.J.).
2021; 2279(?):225-239. doi:
10.1007/978-1-0716-1278-1_18
. [PMID: 33683698] - Yuki Mizuno, Shoko Konishi, Hideki Imai, Eiji Fujimori, Nobuhiko Kojima, Chiaki Kajiwara, Jun Yoshinaga. Telomere length and urinary 8-hydroxy-2'-deoxyguanosine and essential trace element concentrations in female Japanese university students.
Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering.
2021; 56(12):1328-1334. doi:
10.1080/10934529.2021.1991741
. [PMID: 34672915] - Tanja Veljović, Milanko Đurić, Ivana Gušić, Jelena Mirnić, Saša Čakić, Aleksandra Maletin, Snežana Brkić. THE INFLUENCE OF PERIODONTAL DISEASE TREATMENT ON 8-HYDROXY-DEOXYGUANOSINE CONCENTRATIONS IN SALIVA AND PLASMA OF CHRONIC PERIODONTITIS PATIENTS.
Acta clinica Croatica.
2020 Dec; 59(4):615-622. doi:
10.20471/acc.2020.59.04.07
. [PMID: 34285432] - Pang-Yen Chen, Chien-Wei Chen, Yu-Jang Su, Wen-Han Chang, Wei-Fong Kao, Chen-Chang Yang, I-Jen Wang. Associations between Levels of Urinary Oxidative Stress of 8-OHdG and Risk of Atopic Diseases in Children.
International journal of environmental research and public health.
2020 11; 17(21):. doi:
10.3390/ijerph17218207
. [PMID: 33172083] - Ryan Shaktah, Laura Vardanyan, Elroma David, Alexis Aleman, Dupre Orr, Lawrence A Shaktah, Daniel Tamae, Thomas Minehan. Synthesis and Stereochemical Assignment of Conioidine A: DNA- and HSA-Binding Studies of the Four Diastereomers.
Journal of natural products.
2020 10; 83(10):3191-3198. doi:
10.1021/acs.jnatprod.0c00871
. [PMID: 33034450] - Anna Jørs, Morten A V Lund, Thomas Jespersen, Torben Hansen, Henrik E Poulsen, Jens-Christian Holm. Urinary markers of nucleic acid oxidation increase with age, obesity and insulin resistance in Danish children and adolescents.
Free radical biology & medicine.
2020 08; 155(?):81-86. doi:
10.1016/j.freeradbiomed.2020.05.009
. [PMID: 32464183] - Hanxiyue Zhang, Yiqun Han, Xinghua Qiu, Yanwen Wang, Weiju Li, Jinming Liu, Xi Chen, Ran Li, Fanfan Xu, Wu Chen, Qiaoyun Yang, Yanhua Fang, Yunfei Fan, Junxia Wang, Hongyin Zhang, Tong Zhu. Association of internal exposure to polycyclic aromatic hydrocarbons with inflammation and oxidative stress in prediabetic and healthy individuals.
Chemosphere.
2020 Aug; 253(?):126748. doi:
10.1016/j.chemosphere.2020.126748
. [PMID: 32464779] - Yajie Zhao, Wei Liang, Shuya Tian, Linhui Shen, Hui Yang. Impact of increased serum 8-hydroxy-2'-deoxyguanosine levels on extent of coronary artery lesions in elderly patients with type 2 diabetes.
The Journal of international medical research.
2020 Jul; 48(7):300060520934653. doi:
10.1177/0300060520934653
. [PMID: 32660308] - Yi-Dan Huang, Jian Hou, Tian Xu, Wen-Jun Yin, Juan Cheng, Hong-Yan Zheng, Jing Yuan. Non-linear relationships between seasonal exposure to polycyclic aromatic hydrocarbons and urinary 8-hydroxy-2'-deoxyguanosine levels among Chinese young students.
Chemosphere.
2020 Jul; 251(?):126352. doi:
10.1016/j.chemosphere.2020.126352
. [PMID: 32443248] - Özge Temiz. Biopesticide emamectin benzoate in the liver of male mice: evaluation of oxidative toxicity with stress protein, DNA oxidation, and apoptosis biomarkers.
Environmental science and pollution research international.
2020 Jun; 27(18):23199-23205. doi:
10.1007/s11356-020-08923-w
. [PMID: 32333357] - Chongfu Wu, Fang Zhang, Yinlong Guo. Identification and distinction of acrolein-deoxyguanosine adduct isomers by high-performance liquid chromatography/ion mobility spectrometry/quadrupole time-of-flight mass spectrometry combined with in-source collision-induced dissociation.
Rapid communications in mass spectrometry : RCM.
2020 May; 34(9):e8677. doi:
10.1002/rcm.8677
. [PMID: 31778227] - Iqubal Singh, Vijay Luxami, Kamaldeep Paul. Synthesis, cytotoxicity, pharmacokinetic profile, binding with DNA and BSA of new imidazo[1,2-a]pyrazine-benzo[d]imidazol-5-yl hybrids.
Scientific reports.
2020 04; 10(1):6534. doi:
10.1038/s41598-020-63605-4
. [PMID: 32300169] - Leila Maria de Sousa Andrade, Aylla Beatriz Melo de Oliveira, Antonio Linkoln Alves Borges Leal, Felipe Araújo de Alcântara Oliveira, Ana Lurdes Portela, José de Sousa Lima Neto, José Pinto de Siqueira-Júnior, Glenn William Kaatz, Cláudia Quintino da Rocha, Humberto Medeiros Barreto. Antimicrobial activity and inhibition of the NorA efflux pump of Staphylococcus aureus by extract and isolated compounds from Arrabidaea brachypoda.
Microbial pathogenesis.
2020 Mar; 140(?):103935. doi:
10.1016/j.micpath.2019.103935
. [PMID: 31857236] - Debapriya Garabadu, Deepanshu Singh. Ocimum basilicum attenuates ethidium bromide-induced cognitive deficits and pre-frontal cortical neuroinflammation, astrogliosis and mitochondrial dysfunction in rats.
Metabolic brain disease.
2020 03; 35(3):483-495. doi:
10.1007/s11011-020-00536-z
. [PMID: 31997265] - Julia Solnier, Liam Martin, Sanjib Bhakta, Franz Bucar. Flavonoids as Novel Efflux Pump Inhibitors and Antimicrobials Against Both Environmental and Pathogenic Intracellular Mycobacterial Species.
Molecules (Basel, Switzerland).
2020 Feb; 25(3):. doi:
10.3390/molecules25030734
. [PMID: 32046221] - Zhixiang Zhu, Ran Guo, Yunqian Li, Shanshan Li, Pengfei Tu. Comparison of three analytical methods for superoxide produced by activated immune cells.
Journal of pharmacological and toxicological methods.
2020 Jan; 101(?):106637. doi:
10.1016/j.vascn.2019.106637
. [PMID: 31678429] - Mai Hashimoto, Kazuaki Taguchi, Shuhei Imoto, Keishi Yamasaki, Hiroaki Mitsuya, Masaki Otagiri. Pharmacokinetic Properties of Orally Administered 4'-Cyano-2'-deoxyguanosine, a Novel Nucleoside Analog Inhibitor of the Hepatitis B Virus, in Viral Liver Injury Model Rats.
Biological & pharmaceutical bulletin.
2020; 43(9):1426-1429. doi:
10.1248/bpb.b20-00372
. [PMID: 32879218] - Linchen He, Xiaoxing Cui, Qianyi Xia, Feng Li, Jinhan Mo, Jicheng Gong, Yinping Zhang, Junfeng Jim Zhang. Effects of personal air pollutant exposure on oxidative stress: Potential confounding by natural variation in melatonin levels.
International journal of hygiene and environmental health.
2020 01; 223(1):116-123. doi:
10.1016/j.ijheh.2019.09.012
. [PMID: 31588015] - Carmen Peña-Bautista, Tania Tirle, Marina López-Nogueroles, Máximo Vento, Miguel Baquero, Consuelo Cháfer-Pericás. Oxidative Damage of DNA as Early Marker of Alzheimer's Disease.
International journal of molecular sciences.
2019 Dec; 20(24):. doi:
10.3390/ijms20246136
. [PMID: 31817451] - Ying Zhou, Yuan Yao, Yijun Shao, Weidong Qu, Yue Chen, Qingwu Jiang. Urinary bisphenol analogues concentrations and biomarkers of oxidative DNA and RNA damage in Chinese school children in East China: A repeated measures study.
Environmental pollution (Barking, Essex : 1987).
2019 Nov; 254(Pt A):112921. doi:
10.1016/j.envpol.2019.07.089
. [PMID: 31394349] - Wenfen Zhang, Yanhao Zhang, Guangrui Zhang, Jiying Liu, Wuduo Zhao, Wenjing Zhang, Kai Hu, Fuwei Xie, Shusheng Zhang. Facile preparation of a cationic COF functionalized magnetic nanoparticle and its use for the determination of nine hydroxylated polycyclic aromatic hydrocarbons in smokers' urine.
The Analyst.
2019 Oct; 144(19):5829-5841. doi:
10.1039/c9an01188a
. [PMID: 31475698] - Venkatesan Srinivasan, Mariadoss Asha Jhonsi, Namasivayam Dhenadhayalan, King-Chuen Lin, Devanesan Arul Ananth, Thilagar Sivasudha, Radhakrishnan Narayanaswamy, Arunkumar Kathiravan. Pyrene-based prospective biomaterial: In vitro bioimaging, protein binding studies and detection of bilirubin and Fe3.
Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.
2019 Oct; 221(?):117150. doi:
10.1016/j.saa.2019.117150
. [PMID: 31176291] - Ariadni Zianna, George D Geromichalos, Anna Pekou, Antonios G Hatzidimitriou, Evdoxia Coutouli-Argyropoulou, Maria Lalia-Kantouri, Anastasia A Pantazaki, George Psomas. A palladium(II) complex with the Schiff base 4-chloro-2-(N-ethyliminomethyl)-phenol: Synthesis, structural characterization, and in vitro and in silico biological activity studies.
Journal of inorganic biochemistry.
2019 10; 199(?):110792. doi:
10.1016/j.jinorgbio.2019.110792
. [PMID: 31365891] - Shohreh Jahani, Meissam Noroozifar, Mozhgan Khorasani-Motlagh, Masoud Torkzadeh-Mahani, Mahboubeh Adeli-Sardou. In vitro cytotoxicity studies of parent and nanoencapsulated Holmium-2,9-dimethyl-1,10-phenanthroline complex toward fish-salmon DNA-binding properties and antibacterial activity.
Journal of biomolecular structure & dynamics.
2019 10; 37(17):4437-4449. doi:
10.1080/07391102.2018.1557077
. [PMID: 30526398] - Yingying Chen, Chongyao Li, Peng Song, Biao Yan, Xu Yang, Yang Wu, Ping Ma. Hepatic and renal tissue damage in Balb/c mice exposed to diisodecyl phthalate: The role of oxidative stress pathways.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2019 10; 132(?):110600. doi:
10.1016/j.fct.2019.110600
. [PMID: 31228599] - Haijiao Gan, Hui Xu. A novel aptamer-based online magnetic solid phase extraction method for simultaneous determination of urinary 8-hydroxy-2'-deoxyguanosine and monohydroxylated polycyclic aromatic hydrocarbons.
Talanta.
2019 Aug; 201(?):271-279. doi:
10.1016/j.talanta.2019.04.004
. [PMID: 31122423] - Fatih Mehmet Kandemir, Serkan Yildirim, Cuneyt Caglayan, Sefa Kucukler, Gizem Eser. Protective effects of zingerone on cisplatin-induced nephrotoxicity in female rats.
Environmental science and pollution research international.
2019 Aug; 26(22):22562-22574. doi:
10.1007/s11356-019-05505-3
. [PMID: 31165450] - Zafer Cukurova, Halil Cetingok, Sukru Ozturk, Asuman Gedikbasi, Oya Hergunsel, Derya Ozturk, Burak Don, Kivanc Cefle, Sukru Palanduz, Devrimsel Harika Ertem. DNA damage effects of inhalation anesthetics in human bronchoalveolar cells.
Medicine.
2019 Aug; 98(32):e16518. doi:
10.1097/md.0000000000016518
. [PMID: 31393354] - Jianxue Wang, Guolin Chen, Qianwen Cui, Erfei Song, Weihua Tao, Wanqun Chen, Cunchuan Wang, Shiqi Jia. Renal Subcapsular Transplantation of 2'-Deoxyguanosine-Treated Murine Embryonic Thymus in Nude Mice.
Journal of visualized experiments : JoVE.
2019 07; ?(149):. doi:
10.3791/59657
. [PMID: 31380836] - Kyi Mar Wai, Masahiro Umezaki, Ohn Mar, Mitsutoshi Umemura, Chiho Watanabe. Arsenic exposure through drinking Water and oxidative stress Status: A cross-sectional study in the Ayeyarwady region, Myanmar.
Journal of trace elements in medicine and biology : organ of the Society for Minerals and Trace Elements (GMS).
2019 Jul; 54(?):103-109. doi:
10.1016/j.jtemb.2019.04.009
. [PMID: 31109599] - Aisha Mohamed Samir, Dalia Abdel-Hamid Shaker, Mona Mohamed Fathy, Salwa Farouk Hafez, Mona Mohsen Abdullatif, Laila Ahmed Rashed, Hany Ahmed Fouad Alghobary. Urinary and Genetic Biomonitoring of Polycyclic Aromatic Hydrocarbons in Egyptian Coke Oven Workers: Associations between Exposure, Effect, and Carcinogenic Risk Assessment.
The international journal of occupational and environmental medicine.
2019 07; 10(3):124-136. doi:
10.15171/ijoem.2019.1541
. [PMID: 31325295] - Ji Zheng, Tao Gao, Hai Shi, Yue Huang, Yang Xiang, Genxi Li. Electrochemical analysis of 8-hydroxy-2'-deoxyguanosine with enhanced sensitivity based on exonuclease-mediated functional nucleic acid.
Talanta.
2019 Jul; 199(?):324-328. doi:
10.1016/j.talanta.2019.02.080
. [PMID: 30952266] - S W C Silva, N B N Monção, B Q Araújo, D D R Arcanjo, J H L Ferreira, J S Lima Neto, A M G L Citó, J P de Siqueira Júnior, G W Kaatz, H M Barreto. Antimicrobial activity of Mimosa caesalpiniifolia Benth and its interaction with antibiotics against Staphylococcus aureus strains overexpressing efflux pump genes.
Letters in applied microbiology.
2019 Jul; 69(1):57-63. doi:
10.1111/lam.13163
. [PMID: 31002429] - Pınar Haznedar, Özlem Doğan, Pelin Albayrak, Gökçen Öz Tunçer, Serap Teber, Gülhis Deda, F Tuba Eminoglu. Effects of levetiracetam and valproic acid treatment on liver function tests, plasma free carnitine and lipid peroxidation in childhood epilepsies.
Epilepsy research.
2019 07; 153(?):7-13. doi:
10.1016/j.eplepsyres.2019.03.009
. [PMID: 30925397] - Marta Calatayud, Silvia Sara Farias, Gladys Soria de Paredes, Mónica Olivera, Natalia Ávila Carreras, Maria Cecilia Giménez, Vicenta Devesa, Dinoraz Vélez. Arsenic exposure of child populations in Northern Argentina.
The Science of the total environment.
2019 Jun; 669(?):1-6. doi:
10.1016/j.scitotenv.2019.02.415
. [PMID: 30877956] - Guojun Cao, Can Wu, Yong Tang, Chidan Wan. Ultrasmall HKUST-1 nanoparticles decorated graphite nanosheets for highly sensitive electrochemical sensing of DNA damage biomarker 8-hydroxy-2'-deoxyguanosine.
Analytica chimica acta.
2019 Jun; 1058(?):80-88. doi:
10.1016/j.aca.2019.01.031
. [PMID: 30851856] - Tatiane Cristina Hauschild, Gilian Guerreiro, Caroline Paula Mescka, Daniella Moura Coelho, Luiza Steffens, Dinara Jaqueline Moura, Vanusa Manfredini, Carmen Regla Vargas. DNA damage induced by alloisoleucine and other metabolites in maple syrup urine disease and protective effect of l-carnitine.
Toxicology in vitro : an international journal published in association with BIBRA.
2019 Jun; 57(?):194-202. doi:
10.1016/j.tiv.2019.03.007
. [PMID: 30853490] - Yueli Yao, Dong Wang, Haitao Ma, Chengyun Li, Xiaoru Chang, Patrick Low, S Katharine Hammond, Mary Ellen Turyk, Junling Wang, Sa Liu. The impact on T-regulatory cell related immune responses in rural women exposed to polycyclic aromatic hydrocarbons (PAHs) in household air pollution in Gansu, China: A pilot investigation.
Environmental research.
2019 06; 173(?):306-317. doi:
10.1016/j.envres.2019.03.053
. [PMID: 30951957] - Ye Fu, Yingying Niu, Baolong Pan, Yanli Liu, Bin Zhang, Xuejing Li, Aimin Yang, Jisheng Nie, Ruisheng Wang, Jin Yang. OGG1 methylation mediated the effects of cell cycle and oxidative DNA damage related to PAHs exposure in Chinese coke oven workers.
Chemosphere.
2019 Jun; 224(?):48-57. doi:
10.1016/j.chemosphere.2019.02.114
. [PMID: 30807913] - Zohreh Moradi, Mozhgan Khorasani-Motlagh, Ali Reza Rezvani, Meissam Noroozifar. Electronic and fluorescent studies on the interaction of DNA and BSA with a new ternary praseodymium complex containing 2,9-dimethyl 1,10-phenanthroline and antibacterial activities testing.
Journal of biomolecular structure & dynamics.
2019 Jun; 37(9):2283-2295. doi:
10.1080/07391102.2018.1479657
. [PMID: 30035684] - Tiago Franco de Oliveira, Antonio Anax Falcão de Oliveira, Miriam Lemos, Mariana Veras, Paulo Hilário Nascimento Saldiva, Marisa Helena Gennari de Medeiros, Paolo Di Mascio, Ana Paula de Melo Loureiro. Quantification of three DNA Lesions by Mass Spectrometry and Assessment of Their Levels in Tissues of Mice Exposed to Ambient Fine Particulate Matter.
Journal of visualized experiments : JoVE.
2019 05; ?(147):. doi:
10.3791/59734
. [PMID: 31205313] - Ming-Sheng Teng, Semon Wu, Lung-An Hsu, I-Shiang Tzeng, Hsin-Hua Chou, Cheng-Wen Su, Yu-Lin Ko. Pleiotropic association of LIPC variants with lipid and urinary 8-hydroxy deoxyguanosine levels in a Taiwanese population.
Lipids in health and disease.
2019 May; 18(1):111. doi:
10.1186/s12944-019-1057-9
. [PMID: 31077211] - Hu Yang, Ning Li, Jie Han, Chen-Li Zhu, Lei Tian, Ben-Cheng Lin, Zhu-Ge Xi, Xiao-Hua Liu, Nan Chu. [Injury of rat blood vessels caused by acute ozone exposure and its mechanism].
Zhongguo ying yong sheng li xue za zhi = Zhongguo yingyong shenglixue zazhi = Chinese journal of applied physiology.
2019 May; 35(3):193-198. doi:
10.12047/j.cjap.5748.2019.042
. [PMID: 31257797] - Wei-Hsiang Chang, Yuh-Shyan Tsai, Jia-Yu Wang, Hsiu-Ling Chen, Wen-Horng Yang, Ching-Chang Lee. Sex hormones and oxidative stress mediated phthalate-induced effects in prostatic enlargement.
Environment international.
2019 05; 126(?):184-192. doi:
10.1016/j.envint.2019.02.006
. [PMID: 30798199] - Alessandra Maria Braga Ribeiro, Jonas Nascimento de Sousa, Luciana Muratori Costa, Felipe Araújo de Alcântara Oliveira, Raimunda Cardoso Dos Santos, Aline Suelen Silva Nunes, Wanderson Oliveira da Silva, Paulo Jorge Marques Cordeiro, José de Sousa Lima Neto, José Pinto de Siqueira-Júnior, Glenn William Kaatz, Humberto Medeiros Barreto, Aldeídia Pereira de Oliveira. Antimicrobial activity of Phyllanthus amarus Schumach. & Thonn and inhibition of the NorA efflux pump of Staphylococcus aureus by Phyllanthin.
Microbial pathogenesis.
2019 May; 130(?):242-246. doi:
10.1016/j.micpath.2019.03.012
. [PMID: 30876871] - Adela Jing Li, Maria-Pilar Martinez-Moral, Abdulrahman Labeed Al-Malki, Maryam A Al-Ghamdi, Maha Mohammed Al-Bazi, Taha A Kumosani, Kurunthachalam Kannan. Mediation analysis for the relationship between urinary phthalate metabolites and type 2 diabetes via oxidative stress in a population in Jeddah, Saudi Arabia.
Environment international.
2019 05; 126(?):153-161. doi:
10.1016/j.envint.2019.01.082
. [PMID: 30798196] - M Karahan, M Yildirim, H F Kucuk, V Turunc, H Demir, C Salturk, A Yavuz, T Demir, E Ari. Oxidative DNA Damage Is Increased in Living Kidney Donors.
Transplantation proceedings.
2019 May; 51(4):1049-1053. doi:
10.1016/j.transproceed.2019.02.011
. [PMID: 31101169] - Lobna F Wahman, Marwa M Abd-Rabo, Magda H M Youseef, Usama K Abdel-Hameed. The effect of Hordeum vulgare on the monoaminergic system modulating neural-thyroid dysfunction in hypothyroid female rats.
Cellular and molecular biology (Noisy-le-Grand, France).
2019 Apr; 65(4):53-62. doi:
. [PMID: 31078153]
- María F Castilla-Peon, Patricia Guadalupe Medina Bravo, Rocío Sánchez-Urbina, Juan Manuel Gallardo-Montoya, Luis César Soriano-López, Fausto Moisés Coronel Cruz. Diabetes and obesity during pregnancy are associated with oxidative stress genotoxicity in newborns.
Journal of perinatal medicine.
2019 Apr; 47(3):347-353. doi:
10.1515/jpm-2018-0201
. [PMID: 30676004] - Natalie Sims, Jack Rice, Barbara Kasprzyk-Hordern. An ultra-high-performance liquid chromatography tandem mass spectrometry method for oxidative stress biomarker analysis in wastewater.
Analytical and bioanalytical chemistry.
2019 Apr; 411(11):2261-2271. doi:
10.1007/s00216-019-01667-8
. [PMID: 30796487] - Kuan-Hsuan Chen, En-Lin Hsiang, Min-Yen Hsu, Yueh-Ching Chou, Tai-Chi Lin, Yuh-Lih Chang, Ching-Yao Tsai, Tzu-Hsuan Li, Lin-Chung Woung, Shih-Jen Chen, Chi-Hsien Peng, De-Kuang Hwang. Elevation of serum oxidative stress in patients with retina vein occlusions.
Acta ophthalmologica.
2019 Mar; 97(2):e290-e295. doi:
10.1111/aos.13892
. [PMID: 30259675] - Zuquan Weng, Yuhong Shi, Megumi Suda, Yukie Yanagiba, Toshihiro Kawamoto, Tamie Nakajima, Rui-Sheng Wang. Inhalation exposure to low levels of ethyl tertiary butyl ether: Its genetic effects were significantly modified by ALDH2 activity.
Environmental and molecular mutagenesis.
2019 03; 60(2):145-153. doi:
10.1002/em.22256
. [PMID: 30474146] - A A Burlaka, A V Vovk, A P Burlaka, O O Kolesnik. DNA oxidation in patients with metastastic colorectal cancer: clinical significance of 8-hydroxy-deoxyguanosine as an independent prognostic factor.
Experimental oncology.
2019 Mar; 41(1):26-31. doi:
NULL
. [PMID: 30932412] - Inae Lee, Raid Alakeel, Sungmin Kim, Yazeed A Al-Sheikh, Hazem Al-Mandeel, Abdullah A Alyousef, Younglim Kho, Kyungho Choi. Urinary phthalate metabolites among children in Saudi Arabia: Occurrences, risks, and their association with oxidative stress markers.
The Science of the total environment.
2019 Mar; 654(?):1350-1357. doi:
10.1016/j.scitotenv.2018.11.025
. [PMID: 30841407] - Xing Lıu, Kaili Deng, Sixia Chen, Yunshi Zhang, Jing Yao, Xiaoqin Weng, Yang Zhang, Tianming Gao, Ganzhu Feng. 8-Hydroxy-2’-deoxyguanosine as a biomarker of oxidative stress in acute exacerbation of chronic obstructive pulmonary disease.
Turkish journal of medical sciences.
2019 Feb; 49(1):93-100. doi:
10.3906/sag-1807-106
. [PMID: 30762093] - Arce Domingo-Relloso, Maria Grau-Perez, Inmaculada Galan-Chilet, Maria J Garrido-Martinez, Carmen Tormos, Ana Navas-Acien, Jose L Gomez-Ariza, Lidia Monzo-Beltran, Guillermo Saez-Tormo, Tamara Garcia-Barrera, Antonio Dueñas Laita, Laisa S Briongos Figuero, Juan C Martin-Escudero, F Javier Chaves, Josep Redon, Maria Tellez-Plaza. Urinary metals and metal mixtures and oxidative stress biomarkers in an adult population from Spain: The Hortega Study.
Environment international.
2019 02; 123(?):171-180. doi:
10.1016/j.envint.2018.11.055
. [PMID: 30529889]