Trehalose (BioDeep_00000000820)
Secondary id: BioDeep_00000398136
natural product human metabolite PANOMIX_OTCML-2023 Endogenous BioNovoGene_Lab2019 Volatile Flavor Compounds
代谢物信息卡片
化学式: C12H22O11 (342.11620619999997)
中文名称: 海藻糖, α-D-吡喃葡萄糖基-α-D-吡喃葡萄糖苷, D-(+)-海藻糖 二水合物, D-海藻糖, D-海藻糖,无水, α,α-海藻糖,
谱图信息:
最多检出来源 Homo sapiens(feces) 0.12%
分子结构信息
SMILES: C(C1C(C(C(C(O1)OC2C(C(C(C(O2)CO)O)O)O)O)O)O)O
InChI: InChI=1S/C12H22O11/c13-1-3-5(15)7(17)9(19)11(21-3)23-12-10(20)8(18)6(16)4(2-14)22-12/h3-20H,1-2H2
描述信息
Trehalose, also known as mycose, is a 1-alpha (disaccharide) sugar found extensively but not abundantly in nature. It is thought to be implicated in anhydrobiosis - the ability of plants and animals to withstand prolonged periods of desiccation. The sugar is thought to form a gel phase as cells dehydrate, which prevents disruption of internal cell organelles by effectively splinting them in position. Rehydration then allows normal cellular activity to be resumed without the major, generally lethal damage that would normally follow a dehydration/reyhdration cycle. Trehalose is a non-reducing sugar formed from two glucose units joined by a 1-1 alpha bond giving it the name of alpha-D-glucopyranoglucopyranosyl-1,1-alpha-D-glucopyranoside. The bonding makes trehalose very resistant to acid hydrolysis, and therefore stable in solution at high temperatures even under acidic conditions. The bonding also keeps non-reducing sugars in closed-ring form, such that the aldehyde or ketone end-groups do not bind to the lysine or arginine residues of proteins (a process called glycation). The enzyme trehalase, present but not abundant in most people, breaks it into two glucose molecules, which can then be readily absorbed in the gut. Trehalose is an important components of insects circulating fluid. It acts as a storage form of insect circulating fluid and it is important in respiration. Trehalose has also been found to be a metabolite of Burkholderia, Escherichia and Propionibacterium (PMID:12105274; PMID:25479689) (krishikosh.egranth.ac.in/bitstream/1/84382/1/88571\\\\%20P-1257.pdf).
Alpha,alpha-trehalose is a trehalose in which both glucose residues have alpha-configuration at the anomeric carbon. It has a role as a human metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite, a mouse metabolite and a geroprotector.
Cabaletta has been used in trials studying the treatment of Oculopharyngeal Muscular Dystrophy.
Trehalose is a metabolite found in or produced by Escherichia coli (strain K12, MG1655).
Trehalose is a natural product found in Cora pavonia, Selaginella nothohybrida, and other organisms with data available.
Trehalose is a metabolite found in or produced by Saccharomyces cerevisiae.
Occurs in fungi. EU and USA approved sweetener
Acquisition and generation of the data is financially supported in part by CREST/JST.
CONFIDENCE standard compound; INTERNAL_ID 149
D-(+)-Trehalose,which is widespread, can be used as a food ingredient and pharmaceutical excipient.
D-(+)-Trehalose,which is widespread, can be used as a food ingredient and pharmaceutical excipient.
同义名列表
76 个代谢物同义名
(2R,3S,4S,5R,6R)-2-(hydroxymethyl)-6-{[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxane-3,4,5-triol; (2R,3S,4S,5R,6R)-2-(hydroxymethyl)-6-[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxane-3,4,5-triol; (2R,2R,3S,3S,4S,4S,5R,5R,6R,6R)-6,6-oxybis(2-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol); 1-[(1->4)-alpha-D-glucosyl]n-alpha-D-glucopyranoside; .alpha.-d-Glucopyranosyl-.alpha.-d-glucopyranoside; alpha-D-Glucopyranoside, a-D-glucopyranosyl (9CI); alpha-D-Glucopyranoside, alpha-D-glucopyranosyl; Alpha-D-Glucopyranosyl-Alpha-D-Glucopyranoside.; alpha-D-glucopyranosyl-alpha-D-glucopyranoside; alpha-D-glucopyranosyl alpha-D-glucopyranoside; O-D-Glucopyranosyl-(1→1)-D-glucopyranoside; a-d-glucopyranosyl-a-d-glucopyranoside; Α-D-glucopyranosyl-α-D-glucopyranoside; Α-D-glucopyranosyl α-D-glucopyranoside; a-D-Glucopyranosyl a-D-glucopyranoside; alpha-D-Glcp-(1↔1)-alpha-D-Glcp; alpha-D-Glcp-(1<->1)-alpha-D-Glcp; alpha-D-Glcp-(11)-alpha-D-Glcp; HDTRYLNUVZCQOY-LIZSDCNHSA-N; D-(+)-Trehalose, anhydrous; .alpha.,.alpha.-Trehalose; delta-trehalose-anhydrous; D-(+)-Trehalose Anhydrous; alpha,alpha-D-Trehalose; Trehalose, alpha,alpha-; Trehalose [INN:BAN:NF]; a-D-GLCP-(11)-a-D-GLCP; Α-D-GLCP-(11)-α-D-GLCP; D-trehalose-anhydrous; alpha,alpha-Trehalose; alpha,alpha-trehalose; TREHALOSE, DIHYDRATE; TREHALOSE [USP-RS]; TREHALOSE (USP-RS); TREHALOSE [WHO-DD]; Natural trehalose; Α,alpha-trehalose; alpha-D-Trehalose; a,Alpha-trehalose; TREHALOSE [INCI]; Α,α’-D-trehalose; UNII-B8WCK70T7I; Trehalose (8CI); D-(+)-Trehalose; alpha-Trehalose; Α,α-D-trehalose; TREHALOSE [FCC]; D(+)-Trehalose; TREHALOSE [MI]; Mushroom sugar; D(+)Trehalose; Α-D-trehalose; α,α-trehalose; Α,α-trehalose; a-D-Trehalose; a-Trehalose; Α-trehalose; Ergot sugar; D-Trehalose; Trehalose P; SMP1_000299; B8WCK70T7I; Cabaletta; Trehalose; Trehaose; Thealoz; Mycose; (GLC)2; Treha; 2b1q; TRE; D-(+)-Trehalose dihydrate,from Saccharomyces cerevisiae; α,α-Trehalose; Trehalose; Trehalose dihydrate; alpha,alpha-Trehalose
数据库引用编号
42 个数据库交叉引用编号
- ChEBI: CHEBI:140775
- ChEBI: CHEBI:27082
- ChEBI: CHEBI:16551
- KEGG: C01083
- PubChem: 7427
- PubChem: 1143
- HMDB: HMDB0000975
- Metlin: METLIN3479
- DrugBank: DB12310
- ChEMBL: CHEMBL1236395
- Wikipedia: Trehalose
- MeSH: Trehalose
- ChemIDplus: 0000099207
- MetaCyc: TREHALOSE
- KNApSAcK: C00001152
- foodb: FDB001114
- chemspider: 7149
- CAS: 99-20-7
- CAS: 1174299-27-4
- CAS: 499-23-0
- MoNA: PS020209
- MoNA: PS020208
- MoNA: PS020207
- MoNA: PR100127
- MoNA: RP014903
- MoNA: PR100542
- MoNA: RP014902
- MoNA: RP014913
- MoNA: RP014911
- MoNA: RP014901
- medchemexpress: HY-N1132
- PMhub: MS000001064
- PubChem: 4320
- PDB-CCD: TRE
- 3DMET: B01375
- NIKKAJI: J4.965D
- RefMet: Trehalose
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-108
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-749
- KNApSAcK: 16551
- LOTUS: LTS0060329
- LOTUS: LTS0256842
分类词条
相关代谢途径
Reactome(5)
BioCyc(21)
- chitin biosynthesis
- trehalose degradation II (cytosolic)
- trehalose degradation IV
- trehalose biosynthesis III
- trehalose biosynthesis I
- trehalose biosynthesis
- trehalose degradation
- superpathway of mycolyl-arabinogalactan-peptidoglycan complex biosynthesis
- mAGP
- trehalose degradation VI (periplasmic)
- trehalose degradation I (low osmolarity)
- trehalose degradation V
- polyacyltrehalose biosynthesis
- glycogen biosynthesis III (from α-maltose 1-phosphate)
- trehalose biosynthesis II
- trehalose biosynthesis V
- trehalose biosynthesis VI
- trehalose biosynthesis VII
- trehalose biosynthesis IV
- trehalose degradation II (trehalase)
- mycolyl-arabinogalactan-peptidoglycan complex biosynthesis
代谢反应
421 个相关的代谢反应过程信息。
Reactome(5)
- Mycobacterium tuberculosis biological processes:
CYSTA + H2O ⟶ 2OBUTA + L-Cys + ammonia
- Trehalose biosynthesis:
Mal ⟶ alpha,alpha-trehalose
- Digestion and absorption:
CHEST + H2O ⟶ CHOL + LCFAs
- Digestion:
CHEST + H2O ⟶ CHOL + LCFAs
- Digestion of dietary carbohydrate:
H2O ⟶ Mal + maltotriose
BioCyc(81)
- glycogen biosynthesis III (from α-maltose 1-phosphate):
α-maltose ⟶ α,α-trehalose
- trehalose biosynthesis IV:
α-maltose ⟶ α,α-trehalose
- glycogen biosynthesis III (from α-maltose 1-phosphate):
α-maltose + ATP ⟶ α-maltose 1-phosphate + ADP + H+
- trehalose biosynthesis IV:
α-maltose ⟶ α,α-trehalose
- trehalose biosynthesis IV:
maltose ⟶ α,α-trehalose
- trehalose degradation II (trehalase):
β-D-glucose + ATP ⟶ β-D-glucose-6-phosphate + ADP + H+
- trehalose biosynthesis III:
α-D-glucose 6-phosphate + GDP-α-D-glucose ⟶ GDP + H+ + trehalose 6-phosphate
- trehalose biosynthesis I:
α-D-glucose 6-phosphate + UDP-D-glucose ⟶ H+ + UDP + trehalose 6-phosphate
- trehalose degradation V:
β-D-glucose + ATP ⟶ β-D-glucose-6-phosphate + ADP + H+
- trehalose degradation II (trehalase):
β-D-glucose + ATP ⟶ β-D-glucose-6-phosphate + ADP + H+
- trehalose biosynthesis II:
α-D-glucose 6-phosphate + ADP-D-glucose ⟶ ADP + H+ + trehalose 6-phosphate
- trehalose degradation IV:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- trehalose biosynthesis VI:
D-glucopyranose + an NDP-α-D-glucose ⟶ α,α-trehalose + H+ + a nucleoside diphosphate
- trehalose biosynthesis VII:
D-glucopyranose + UDP-α-D-glucose ⟶ α,α-trehalose + H+ + UDP
- mycolyl-arabinogalactan-peptidoglycan complex biosynthesis:
a mycobacterial arabinogalactan + trehalose-mono-mycolate ⟶ a mycolyl-arabinogalactan-peptidoglycan complex + trehalose
- trehalose degradation:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- chitin biosynthesis:
UDP-N-acetyl-α-D-glucosamine + chitin ⟶ UDP + chitin
- trehalose degradation VI (periplasmic):
α-D-glucopyranose ⟶ β-D-glucopyranose
- trehalose degradation V:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- trehalose degradation II (cytosolic):
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- trehalose degradation II (cytosolic):
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- trehalose degradation VI (periplasmic):
α-D-glucopyranose ⟶ β-D-glucopyranose
- trehalose degradation II (cytosolic):
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- trehalose degradation VI (periplasmic):
α-D-glucopyranose ⟶ β-D-glucopyranose
- chitin biosynthesis:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- trehalose degradation II (trehalase):
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- trehalose degradation II (trehalase):
α,α-trehalose + H2O ⟶ α-D-glucose + β-D-glucose
- trehalose degradation VI (periplasmic):
α,α-trehalose + H2O ⟶ α-D-glucose + β-D-glucose
- trehalose degradation II (cytosolic):
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- trehalose degradation VI (periplasmic):
α,α-trehalose + H2O ⟶ α-D-glucopyranose + β-D-glucopyranose
- trehalose degradation II (trehalase):
β-D-glucose + ATP ⟶ β-D-glucose 6-phosphate + ADP + H+
- trehalose degradation II (trehalase):
α,α-trehalose + H2O ⟶ α-D-glucose + β-D-glucose
- trehalose degradation V:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- trehalose degradation II (trehalase):
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- trehalose degradation II (trehalase):
β-D-glucose + ATP ⟶ β-D-glucose 6-phosphate + ADP + H+
- trehalose degradation VI (periplasmic):
α-D-glucose ⟶ β-D-glucose
- trehalose degradation II (trehalase):
β-D-glucose + ATP ⟶ β-D-glucose 6-phosphate + ADP + H+
- trehalose degradation VI (periplasmic):
α-D-glucose ⟶ β-D-glucose
- superpathway of mycolyl-arabinogalactan-peptidoglycan complex biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- mAGP:
α, α'-trehalose 6-α-mycolate + a mycobacterial arabinogalactan ⟶ α,α-trehalose + a mycolyl-arabinogalactan-peptidoglycan complex
- polyacyltrehalose biosynthesis:
α,α-trehalose + a long-chain acyl-CoA ⟶ a 2-(long-chain-fatty acyl)-trehalose + coenzyme A
- trehalose biosynthesis II:
ADP-α-D-glucose + D-glucopyranose 6-phosphate ⟶ α,α-trehalose 6-phosphate + ADP + H+
- trehalose biosynthesis V:
H2O + a maltooligosyl-trehalose ⟶ α,α-trehalose + a maltodextrin
- trehalose biosynthesis III:
α,α-trehalose 6-phosphate + H2O ⟶ α,α-trehalose + phosphate
- trehalose biosynthesis I:
D-glucopyranose 6-phosphate + UDP-α-D-glucose ⟶ α,α-trehalose 6-phosphate + H+ + UDP
- trehalose biosynthesis I:
α,α-trehalose 6-phosphate + H2O ⟶ α,α-trehalose + phosphate
- trehalose biosynthesis:
α,α-trehalose 6-phosphate + H2O ⟶ α,α-trehalose + phosphate
- trehalose biosynthesis I:
D-glucopyranose 6-phosphate + UDP-α-D-glucose ⟶ α,α-trehalose 6-phosphate + H+ + UDP
- trehalose degradation II (trehalase):
H2O + trehalose ⟶ β-D-glucose
- trehalose biosynthesis I:
α,α-trehalose 6-phosphate + H2O ⟶ α,α-trehalose + phosphate
- polyacyltrehalose biosynthesis:
α,α-trehalose + a long-chain acyl-CoA ⟶ a 2-(long-chain-fatty acyl)-trehalose + coenzyme A
- mycolyl-arabinogalactan-peptidoglycan complex biosynthesis:
α, α'-trehalose 6-α-mycolate + a mycobacterial arabinogalactan ⟶ α,α-trehalose + a mycolyl-arabinogalactan-peptidoglycan complex
- superpathway of mycolyl-arabinogalactan-peptidoglycan complex biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- trehalose biosynthesis III:
α,α-trehalose 6-phosphate + H2O ⟶ α,α-trehalose + phosphate
- trehalose biosynthesis I:
D-glucopyranose 6-phosphate + UDP-α-D-glucose ⟶ α,α-trehalose 6-phosphate + H+ + UDP
- trehalose biosynthesis V:
H2O + a maltooligosyl-trehalose ⟶ α,α-trehalose + a maltodextrin
- trehalose biosynthesis II:
ADP-α-D-glucose + D-glucopyranose 6-phosphate ⟶ α,α-trehalose 6-phosphate + ADP + H+
- trehalose biosynthesis V:
H2O + a maltooligosyl-trehalose ⟶ α,α-trehalose + a maltodextrin
- superpathway of mycolyl-arabinogalactan-peptidoglycan complex biosynthesis:
NADP+ + dTDP-β-L-rhamnose ⟶ H+ + NADPH + dTDP-4-dehydro-β-L-rhamnose
- mycolyl-arabinogalactan-peptidoglycan complex biosynthesis:
trans,octacis-decaprenylphospho-β-D-arabinofuranose + NAD+ ⟶ trans,octacis-decaprenylphospho-β-D-erythro-pentofuranosid-2-ulose + H+ + NADH
- trehalose biosynthesis I:
α,α-trehalose 6-phosphate + H2O ⟶ α,α-trehalose + phosphate
- trehalose biosynthesis III:
α,α-trehalose 6-phosphate + H2O ⟶ α,α-trehalose + phosphate
- trehalose biosynthesis I:
α,α-trehalose 6-phosphate + H2O ⟶ α,α-trehalose + phosphate
- trehalose biosynthesis V:
H2O + a maltooligosyl-trehalose ⟶ α,α-trehalose + a maltodextrin
- trehalose biosynthesis II:
α,α-trehalose 6-phosphate + H2O ⟶ α,α-trehalose + phosphate
- trehalose biosynthesis I:
α,α-trehalose 6-phosphate + H2O ⟶ α,α-trehalose + phosphate
- trehalose biosynthesis I:
α,α-trehalose 6-phosphate + H2O ⟶ α,α-trehalose + phosphate
- trehalose biosynthesis V:
H2O + a maltooligosyl-trehalose ⟶ α,α-trehalose + a maltodextrin
- trehalose biosynthesis III:
α,α-trehalose 6-phosphate + H2O ⟶ α,α-trehalose + phosphate
- trehalose biosynthesis II:
α,α-trehalose 6-phosphate + H2O ⟶ α,α-trehalose + phosphate
- trehalose biosynthesis I:
α,α-trehalose 6-phosphate + H2O ⟶ α,α-trehalose + phosphate
- trehalose biosynthesis I:
α,α-trehalose 6-phosphate + H2O ⟶ α,α-trehalose + phosphate
- trehalose biosynthesis I:
α,α-trehalose 6-phosphate + H2O ⟶ α,α-trehalose + phosphate
- trehalose biosynthesis I:
H2O + trehalose 6-phosphate ⟶ phosphate + trehalose
- trehalose degradation IV:
phosphate + trehalose ⟶ β-D-glucose + β-D-glucose 1-phosphate
- trehalose biosynthesis I:
H2O + trehalose 6-phosphate ⟶ phosphate + trehalose
- trehalose biosynthesis V:
a maltooligosyl-trehalose ⟶ a maltodextrin + trehalose
- trehalose biosynthesis V:
H2O + a maltooligosyl-trehalose ⟶ α,α-trehalose + a maltodextrin
- trehalose biosynthesis V:
H2O + a maltooligosyl-trehalose ⟶ α,α-trehalose + a maltodextrin
- trehalose biosynthesis V:
H2O + a maltooligosyl-trehalose ⟶ α,α-trehalose + a maltodextrin
- trehalose biosynthesis I:
α,α-trehalose 6-phosphate + H2O ⟶ α,α-trehalose + phosphate
WikiPathways(0)
Plant Reactome(309)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Trehalose biosynthesis:
G6P + UDP-Glc ⟶ H+ + UDP + alpha,alpha-trehalose 6-phosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Trehalose biosynthesis:
G6P + UDP-Glc ⟶ H+ + UDP + alpha,alpha-trehalose 6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Trehalose biosynthesis:
G6P + UDP-Glc ⟶ H+ + UDP + alpha,alpha-trehalose 6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Trehalose biosynthesis:
G6P + UDP-Glc ⟶ H+ + UDP + alpha,alpha-trehalose 6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Trehalose biosynthesis:
G6P + UDP-Glc ⟶ H+ + UDP + alpha,alpha-trehalose 6-phosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Trehalose biosynthesis:
G6P + UDP-Glc ⟶ H+ + UDP + alpha,alpha-trehalose 6-phosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Trehalose biosynthesis:
G6P + UDP-Glc ⟶ H+ + UDP + alpha,alpha-trehalose 6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Trehalose biosynthesis:
G6P + UDP-Glc ⟶ H+ + UDP + alpha,alpha-trehalose 6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Trehalose biosynthesis:
G6P + UDP-Glc ⟶ H+ + UDP + alpha,alpha-trehalose 6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Trehalose biosynthesis:
G6P + UDP-Glc ⟶ H+ + UDP + alpha,alpha-trehalose 6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Trehalose biosynthesis:
G6P + UDP-Glc ⟶ H+ + UDP + alpha,alpha-trehalose 6-phosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Trehalose biosynthesis:
G6P + UDP-Glc ⟶ H+ + UDP + alpha,alpha-trehalose 6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Trehalose biosynthesis:
G6P + UDP-Glc ⟶ H+ + UDP + alpha,alpha-trehalose 6-phosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Trehalose biosynthesis:
G6P + UDP-Glc ⟶ H+ + UDP + alpha,alpha-trehalose 6-phosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
ATP + beta-D-glucose ⟶ ADP + H+ + beta-D-glucose-6-phosphate
- Trehalose biosynthesis:
G6P + UDP-Glc ⟶ H+ + UDP + alpha,alpha-trehalose 6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Trehalose biosynthesis:
G6P + UDP-Glc ⟶ H+ + UDP + alpha,alpha-trehalose 6-phosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Trehalose biosynthesis:
G6P + UDP-Glc ⟶ H+ + UDP + alpha,alpha-trehalose 6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Trehalose biosynthesis:
G6P + UDP-Glc ⟶ H+ + UDP + alpha,alpha-trehalose 6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Trehalose biosynthesis:
G6P + UDP-Glc ⟶ H+ + UDP + alpha,alpha-trehalose 6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Trehalose biosynthesis:
G6P + UDP-Glc ⟶ H+ + UDP + alpha,alpha-trehalose 6-phosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose biosynthesis:
G6P + UDP-Glc ⟶ H+ + UDP + alpha,alpha-trehalose 6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Trehalose biosynthesis:
G6P + UDP-Glc ⟶ H+ + UDP + alpha,alpha-trehalose 6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Trehalose biosynthesis:
G6P + UDP-Glc ⟶ H+ + UDP + alpha,alpha-trehalose 6-phosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Trehalose biosynthesis:
G6P + UDP-Glc ⟶ H+ + UDP + alpha,alpha-trehalose 6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Trehalose biosynthesis:
G6P + UDP-Glc ⟶ H+ + UDP + alpha,alpha-trehalose 6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Trehalose biosynthesis:
G6P + UDP-Glc ⟶ H+ + UDP + alpha,alpha-trehalose 6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Trehalose biosynthesis:
G6P + UDP-Glc ⟶ H+ + UDP + alpha,alpha-trehalose 6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Trehalose biosynthesis:
G6P + UDP-Glc ⟶ H+ + UDP + alpha,alpha-trehalose 6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Trehalose biosynthesis:
G6P + UDP-Glc ⟶ H+ + UDP + alpha,alpha-trehalose 6-phosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Trehalose biosynthesis:
G6P + UDP-Glc ⟶ H+ + UDP + alpha,alpha-trehalose 6-phosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Trehalose biosynthesis:
G6P + UDP-Glc ⟶ H+ + UDP + alpha,alpha-trehalose 6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Trehalose biosynthesis:
G6P + UDP-Glc ⟶ H+ + UDP + alpha,alpha-trehalose 6-phosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Trehalose biosynthesis:
G6P + UDP-Glc ⟶ H+ + UDP + alpha,alpha-trehalose 6-phosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Trehalose biosynthesis:
G6P + UDP-Glc ⟶ H+ + UDP + alpha,alpha-trehalose 6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Trehalose biosynthesis:
G6P + UDP-Glc ⟶ H+ + UDP + alpha,alpha-trehalose 6-phosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Trehalose biosynthesis:
G6P + UDP-Glc ⟶ H+ + UDP + alpha,alpha-trehalose 6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Trehalose biosynthesis:
G6P + UDP-Glc ⟶ H+ + UDP + alpha,alpha-trehalose 6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Trehalose biosynthesis:
G6P + UDP-Glc ⟶ H+ + UDP + alpha,alpha-trehalose 6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Trehalose biosynthesis:
G6P + UDP-Glc ⟶ H+ + UDP + alpha,alpha-trehalose 6-phosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Trehalose biosynthesis:
G6P + UDP-Glc ⟶ H+ + UDP + alpha,alpha-trehalose 6-phosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Trehalose biosynthesis:
G6P + UDP-Glc ⟶ H+ + UDP + alpha,alpha-trehalose 6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Trehalose biosynthesis:
G6P + UDP-Glc ⟶ H+ + UDP + alpha,alpha-trehalose 6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Trehalose biosynthesis:
G6P + UDP-Glc ⟶ H+ + UDP + alpha,alpha-trehalose 6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Trehalose biosynthesis:
G6P + UDP-Glc ⟶ H+ + UDP + alpha,alpha-trehalose 6-phosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Trehalose biosynthesis:
G6P + UDP-Glc ⟶ H+ + UDP + alpha,alpha-trehalose 6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Trehalose biosynthesis:
G6P + UDP-Glc ⟶ H+ + UDP + alpha,alpha-trehalose 6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Trehalose biosynthesis:
G6P + UDP-Glc ⟶ H+ + UDP + alpha,alpha-trehalose 6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Trehalose biosynthesis:
G6P + UDP-Glc ⟶ H+ + UDP + alpha,alpha-trehalose 6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Trehalose biosynthesis:
G6P + UDP-Glc ⟶ H+ + UDP + alpha,alpha-trehalose 6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Trehalose biosynthesis:
G6P + UDP-Glc ⟶ H+ + UDP + alpha,alpha-trehalose 6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Trehalose biosynthesis:
G6P + UDP-Glc ⟶ H+ + UDP + alpha,alpha-trehalose 6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Trehalose biosynthesis:
G6P + UDP-Glc ⟶ H+ + UDP + alpha,alpha-trehalose 6-phosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
ATP + beta-D-glucose ⟶ ADP + H+ + beta-D-glucose-6-phosphate
- Trehalose biosynthesis:
G6P + UDP-Glc ⟶ H+ + UDP + alpha,alpha-trehalose 6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Trehalose biosynthesis:
G6P + UDP-Glc ⟶ H+ + UDP + alpha,alpha-trehalose 6-phosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Trehalose biosynthesis:
G6P + UDP-Glc ⟶ H+ + UDP + alpha,alpha-trehalose 6-phosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Trehalose biosynthesis:
G6P + UDP-Glc ⟶ H+ + UDP + alpha,alpha-trehalose 6-phosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Trehalose biosynthesis:
G6P + UDP-Glc ⟶ H+ + UDP + alpha,alpha-trehalose 6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Trehalose biosynthesis:
G6P + UDP-Glc ⟶ H+ + UDP + alpha,alpha-trehalose 6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Trehalose biosynthesis:
G6P + UDP-Glc ⟶ H+ + UDP + alpha,alpha-trehalose 6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Trehalose biosynthesis:
G6P + UDP-Glc ⟶ H+ + UDP + alpha,alpha-trehalose 6-phosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Trehalose biosynthesis:
G6P + UDP-Glc ⟶ H+ + UDP + alpha,alpha-trehalose 6-phosphate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Trehalose biosynthesis:
G6P + UDP-Glc ⟶ H+ + UDP + alpha,alpha-trehalose 6-phosphate
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Trehalose biosynthesis:
G6P + UDP-Glc ⟶ H+ + UDP + alpha,alpha-trehalose 6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Trehalose biosynthesis:
G6P + UDP-Glc ⟶ H+ + UDP + alpha,alpha-trehalose 6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Trehalose biosynthesis:
G6P + UDP-Glc ⟶ H+ + UDP + alpha,alpha-trehalose 6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Trehalose biosynthesis:
G6P + UDP-Glc ⟶ H+ + UDP + alpha,alpha-trehalose 6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Trehalose biosynthesis:
G6P + UDP-Glc ⟶ H+ + UDP + alpha,alpha-trehalose 6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Trehalose biosynthesis:
G6P + UDP-Glc ⟶ H+ + UDP + alpha,alpha-trehalose 6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Trehalose biosynthesis:
G6P + UDP-Glc ⟶ H+ + UDP + alpha,alpha-trehalose 6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Trehalose biosynthesis:
G6P + UDP-Glc ⟶ H+ + UDP + alpha,alpha-trehalose 6-phosphate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Carbohydrate metabolism:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Carbohydrate metabolism:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Carbohydrate metabolism:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
INOH(0)
PlantCyc(12)
- trehalose degradation II (cytosolic):
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- trehalose biosynthesis VI:
D-glucopyranose + an NDP-α-D-glucose ⟶ α,α-trehalose + H+ + a nucleoside diphosphate
- trehalose biosynthesis VI:
D-glucopyranose + an NDP-α-D-glucose ⟶ α,α-trehalose + H+ + a nucleoside diphosphate
- trehalose degradation II (cytosolic):
α,α-trehalose + H2O ⟶ α-D-glucopyranose + β-D-glucopyranose
- trehalose biosynthesis VI:
D-glucopyranose + an NDP-α-D-glucose ⟶ α,α-trehalose + H+ + a nucleoside diphosphate
- trehalose degradation II (cytosolic):
α,α-trehalose + H2O ⟶ α-D-glucopyranose + β-D-glucopyranose
- trehalose biosynthesis I:
α,α-trehalose 6-phosphate + H2O ⟶ α,α-trehalose + phosphate
- trehalose biosynthesis I:
α,α-trehalose 6-phosphate + H2O ⟶ α,α-trehalose + phosphate
- trehalose biosynthesis I:
α,α-trehalose 6-phosphate + H2O ⟶ α,α-trehalose + phosphate
- trehalose biosynthesis I:
α,α-trehalose 6-phosphate + H2O ⟶ α,α-trehalose + phosphate
- trehalose biosynthesis I:
α,α-trehalose 6-phosphate + H2O ⟶ α,α-trehalose + phosphate
- trehalose biosynthesis I:
α,α-trehalose 6-phosphate + H2O ⟶ α,α-trehalose + phosphate
COVID-19 Disease Map(0)
PathBank(14)
- Starch and Sucrose Metabolism:
D-Glucose + [PTS enzyme I]-N -phospho-L-histidine ⟶ -D-glucose 1-phosphate + [PTS enzyme I]-L-histidine
- Trehalose Biosynthesis I:
Glucose 6-phosphate + Uridine diphosphate glucose ⟶ , -Trehalose 6-phosphate + Hydrogen Ion + Uridine 5'-diphosphate
- Trehalose Degradation I (Low Osmolarity):
-D-Glucopyranuronic acid + Adenosine triphosphate ⟶ Adenosine diphosphate + Glucose 6-phosphate + Hydrogen Ion
- Starch and Sucrose Metabolism:
Adenosine triphosphate + D-Glucose ⟶ Adenosine diphosphate + Glucose 6-phosphate
- Starch and Sucrose Metabolism:
-D-Glucose + Unknown ⟶ -D-Glucose 6-phosphate + Unknown
- Trehalose Biosynthesis I:
Glucose 6-phosphate + Uridine diphosphate glucose ⟶ , -Trehalose 6-phosphate + Hydrogen Ion + Uridine 5'-diphosphate
- Trehalose Degradation I (Low Osmolarity):
-D-Glucopyranuronic acid + Adenosine triphosphate ⟶ Adenosine diphosphate + Glucose 6-phosphate + Hydrogen Ion
- Secondary Metabolites: Trehalose Biosynthesis and Metabolism:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate + Hydrogen ion
- Secondary Metabolites: Trehalose Biosynthesis and Metabolism:
, -trehalose + Water ⟶ -D-Glucose
- Chitin Biosynthesis:
Fructose 6-phosphate + L-Glutamine ⟶ Glucosamine 6-phosphate + L-Glutamic acid
- Trehalose Degradation:
Trehalose + Water ⟶ -D-Glucose
- Trehalose Degradation:
Trehalose + Water ⟶ -D-Glucose
- Trehalose Degradation:
Trehalose + Water ⟶ -D-Glucose
- Trehalose Degradation:
Trehalose + Water ⟶ -D-Glucose
PharmGKB(0)
250 个相关的物种来源信息
- 155619 - Agaricomycetes: LTS0060329
- 155619 - Agaricomycetes: LTS0256842
- 28211 - Alphaproteobacteria: LTS0060329
- 28211 - Alphaproteobacteria: LTS0256842
- 3701 - Arabidopsis: LTS0060329
- 3701 - Arabidopsis: LTS0256842
- 3702 - Arabidopsis thaliana:
- 3702 - Arabidopsis thaliana: 10.1038/SREP35778
- 3702 - Arabidopsis thaliana: 10.1104/PP.104.053793
- 3702 - Arabidopsis thaliana: 10.1104/PP.114.240986
- 3702 - Arabidopsis thaliana: 10.1111/TPJ.14311
- 3702 - Arabidopsis thaliana: 10.1186/1752-0509-1-53
- 3702 - Arabidopsis thaliana: 10.1186/1752-0509-5-1
- 3702 - Arabidopsis thaliana: LTS0060329
- 3702 - Arabidopsis thaliana: LTS0256842
- 4050 - Araliaceae: LTS0256842
- 6656 - Arthropoda: LTS0060329
- 6656 - Arthropoda: LTS0256842
- 80628 - Atheliaceae: LTS0060329
- 80628 - Atheliaceae: LTS0256842
- 2 - Bacteria: LTS0060329
- 2 - Bacteria: LTS0256842
- 5204 - Basidiomycota: LTS0060329
- 5204 - Basidiomycota: LTS0256842
- 7089 - Bombycidae: LTS0060329
- 7089 - Bombycidae: LTS0256842
- 7090 - Bombyx: LTS0060329
- 7090 - Bombyx: LTS0256842
- 7091 - Bombyx mori: 10.1271/BBB.70457
- 7091 - Bombyx mori: LTS0060329
- 7091 - Bombyx mori: LTS0256842
- 6658 - Branchiopoda: LTS0256842
- 3700 - Brassicaceae: LTS0060329
- 3700 - Brassicaceae: LTS0256842
- 64390 - Callosobruchus: LTS0060329
- 64390 - Callosobruchus: LTS0256842
- 64391 - Callosobruchus maculatus: 10.1017/S1742758400001752
- 64391 - Callosobruchus maculatus: LTS0060329
- 64391 - Callosobruchus maculatus: LTS0256842
- 3568 - Caryophyllaceae: LTS0060329
- 7711 - Chordata: LTS0060329
- 7711 - Chordata: LTS0256842
- 27439 - Chrysomelidae: LTS0060329
- 27439 - Chrysomelidae: LTS0256842
- 476738 - Cora: LTS0060329
- 476738 - Cora: LTS0256842
- 1399799 - Cora pavonia: 10.1016/0008-6215(87)80006-X
- 1399799 - Cora pavonia: LTS0060329
- 1399799 - Cora pavonia: LTS0256842
- 50554 - Corydalidae: LTS0060329
- 50554 - Corydalidae: LTS0256842
- 3650 - Cucurbitaceae: LTS0060329
- 3650 - Cucurbitaceae: LTS0256842
- 1117 - Cyanobacteria: 10.3389/FMICB.2014.00109
- 6668 - Daphnia: LTS0256842
- 6669 - Daphnia pulex: 10.1038/SREP25125
- 6669 - Daphnia pulex: LTS0256842
- 77658 - Daphniidae: LTS0256842
- 39673 - Dictyonema: LTS0060329
- 39673 - Dictyonema: LTS0256842
- 543 - Enterobacteriaceae: LTS0060329
- 543 - Enterobacteriaceae: LTS0256842
- 561 - Escherichia: LTS0060329
- 561 - Escherichia: LTS0256842
- 562 - Escherichia coli: LTS0060329
- 562 - Escherichia coli: LTS0256842
- 2759 - Eukaryota: LTS0060329
- 2759 - Eukaryota: LTS0256842
- 3803 - Fabaceae: LTS0256842
- 1769247 - Fomitopsidaceae: LTS0060329
- 4751 - Fungi: LTS0060329
- 4751 - Fungi: LTS0256842
- 1236 - Gammaproteobacteria: LTS0060329
- 1236 - Gammaproteobacteria: LTS0256842
- 5314 - Ganoderma: LTS0060329
- 5314 - Ganoderma: LTS0256842
- 29884 - Ganoderma applanatum: 10.1021/JO01054A544
- 29884 - Ganoderma applanatum: LTS0060329
- 29884 - Ganoderma applanatum: LTS0256842
- 5626 - Grifola: LTS0060329
- 5626 - Grifola: LTS0256842
- 5627 - Grifola frondosa: 10.1248/CPB.34.264
- 5627 - Grifola frondosa: 10.1271/BBB.66.1576
- 5627 - Grifola frondosa: LTS0060329
- 5627 - Grifola frondosa: LTS0256842
- 2028216 - Grifolaceae: LTS0060329
- 2028216 - Grifolaceae: LTS0256842
- 146094 - Gypsophila: LTS0060329
- 1137863 - Gypsophila patrinii: 10.1007/BF00567864
- 1137863 - Gypsophila patrinii: LTS0060329
- 9604 - Hominidae: LTS0060329
- 9604 - Hominidae: LTS0256842
- 9605 - Homo: LTS0060329
- 9605 - Homo: LTS0256842
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1038/NBT.2488
- 9606 - Homo sapiens: LTS0060329
- 9606 - Homo sapiens: LTS0256842
- 51005 - Hygrophoraceae: LTS0060329
- 51005 - Hygrophoraceae: LTS0256842
- 40424 - Hymenochaetaceae: LTS0060329
- 40424 - Hymenochaetaceae: LTS0256842
- 80649 - Hymenogastraceae: LTS0060329
- 50557 - Insecta: LTS0060329
- 50557 - Insecta: LTS0256842
- 2028212 - Laetiporaceae: LTS0060329
- 5629 - Laetiporus: LTS0060329
- 5630 - Laetiporus sulphureus: 10.1007/S10600-009-9180-X
- 5630 - Laetiporus sulphureus: LTS0060329
- 4136 - Lamiaceae: LTS0060329
- 5352 - Lentinula: LTS0060329
- 5352 - Lentinula: LTS0256842
- 5353 - Lentinula edodes: 10.1007/BF02973937
- 5353 - Lentinula edodes: LTS0060329
- 5353 - Lentinula edodes: LTS0256842
- 3867 - Lotus: LTS0256842
- 645164 - Lotus burttii: 10.1111/J.1365-3040.2010.02266.X
- 645164 - Lotus burttii: LTS0256842
- 47247 - Lotus corniculatus: 10.1111/J.1365-3040.2010.02266.X
- 47247 - Lotus corniculatus: LTS0256842
- 1211582 - Lotus corniculatus subsp. corniculatus: 10.1111/J.1365-3040.2009.02047.X
- 1211582 - Lotus corniculatus subsp. corniculatus: 10.1111/J.1365-3040.2010.02266.X
- 1211582 - Lotus corniculatus subsp. corniculatus: 10.1111/J.1365-313X.2007.03381.X
- 1211582 - Lotus corniculatus subsp. corniculatus: LTS0256842
- 181267 - Lotus creticus: 10.1111/J.1365-3040.2010.02266.X
- 181267 - Lotus creticus: LTS0256842
- 264956 - Lotus filicaulis: 10.1111/J.1365-3040.2010.02266.X
- 34305 - Lotus japonicus:
- 347996 - Lotus tenuis: 10.1111/J.1365-3040.2010.02266.X
- 347996 - Lotus tenuis: LTS0256842
- 181288 - Lotus uliginosus: 10.1111/J.1365-3040.2010.02266.X
- 181288 - Lotus uliginosus: LTS0256842
- 1521260 - Lycopodiopsida: LTS0060329
- 1521260 - Lycopodiopsida: LTS0256842
- 930979 - Lyophyllaceae: LTS0060329
- 47720 - Lyophyllum: LTS0060329
- 64660 - Lyophyllum decastes: 10.1248/CPB.34.264
- 64660 - Lyophyllum decastes: LTS0060329
- 3398 - Magnoliopsida: LTS0060329
- 3398 - Magnoliopsida: LTS0256842
- 40674 - Mammalia: LTS0060329
- 40674 - Mammalia: LTS0256842
- 3877 - Medicago: LTS0256842
- 3879 - Medicago sativa: 10.3389/FPLS.2017.01208
- 3879 - Medicago sativa: LTS0256842
- 378266 - Meripilaceae: LTS0060329
- 378266 - Meripilaceae: LTS0256842
- 33208 - Metazoa: LTS0060329
- 33208 - Metazoa: LTS0256842
- 2511164 - Microchloropsis: 10.3389/FPLS.2020.00981
- 31969 - Mollicutes: LTS0256842
- 3671 - Momordica: LTS0060329
- 3671 - Momordica: LTS0256842
- 3673 - Momordica charantia:
- 3673 - Momordica charantia: 10.1055/S-2009-1216432
- 3673 - Momordica charantia: 10.1271/BBB.66.1576
- 3673 - Momordica charantia: LTS0060329
- 3673 - Momordica charantia: LTS0256842
- 10066 - Muridae: LTS0060329
- 10066 - Muridae: LTS0256842
- 10088 - Mus: LTS0060329
- 10088 - Mus: LTS0256842
- 10090 - Mus musculus: LTS0060329
- 10090 - Mus musculus: LTS0256842
- 10090 - Mus musculus: NA
- 2093 - Mycoplasma: LTS0256842
- 28903 - Mycoplasma bovis: 10.1128/MSYSTEMS.00055-17
- 2096 - Mycoplasma gallisepticum: 10.1128/MSYSTEMS.00055-17
- 2092 - Mycoplasmataceae: LTS0256842
- 2767358 - Mycoplasmopsis: LTS0256842
- 83221 - Myrothamnaceae: LTS0060329
- 83221 - Myrothamnaceae: LTS0256842
- 83222 - Myrothamnus: LTS0060329
- 83222 - Myrothamnus: LTS0256842
- 83223 - Myrothamnus flabellifolia: 10.1016/S0176-1617(11)81257-5
- 83223 - Myrothamnus flabellifolia: LTS0060329
- 83223 - Myrothamnus flabellifolia: LTS0256842
- 72117 - Omphalotaceae: LTS0060329
- 72117 - Omphalotaceae: LTS0256842
- 4053 - Panax: LTS0256842
- 4054 - Panax ginseng: 10.3389/FPLS.2016.00994
- 4054 - Panax ginseng: LTS0256842
- 40470 - Phellinus: LTS0060329
- 40470 - Phellinus: LTS0256842
- 40472 - Phellinus igniarius:
- 40472 - Phellinus igniarius: 10.1021/NP060476H
- 40472 - Phellinus igniarius: 10.1021/NP060476H.S001
- 40472 - Phellinus igniarius: LTS0060329
- 40472 - Phellinus igniarius: LTS0256842
- 13205 - Pholiota: LTS0060329
- 61267 - Pholiota nameko: 10.1248/CPB.34.264
- 61267 - Pholiota nameko: LTS0060329
- 36657 - Pluteaceae: LTS0256842
- 21861 - Pogostemon: LTS0060329
- 28511 - Pogostemon cablin: 10.1021/JF304466T
- 28511 - Pogostemon cablin: LTS0060329
- 5317 - Polyporaceae: LTS0060329
- 5317 - Polyporaceae: LTS0256842
- 508444 - Protohermes: LTS0060329
- 508444 - Protohermes: LTS0256842
- 621229 - Protohermes grandis: 10.1271/BBB.90090
- 621229 - Protohermes grandis: LTS0060329
- 621229 - Protohermes grandis: LTS0256842
- 135621 - Pseudomonadaceae: LTS0256842
- 286 - Pseudomonas: LTS0256842
- 303 - Pseudomonas putida: 10.1371/JOURNAL.PONE.0156509
- 303 - Pseudomonas putida: LTS0256842
- 71950 - Psilocybe: LTS0060329
- 209653 - Psilocybe argentipes: 10.1021/NP50015A023
- 209653 - Psilocybe argentipes: LTS0060329
- 1060 - Rhodobacter: LTS0060329
- 1060 - Rhodobacter: LTS0256842
- 3246 - Selaginella: 10.1016/J.JEP.2015.01.031
- 3246 - Selaginella: LTS0060329
- 3246 - Selaginella: LTS0256842
- 872858 - Selaginella involvens: 10.1016/J.JEP.2015.01.031
- 872858 - Selaginella involvens: LTS0060329
- 59777 - Selaginella lepidophylla: 10.1016/J.JEP.2015.01.031
- 59777 - Selaginella lepidophylla: LTS0060329
- 1715386 - Selaginella nothohybrida: 10.1016/J.JEP.2015.01.031
- 1715386 - Selaginella nothohybrida: LTS0060329
- 1715386 - Selaginella nothohybrida: LTS0256842
- 137178 - Selaginella tamariscina: 10.1016/J.JEP.2015.01.031
- 137178 - Selaginella tamariscina: LTS0060329
- 3245 - Selaginellaceae: LTS0060329
- 3245 - Selaginellaceae: LTS0256842
- 1883 - Streptomyces: LTS0060329
- 1883 - Streptomyces: LTS0256842
- 1886 - Streptomyces albidoflavus:
- 1886 - Streptomyces albidoflavus: 10.1021/NP0606188
- 1886 - Streptomyces albidoflavus: 10.1021/NP0606188.S001
- 1886 - Streptomyces albidoflavus: LTS0060329
- 1886 - Streptomyces albidoflavus: LTS0256842
- 1902 - Streptomyces coelicolor:
- 1902 - Streptomyces coelicolor: 10.1021/NP0606188
- 1902 - Streptomyces coelicolor: 10.1021/NP0606188.S001
- 1902 - Streptomyces coelicolor: LTS0060329
- 1902 - Streptomyces coelicolor: LTS0256842
- 2062 - Streptomycetaceae: LTS0060329
- 2062 - Streptomycetaceae: LTS0256842
- 35493 - Streptophyta: LTS0060329
- 35493 - Streptophyta: LTS0256842
- 40562 - Strophariaceae: LTS0060329
- 58023 - Tracheophyta: LTS0060329
- 58023 - Tracheophyta: LTS0256842
- 33090 - Viridiplantae: LTS0060329
- 33090 - Viridiplantae: LTS0256842
- 36658 - Volvariella: LTS0256842
- 36659 - Volvariella volvacea: 10.1021/JF9703314
- 36659 - Volvariella volvacea: LTS0256842
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Mohammad Alrosan, Ali Madi Almajwal, Ali Al-Qaisi, Sana Gammoh, Muhammad H Alu'datt, Farah R Al Qudsi, Thuan-Chew Tan, Ammar A Razzak Mahmood, Khalid Bani-Melhem. Trehalose-conjugated lentil-casein protein complexes prepared by structural interaction: Effects on water solubility and protein digestibility.
Food chemistry.
2024 Jul; 447(?):138882. doi:
10.1016/j.foodchem.2024.138882
. [PMID: 38452537] - Yakupjan Haxim, Ting Cao, Xiaoshuang Li, Xiujin Liu, Yuqing Liang, Amangul Hawar, Ruirui Yang, Daoyuan Zhang. Autophagy functions as a cytoprotective mechanism by regulating programmed cell death during desiccation in Syntrichia caninervis.
Plant physiology and biochemistry : PPB.
2024 Jun; 211(?):108620. doi:
10.1016/j.plaphy.2024.108620
. [PMID: 38714124] - Xiaoguang Lu, Fuzhi Zhang, Chenglong Zhang, Guorui Li, Yuchen Du, Cicong Zhao, Wei Zhao, Fengmei Gao, Lianshuang Fu, Xin Liu, Jun Liu, Xiaonan Wang. TaTPS11 enhances wheat cold resistance by regulating source-sink factor.
Plant physiology and biochemistry : PPB.
2024 Jun; 211(?):108695. doi:
10.1016/j.plaphy.2024.108695
. [PMID: 38744088] - Sayma Serine Chompa, Ali Tan Kee Zuan, Adibah Mohd Amin, Tan Geok Hun, Amir Hamzah Ahmad Ghazali, Buraq Musa Sadeq, Amaily Akter, Md Ekhlasur Rahman, Harun Or Rashid. Survival of beneficial microbes in liquid bioformulation and optimization of different carrier materials using RSM technique.
International microbiology : the official journal of the Spanish Society for Microbiology.
2024 Jun; 27(3):697-706. doi:
10.1007/s10123-023-00423-4
. [PMID: 37651053] - Xingxing Wang, Yingying Wei, Shu Jiang, Jianfen Ye, Yi Chen, Feng Xu, Xingfeng Shao. Transcriptome analysis reveals that trehalose alleviates chilling injury of peach fruit by regulating ROS signaling pathway and enhancing antioxidant capacity.
Food research international (Ottawa, Ont.).
2024 Jun; 186(?):114331. doi:
10.1016/j.foodres.2024.114331
. [PMID: 38729716] - Jantana Blanford, Zhiyang Zhai, Marcel D Baer, Gongrui Guo, Hui Liu, Qun Liu, Simone Raugei, John Shanklin. Molecular mechanism of trehalose 6-phosphate inhibition of the plant metabolic sensor kinase SnRK1.
Science advances.
2024 May; 10(20):eadn0895. doi:
10.1126/sciadv.adn0895
. [PMID: 38758793] - Sakthi Uma Devi Eswaran, Lalitha Sundaram, Kahkashan Perveen, Najat A Bukhari, R Z Sayyed. Osmolyte-producing microbial biostimulants regulate the growth of Arachis hypogaea L. under drought stress.
BMC microbiology.
2024 May; 24(1):165. doi:
10.1186/s12866-024-03320-6
. [PMID: 38745279] - Kazuhisa Maeda, Zheng Zhou, Miao Guo, Jinlong Zhang, Lang Chen, Fan Yang. Functional properties and skin care effects of sodium trehalose sulfate.
Skin research and technology : official journal of International Society for Bioengineering and the Skin (ISBS) [and] International Society for Digital Imaging of Skin (ISDIS) [and] International Society for Skin Imaging (ISSI).
2024 Apr; 30(4):e13666. doi:
10.1111/srt.13666
. [PMID: 38606717] - Ying Li, Shunjiao Wu, Yonghong Xu, Yaying Li, Yinghong Liu, Jia Wang. Transcriptomic Identification and Characterization of Trehalose-6-Phosphate Synthase in Fat Body of the Oriental Fruit Fly, Bactrocera dorsalis.
Journal of agricultural and food chemistry.
2024 Mar; 72(11):5725-5733. doi:
10.1021/acs.jafc.3c06197
. [PMID: 38452362] - Elena A Ianutsevich, Olga A Danilova, Olga A Grum-Grzhimaylo, Vera M Tereshina. Membrane Lipids and Osmolytes in the Response of the Acidophilic Basidiomycete Phlebiopsis gigantea to Heat, Cold, and Osmotic Shocks.
International journal of molecular sciences.
2024 Mar; 25(6):. doi:
10.3390/ijms25063380
. [PMID: 38542352] - Anitta Lutta, Matthias M Knopp, Matteo Tollemeto, Gabriel K Pedersen, Signe T Schmidt, Holger Grohganz, Line Hagner Nielsen. The interplay between trehalose and dextran as spray drying precursors for cationic liposomes.
International journal of pharmaceutics.
2024 Mar; 652(?):123798. doi:
10.1016/j.ijpharm.2024.123798
. [PMID: 38190949] - Javier A Miret, Cara A Griffiths, Matthew J Paul. Sucrose homeostasis: Mechanisms and opportunity in crop yield improvement.
Journal of plant physiology.
2024 Mar; 294(?):154188. doi:
10.1016/j.jplph.2024.154188
. [PMID: 38295650] - Shuyao Wang, Xin Hao, Yahui Liu, Yingying Chen, Yue Qu, Zhaoyuan Wang, Yingbai Shen. AnWRKY29 and AnHSP90 synergistically modulate trehalose levels in a desert shrub leaves during osmotic stress.
Physiologia plantarum.
2024 Mar; 176(2):e14237. doi:
10.1111/ppl.14237
. [PMID: 38433182] - Hao Chen, Suhua Huang, Changqian Quan, Zhining Chen, Meihua Xu, Fan Wei, Danfeng Tang. Effects of different colors of plastic-film mulching on soil temperature, yield, and metabolites in Platostoma palustre.
Scientific reports.
2024 03; 14(1):5110. doi:
10.1038/s41598-024-55406-w
. [PMID: 38429397] - Sana Parveen, Nasrin Akhtar, Teerasak E-Kobon, Richard Burchmore, Abdullah Ijaz Hussain, Kalsoom Akhtar. Biodesulfurization of organosulfur compounds by a trehalose biosurfactant producing Gordonia sp. isolated from crude oil contaminated soil.
World journal of microbiology & biotechnology.
2024 Feb; 40(3):103. doi:
10.1007/s11274-024-03899-y
. [PMID: 38372854] - Liangliang Li, Yan Li, Guijie Ding. Response mechanism of carbon metabolism of Pinus massoniana to gradient high temperature and drought stress.
BMC genomics.
2024 Feb; 25(1):166. doi:
10.1186/s12864-024-10054-2
. [PMID: 38347506] - Gongshan Chen, Anna Yang, Jianzhong Wang, Lixia Ke, Shaoxing Chen, Wentao Li. Effects of the synergistic treatments of arbuscular mycorrhizal fungi and trehalose on adaptability to salt stress in tomato seedlings.
Microbiology spectrum.
2024 Jan; ?(?):e0340423. doi:
10.1128/spectrum.03404-23
. [PMID: 38259091] - Yitong Chen, Liu Tang, Zhiyang Jiang, Shanshan Wang, Linlu Qi, Xiaolin Tian, Haiteng Deng, Zhiwei Kong, Wenqiang Gao, Xiaokang Zhang, Saijie Li, Meiqing Chen, Xin Zhang, Hongxia Duan, Jun Yang, You-Liang Peng, Dongli Wang, Junfeng Liu. Dual-Specificity Inhibitor Targets Enzymes of the Trehalose Biosynthesis Pathway.
Journal of agricultural and food chemistry.
2024 Jan; 72(1):209-218. doi:
10.1021/acs.jafc.3c06946
. [PMID: 38128269] - Benshui Shu, Xinyi Xie, Jinghua Dai, Luyang Liu, Xueming Cai, Zhongzhen Wu, Jintian Lin. Host plant-induced changes in metabolism and osmotic regulation gene expression in Diaphorina citri adults.
Journal of insect physiology.
2024 01; 152(?):104599. doi:
10.1016/j.jinsphys.2023.104599
. [PMID: 38072187] - Sara Lopes, Eva Fahr, João Costa, Andreia B Silva, M Manuel Lopes, Célia Faustino, Maria H L Ribeiro. Sustainable trehalose lipid production by Rhodotorula sp.: a promising bio-based alternative.
Bioprocess and biosystems engineering.
2024 Jan; 47(1):145-157. doi:
10.1007/s00449-023-02949-3
. [PMID: 38103079] - Mahima Misti Sarkar, Pritha Rudra, Paramita Paul, Tarun Kumar Dua, Swarnendu Roy. Enhanced adaptation to salinity stress in lentil seedlings through the use of trehalose-functionalized silica nanoparticles (TSiNPs): Exploring silica-sugar absorption and oxidative balance.
Plant physiology and biochemistry : PPB.
2023 Dec; 206(?):108309. doi:
10.1016/j.plaphy.2023.108309
. [PMID: 38169228] - Wenjing Shao, Xinlin Zhang, Zhiheng Zhou, Yue Ma, Duo Chu, Lei Wang, Yiming Yang, Lin Du, Yanli Du, Jidao Du, Qiang Zhao. Genome- and transcriptome-wide identification of trehalose-6-phosphate phosphatases (TPP) gene family and their expression patterns under abiotic stress and exogenous trehalose in soybean.
BMC plant biology.
2023 Dec; 23(1):641. doi:
10.1186/s12870-023-04652-7
. [PMID: 38082382] - Yuan Zhong, Ali Maruf, Kai Qu, Małgorzata Milewska, Ilona Wandzik, Nianlian Mou, Yu Cao, Wei Wu. Nanogels with covalently bound and releasable trehalose for autophagy stimulation in atherosclerosis.
Journal of nanobiotechnology.
2023 Dec; 21(1):472. doi:
10.1186/s12951-023-02248-9
. [PMID: 38066538] - Huihui Yu, Zhenning Teng, Bohan Liu, Jiahan Lv, Yinke Chen, Zhonge Qin, Yan Peng, Shuan Meng, Yuchi He, Meijuan Duan, Jianhua Zhang, Nenghui Ye. Transcription factor OsMYB30 increases trehalose content to inhibit α-amylase and seed germination at low temperature.
Plant physiology.
2023 Dec; ?(?):. doi:
10.1093/plphys/kiad650
. [PMID: 38057158] - Moritz Göbel, Franziska Fichtner. Functions of sucrose and trehalose 6-phosphate in controlling plant development.
Journal of plant physiology.
2023 Dec; 291(?):154140. doi:
10.1016/j.jplph.2023.154140
. [PMID: 38007969] - Tiantian Liu, Jin Wang, Lin Chen, Shengxuan Liu, Tengfei Liu, Liu Yu, Jingjing Guo, Ye Chen, Yiling Zhang, Botao Song. ScAREB4 promotes potato constitutive and acclimated freezing tolerance associated with enhancing trehalose synthesis and oxidative stress tolerance.
Plant, cell & environment.
2023 Dec; 46(12):3839-3857. doi:
10.1111/pce.14707
. [PMID: 37651608] - Qingqing Liu, Ningning Wang, Minli Qiu, Jun Cheng, Huajun Zhou, Feihu Che, Yan Hu, Yinghui He, Yuzhu Dai, Yingjie Zhang. Development and application of a universal extraction-free reagent based on an algal glycolipid.
Analytical methods : advancing methods and applications.
2023 11; 15(44):6061-6072. doi:
10.1039/d3ay01246h
. [PMID: 37921204] - Nattavat Sukko, Saowalak Kalapanulak, Treenut Saithong. Trehalose metabolism coordinates transcriptional regulatory control and metabolic requirements to trigger the onset of cassava storage root initiation.
Scientific reports.
2023 11; 13(1):19973. doi:
10.1038/s41598-023-47095-8
. [PMID: 37968317] - Yunxiao Wei, Yuhan Song, Muhammad Aamir Khan, Chengzhen Liang, Zhigang Meng, Yuan Wang, Sandui Guo, Rui Zhang. GhTPPA_2 Enhancement of Tobacco Sugar Accumulation and Drought Tolerance.
Gene.
2023 Nov; ?(?):147969. doi:
10.1016/j.gene.2023.147969
. [PMID: 37931857] - Changxia Li, Xuefang Lu, Yunzhi Liu, Junrong Xu, Wenjin Yu. Trehalose alleviates the inhibition of adventitious root formation caused by drought stress in cucumber through regulating ROS metabolism and activating trehalose and plant hormone biosynthesis.
Plant physiology and biochemistry : PPB.
2023 Nov; 205(?):108159. doi:
10.1016/j.plaphy.2023.108159
. [PMID: 37944244] - L Soltani. Role of oleic acid and trehalose on frozen-thawed ram semen.
Cryo letters.
2023 Nov; 44(6):343-351. doi:
. [PMID: 38311928]
- Sandra Mae-Lin Kerbler, Vinicio Armijos-Jaramillo, John Edward Lunn, Rubén Vicente. The trehalose 6-phosphate phosphatase family in plants.
Physiologia plantarum.
2023 Nov; 175(6):e14096. doi:
10.1111/ppl.14096
. [PMID: 38148193] - Kun Cao, Yufeng Sun, Xiaoyan Zhang, Yue Zhao, Jing Bian, Hao Zhu, Pan Wang, Baochang Gao, Xiaoli Sun, Ming Hu, Yongxia Guo, Xiaonan Wang. The miRNA-mRNA regulatory networks of the response to NaHCO3 stress in industrial hemp (Cannabis sativa L.).
BMC plant biology.
2023 Oct; 23(1):509. doi:
10.1186/s12870-023-04463-w
. [PMID: 37875794] - Orpheus M Butler, Stefano Manzoni, Charles R Warren. Community composition and physiological plasticity control microbial carbon storage across natural and experimental soil fertility gradients.
The ISME journal.
2023 Oct; ?(?):. doi:
10.1038/s41396-023-01527-5
. [PMID: 37853184] - Stefania Morales-Herrera, Joris Jourquin, Frederic Coppé, Lorena Lopez-Galvis, Tom De Smet, Alaeddine Safi, Maria Njo, Cara A Griffiths, John D Sidda, James S O Mccullagh, Xiaochao Xue, Benjamin G Davis, Johan Van der Eycken, Matthew J Paul, Patrick Van Dijck, Tom Beeckman. Trehalose-6-phosphate signaling regulates lateral root formation in Arabidopsis thaliana.
Proceedings of the National Academy of Sciences of the United States of America.
2023 10; 120(40):e2302996120. doi:
10.1073/pnas.2302996120
. [PMID: 37748053] - Yandong Yao, Yan Yang, Ying Pan, Zesheng Liu, Xuemei Hou, Yihua Li, Hongsheng Zhang, Chunlei Wang, Weibiao Liao. Crucial roles of trehalose and 5-azacytidine in alleviating salt stress in tomato: Both synergistically and independently.
Plant physiology and biochemistry : PPB.
2023 Oct; 203(?):108075. doi:
10.1016/j.plaphy.2023.108075
. [PMID: 37801738] - Zhongxiang Sun, Zhihui Lu, Tianxiang Xiao, Yaping Chen, Pengfei Fu, Kai Lu, Furong Gui. Genome-Wide Scanning Loci and Differentially Expressed Gene Analysis Unveils the Molecular Mechanism of Chlorantraniliprole Resistance in Spodoptera frugiperda.
Journal of agricultural and food chemistry.
2023 Sep; ?(?):. doi:
10.1021/acs.jafc.3c04228
. [PMID: 37699662] - Yan Song, Fengming Gu, Yijiangcheng Li, Weihong Zhou, Fu-An Wu, Jun Wang, Sheng Sheng. Host trehalose metabolism disruption by validamycin A results in reduced fitness of parasitoid offspring.
Pesticide biochemistry and physiology.
2023 Sep; 195(?):105570. doi:
10.1016/j.pestbp.2023.105570
. [PMID: 37666623] - Shuya Zhang, Xu Qiu, Yue Zhang, Caihua Huang, Donghai Lin. Metabolomic Analysis of Trehalose Alleviating Oxidative Stress in Myoblasts.
International journal of molecular sciences.
2023 Aug; 24(17):. doi:
10.3390/ijms241713346
. [PMID: 37686153] - Mahdis Rahimi Naiini, Beydolah Shahouzehi, Shahrzad Azizi, Bentolhoda Shafiei, Mahdieh Nazari-Robati. Trehalose-induced SIRT1/AMPK activation regulates SREBP-1c/PPAR-α to alleviate lipid accumulation in aged liver.
Naunyn-Schmiedeberg's archives of pharmacology.
2023 Aug; ?(?):. doi:
10.1007/s00210-023-02644-w
. [PMID: 37581638] - Bentolhoda Shafiei, Ali Afgar, Mohammad Hadi Nematollahi, Mohammad Shabani, Mahdieh Nazari-Robati. Effect of trehalose on miR-132 and SIRT1 in the hippocampus of aged rats.
Neuroscience letters.
2023 Aug; ?(?):137418. doi:
10.1016/j.neulet.2023.137418
. [PMID: 37549864] - Zifei Xie, Luchen Xu, Jie Zhao, Na Li, Deqiang Qin, Chun Xiao, Yongyue Lu, Zijun Guo. Rapid cold hardening and cold acclimation promote cold tolerance of oriental fruit fly, Bactrocera dorsalis (Hendel) by physiological substances transformation and cryoprotectants accumulation.
Bulletin of entomological research.
2023 Jul; ?(?):1-13. doi:
10.1017/s0007485323000251
. [PMID: 37501573] - Niklas Reichelt, Arthur Korte, Markus Krischke, Martin J Mueller, Daniel Maag. Natural variation of warm temperature-induced raffinose accumulation identifies TREHALOSE-6-PHOSPHATE SYNTHASE 1 as a modulator of thermotolerance.
Plant, cell & environment.
2023 Jul; ?(?):. doi:
10.1111/pce.14664
. [PMID: 37427798] - Sudhakar S Nalpe, Santanu Jana, Suvarn S Kulkarni. Total Synthesis and Structure Confirmation of Fusaroside.
The Journal of organic chemistry.
2023 Jul; 88(13):8175-8178. doi:
10.1021/acs.joc.3c00167
. [PMID: 37291052] - Yazhou Shu, Wensheng Zhang, Liqun Tang, Zhiyong Li, Xinyong Liu, Xixi Liu, Wanning Liu, Guanghao Li, Jiezheng Ying, Jie Huang, Xiaohong Tong, Honghong Hu, Jian Zhang, Yifeng Wang. ABF1 Positively Regulates Rice Chilling Tolerance via Inducing Trehalose Biosynthesis.
International journal of molecular sciences.
2023 Jul; 24(13):. doi:
10.3390/ijms241311082
. [PMID: 37446259] - Silvia Franzè, Caterina Ricci, Elena Del Favero, Francesco Rama, Antonella Casiraghi, Francesco Cilurzo. Micelles-in-Liposome Systems Obtained by Proliposomal Approach for Cannabidiol Delivery: Structural Features and Skin Penetration.
Molecular pharmaceutics.
2023 07; 20(7):3393-3402. doi:
10.1021/acs.molpharmaceut.3c00044
. [PMID: 37306238] - Lin Yang, Luwei Dai, Hangying Zhang, Fuai Sun, Xuchong Tang, Wenqi Feng, Haoqiang Yu, Juncheng Zhang. Molecular and Functional Analysis of Trehalose-6-Phosphate Synthase Genes Enhancing Salt Tolerance in Anoectochilus roxburghii (Wall.) Lindl.
Molecules (Basel, Switzerland).
2023 Jun; 28(13):. doi:
10.3390/molecules28135139
. [PMID: 37446801] - Xiaoguo Zhu, Di Fang, Die Li, Jianing Zhang, Haixin Jiang, Liang Guo, Qingyuan He, Tianyu Zhang, Alberto P Macho, Ertao Wang, Qian-Hua Shen, Yuanchao Wang, Jian-Min Zhou, Wenbo Ma, Yongli Qiao. Phytophthora sojae boosts host trehalose accumulation to acquire carbon and initiate infection.
Nature microbiology.
2023 Jun; ?(?):. doi:
10.1038/s41564-023-01420-z
. [PMID: 37386076] - Kun Wang, Mengqi Li, Bo Zhang, Yanpeng Chang, Shiheng An, Wenli Zhao. Sugar starvation activates the OsSnRK1a-OsbHLH111/OsSGI1-OsTPP7 module to mediate growth inhibition of rice.
Plant biotechnology journal.
2023 Jun; ?(?):. doi:
10.1111/pbi.14110
. [PMID: 37384619] - Wei-Chung Luo, William Zhang, Rachel Kim, Heather Chong, Sajal M Patel, Robin H Bogner, Xiuling Lu. Impact of controlled ice nucleation and lyoprotectants on nanoparticle stability during Freeze-drying and upon storage.
International journal of pharmaceutics.
2023 Jun; 641(?):123084. doi:
10.1016/j.ijpharm.2023.123084
. [PMID: 37245738] - Majid Alikhani-Koupaei, Abdollah Ehtesham Nia. Reducing the sink/source ratio of On-date palm plants during fruit growth has physiological and biochemical impacts on the shift in source-sink limitations.
Journal of the science of food and agriculture.
2023 Jun; ?(?):. doi:
10.1002/jsfa.12795
. [PMID: 37332084] - Cai-Yu Lian, Run-Zhou Wang, Jie Wang, Zhen-Yong Wang, Wei Zhang, Lin Wang. Trehalose prevents glyphosate-induced hepatic steatosis in roosters by activating the Nrf2 pathway and inhibiting NLRP3 inflammasome activation.
Veterinary research communications.
2023 Jun; 47(2):651-661. doi:
10.1007/s11259-022-10021-w
. [PMID: 36261742] - Archita Maiti, Snehasis Daschakraborty. Unraveling the Molecular Mechanisms of Trehalose-Mediated Protection and Stabilization of Escherichia coli Lipid Membrane during Desiccation.
The journal of physical chemistry. B.
2023 05; 127(20):4496-4507. doi:
10.1021/acs.jpcb.3c01730
. [PMID: 37194438] - Esmaeel Kaboosi, Mehdi Ghabooli, Rouhollah Karimi. Combined Effect of Trehalose and Serendipita indica Inoculation Might Participate in Solanum lycopersicum Induced Cold Tolerance.
Current microbiology.
2023 May; 80(7):224. doi:
10.1007/s00284-023-03335-8
. [PMID: 37222791] - Waeil Al Youssef, Regina Feil, Maureen Saint-Sorny, Xenie Johnson, John E Lunn, Bernhard Grimm, Pawel Brzezowski. Singlet oxygen-induced signalling depends on the metabolic status of the Chlamydomonas reinhardtii cell.
Communications biology.
2023 May; 6(1):529. doi:
10.1038/s42003-023-04872-5
. [PMID: 37193883] - Lulu Chang, Hanqin Chen, Bo Yang, Haiqin Chen, Wei Chen. Redistributing Carbon Flux by Impairing Saccharide Synthesis to Enhance Lipid Yield in Oleaginous Fungus Mortierella alpina.
ACS synthetic biology.
2023 May; ?(?):. doi:
10.1021/acssynbio.3c00046
. [PMID: 37166287] - Laurie Thouvenel, Jérôme Rech, Christophe Guilhot, Jean-Yves Bouet, Christian Chalut. In vivo imaging of MmpL transporters reveals distinct subcellular locations for export of mycolic acids and non-essential trehalose polyphleates in the mycobacterial outer membrane.
Scientific reports.
2023 Apr; 13(1):7045. doi:
10.1038/s41598-023-34315-4
. [PMID: 37120636] - Xuhui Wang, Dong Chen, Kexin Huang, Man Li, Changyou Zhan, Ziyan Dong, Tao Deng, Kebai Ren, Yue Qiu, Zhirong Zhang, Qin He. Albumin-Hitchhiking Drug Delivery to Tumor-draining Lymph Nodes Precisely Boosts Tumor-Specific Immunity through Autophagy Modulation of Immune Cells.
Advanced materials (Deerfield Beach, Fla.).
2023 Apr; ?(?):e2211055. doi:
10.1002/adma.202211055
. [PMID: 37114725] - Yunliang Zhang, Weigao Wang, Wenqian Wei, Lu Xia, Song Gao, Weizhu Zeng, Song Liu, Jingwen Zhou. Regulation of Ethanol Assimilation for Efficient Accumulation of Squalene in Saccharomyces cerevisiae.
Journal of agricultural and food chemistry.
2023 Apr; 71(16):6389-6397. doi:
10.1021/acs.jafc.3c00515
. [PMID: 37052370] - Chao Li, Li Tao, Guobo Guan, Zhangyue Guan, Austin M Perry, Tianren Hu, Jian Bing, Ming Xu, Clarissa J Nobile, Guanghua Huang. Atmospheric humidity regulates same-sex mating in Candida albicans through the trehalose and osmotic signaling pathways.
Science China. Life sciences.
2023 Apr; ?(?):. doi:
10.1007/s11427-023-2309-1
. [PMID: 37118508] - Abhishek Bharti, Hemant S Maheshwari, Shivani Garg, Khalid Anwar, Ashwani Pareek, Gyanesh Satpute, Anil Prakash, Mahaveer P Sharma. Exploring potential soybean bradyrhizobia from high trehalose-accumulating soybean genotypes for improved symbiotic effectiveness in soybean.
International microbiology : the official journal of the Spanish Society for Microbiology.
2023 Apr; ?(?):. doi:
10.1007/s10123-023-00351-3
. [PMID: 37036547] - Xiaoting Wang, Mingyu Wang, Yongshun Huang, Peng Zhu, Guangtao Qian, Yiming Zhang, Yuqi Liu, Jingwen Zhou, Lixin Li. Genome-Wide Identification and Analysis of Stress Response of Trehalose-6-Phosphate Synthase and Trehalose-6-Phosphate Phosphatase Genes in Quinoa.
International journal of molecular sciences.
2023 Apr; 24(8):. doi:
10.3390/ijms24086950
. [PMID: 37108114] - Lujia Li, Yang Qiao, Xinyu Qi, Wen Liu, Weiman Xu, Shurui Dong, Yiming Wu, Jianguo Cui, Yucheng Wang, Qin-Mei Wang. Sucrose promotes branch-thorn occurrence of Lycium ruthenicum through dual effects of energy and signal.
Tree physiology.
2023 Apr; ?(?):. doi:
10.1093/treephys/tpad040
. [PMID: 37014760] - Izumi C Mori, Takakazu Matsuura, Masahiro Otao, Lia Ooi, Yasuyo Nishimura, Takashi Hirayama. Application of Trehalose Mitigates Short-Styled Flowers in Solanaceous Crops.
Journal of agricultural and food chemistry.
2023 Apr; ?(?):. doi:
10.1021/acs.jafc.2c08479
. [PMID: 37011406] - HuiNan Xu, ZhanHong Zhang, Zhuo Zhang, Jing Peng, Yang Gao, KaiLong Li, Jianbin Chen, Jiao Du, Shuo Yan, DeYong Zhang, XuGuo Zhou, XiaoBin Shi, Yong Liu. Effects of insulin-like peptide 7 in Bemisia tabaci MED on tomato chlorosis virus transmission.
Pest management science.
2023 Apr; 79(4):1508-1517. doi:
10.1002/ps.7329
. [PMID: 36533303] - Lin Zhang, Zhipan Xiang, Junfeng Li, Siyao Wang, Yi Chen, Yan Liu, Dandan Mao, Sheng Luan, Liangbi Chen. bHLH57 confers chilling tolerance and grain yield improvement in rice.
Plant, cell & environment.
2023 04; 46(4):1402-1418. doi:
10.1111/pce.14513
. [PMID: 36510797] - Jia Gao, Yingjun Zhang, Chenchen Xu, Xin Wang, Pu Wang, Shoubing Huang. Abscisic acid collaborates with lignin and flavonoid to improve pre-silking drought tolerance by tuning stem elongation and ear development in maize (Zea mays L.).
The Plant journal : for cell and molecular biology.
2023 04; 114(2):437-454. doi:
10.1111/tpj.16147
. [PMID: 36786687] - Liya A Vitukhnovskaya, Andrey A Zaspa, Alexey Yu Semenov, Mahir D Mamedov. Conversion of light into electricity in a semi-synthetic system based on photosynthetic bacterial chromatophores.
Biochimica et biophysica acta. Bioenergetics.
2023 Mar; 1864(3):148975. doi:
10.1016/j.bbabio.2023.148975
. [PMID: 37001791] - Kimberley Elbrink, Sofie Van Hees, René Holm, Filip Kiekens. Optimization of the different phases of the freeze-drying process of solid lipid nanoparticles using experimental designs.
International journal of pharmaceutics.
2023 Mar; 635(?):122717. doi:
10.1016/j.ijpharm.2023.122717
. [PMID: 36781084] - Shaistul Islam, Firoz Mohammad, Manzer H Siddiqui, Hazem M Kalaji. Salicylic acid and trehalose attenuate salt toxicity in Brassica juncea L. by activating the stress defense mechanism.
Environmental pollution (Barking, Essex : 1987).
2023 Mar; 326(?):121467. doi:
10.1016/j.envpol.2023.121467
. [PMID: 36963453] - Dinesh Jhamb, Thirumala Rao Talluri, Sunanda Sharma, Rohit Juneja, Surendar Singh Nirwan, Deepak, Kalpesh Kumar Pargi, Aashish Tanwer, Pramod Kumar, Ramesh Kumar, Sharat Chandra Mehta, Mukesh Parashar, Mitesh Gaur. Freezability and fertility rates of stallion semen supplemented with trehalose in lactose extender.
Journal of equine veterinary science.
2023 Mar; ?(?):104293. doi:
10.1016/j.jevs.2023.104293
. [PMID: 36958410] - Sarah D McMillan, Nicole R Oberlie, Haley A Hardtke, Miah M Montes, Daren W Brown, Kristi L McQuade. A secondary function of trehalose-6-phosphate synthase is required for resistance to oxidative and desiccation stress in Fusarium verticillioides.
Fungal biology.
2023 03; 127(3):918-926. doi:
10.1016/j.funbio.2023.01.006
. [PMID: 36906382] - Yifan Xu, Xingyou Liu, Hao Tang, Lichao Zhong, Xiang Zhu, Jie Shen. Chronic Consumption of Trehalose Reduces Lifespan in Drosophila Model.
Plant foods for human nutrition (Dordrecht, Netherlands).
2023 Mar; 78(1):228-229. doi:
10.1007/s11130-023-01044-y
. [PMID: 36696078] - Xiaoyu Huang, Xiaojun Qiu, Yue Wang, Aminu Shehu Abubakar, Ping Chen, Jikang Chen, Kunmei Chen, Chunming Yu, Xiaofei Wang, Gang Gao, Aiguo Zhu. Genome-Wide Investigation of the NAC Transcription Factor Family in Apocynum venetum Revealed Their Synergistic Roles in Abiotic Stress Response and Trehalose Metabolism.
International journal of molecular sciences.
2023 Feb; 24(5):. doi:
10.3390/ijms24054578
. [PMID: 36902009] - Bruno E Rojas, Tomás Tonetti, Carlos M Figueroa. Trehalose 6-phosphate metabolism in C4 species.
Current opinion in plant biology.
2023 Feb; 72(?):102347. doi:
10.1016/j.pbi.2023.102347
. [PMID: 36806837] - Guang Zhang, Peng Yan, Doudou Leng, Li Shang, Chaohui Zhang, Zhongwei Wu, Zhenhe Wang. Salicylic Acid Treatment Alleviates the Heat Stress Response by Reducing the Intracellular ROS Level and Increasing the Cytosolic Trehalose Content in Pleurotus ostreatus.
Microbiology spectrum.
2023 Feb; 11(1):e0311322. doi:
10.1128/spectrum.03113-22
. [PMID: 36507658] - Hedan Li, Daqing Xu, Xin Tan, Danyang Huang, Yu Huang, Guihong Zhao, Xiaoqing Hu, Xiaoyuan Wang. The role of trehalose biosynthesis on mycolate composition and L-glutamate production in Corynebacterium glutamicum.
Microbiological research.
2023 Feb; 267(?):127260. doi:
10.1016/j.micres.2022.127260
. [PMID: 36463830] - Cassandra B Higgins, Joshua A Adams, Matthew H Ward, Zev J Greenberg, Małgorzata Milewska, Jiameng Sun, Yiming Zhang, Luana Chiquetto Paracatu, Qian Dong, Samuel Ballentine, Weikai Li, Ilona Wandzik, Laura G Schuettpelz, Brian J DeBosch. The tetraspanin transmembrane protein CD53 mediates dyslipidemia and integrates inflammatory and metabolic signaling in hepatocytes.
The Journal of biological chemistry.
2023 02; 299(2):102835. doi:
10.1016/j.jbc.2022.102835
. [PMID: 36581203] - Wenjin Zhang, Lihao Zheng, Duoyong Lang, Xiaojia Zhang, Xin Ma, Xiaokang Li, Xinhui Zhang. Eco-friendly bio-encapsulation from sodium alginate-trehalose-kaolin and its performance evaluation in improving plant growth under salt or/and drought conditions.
International journal of biological macromolecules.
2023 Jan; 225(?):123-134. doi:
10.1016/j.ijbiomac.2022.12.009
. [PMID: 36473533] - M A Thathsaranie P Manthrirathna, Kristel Kodar, Shigenari Ishizuka, Emma M Dangerfield, Lu Xiuyuan, Sho Yamasaki, Bridget L Stocker, Mattie S M Timmer. 6-C-Linked trehalose glycolipids signal through Mincle and exhibit potent adjuvant activity.
Bioorganic chemistry.
2023 Jan; 133(?):106345. doi:
10.1016/j.bioorg.2023.106345
. [PMID: 36764230] - Liyan Kong, Jiaxiu Liu, Wenjun Zhang, Xiaonan Li, Yuting Zhang, Xueyu Chen, Zongxiang Zhan, Zhongyun Piao. Genome-Wide Identification and Characterization of the Trehalose-6-Phosphate Synthetase Gene Family in Chinese Cabbage (Brassica rapa) and Plasmodiophora brassicae during Their Interaction.
International journal of molecular sciences.
2023 Jan; 24(2):. doi:
10.3390/ijms24020929
. [PMID: 36674458] - A I Kozlov, G G Vershubskaya, I O Gorin, V Yu Pylev, E V Balanovska. [Prevalence of trehalase enzymopathy genetic determinants in Siberian and Russian Far East populations].
Voprosy pitaniia.
2023; 92(2):53-59. doi:
10.33029/0042-8833-2023-92-2-53-59
. [PMID: 37346020] - Gal Sason, Edouard Jurkevitch, Amos Nussinovitch. Biological control of soft rot in potato by κ-carrageenan carriers encapsulated microbial predators.
Applied microbiology and biotechnology.
2023 Jan; 107(1):81-96. doi:
10.1007/s00253-022-12294-2
. [PMID: 36434114] - Lingjuan Xuan, Qianqian Wang, Zhigao Liu, Bin Xu, Shaoyu Cheng, Yingjia Zhang, Danying Lu, Bin Dong, Dongmei Zhang, Lang Zhang, Jingjing Ma, Yamei Shen. Metabolic analysis of the regulatory mechanism of sugars on secondary flowering in Magnolia.
BMC molecular and cell biology.
2022 Dec; 23(1):56. doi:
10.1186/s12860-022-00458-x
. [PMID: 36517772] - Guangchao Sun, Nishikant Wase, Shengqiang Shu, Jerry Jenkins, Bangjun Zhou, J Vladimir Torres-Rodríguez, Cindy Chen, Laura Sandor, Chris Plott, Yuko Yoshinga, Christopher Daum, Peng Qi, Kerrie Barry, Anna Lipzen, Luke Berry, Connor Pedersen, Thomas Gottilla, Ashley Foltz, Huihui Yu, Ronan O'Malley, Chi Zhang, Katrien M Devos, Brandi Sigmon, Bin Yu, Toshihiro Obata, Jeremy Schmutz, James C Schnable. Genome of Paspalum vaginatum and the role of trehalose mediated autophagy in increasing maize biomass.
Nature communications.
2022 12; 13(1):7731. doi:
10.1038/s41467-022-35507-8
. [PMID: 36513676] - Ming Hu, Meili Xie, Xiaobo Cui, Junyan Huang, Xiaohui Cheng, Lijiang Liu, Shengyi Liu, Chaobo Tong. Genome-Wide Characterization of Trehalose-6-Phosphate Synthase Gene Family of Brassica napus and Potential Links with Agronomic Traits.
International journal of molecular sciences.
2022 Dec; 23(24):. doi:
10.3390/ijms232415714
. [PMID: 36555357] - Muhammad Nawaz, Muhammad Umair Hassan, Muhammad Umer Chattha, Athar Mahmood, Adnan Noor Shah, Mohamed Hashem, Saad Alamri, Maria Batool, Adnan Rasheed, Maryam A Thabit, Haifa A S Alhaithloul, Sameer H Qari. Trehalose: a promising osmo-protectant against salinity stress-physiological and molecular mechanisms and future prospective.
Molecular biology reports.
2022 Dec; 49(12):11255-11271. doi:
10.1007/s11033-022-07681-x
. [PMID: 35802276] - Lu Li, Zhiguo Li, Yongxin Guo, Kai Zhang, Weidong Mi, Jing Liu. Preparation of uniform-sized GeXIVA[1,2]-loaded PLGA microspheres as long-effective release system with high encapsulation efficiency.
Drug delivery.
2022 Dec; 29(1):2283-2295. doi:
10.1080/10717544.2022.2089297
. [PMID: 35866254] - Jia Wang, Huan Fan, Ying Li, Tong-Fang Zhang, Ying-Hong Liu. Trehalose-6-phosphate phosphatases are involved in trehalose synthesis and metamorphosis in Bactrocera minax.
Insect science.
2022 Dec; 29(6):1643-1658. doi:
10.1111/1744-7917.13010
. [PMID: 35075784] - Carlos C Pérez-Marín, Luis Quevedo, Marta Salas, Ander Arando. Ultra-Rapid Freezing Using Droplets Immersed into Liquid Nitrogen in Bull Sperm: Evaluation of Two Cryoprotective Disaccharides and Two Warming Temperatures.
Biopreservation and biobanking.
2022 Nov; ?(?):. doi:
10.1089/bio.2022.0075
. [PMID: 36394463] - Haiyue Wang, Lin Guo, Ruofei Zha, Zhipeng Gao, Fen Yu, Qiang Wei. Histological, metabolomic and transcriptomic analyses reveal mechanisms of cold acclimation of the Moso bamboo (Phyllostachys edulis) leaf.
Tree physiology.
2022 11; 42(11):2336-2352. doi:
10.1093/treephys/tpac064
. [PMID: 35723499] - Noémie Penoy, Kouka Luc Delma, Hermane Avohou Tonakpon, Bruno Grignard, Brigitte Evrard, Géraldine Piel. An innovative one step green supercritical CO2 process for the production of liposomes co-encapsulating both a hydrophobic and a hydrophilic compound for pulmonary administration.
International journal of pharmaceutics.
2022 Nov; 627(?):122212. doi:
10.1016/j.ijpharm.2022.122212
. [PMID: 36150416] - Jana Volarić, Jeffrey Buter, Albert M Schulte, Keimpe-Oeds van den Berg, Eduardo Santamaría-Aranda, Wiktor Szymanski, Ben L Feringa. Design and Synthesis of Visible-Light-Responsive Azobenzene Building Blocks for Chemical Biology.
The Journal of organic chemistry.
2022 11; 87(21):14319-14333. doi:
10.1021/acs.joc.2c01777
. [PMID: 36285612] - Jelle Van Leene, Dominique Eeckhout, Astrid Gadeyne, Caroline Matthijs, Chao Han, Nancy De Winne, Geert Persiau, Eveline Van De Slijke, Freya Persyn, Toon Mertens, Wouter Smagghe, Nathalie Crepin, Ellen Broucke, Daniël Van Damme, Roman Pleskot, Filip Rolland, Geert De Jaeger. Mapping of the plant SnRK1 kinase signalling network reveals a key regulatory role for the class II T6P synthase-like proteins.
Nature plants.
2022 11; 8(11):1245-1261. doi:
10.1038/s41477-022-01269-w
. [PMID: 36376753] - Mansour Haidar, Melanie Loix, Sam Vanherle, Tess Dierckx, Tim Vangansewinkel, Pascal Gervois, Esther Wolfs, Ivo Lambrichts, Jeroen F J Bogie, Jerome J A Hendriks. Targeting lipophagy in macrophages improves repair in multiple sclerosis.
Autophagy.
2022 11; 18(11):2697-2710. doi:
10.1080/15548627.2022.2047343
. [PMID: 35282773] - Hesbon Ochieng Obel, Chunyan Cheng, Zhen Tian, Martin Kagiki Njogu, Ji Li, Shengli Du, Qunfeng Lou, Junguo Zhou, Xiaqing Yu, Joshua Otieno Ogweno, Jinfeng Chen. Transcriptomic and Physiological Analyses Reveal Potential Genes Involved in Photoperiod-Regulated β-Carotene Accumulation Mechanisms in the Endocarp of Cucumber (Cucumis sativus L.) Fruit.
International journal of molecular sciences.
2022 Oct; 23(20):. doi:
10.3390/ijms232012650
. [PMID: 36293506] - Mia G Park, Casey M Delphia, Cassandra Prince, George D Yocum, Joseph P Rinehart, Kevin M O'Neill, Laura A Burkle, Julia H Bowsher, Kendra J Greenlee. Effects of Temperature and Wildflower Strips on Survival and Macronutrient Stores of the Alfalfa Leafcutting Bee (Hymenoptera: Megachilidae) Under Extended Cold Storage.
Environmental entomology.
2022 10; 51(5):958-968. doi:
10.1093/ee/nvac062
. [PMID: 35964238] - Mahima Misti Sarkar, Nibedita Pradhan, Rewaj Subba, Puja Saha, Swarnendu Roy. Sugar-terminated carbon-nanodots stimulate osmolyte accumulation and ROS detoxification for the alleviation of salinity stress in Vigna radiata.
Scientific reports.
2022 10; 12(1):17567. doi:
10.1038/s41598-022-22241-w
. [PMID: 36266315] - Zhen Li, Qiang Huang, Yu Zheng, Yong Zhang, Xin Li, Shiqing Zhong, Zhijiang Zeng. Identification of the Toxic Compounds in Camellia oleifera Honey and Pollen to Honey Bees (Apis mellifera).
Journal of agricultural and food chemistry.
2022 Oct; 70(41):13176-13185. doi:
10.1021/acs.jafc.2c04950
. [PMID: 36214176]