beta-Damascenone (BioDeep_00000017552)

 

Secondary id: BioDeep_00000614857

human metabolite PANOMIX_OTCML-2023 Endogenous


代谢物信息卡片


1-(2,6,6-Trimethyl-1,3-cyclohexadien-1-yl)-2-buten-1-one; 1-(2,6,6-Trimethyl-1,3-cyclohexadienyl)-2-buten-1-one; 1-Crotonoyl-2,6,6-trimethyl-1,3-cyclohexadiene; 2,6,6-Trimethyl-1-(2-butenoyl)-1,3-cyclohexadiene

化学式: C13H18O (190.1357578)
中文名称: 大马士酮, 突厥烯酮
谱图信息: 最多检出来源 Homo sapiens(lipidomics) 0.41%

分子结构信息

SMILES: C/C=C/C(=O)C1=C(C)C=CCC1(C)C
InChI: InChI=1S/C13H18O/c1-5-7-11(14)12-10(2)8-6-9-13(12,3)4/h5-8H,9H2,1-4H3/b7-5+

描述信息

Beta-damascenone is a cyclic monoterpene ketone that is 2,6,6-trimethylcyclohexa-1,3-diene substituted at position 1 by a crotonoyl group. It has a role as a fragrance, a volatile oil component and a plant metabolite. It is an enone, an apo carotenoid monoterpenoid and a cyclic monoterpene ketone.
Damascenone is a natural product found in Vitis rotundifolia, Vitis labrusca, and other organisms with data available.
1-[2,6,6-Trimethyl-1,3-cyclohexadien-1-yl]-2-buten-1-one is a metabolite found in or produced by Saccharomyces cerevisiae.
trans-beta-damascenone is a metabolite found in or produced by Saccharomyces cerevisiae.
Damascenones are a series of closely related chemical compounds that are components of a variety of essential oils. The damascenones belong to a family of chemicals known as rose ketones, which also includes damascones and ionones. beta-Damascenone is a major contributor to the aroma of roses, despite its very low concentration, and is an important fragrance chemical used in perfumery. [Wikipedia]
From Rosa damascena and many other sources. 3,5,8-Megastigmatrien-7-one is found in many foods, some of which are herbs and spices, tea, common grape, and green vegetables.
A cyclic monoterpene ketone that is 2,6,6-trimethylcyclohexa-1,3-diene substituted at position 1 by a crotonoyl group.
Damascenone ((E/Z)-Damascenone) is an active compound of?Epipremnum pinnatum with anti-inflammatory activity[1]. Damascenone is a mixture complex of?E-isomer-Damascenone and Z-isomer Damascenone.
Damascenone ((E/Z)-Damascenone) is an active compound of?Epipremnum pinnatum with anti-inflammatory activity[1]. Damascenone is a mixture complex of?E-isomer-Damascenone and Z-isomer Damascenone.

同义名列表

58 个代谢物同义名

1-(2,6,6-Trimethyl-1,3-cyclohexadien-1-yl)-2-buten-1-one; 1-(2,6,6-Trimethyl-1,3-cyclohexadienyl)-2-buten-1-one; 1-Crotonoyl-2,6,6-trimethyl-1,3-cyclohexadiene; 2,6,6-Trimethyl-1-(2-butenoyl)-1,3-cyclohexadiene; 2-Buten-1-one, 1-(2,6,6-trimethyl-1,3-cyclohexadien-1-yl)-, (2E)-; (2 E)-1-(2,6,6-trimethylcyclohexane-1,3-dien-1-yl)but-2-en-1-one; 2-Buten-1-one, 1-(2,6,6-trimethyl-1,3-cyclohexadien-1-yl)-, (E)-; 1-(2,6,6-trimethyl-1,3-cyclohexadien-1-yl)-2-buten-1-one, trans-; 2-Buten-1-one, 1-(2,6,6-trimethyl-1,3-cyclohexadien-1-yl)-, (E); 4-(2,6,6-TRIMETHYL CYCLOHEXA-1,3-DIENYL) BUT-2-EN-4-ONE [FHFI]; (2E)-1-(2,6,6-trimethylcyclohexa-1,3-dien-1-yl)but-2-en-1-one; (2E)-1-(2,6,6-Trimethyl-1,3-cyclohexadien-1-yl)-2-buten-1-one; Damascenone, natural, 1.1-1.3 wt. \\% (190 proof ethanol), FG; (E)-1-(2,6,6-trimethylcyclohexa-1,3-dien-1-yl)but-2-en-1-one; (e)-1-(2,6,6-trimethyl-1-cyclohexa-1,3-dienyl)but-2-en-1-one; (E)-1-(2,6,6-Trimethyl-1,3-cyclohexadien-1-yl)-2-buten-1-one; 2-BUTEN-1-ONE, 1-(2,6,6-TRIMETHYL-1,3-CYCLOHEXADIEN-1-YL)-; (E)-1-(2,6,6-trimethylcyclohexa-1,3-dienyl)but-2-en-1-one; 1-[2,6,6-Trimethyl-1,3-cyclohexadien-1-yl]-2E-buten-1-one; 1-(2,6,6-Trimethyl-1,3-cyclohexadien-1-yl)-2-buten-1-one; 1-(2,6,6-Trimethylcyclohexa-1,3-dien-1-yl)but-2-en-1-one; Damascenone, certified reference material, TraceCERT(R); 4-(2,6,6-Trimethyl cyclohexa-1,3-dienyl)but-2-en-4-one; 4-(2,6,6-Trimethylcyclohexa-1,3-dienyl)but-2-en-4-one; 2,6,6-Trimethyl-1-trans-crotonoyl-1,3-cyclohexadiene; 1-crotonoyl-2,6,6-trimethylcyclohexa-1,3-diene; 2,6,6-trimethyl-1-crotonoyl-1,3-cyclohexadiene; 2,6,6-Trimethyl-1-crotonyl-1,3-cyclohexadiene; Damascenone, analytical standard; 3,5,8-Megastigmatrien-7-one; .BETA.-DAMASCENON, TRANS-; trans-.beta.-Damascenone; .BETA.-DAMASCENONE [MI]; DISCONTINUED, UNSTABLE"; TRANS-.BETA.-DAMASCENON; (E)-.beta.-Damascenone; .beta.-(E)-Damascenone; trans-beta-Damascenone; Damascenone (natural); beta-(E)-damascenone; (E)-beta-damascenone; damascenone (e-beta); Damascenone, trans-; ?-Damascenone, 90\\%; trans-b-Damascenone; DAMASCENONE,.BETA.-; trans-Β-damascenone; .beta.-Damascenone; (e)-b-Damascenone; Β-(e)-damascenone; b-(e)-Damascenone; trans-damascenone; (e)-Β-damascenone; beta-Damascenone; UNII-U66V25TBO0; b-Damascenone; Β-damascenone; Tox21_304001; Damascenone; U66V25TBO0; (E/Z)-Damascenone



数据库引用编号

18 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

2 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(2)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

69 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • R Sánchez-Gómez, A Zalacain, F Pardo, G L Alonso, M R Salinas. Moscatel vine-shoot extracts as a grapevine biostimulant to enhance wine quality. Food research international (Ottawa, Ont.). 2017 08; 98(?):40-49. doi: 10.1016/j.foodres.2017.01.004. [PMID: 28610731]
  • Ryota Motooka, Atsushi Usami, Hiroshi Nakahashi, Satoshi Koutari, Satoshi Nakaya, Ryoyu Shimizu, Kaoru Tsuji, Shinsuke Marumoto, Mitsuo Miyazawa. Characteristic odor components of essential oils from Eurya japonica. Journal of oleo science. 2015; 64(5):577-84. doi: 10.5650/jos.ess14225. [PMID: 25843279]
  • Alistair Paterson, Angzzas Kassim, Susan McCallum, Mary Woodhead, Kay Smith, Dzeti Zait, Julie Graham. Environmental and seasonal influences on red raspberry flavour volatiles and identification of quantitative trait loci (QTL) and candidate genes. TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik. 2013 Jan; 126(1):33-48. doi: 10.1007/s00122-012-1957-9. [PMID: 22890807]
  • Jolanta Nazaruk, Ewa Karna, Danuta Kalemba. The chemical composition of the essential oils of Cirsium palustre and C. rivulare and their antiproliferative effect. Natural product communications. 2012 Feb; 7(2):269-72. doi: . [PMID: 22474978]
  • Andreas Natsch, Tina Haupt, Heike Laue. Relating skin sensitizing potency to chemical reactivity: reactive Michael acceptors inhibit NF-κB signaling and are less sensitizing than S(N)Ar- and S(N)2- reactive chemicals. Chemical research in toxicology. 2011 Nov; 24(11):2018-27. doi: 10.1021/tx2003678. [PMID: 22023385]
  • Mark A Sefton, George K Skouroumounis, Gordon M Elsey, Dennis K Taylor. Occurrence, sensory impact, formation, and fate of damascenone in grapes, wines, and other foods and beverages. Journal of agricultural and food chemistry. 2011 Sep; 59(18):9717-46. doi: 10.1021/jf201450q. [PMID: 21866982]
  • Silvana A Rodriguez, Ana P Murray. Antioxidant activity and chemical composition of essential oil from Atriplex undulata. Natural product communications. 2010 Nov; 5(11):1841-4. doi: ". [PMID: 21213996]
  • Xiao-Hua Deng, Peng-Fei Xie, Xin-Hui Peng, Jian-Hua Yi, Ji-Heng Zhou, Qing-Ming Zhou, Wen-Xuan Pu, Yuan-Gang Dai. [Effects of soil, climate, and their interaction on some neutral volatile aroma components in flue-cured tobacco leaves from high quality tobacco planting regions of Hunan Province]. Ying yong sheng tai xue bao = The journal of applied ecology. 2010 Aug; 21(8):2063-71. doi: . [PMID: 21043117]
  • Misha T Kwasniewski, Justine E Vanden Heuvel, Bruce S Pan, Gavin L Sacks. Timing of cluster light environment manipulation during grape development affects C13 norisoprenoid and carotenoid concentrations in Riesling. Journal of agricultural and food chemistry. 2010 Jun; 58(11):6841-9. doi: 10.1021/jf904555p. [PMID: 20450186]
  • Andrew J Simkin, Marcel Kuntz, Helene Moreau, James McCarthy. Carotenoid profiling and the expression of carotenoid biosynthetic genes in developing coffee grain. Plant physiology and biochemistry : PPB. 2010 Jun; 48(6):434-42. doi: 10.1016/j.plaphy.2010.02.007. [PMID: 20347596]
  • Kikuo Sasamoto, Nobuo Ochiai. Selectable one-dimensional or two-dimensional gas chromatography-mass spectrometry with simultaneous olfactometry or element-specific detection. Journal of chromatography. A. 2010 Apr; 1217(17):2903-10. doi: 10.1016/j.chroma.2010.02.045. [PMID: 20299024]
  • Fong-Chin Huang, Györgyi Horváth, Péter Molnár, Erika Turcsi, József Deli, Jens Schrader, Gerhard Sandmann, Holger Schmidt, Wilfried Schwab. Substrate promiscuity of RdCCD1, a carotenoid cleavage oxygenase from Rosa damascena. Phytochemistry. 2009 Mar; 70(4):457-64. doi: 10.1016/j.phytochem.2009.01.020. [PMID: 19264332]
  • Fong-Chin Huang, Péter Molnár, Wilfried Schwab. Cloning and functional characterization of carotenoid cleavage dioxygenase 4 genes. Journal of experimental botany. 2009; 60(11):3011-22. doi: 10.1093/jxb/erp137. [PMID: 19436048]
  • Alexandre Pons, Valérie Lavigne, Frérot Eric, Philippe Darriet, Denis Dubourdieu. Identification of volatile compounds responsible for prune aroma in prematurely aged red wines. Journal of agricultural and food chemistry. 2008 Jul; 56(13):5285-90. doi: 10.1021/jf073513z. [PMID: 18540625]
  • Arporn Jarunrattanasri, Chockchai Theerakulkait, Keith R Cadwallader. Aroma components of acid-hydrolyzed vegetable protein made by partial hydrolysis of rice bran protein. Journal of agricultural and food chemistry. 2007 Apr; 55(8):3044-50. doi: 10.1021/jf0631474. [PMID: 17367160]
  • Patricio R Lozano, Maryanne Drake, Daniel Benitez, Keith R Cadwallader. Instrumental and sensory characterization of heat-induced odorants in aseptically packaged soy milk. Journal of agricultural and food chemistry. 2007 Apr; 55(8):3018-26. doi: 10.1021/jf0631225. [PMID: 17373812]
  • Lucia Castro-Vázquez, M Consuelo Díaz-Maroto, M Soledad Pérez-Coello. Volatile composition and contribution to the aroma of spanish honeydew honeys. Identification of a new chemical marker. Journal of agricultural and food chemistry. 2006 Jun; 54(13):4809-13. doi: 10.1021/jf0604384. [PMID: 16787032]
  • Yoshiko Kurobayashi, Emi Kouno, Akira Fujita, Yasujiro Morimitsu, Kikue Kubota. Potent odorants characterize the aroma quality of leaves and stalks in raw and boiled celery. Bioscience, biotechnology, and biochemistry. 2006 Apr; 70(4):958-65. doi: 10.1271/bbb.70.958. [PMID: 16636464]
  • Carolyn J Puglisi, Merran A Daniel, Dimitra L Capone, Gordon M Elsey, Rolf H Prager, Mark A Sefton. Precursors to damascenone: synthesis and hydrolysis of isomeric 3,9-dihydroxymegastigma-4,6,7-trienes. Journal of agricultural and food chemistry. 2005 Jun; 53(12):4895-900. doi: 10.1021/jf050327p. [PMID: 15941332]
  • Ayben Kilic, Hubert Kollmannsberger, Siegfried Nitz. Glycosidically bound volatiles and flavor precursors in Laurus nobilis L. Journal of agricultural and food chemistry. 2005 Mar; 53(6):2231-5. doi: 10.1021/jf040373+. [PMID: 15769161]
  • Keith Klesk, Michael Qian, Robert R Martin. Aroma extract dilution analysis of cv. Meeker (Rubus idaeus L.) red raspberries from Oregon and Washington. Journal of agricultural and food chemistry. 2004 Aug; 52(16):5155-61. doi: 10.1021/jf0498721. [PMID: 15291490]
  • Yair Bezman, Florian Mayer, Gary R Takeoka, Ron G Buttery, Gad Ben-Oliel, Haim D Rabinowitch, Michael Naim. Differential effects of tomato (Lycopersicon esculentum mill) matrix on the volatility of important aroma compounds. Journal of agricultural and food chemistry. 2003 Jan; 51(3):722-6. doi: 10.1021/jf020892h. [PMID: 12537448]
  • S C Duckham, A T Dodson, J Bakker, J M Ames. Volatile flavour components of baked potato flesh. A comparison of eleven potato cultivars. Die Nahrung. 2001 Oct; 45(5):317-23. doi: 10.1002/1521-3803(20011001)45:5<317::aid-food317>3.0.co;2-4. [PMID: 11715342]