Sphinganine (BioDeep_00000001327)
Secondary id: BioDeep_00000171824, BioDeep_00000405234, BioDeep_00000406215, BioDeep_00000841079
natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite Chemicals and Drugs Antitumor activity BioNovoGene_Lab2019
代谢物信息卡片
化学式: C18H39NO2 (301.2981)
中文名称: D-赤型二氢鞘氨醇, D,L-赤型-二氢鞘氨醇, 二氢神经鞘氨醇, DL-苏式-二氢鞘氨醇, DL-二氢鞘氨醇, 鞘氨醇
谱图信息:
最多检出来源 Homo sapiens(blood) 15.23%
Last reviewed on 2024-07-02.
Cite this Page
Sphinganine. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/sphinganine (retrieved
2024-12-22) (BioDeep RN: BioDeep_00000001327). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: CCCCCCCCCCCCCCCC(C(CO)N)O
InChI: InChI=1S/C18H39NO2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-18(21)17(19)16-20/h17-18,20-21H,2-16,19H2,1H3
描述信息
Sphinganine, also known as c18-dihydrosphingosine or safingol, is a member of the class of compounds known as 1,2-aminoalcohols. 1,2-aminoalcohols are organic compounds containing an alkyl chain with an amine group bound to the C1 atom and an alcohol group bound to the C2 atom. Thus, sphinganine is considered to be a sphingoid base lipid molecule. Sphinganine is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Sphinganine can be found in a number of food items such as agar, biscuit, herbs and spices, and pasta, which makes sphinganine a potential biomarker for the consumption of these food products. Sphinganine can be found primarily in blood, feces, and urine, as well as throughout most human tissues. Sphinganine exists in all eukaryotes, ranging from yeast to humans. In humans, sphinganine is involved in few metabolic pathways, which include globoid cell leukodystrophy, metachromatic leukodystrophy (MLD), and sphingolipid metabolism. Sphinganine is also involved in few metabolic disorders, which include fabry disease, gaucher disease, and krabbe disease. Moreover, sphinganine is found to be associated with pregnancy. Sphinganine is a lyso-sphingolipid protein kinase inhibitor. It has the molecular formula C18H39NO2 and is a colorless solid. Medicinally, safingol has demonstrated promising anticancer potential as a modulator of multi-drug resistance and as an inducer of necrosis. The administration of safingol alone has not been shown to exert a significant effect on tumor cell growth. However, preclinical and clinical studies have shown that combining safingol with conventional chemotherapy agents such as fenretinide, vinblastine, irinotecan and mitomycin C can dramatically potentiate their antitumor effects. Currently in Phase I clinical trials, it is believed to be safe to co-administer with cisplatin .
Sphinganine belongs to the class of organic compounds known as 1,2-aminoalcohols. These are organic compounds containing an alkyl chain with an amine group bound to the C1 atom and an alcohol group bound to the C2 atom. Thus, sphinganine is considered to be a sphingoid base lipid molecule. Sphinganine is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Sphinganine exists in all living species, ranging from bacteria to humans. Within humans, sphinganine participates in a number of enzymatic reactions. In particular, sphinganine can be converted into 3-dehydrosphinganine through its interaction with the enzyme 3-ketodihydrosphingosine reductase. In addition, sphinganine can be converted into sphinganine 1-phosphate; which is catalyzed by the enzyme sphingosine kinase 2. Outside of the human body, sphinganine has been detected, but not quantified in, several different foods, such as Mexican oregano, jostaberries, winter squash, angelica, and epazotes. This could make sphinganine a potential biomarker for the consumption of these foods. Sphinganine blocks postlysosomal cholesterol transport by inhibiting low-density lipoprotein-induced esterification of cholesterol and causing unesterified cholesterol to accumulate in perinuclear vesicles. It has been suggested that endogenous sphinganine may inhibit cholesterol transport in Niemann-Pick Type C (NPC) disease (PMID: 1817037).
D004791 - Enzyme Inhibitors
KEIO_ID D078
D-Erythro-dihydrosphingosin directly inhibits cytosolic phospholipase A2α (cPLA2α) activity.
D-Erythro-dihydrosphingosin directly inhibits cytosolic phospholipase A2α (cPLA2α) activity.
同义名列表
32 个代谢物同义名
D-Erythro-1,3-dihydroxy-2-aminooctadecane; (R-(R*,s*))-2-aminooctadecane-1,3-diol; [R-(R*,s*)]-2-amino-1,3-octadecanediol; D-erythro-2-Amino-1,3-octadecanediol; 2-Amino-D-erythro-1,3-octadecanediol; DL-1,3-DIHYDROXY-2-AMINO-OCTADECANE; (2S,3R)-2-Amino-1,3-octadecanediol; (2S,3R)-2-Aminooctadecane-1,3-diol; D-Erythro-C18-dihydrosphingosine; 2-Amino-1,3-dihydroxyoctadecane; DL-erythro-Dihydrosphingosine; D-Erythro-dihydrosphingosine; DL-THREO-DIHYDROSPHINGOSINE; 2-Aminooctadecane-1,3-diol; Threo-dihydrosphingosine; C18-Dihydro-sphingosine; Dihydro-C18-sphingosine; C18-Dihydrosphingosine; Erythro-D-sphinganine; D-erythro-Sphinganine; Erythro-sphinganine; Octadecasphinganine; (2S,3R)-Sphinganine; Dihydrosphingosine; C18-Sphinganine; Sphinganine; SP(D18:0); Safingol; D18:0; Sphinganine; Sphinganine (d18:0); Sphinganine
数据库引用编号
43 个数据库交叉引用编号
- ChEBI: CHEBI:16566
- ChEBI: CHEBI:46968
- KEGG: C00836
- PubChem: 91486
- HMDB: HMDB0000269
- Metlin: METLIN395
- ChEMBL: CHEMBL448741
- Wikipedia: Safingol
- MetaCyc: CPD-13612
- KNApSAcK: C00007540
- foodb: FDB030824
- chemspider: 82609
- CAS: 764-22-7
- MoNA: PS081906
- MoNA: PS081903
- MoNA: PS075001
- MoNA: PS075003
- MoNA: KO002738
- MoNA: PS075004
- MoNA: PS081902
- MoNA: PS081901
- MoNA: PS081904
- MoNA: PS075006
- MoNA: KO002737
- MoNA: PS075005
- MoNA: PS075002
- MoNA: KO002739
- MoNA: KO002740
- MoNA: PS081905
- MoNA: KO002736
- PMhub: MS000000338
- LipidMAPS: LMSP01020001
- 3DMET: B04734
- NIKKAJI: J14.383I
- RefMet: Sphinganine
- medchemexpress: HY-W019838
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-585
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-910
- PubChem: 4094
- KNApSAcK: 16566
- LOTUS: LTS0188376
- wikidata: Q27120740
- LOTUS: LTS0169156
分类词条
相关代谢途径
PlantCyc(0)
代谢反应
272 个相关的代谢反应过程信息。
Reactome(15)
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Sphingolipid metabolism:
3-ketosphinganine + H+ + TPNH ⟶ SPA + TPN
- Sphingolipid de novo biosynthesis:
3-ketosphinganine + H+ + TPNH ⟶ SPA + TPN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Sphingolipid metabolism:
3-ketosphinganine + H+ + TPNH ⟶ SPA + TPN
- Sphingolipid de novo biosynthesis:
3-ketosphinganine + H+ + TPNH ⟶ SPA + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Sphingolipid metabolism:
H2O + dehydroepiandrosterone sulfate ⟶ DHEA + SO4(2-)
- Sphingolipid de novo biosynthesis:
3-ketosphinganine + H+ + TPNH ⟶ SPA + TPN
- Metabolism:
H2O + PBG ⟶ HMBL + ammonia
- Lipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
BioCyc(3)
- sphingolipid metabolism:
NADP+ + a sphinganine ⟶ 3-dehydrosphinganine + H+ + NADPH
- sphingolipid metabolism:
H+ + palmitoyl-CoA + ser ⟶ 3-dehydrosphinganine + CO2 + coenzyme A
- sphingolipid metabolism:
L-serine + palmitoyl CoA ⟶ 3-dehydrosphinganine + CO2 + coenzyme A
WikiPathways(8)
- Sphingolipid metabolism (integrated pathway):
Palmitoyl-CoA ⟶ 3-keto-sphinganine
- Sphingolipid metabolism: integrated pathway:
Palmitoyl-CoA ⟶ 3-keto-sphinganine
- Sphingolipid pathway:
Serine ⟶ 3-ketosphinganine
- Metabolism of spingolipids in ER and Golgi apparatus:
Sphinganine 1-phosphate ⟶ Sphinganine
- Synthesis of ceramides and 1-deoxyceramides:
lactosylceramide ⟶ Lc3Cer
- Sphingolipid metabolism overview:
3-keto-sphinganine ⟶ Sphinganine
- Sphingolipid metabolism overview:
3-keto-sphinganine ⟶ Sphinganine
- Sphingolipid metabolism in senescence:
3-ketodihydrosphingosine ⟶ C18-dihydrosphingosine
Plant Reactome(219)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Fatty acid and lipid metabolism:
NAD(P)H + Oxygen + lathosterol ⟶ H2O + NAD(P)+ + Provitamin D3
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(27)
- Biosynthesis of Unsaturated Fatty Acids:
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Biosynthesis of Unsaturated Fatty Acids (Tetracosanoyl-CoA):
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Biosynthesis of Unsaturated Fatty Acids (Docosanoyl-CoA):
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Biosynthesis of Unsaturated Fatty Acids (Icosanoyl-CoA):
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Biosynthesis of Unsaturated Fatty Acids (Stearoyl-CoA):
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Sphingolipid Metabolism:
L-Serine + Palmityl-CoA ⟶ 3-Dehydrosphinganine + Carbon dioxide
- Sphingolipid Metabolism:
Glucosylceramide (d18:1/18:0) + Water ⟶ Ceramide (d18:1/18:0) + D-Glucose
- Gaucher Disease:
Glucosylceramide (d18:1/18:0) + Water ⟶ Ceramide (d18:1/18:0) + D-Glucose
- Globoid Cell Leukodystrophy:
Glucosylceramide (d18:1/18:0) + Water ⟶ Ceramide (d18:1/18:0) + D-Glucose
- Metachromatic Leukodystrophy (MLD):
Glucosylceramide (d18:1/18:0) + Water ⟶ Ceramide (d18:1/18:0) + D-Glucose
- Fabry Disease:
Glucosylceramide (d18:1/18:0) + Water ⟶ Ceramide (d18:1/18:0) + D-Glucose
- Krabbe Disease:
Glucosylceramide (d18:1/18:0) + Water ⟶ Ceramide (d18:1/18:0) + D-Glucose
- Sphingolipid Metabolism:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Gaucher Disease:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Globoid Cell Leukodystrophy:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Metachromatic Leukodystrophy (MLD):
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Fabry Disease:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Krabbe Disease:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Sphingolipid Metabolism:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Sphingolipid Metabolism:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Sphingolipid Metabolism:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Sphingolipid Metabolism:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Gaucher Disease:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Globoid Cell Leukodystrophy:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Metachromatic Leukodystrophy (MLD):
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Fabry Disease:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Krabbe Disease:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
PharmGKB(0)
27 个相关的物种来源信息
- 7458 - Apidae: LTS0169156
- 7459 - Apis: LTS0169156
- 7461 - Apis cerana: 10.1371/JOURNAL.PONE.0175573
- 7461 - Apis cerana: LTS0169156
- 6656 - Arthropoda: LTS0169156
- 76312 - Caulerpa: LTS0169156
- 76317 - Caulerpa racemosa: 10.1016/S0031-9422(82)85032-2
- 76317 - Caulerpa racemosa: LTS0169156
- 35432 - Caulerpaceae: LTS0169156
- 3041 - Chlorophyta: LTS0169156
- 7711 - Chordata: LTS0169156
- 7227 - Drosophila melanogaster: 10.1038/S41467-019-11933-Z
- 3039 - Euglena gracilis: 10.3389/FBIOE.2021.662655
- 2759 - Eukaryota: LTS0169156
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S11306-016-1051-4
- 50557 - Insecta: LTS0169156
- 40674 - Mammalia: LTS0169156
- 33208 - Metazoa: LTS0169156
- 10066 - Muridae: LTS0169156
- 10088 - Mus: LTS0169156
- 10090 - Mus musculus: LTS0169156
- 10090 - Mus musculus: NA
- 33103 - Ulvophyceae: LTS0169156
- 33090 - Viridiplantae: LTS0169156
- 29760 - Vitis vinifera: 10.1016/J.DIB.2020.106469
- 569774 - 金线莲: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Sicong Ma, Roger Sandhoff, Xiu Luo, Fuwei Shang, Qiaozhen Shi, Zhaolong Li, Jingxia Wu, Yanan Ming, Frank Schwarz, Alaa Madi, Nina Weisshaar, Alessa Mieg, Marvin Hering, Ferdinand Zettl, Xin Yan, Kerstin Mohr, Nora Ten Bosch, Zhe Li, Gernot Poschet, Hans-Reimer Rodewald, Nina Papavasiliou, Xi Wang, Pu Gao, Guoliang Cui. Serine enrichment in tumors promotes regulatory T cell accumulation through sphinganine-mediated regulation of c-Fos.
Science immunology.
2024 Apr; 9(94):eadg8817. doi:
10.1126/sciimmunol.adg8817
. [PMID: 38640251] - Scotland Farley, Frank Stein, Per Haberkant, Fikadu G Tafesse, Carsten Schultz. Trifunctional Sphinganine: A New Tool to Dissect Sphingolipid Function.
ACS chemical biology.
2024 Jan; ?(?):. doi:
10.1021/acschembio.3c00554
. [PMID: 38284972] - Yongxian Bi, Jinjun Liu, Hao Li, Jinyue Sun, Wenyu Ding, Congfen He, Yan Jia. Lipidomics-based analysis of lipid differences between dry skin of women aged 22-28 years and 29-35 years.
Journal of cosmetic dermatology.
2024 Jan; ?(?):. doi:
10.1111/jocd.16137
. [PMID: 38214419] - Mohamed Ibrahim Madkour, Md Torikul Islam, Trevor S Tippetts, Kamrul H Chowdhury, Lisa A Lesniewski, Scott A Summers, Falak Zeb, Dana N Abdelrahim, Refat AlKurd, Husam M Khraiwesh, Katia H AbuShihab, Asma AlBakri, Khaled Obaideen, MoezAlIslam E Faris. Ramadan intermittent fasting is associated with ameliorated inflammatory markers and improved plasma sphingolipids/ceramides in subjects with obesity: lipidomics analysis.
Scientific reports.
2023 Oct; 13(1):17322. doi:
10.1038/s41598-023-43862-9
. [PMID: 37833312] - Eija Ahonen, Annelie Damerau, Kaisa M Linderborg. Antioxidative Effect of Dihydrosphingosine (d18:0) and α-Tocopherol on Tridocosahexaenoin (DHA-TAG).
Journal of agricultural and food chemistry.
2023 Oct; 71(40):14769-14781. doi:
10.1021/acs.jafc.3c02668
. [PMID: 37751317] - Haixia Wang, Yueqi Zhang, Jingrui Wang, Yun Chen, Tingjun Hou, Youfu Zhao, Zhonghua Ma. The sphinganine C4-hydroxylase FgSur2 regulates sensitivity to azole antifungal agents and virulence of Fusarium graminearum.
Microbiological research.
2023 Mar; 271(?):127347. doi:
10.1016/j.micres.2023.127347
. [PMID: 36907072] - Yudai Iino, Tatsuro Naganuma, Makoto Arita. Dysregulated ceramide metabolism in mouse progressive dermatitis resulting from constitutive activation of Jak1.
Journal of lipid research.
2023 Feb; 64(2):100329. doi:
10.1016/j.jlr.2023.100329
. [PMID: 36639058] - Aissa Miriam Röhrig, Katja Jakobi, Julia Dietz, Dominique Thomas, Eva Herrmann, Christoph Welsch, Christoph Sarrazin, Josef Pfeilschifter, Stefan Zeuzem, Georgios Grammatikos. The role of serum sphingolipids as potential biomarkers of non-response to direct acting antiviral therapy in chronic hepatitis C virus infection.
Journal of viral hepatitis.
2023 Feb; 30(2):138-147. doi:
10.1111/jvh.13776
. [PMID: 36463431] - Keqi Zeng, Xin Zhou, Wanyi Liu, Cong Nie, Yingfeng Zhang. Determination of endogenous sphingolipid content in stroke rats and HT22 cells subjected to oxygen-glucose deprivation by LC‒MS/MS.
Lipids in health and disease.
2023 Jan; 22(1):13. doi:
10.1186/s12944-022-01762-3
. [PMID: 36698123] - Fragoso-Vázquez Manuel Jonathan, Duclosel Darling, Rosales-Hernández Martha Cecilia, Estrada-Pérez Alan, Mendoza-Figueroa Humberto Lubriel, Olivares-Corichi Ivonne, Mendieta-Wejebe Jessica Elena, Reyes-López Cesar Augusto, Velasco-Quijano Jessica Sayuri, Gil-Ruiz Luis Angel, Correa-Basurto José. UHPLC-MS/MS Studies and Antiproliferative Effects in Breast Cancer Cells of Mexican Sargassum.
Anti-cancer agents in medicinal chemistry.
2023; 23(1):76-86. doi:
10.2174/1871520622666220412125740
. [PMID: 35418289] - Dev K Ranjit, Zachary D Moye, Fernanda G Rocha, Gregory Ottenberg, Frank C Nichols, Hey-Min Kim, Alejandro R Walker, Frank C Gibson, Mary E Davey. Characterization of a Bacterial Kinase That Phosphorylates Dihydrosphingosine to Form dhS1P.
Microbiology spectrum.
2022 04; 10(2):e0000222. doi:
10.1128/spectrum.00002-22
. [PMID: 35286133] - Einat B Vitner, Roy Avraham, Boaz Politi, Sharon Melamed, Tomer Israely. Elevation in sphingolipid upon SARS-CoV-2 infection: possible implications for COVID-19 pathology.
Life science alliance.
2022 01; 5(1):. doi:
10.26508/lsa.202101168
. [PMID: 34764206] - Andrej Kováčik, Petra Pullmannová, Lukáš Opálka, Michaela Šilarová, Jaroslav Maixner, Kateřina Vávrová. Effects of (R)- and (S)-α-Hydroxylation of Acyl Chains in Sphingosine, Dihydrosphingosine, and Phytosphingosine Ceramides on Phase Behavior and Permeability of Skin Lipid Models.
International journal of molecular sciences.
2021 Jul; 22(14):. doi:
10.3390/ijms22147468
. [PMID: 34299088] - Li Wang, Xiaodong Suo, Yujie Liu, Chen Liu, Ming Luo. Sphingosine Promotes Embryo Biomass in Upland Cotton: A Biochemical and Transcriptomic Analysis.
Biomolecules.
2021 04; 11(4):. doi:
10.3390/biom11040525
. [PMID: 33915924] - Kevin Eade, Sarah Giles, Sarah Harkins-Perry, Martin Friedlander. Toxicity Screens in Human Retinal Organoids for Pharmaceutical Discovery.
Journal of visualized experiments : JoVE.
2021 03; ?(169):. doi:
10.3791/62269
. [PMID: 33749682] - David R Adams, Susan Pyne, Nigel J Pyne. Structure-function analysis of lipid substrates and inhibitors of sphingosine kinases.
Cellular signalling.
2020 12; 76(?):109806. doi:
10.1016/j.cellsig.2020.109806
. [PMID: 33035646] - Zhong-Xing Rao, Mike D Tokach, Jason C Woodworth, Joel M DeRouchey, Robert D Goodband, Hilda I Calderón, Steve S Dritz. Effects of Fumonisin-Contaminated Corn on Growth Performance of 9 to 28 kg Nursery Pigs.
Toxins.
2020 09; 12(9):. doi:
10.3390/toxins12090604
. [PMID: 32961935] - Vincent Mignard, Nolwenn Dubois, Didier Lanoé, Marie-Pierre Joalland, Lisa Oliver, Claire Pecqueur, Dominique Heymann, François Paris, François M Vallette, Lisenn Lalier. Sphingolipid distribution at mitochondria-associated membranes (MAMs) upon induction of apoptosis.
Journal of lipid research.
2020 07; 61(7):1025-1037. doi:
10.1194/jlr.ra120000628
. [PMID: 32350079] - Ruzica Jurakic Toncic, Ivone Jakasa, Suzana Ljubojevic Hadzavdic, Susan Mi Goorden, Karen Jm Ghauharali-van der Vlugt, Femke S Stet, Anamaria Balic, Mikela Petkovic, Borna Pavicic, Kristina Zuzul, Branka Marinovic, Sanja Kezic. Altered Levels of Sphingosine, Sphinganine and Their Ceramides in Atopic Dermatitis Are Related to Skin Barrier Function, Disease Severity and Local Cytokine Milieu.
International journal of molecular sciences.
2020 Mar; 21(6):. doi:
10.3390/ijms21061958
. [PMID: 32183011] - Ilaria Del Gaudio, Linda Sasset, Annarita Di Lorenzo, Christian Wadsack. Sphingolipid Signature of Human Feto-Placental Vasculature in Preeclampsia.
International journal of molecular sciences.
2020 Feb; 21(3):. doi:
10.3390/ijms21031019
. [PMID: 32033121] - Norihiro Isogai, Yuta Shiono, Tetsuya Kuramoto, Kenji Yoshioka, Hiroko Ishihama, Haruki Funao, Masaya Nakamura, Morio Matsumoto, Ken Ishii. Potential osteomyelitis biomarkers identified by plasma metabolome analysis in mice.
Scientific reports.
2020 01; 10(1):839. doi:
10.1038/s41598-020-57619-1
. [PMID: 31964942] - Vadim Dolgin, Rachel Straussberg, Ruijuan Xu, Izolda Mileva, Yuval Yogev, Raed Khoury, Osnat Konen, Yael Barhum, Alex Zvulunov, Cungui Mao, Ohad S Birk. DEGS1 variant causes neurological disorder.
European journal of human genetics : EJHG.
2019 11; 27(11):1668-1676. doi:
10.1038/s41431-019-0444-z
. [PMID: 31186544] - Marin L Gantner, Kevin Eade, Martina Wallace, Michal K Handzlik, Regis Fallon, Jennifer Trombley, Roberto Bonelli, Sarah Giles, Sarah Harkins-Perry, Tjebo F C Heeren, Lydia Sauer, Yoichiro Ideguchi, Michelle Baldini, Lea Scheppke, Michael I Dorrell, Maki Kitano, Barbara J Hart, Carolyn Cai, Takayuki Nagasaki, Mehmet G Badur, Mali Okada, Sasha M Woods, Catherine Egan, Mark Gillies, Robyn Guymer, Florian Eichler, Melanie Bahlo, Marcus Fruttiger, Rando Allikmets, Paul S Bernstein, Christian M Metallo, Martin Friedlander. Serine and Lipid Metabolism in Macular Disease and Peripheral Neuropathy.
The New England journal of medicine.
2019 10; 381(15):1422-1433. doi:
10.1056/nejmoa1815111
. [PMID: 31509666] - Rachel S Kelly, Bo L Chawes, Feng Guo, Li Zhang, Kevin Blighe, Augusto A Litonjua, Benjamin A Raby, Bruce D Levy, Daniela Rago, Jakob Stokholm, Klaus Bønnelykke, Hans Bisgaard, Xiaobo Zhou, Jessica A Lasky-Su, Scott T Weiss. The role of the 17q21 genotype in the prevention of early childhood asthma and recurrent wheeze by vitamin D.
The European respiratory journal.
2019 10; 54(4):. doi:
10.1183/13993003.00761-2019
. [PMID: 31439681] - Graham Brogden, Diab M Husein, Pablo Steinberg, Hassan Y Naim. Isolation and Quantification of Sphingosine and Sphinganine from Rat Serum Revealed Gender Differences.
Biomolecules.
2019 09; 9(9):. doi:
10.3390/biom9090459
. [PMID: 31500283] - Walter Boiten, Richard Helder, Jeroen van Smeden, Joke Bouwstra. Selectivity in cornified envelop binding of ceramides in human skin and the role of LXR inactivation on ceramide binding.
Biochimica et biophysica acta. Molecular and cell biology of lipids.
2019 09; 1864(9):1206-1213. doi:
10.1016/j.bbalip.2019.05.003
. [PMID: 31112754] - Shruthi Satish, Cristina Jiménez-Ortigosa, Yanan Zhao, Min Hee Lee, Enriko Dolgov, Thomas Krüger, Steven Park, David W Denning, Olaf Kniemeyer, Axel A Brakhage, David S Perlin. Stress-Induced Changes in the Lipid Microenvironment of β-(1,3)-d-Glucan Synthase Cause Clinically Important Echinocandin Resistance in Aspergillus fumigatus.
mBio.
2019 06; 10(3):. doi:
10.1128/mbio.00779-19
. [PMID: 31164462] - Ruth Nabwire Wangia, David Peter Githanga, Kathy Siyu Xue, Lili Tang, Omu Aggrey Anzala, Jia-Sheng Wang. Validation of urinary sphingolipid metabolites as biomarker of effect for fumonisins exposure in Kenyan children.
Biomarkers : biochemical indicators of exposure, response, and susceptibility to chemicals.
2019 Jun; 24(4):379-388. doi:
10.1080/1354750x.2019.1587510
. [PMID: 30821509] - Hwang Eui Cho, Barry J Maurer, C Patrick Reynolds, Min H Kang. Hydrophilic interaction liquid chromatography-tandem mass spectrometric approach for simultaneous determination of safingol and D-erythro-sphinganine in human plasma.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2019 Apr; 1112(?):16-23. doi:
10.1016/j.jchromb.2019.02.023
. [PMID: 30836314] - Anders P E Backman, Josefin Halin, Matti A Kjellberg, Peter Mattjus. Indirect Lipid Transfer Protein Activity Measurements Using Quantification of Glycosphingolipid Production.
Methods in molecular biology (Clifton, N.J.).
2019; 1949(?):105-114. doi:
10.1007/978-1-4939-9136-5_9
. [PMID: 30790252] - Anna Małgorzata Chabowska, Barbara Boczkowska Radziwon, Bartlomiej Lukaszuk, Alina Lipska, Adrian Chabowski, Dorota Kaczerska, Piotr Siermontowski, Piotr Radziwon. Fatty acids and sphingolipids profile in the blood plasma of experienced divers in response to hyperbaric exposure.
Undersea & hyperbaric medicine : journal of the Undersea and Hyperbaric Medical Society, Inc.
2018 Sep; 45(?):521-529. doi:
. [PMID: 30428241]
- Arvin B Tam, Lindsay S Roberts, Vivek Chandra, Io Guane Rivera, Daniel K Nomura, Douglass J Forbes, Maho Niwa. The UPR Activator ATF6 Responds to Proteotoxic and Lipotoxic Stress by Distinct Mechanisms.
Developmental cell.
2018 08; 46(3):327-343.e7. doi:
10.1016/j.devcel.2018.04.023
. [PMID: 30086303] - Monika Książek, Urszula Baranowska, Adrian Chabowski, Marcin Baranowski. Arteriovenous Sphingosine-1-Phosphate Differences Across Selected Organs of the Rat.
Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology.
2018; 45(1):67-77. doi:
10.1159/000486223
. [PMID: 29316552] - Marzena Wątek, Bonita Durnaś, Tomasz Wollny, Marcin Pasiarski, Stanisław Góźdź, Michał Marzec, Anna Chabowska, Przemysław Wolak, Małgorzata Żendzian-Piotrowska, Robert Bucki. Unexpected profile of sphingolipid contents in blood and bone marrow plasma collected from patients diagnosed with acute myeloid leukemia.
Lipids in health and disease.
2017 Dec; 16(1):235. doi:
10.1186/s12944-017-0624-1
. [PMID: 29216917] - B Grenier, H E Schwartz-Zimmermann, C Gruber-Dorninger, I Dohnal, M Aleschko, G Schatzmayr, W D Moll, T J Applegate. Enzymatic hydrolysis of fumonisins in the gastrointestinal tract of broiler chickens.
Poultry science.
2017 Dec; 96(12):4342-4351. doi:
10.3382/ps/pex280
. [PMID: 29053869] - Agnieszka Zmyslowska, Michal Ciborowski, Maciej Borowiec, Wojciech Fendler, Karolina Pietrowska, Ewa Parfieniuk, Karolina Antosik, Aleksandra Pyziak, Arleta Waszczykowska, Adam Kretowski, Wojciech Mlynarski. Serum Metabolic Fingerprinting Identified Putatively Annotated Sphinganine Isomer as a Biomarker of Wolfram Syndrome.
Journal of proteome research.
2017 11; 16(11):4000-4008. doi:
10.1021/acs.jproteome.7b00401
. [PMID: 28895401] - Lili Song, Pengwei Zhuang, Mengya Lin, Mingqin Kang, Hongyue Liu, Yuping Zhang, Zhen Yang, Yunlong Chen, Yanjun Zhang. Urine Metabonomics Reveals Early Biomarkers in Diabetic Cognitive Dysfunction.
Journal of proteome research.
2017 09; 16(9):3180-3189. doi:
10.1021/acs.jproteome.7b00168
. [PMID: 28722418] - Alexander Koch, Georgios Grammatikos, Sandra Trautmann, Yannick Schreiber, Dominique Thomas, Franziska Bruns, Josef Pfeilschifter, Klaus Badenhoop, Marissa Penna-Martinez. Vitamin D Supplementation Enhances C18(dihydro)ceramide Levels in Type 2 Diabetes Patients.
International journal of molecular sciences.
2017 Jul; 18(7):. doi:
10.3390/ijms18071532
. [PMID: 28714882] - Yanyan Chen, Shiyuan Wen, Miaomiao Jiang, Yan Zhu, Liqin Ding, Hong Shi, Pengzhi Dong, Jing Yang, Yue Yang. Atherosclerotic dyslipidemia revealed by plasma lipidomics on ApoE-/- mice fed a high-fat diet.
Atherosclerosis.
2017 07; 262(?):78-86. doi:
10.1016/j.atherosclerosis.2017.05.010
. [PMID: 28527370] - Barbora Školová, Andrej Kováčik, Ondřej Tesař, Lukáš Opálka, Kateřina Vávrová. Phytosphingosine, sphingosine and dihydrosphingosine ceramides in model skin lipid membranes: permeability and biophysics.
Biochimica et biophysica acta. Biomembranes.
2017 May; 1859(5):824-834. doi:
10.1016/j.bbamem.2017.01.019
. [PMID: 28109750] - Daiki Yanagawa, Toshiki Ishikawa, Hiroyuki Imai. Synthesis and degradation of long-chain base phosphates affect fumonisin B1-induced cell death in Arabidopsis thaliana.
Journal of plant research.
2017 May; 130(3):571-585. doi:
10.1007/s10265-017-0923-7
. [PMID: 28303405] - Meng Yu, Hong-Mei Jia, Feng-Xia Cui, Yong Yang, Yang Zhao, Mao-Hua Yang, Zhong-Mei Zou. The Effect of Chinese Herbal Medicine Formula mKG on Allergic Asthma by Regulating Lung and Plasma Metabolic Alternations.
International journal of molecular sciences.
2017 Mar; 18(3):. doi:
10.3390/ijms18030602
. [PMID: 28287417] - Hongmin Xu, Lei Zhang, Huan Kang, Jiandong Zhang, Jie Liu, Shuye Liu. Serum Metabonomics of Mild Acute Pancreatitis.
Journal of clinical laboratory analysis.
2016 Nov; 30(6):990-998. doi:
10.1002/jcla.21969
. [PMID: 27169745] - Ambroise Testard, Daniel Da Silva, Mélanie Ormancey, Carole Pichereaux, Cécile Pouzet, Alain Jauneau, Sabine Grat, Eugénie Robe, Christian Brière, Valérie Cotelle, Christian Mazars, Patrice Thuleau. Calcium- and Nitric Oxide-Dependent Nuclear Accumulation of Cytosolic Glyceraldehyde-3-Phosphate Dehydrogenase in Response to Long Chain Bases in Tobacco BY-2 Cells.
Plant & cell physiology.
2016 Oct; 57(10):2221-2231. doi:
10.1093/pcp/pcw137
. [PMID: 27585463] - T Vijai Kumar Reddy, A Jyotsna, B L A Prabhavathi Devi, R B N Prasad, Y Poornachandra, C Ganesh Kumar. Design, synthesis and in vitro biological evaluation of short-chain C12-sphinganine and its 1,2,3-triazole analogs as potential antimicrobial and anti-biofilm agents.
European journal of medicinal chemistry.
2016 Aug; 118(?):98-106. doi:
10.1016/j.ejmech.2016.04.020
. [PMID: 27128176] - Huijuan Gao, Gaofu Qi, Rong Yin, Hongchun Zhang, Chenggang Li, Xiuyun Zhao. Bacillus cereus strain S2 shows high nematicidal activity against Meloidogyne incognita by producing sphingosine.
Scientific reports.
2016 06; 6(?):28756. doi:
10.1038/srep28756
. [PMID: 27338781] - Georgios Grammatikos, Julia Dietz, Nerea Ferreiros, Alexander Koch, Georg Dultz, Dimitra Bon, Ioannis Karakasiliotis, Thomas Lutz, Gaby Knecht, Peter Gute, Eva Herrmann, Stefan Zeuzem, Penelope Mavromara, Christoph Sarrazin, Josef Pfeilschifter. Persistence of HCV in Acutely-Infected Patients Depletes C24-Ceramide and Upregulates Sphingosine and Sphinganine Serum Levels.
International journal of molecular sciences.
2016 Jun; 17(6):. doi:
10.3390/ijms17060922
. [PMID: 27304952] - Silvina L Arias, Verónica S Mary, Santiago N Otaiza, Daniel A Wunderlin, Héctor R Rubinstein, Martín G Theumer. Toxin distribution and sphingoid base imbalances in Fusarium verticillioides-infected and fumonisin B1-watered maize seedlings.
Phytochemistry.
2016 May; 125(?):54-64. doi:
10.1016/j.phytochem.2016.02.006
. [PMID: 26903312] - Sabine Masching, Karin Naehrer, Heidi-Elisabeth Schwartz-Zimmermann, Mihai Sărăndan, Simone Schaumberger, Ilse Dohnal, Veronika Nagl, Dian Schatzmayr. Gastrointestinal Degradation of Fumonisin B₁ by Carboxylesterase FumD Prevents Fumonisin Induced Alteration of Sphingolipid Metabolism in Turkey and Swine.
Toxins.
2016 Mar; 8(3):. doi:
10.3390/toxins8030084
. [PMID: 27007395] - Daniel Pastor-Flores, Jörg O Schulze, Anna Bahí, Evelyn Süß, Antonio Casamayor, Ricardo M Biondi. Lipid regulators of Pkh2 in Candida albicans, the protein kinase ortholog of mammalian PDK1.
Biochimica et biophysica acta.
2016 Mar; 1861(3):249-59. doi:
10.1016/j.bbalip.2015.12.016
. [PMID: 26743850] - Kyle D Luttgeharm, Edgar B Cahoon, Jonathan E Markham. Substrate specificity, kinetic properties and inhibition by fumonisin B1 of ceramide synthase isoforms from Arabidopsis.
The Biochemical journal.
2016 Mar; 473(5):593-603. doi:
10.1042/bj20150824
. [PMID: 26635357] - Maryline Magnin-Robert, Doriane Le Bourse, Jonathan Markham, Stéphan Dorey, Christophe Clément, Fabienne Baillieul, Sandrine Dhondt-Cordelier. Modifications of Sphingolipid Content Affect Tolerance to Hemibiotrophic and Necrotrophic Pathogens by Modulating Plant Defense Responses in Arabidopsis.
Plant physiology.
2015 Nov; 169(3):2255-74. doi:
10.1104/pp.15.01126
. [PMID: 26378098] - Shuntaro Tsukamoto, Yuhui Huang, Motofumi Kumazoe, Connie Lesnick, Shuhei Yamada, Naoki Ueda, Takashi Suzuki, Shuya Yamashita, Yoon Hee Kim, Yoshinori Fujimura, Daisuke Miura, Neil E Kay, Tait D Shanafelt, Hirofumi Tachibana. Sphingosine Kinase-1 Protects Multiple Myeloma from Apoptosis Driven by Cancer-Specific Inhibition of RTKs.
Molecular cancer therapeutics.
2015 Oct; 14(10):2303-12. doi:
10.1158/1535-7163.mct-15-0185
. [PMID: 26264277] - Bertrand Grenier, Heidi E Schwartz-Zimmermann, Sylvia Caha, Wulf Dieter Moll, Gerd Schatzmayr, Todd J Applegate. Dose-dependent effects on sphingoid bases and cytokines in chickens fed diets prepared with fusarium verticillioides culture material containing fumonisins.
Toxins.
2015 Apr; 7(4):1253-72. doi:
10.3390/toxins7041253
. [PMID: 25871822] - Muzaffer Denli, Juan C Blandon, Silvia Salado, Maria E Guynot, Josefina Casas, Jose F Pérez. Efficacy of AdiDetox™ in reducing the toxicity of fumonisin B1 in rats.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2015 Apr; 78(?):60-3. doi:
10.1016/j.fct.2015.01.024
. [PMID: 25660482] - B Boczkowska-Radziwon, A M Chabowska, A Blachnio-Zabielska, B Lukaszuk, A Lipska, A Chabowski, P Radziwon. Ozonation of human blood increases sphingosine-1-phosphate in plasma.
Journal of physiology and pharmacology : an official journal of the Polish Physiological Society.
2015 Apr; 66(2):267-72. doi:
NULL
. [PMID: 25903957] - Irene Hahn, Veronika Nagl, Heidi Elisabeth Schwartz-Zimmermann, Elisabeth Varga, Christiane Schwarz, Veronika Slavik, Nicole Reisinger, Alexandra Malachová, Martina Cirlini, Silvia Generotti, Chiara Dall'Asta, Rudolf Krska, Wulf-Dieter Moll, Franz Berthiller. Effects of orally administered fumonisin B₁ (FB₁), partially hydrolysed FB₁, hydrolysed FB₁ and N-(1-deoxy-D-fructos-1-yl) FB₁ on the sphingolipid metabolism in rats.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2015 Feb; 76(?):11-8. doi:
10.1016/j.fct.2014.11.020
. [PMID: 25475052] - Wei Wang, Michael Fromm. Sphingolipids are required for efficient triacylglycerol loss in conjugated linoleic Acid treated adipocytes.
PloS one.
2015; 10(4):e0119005. doi:
10.1371/journal.pone.0119005
. [PMID: 25906159] - Kuan-Boone Tan, Leong-Uung Ling, Ralph M Bunte, Wee-Joo Chng, Gigi N C Chiu. Liposomal codelivery of a synergistic combination of bioactive lipids in the treatment of acute myeloid leukemia.
Nanomedicine (London, England).
2014 Aug; 9(11):1665-79. doi:
10.2217/nnm.13.123
. [PMID: 24294981] - Yoel A Klug, Avraham Ashkenazi, Mathias Viard, Ziv Porat, Robert Blumenthal, Yechiel Shai. Early and late HIV-1 membrane fusion events are impaired by sphinganine lipidated peptides that target the fusion site.
The Biochemical journal.
2014 Jul; 461(2):213-22. doi:
10.1042/bj20140189
. [PMID: 24766462] - Mark J Dekker, Chris Baker, Mark Naples, Josh Samsoondar, Rianna Zhang, Wei Qiu, Jennifer Sacco, Khosrow Adeli. Inhibition of sphingolipid synthesis improves dyslipidemia in the diet-induced hamster model of insulin resistance: evidence for the role of sphingosine and sphinganine in hepatic VLDL-apoB100 overproduction.
Atherosclerosis.
2013 May; 228(1):98-109. doi:
10.1016/j.atherosclerosis.2013.01.041
. [PMID: 23466071] - Christine Burel, Mael Tanguy, Philippe Guerre, Eric Boilletot, Roland Cariolet, Marilyne Queguiner, Gilbert Postollec, Philippe Pinton, Gilles Salvat, Isabelle P Oswald, Philippe Fravalo. Effect of low dose of fumonisins on pig health: immune status, intestinal microbiota and sensitivity to Salmonella.
Toxins.
2013 Apr; 5(4):841-64. doi:
10.3390/toxins5040841
. [PMID: 23612754] - M Knapp, A Lisowska, P Knapp, M Baranowski. Dose-dependent effect of aspirin on the level of sphingolipids in human blood.
Advances in medical sciences.
2013; 58(2):274-81. doi:
10.2478/ams-2013-0021
. [PMID: 24101372] - C L Fischer, K S Walters, D R Drake, D R Blanchette, D V Dawson, K A Brogden, P W Wertz. Sphingoid bases are taken up by Escherichia coli and Staphylococcus aureus and induce ultrastructural damage.
Skin pharmacology and physiology.
2013; 26(1):36-44. doi:
10.1159/000343175
. [PMID: 23128426] - R H Rauber, P Dilkin, A O Mallmann, A Marchioro, C A Mallmann, A Borsoi, V P Nascimento. Individual and combined effects of Salmonella typhimurium lipopolysaccharide and fumonisin B1 in broiler chickens.
Poultry science.
2012 Nov; 91(11):2785-91. doi:
10.3382/ps.2012-02489
. [PMID: 23091133] - Avraham Ashkenazi, Mathias Viard, Linor Unger, Robert Blumenthal, Yechiel Shai. Sphingopeptides: dihydrosphingosine-based fusion inhibitors against wild-type and enfuvirtide-resistant HIV-1.
FASEB journal : official publication of the Federation of American Societies for Experimental Biology.
2012 Nov; 26(11):4628-36. doi:
10.1096/fj.12-215111
. [PMID: 22872679] - Małgorzata Knapp, Małgorzata Zendzian-Piotrowska, Agnieszka Błachnio-Zabielska, Piotr Zabielski, Krzysztof Kurek, Jan Górski. Myocardial infarction differentially alters sphingolipid levels in plasma, erythrocytes and platelets of the rat.
Basic research in cardiology.
2012 Nov; 107(6):294. doi:
10.1007/s00395-012-0294-0
. [PMID: 22961594] - Janee Gelineau-van Waes, Mark A Rainey, Joyce R Maddox, Kenneth A Voss, Andrew J Sachs, Nicole M Gardner, Justin D Wilberding, Ronald T Riley. Increased sphingoid base-1-phosphates and failure of neural tube closure after exposure to fumonisin or FTY720.
Birth defects research. Part A, Clinical and molecular teratology.
2012 Oct; 94(10):790-803. doi:
10.1002/bdra.23074
. [PMID: 22991331] - Hyun Joon Kim, Qiao Qiao, Hamish D Toop, Jonathan C Morris, Anthony S Don. A fluorescent assay for ceramide synthase activity.
Journal of lipid research.
2012 Aug; 53(8):1701-7. doi:
10.1194/jlr.d025627
. [PMID: 22661289] - Lin Lin, Zhenzhen Huang, Yao Gao, Yongjing Chen, Wei Hang, Jinchun Xing, Xiaomei Yan. LC-MS-based serum metabolic profiling for genitourinary cancer classification and cancer type-specific biomarker discovery.
Proteomics.
2012 Aug; 12(14):2238-46. doi:
10.1002/pmic.201200016
. [PMID: 22685041] - Daisuke Saigusa, Kanako Shiba, Asuka Inoue, Kotaro Hama, Michiyo Okutani, Nagisa Iida, Masayoshi Saito, Kaori Suzuki, Tohru Kaneko, Naoto Suzuki, Hiroaki Yamaguchi, Nariyasu Mano, Junichi Goto, Takanori Hishinuma, Junken Aoki, Yoshihisa Tomioka. Simultaneous quantitation of sphingoid bases and their phosphates in biological samples by liquid chromatography/electrospray ionization tandem mass spectrometry.
Analytical and bioanalytical chemistry.
2012 Jun; 403(7):1897-905. doi:
10.1007/s00216-012-6004-9
. [PMID: 22538778] - M Knapp, M Baranowski, A Lisowska, W Musiał. Decreased free sphingoid base concentration in the plasma of patients with chronic systolic heart failure.
Advances in medical sciences.
2012 Jun; 57(1):100-5. doi:
10.2478/v10039-011-0057-4
. [PMID: 22296975] - Sandra Frank, Irma van Die, Rudolf Geyer. Structural characterization of Schistosoma mansoni adult worm glycosphingolipids reveals pronounced differences with those of cercariae.
Glycobiology.
2012 May; 22(5):676-95. doi:
10.1093/glycob/cws004
. [PMID: 22241826] - Noriko Nakagawa, Mai Kato, Yohei Takahashi, Ken-Ichiro Shimazaki, Kentarao Tamura, Yoshihiko Tokuji, Akio Kihara, Hiroyuki Imai. Degradation of long-chain base 1-phosphate (LCBP) in Arabidopsis: functional characterization of LCBP phosphatase involved in the dehydration stress response.
Journal of plant research.
2012 May; 125(3):439-49. doi:
10.1007/s10265-011-0451-9
. [PMID: 21910031] - Ying-Yong Zhao, Jing Liu, Xian-Long Cheng, Xu Bai, Rui-Chao Lin. Urinary metabonomics study on biochemical changes in an experimental model of chronic renal failure by adenine based on UPLC Q-TOF/MS.
Clinica chimica acta; international journal of clinical chemistry.
2012 Mar; 413(5-6):642-9. doi:
10.1016/j.cca.2011.12.014
. [PMID: 22227165] - Kyong-Oh Shin, Myong-Yong Park, Cho-Hee Seo, Yong-Ill Lee, Hyun Sik Kim, Hwan-Soo Yoo, Jin Tae Hong, Jae-Kyung Jung, Yong-Moon Lee. Terpene alcohols inhibit de novo sphingolipid biosynthesis.
Planta medica.
2012 Mar; 78(5):434-9. doi:
10.1055/s-0031-1298155
. [PMID: 22274813] - Carol L Fischer, David R Drake, Deborah V Dawson, Derek R Blanchette, Kim A Brogden, Philip W Wertz. Antibacterial activity of sphingoid bases and fatty acids against Gram-positive and Gram-negative bacteria.
Antimicrobial agents and chemotherapy.
2012 Mar; 56(3):1157-61. doi:
10.1128/aac.05151-11
. [PMID: 22155833] - Emad Benlasher, Xiuyu Geng, Ngoc Thanh Xuan Nguyen, Didier Tardieu, Jean-Denis Bailly, Alain Auvergne, Philippe Guerre. Comparative effects of fumonisins on sphingolipid metabolism and toxicity in ducks and turkeys.
Avian diseases.
2012 Mar; 56(1):120-7. doi:
10.1637/9853-071911-reg.1
. [PMID: 22545537] - Yan Wang, Xiaoli Peng, Wentao Xu, Yunbo Luo, Weiwei Zhao, Junran Hao, Zhihong Liang, Yu Zhang, Kunlun Huang. Transcript and protein profiling analysis of OTA-induced cell death reveals the regulation of the toxicity response process in Arabidopsis thaliana.
Journal of experimental botany.
2012 Mar; 63(5):2171-87. doi:
10.1093/jxb/err447
. [PMID: 22207617] - A U Błachnio-Zabielska, M Pułka, M Baranowski, A Nikołajuk, P Zabielski, M Górska, J Górski. Ceramide metabolism is affected by obesity and diabetes in human adipose tissue.
Journal of cellular physiology.
2012 Feb; 227(2):550-7. doi:
10.1002/jcp.22745
. [PMID: 21437908] - Kanchan Anand, Kenji Maeda, Anne-Claude Gavin. Structural analyses of the Slm1-PH domain demonstrate ligand binding in the non-canonical site.
PloS one.
2012; 7(5):e36526. doi:
10.1371/journal.pone.0036526
. [PMID: 22574179] - Lin Wang, Yu Jia, Ren-Jie Tang, Zheng Xu, Yong-Bing Cao, Xin-Ming Jia, Yuan-Ying Jiang. Proteomic analysis of Rta2p-dependent raft-association of detergent-resistant membranes in Candida albicans.
PloS one.
2012; 7(5):e37768. doi:
10.1371/journal.pone.0037768
. [PMID: 22662216] - Liang Guo, Xuemin Wang. Crosstalk between Phospholipase D and Sphingosine Kinase in Plant Stress Signaling.
Frontiers in plant science.
2012; 3(?):51. doi:
10.3389/fpls.2012.00051
. [PMID: 22639650] - Lisa Longato, Kelsey Ripp, Mashiko Setshedi, Miroslav Dostalek, Fatemeh Akhlaghi, Mark Branda, Jack R Wands, Suzanne M de la Monte. Insulin resistance, ceramide accumulation, and endoplasmic reticulum stress in human chronic alcohol-related liver disease.
Oxidative medicine and cellular longevity.
2012; 2012(?):479348. doi:
10.1155/2012/479348
. [PMID: 22577490] - Ayşe Demirkan, Cornelia M van Duijn, Peter Ugocsai, Aaron Isaacs, Peter P Pramstaller, Gerhard Liebisch, James F Wilson, Åsa Johansson, Igor Rudan, Yurii S Aulchenko, Anatoly V Kirichenko, A Cecile J W Janssens, Ritsert C Jansen, Carsten Gnewuch, Francisco S Domingues, Cristian Pattaro, Sarah H Wild, Inger Jonasson, Ozren Polasek, Irina V Zorkoltseva, Albert Hofman, Lennart C Karssen, Maksim Struchalin, James Floyd, Wilmar Igl, Zrinka Biloglav, Linda Broer, Arne Pfeufer, Irene Pichler, Susan Campbell, Ghazal Zaboli, Ivana Kolcic, Fernando Rivadeneira, Jennifer Huffman, Nicholas D Hastie, Andre Uitterlinden, Lude Franke, Christopher S Franklin, Veronique Vitart, Christopher P Nelson, Michael Preuss, Joshua C Bis, Christopher J O'Donnell, Nora Franceschini, Jacqueline C M Witteman, Tatiana Axenovich, Ben A Oostra, Thomas Meitinger, Andrew A Hicks, Caroline Hayward, Alan F Wright, Ulf Gyllensten, Harry Campbell, Gerd Schmitz. Genome-wide association study identifies novel loci associated with circulating phospho- and sphingolipid concentrations.
PLoS genetics.
2012; 8(2):e1002490. doi:
10.1371/journal.pgen.1002490
. [PMID: 22359512] - Li-Na Wei. Chromatin remodeling and epigenetic regulation of the CrabpI gene in adipocyte differentiation.
Biochimica et biophysica acta.
2012 Jan; 1821(1):206-12. doi:
10.1016/j.bbalip.2011.03.003
. [PMID: 21435396] - Seunghyun Lee, Youn-Sun Lee, Kyeong-Mi Choi, Kwang-Sik Yoo, Dong-Mi Sin, Wonkyun Kim, Yong-Moon Lee, Jin-Tae Hong, Yeo-Pyo Yun, Hwan-Soo Yoo. Quantitative analysis of sphingomyelin by high-performance liquid chromatography after enzymatic hydrolysis.
Evidence-based complementary and alternative medicine : eCAM.
2012; 2012(?):396218. doi:
10.1155/2012/396218
. [PMID: 22919412] - Barry S Shea, Andrew M Tager. Sphingolipid regulation of tissue fibrosis.
The open rheumatology journal.
2012; 6(?):123-9. doi:
10.2174/1874312901206010123
. [PMID: 22802910] - Robert Berkey, Dipti Bendigeri, Shunyuan Xiao. Sphingolipids and plant defense/disease: the 'death' connection and beyond.
Frontiers in plant science.
2012; 3(?):68. doi:
10.3389/fpls.2012.00068
. [PMID: 22639658] - Veselin Dimitrov Petrov, Frank Van Breusegem. Hydrogen peroxide-a central hub for information flow in plant cells.
AoB PLANTS.
2012; 2012(?):pls014. doi:
10.1093/aobpla/pls014
. [PMID: 22708052] - Takefumi Kimura, Takero Nakajima, Yuji Kamijo, Naoki Tanaka, Lixuan Wang, Atsushi Hara, Eiko Sugiyama, Eiji Tanaka, Frank J Gonzalez, Toshifumi Aoyama. Hepatic Cerebroside Sulfotransferase Is Induced by PPARα Activation in Mice.
PPAR research.
2012; 2012(?):174932. doi:
10.1155/2012/174932
. [PMID: 22645601] - Liping Zhang, Chengguo Jia, Lihong Liu, Zhiming Zhang, Chuanyou Li, Qiaomei Wang. The involvement of jasmonates and ethylene in Alternaria alternata f. sp. lycopersici toxin-induced tomato cell death.
Journal of experimental botany.
2011 Nov; 62(15):5405-18. doi:
10.1093/jxb/err217
. [PMID: 21865178] - Robin D Clugston, Hongfeng Jiang, Man Xia Lee, Roseann Piantedosi, Jason J Yuen, Rajasekhar Ramakrishnan, Michael J Lewis, Max E Gottesman, Li-Shin Huang, Ira J Goldberg, Paul D Berk, William S Blaner. Altered hepatic lipid metabolism in C57BL/6 mice fed alcohol: a targeted lipidomic and gene expression study.
Journal of lipid research.
2011 Nov; 52(11):2021-31. doi:
10.1194/jlr.m017368
. [PMID: 21856784] - M Baranowski, M Charmas, B Długołęcka, J Górski. Exercise increases plasma levels of sphingoid base-1 phosphates in humans.
Acta physiologica (Oxford, England).
2011 Nov; 203(3):373-80. doi:
10.1111/j.1748-1716.2011.02322.x
. [PMID: 21535416] - Mariana Saucedo-García, Ariadna González-Solís, Priscila Rodríguez-Mejía, Teresa de Jesús Olivera-Flores, Sonia Vázquez-Santana, Edgar B Cahoon, Marina Gavilanes-Ruiz. Reactive oxygen species as transducers of sphinganine-mediated cell death pathway.
Plant signaling & behavior.
2011 Oct; 6(10):1616-9. doi:
10.4161/psb.6.10.16981
. [PMID: 21921699] - Juyoung Kim, Hyejeong Yun, Yunhi Cho. Analysis of ceramide metabolites in differentiating epidermal keratinocytes treated with calcium or vitamin C.
Nutrition research and practice.
2011 Oct; 5(5):396-403. doi:
10.4162/nrp.2011.5.5.396
. [PMID: 22125676] - Hongjie Zhang, Nessy Abraham, Liakot A Khan, David H Hall, John T Fleming, Verena Göbel. Apicobasal domain identities of expanding tubular membranes depend on glycosphingolipid biosynthesis.
Nature cell biology.
2011 Sep; 13(10):1189-201. doi:
10.1038/ncb2328
. [PMID: 21926990] - Mariana Saucedo-García, Arturo Guevara-García, Ariadna González-Solís, Felipe Cruz-García, Sonia Vázquez-Santana, Jonathan E Markham, M Guadalupe Lozano-Rosas, Charles R Dietrich, Maricela Ramos-Vega, Edgar B Cahoon, Marina Gavilanes-Ruíz. MPK6, sphinganine and the LCB2a gene from serine palmitoyltransferase are required in the signaling pathway that mediates cell death induced by long chain bases in Arabidopsis.
The New phytologist.
2011 Sep; 191(4):943-957. doi:
10.1111/j.1469-8137.2011.03727.x
. [PMID: 21534970] - Itsuo Murakami, Yukari Wakasa, Shinji Yamashita, Toshio Kurihara, Kota Zama, Naoyuki Kobayashi, Yukiko Mizutani, Susumu Mitsutake, Tatsuro Shigyo, Yasuyuki Igarashi. Phytoceramide and sphingoid bases derived from brewer's yeast Saccharomyces pastorianus activate peroxisome proliferator-activated receptors.
Lipids in health and disease.
2011 Aug; 10(?):150. doi:
10.1186/1476-511x-10-150
. [PMID: 21861924]