4-Hydroxycinnamic acid (BioDeep_00000000110)

 

Secondary id: BioDeep_00000264834, BioDeep_00000400134, BioDeep_00000400283, BioDeep_00000409755, BioDeep_00000419015, BioDeep_00000859939

natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite BioNovoGene_Lab2019


代谢物信息卡片


(E)-3-(4-hydroxyphenyl)prop-2-enoic acid

化学式: C9H8O3 (164.0473)
中文名称: 对羟基肉桂酸, 对香豆酸, 4-羟基肉桂酸
谱图信息: 最多检出来源 Homo sapiens(blood) 18.97%

Reviewed

Last reviewed on 2024-09-04.

Cite this Page

4-Hydroxycinnamic acid. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/4-hydroxycinnamic_acid (retrieved 2024-12-22) (BioDeep RN: BioDeep_00000000110). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: C1=CC(=CC=C1C=CC(=O)O)O
InChI: InChI=1S/C9H8O3/c10-8-4-1-7(2-5-8)3-6-9(11)12/h1-6,10H,(H,11,12)

描述信息

4-Hydroxycinnamic acid, also known as p-Coumaric acid, is a coumaric acid in which the hydroxy substituent is located at C-4 of the phenyl ring. It has a role as a plant metabolite. It is a conjugate acid of a 4-coumarate. p-coumaric acid is an organic compound that is a hydroxy derivative of cinnamic acid. There are three isomers of coumaric acid: o-coumaric acid, m-coumaric acid, and p-coumaric acid, that differ by the position of the hydroxy substitution of the phenyl group. p-Coumaric acid is the most abundant isomer of the three in nature. p-Coumaric acid exists in two forms trans-p-coumaric acid and cis-p-coumaric acid. It is a crystalline solid that is slightly soluble in water, but very soluble in ethanol and diethyl ether. 4-Hydroxycinnamic acid belongs to the class of organic compounds known as hydroxycinnamic acids. Hydroxycinnamic acids are compounds containing an cinnamic acid where the benzene ring is hydroxylated. 4-Hydroxycinnamic acid exists in all living species, ranging from bacteria to humans. Outside of the human body, 4-Hydroxycinnamic acid is found, on average, in the highest concentration within a few different foods, such as pepper (Capsicum frutescens), pineapples, and sunflowers and in a lower concentration in spinachs, kiwis, and sweet oranges. 4-Hydroxycinnamic acid has also been detected, but not quantified in several different foods, such as wild rices, soursops, garden onions, hyssops, and avocado.
4-coumaric acid is a coumaric acid in which the hydroxy substituent is located at C-4 of the phenyl ring. It has a role as a plant metabolite. It is a conjugate acid of a 4-coumarate.
4-Hydroxycinnamic acid is a natural product found in Ficus septica, Visnea mocanera, and other organisms with data available.
trans-4-Coumaric acid is a metabolite found in or produced by Saccharomyces cerevisiae.
See also: Black Cohosh (part of); Galium aparine whole (part of); Lycium barbarum fruit (part of) ... View More ...
Coumaric acid is a hydroxycinnamic acid, an organic compound that is a hydroxy derivative of cinnamic acid. There are three isomers, o-coumaric acid, m-coumaric acid, and p-coumaric acid, that differ by the position of the hydroxy substitution of the phenyl group. p-Coumaric acid is the most abundant isomer of the three in nature. p-Coumaric acid is found in many foods, some of which are garden onion, turmeric, green bell pepper, and common thyme.
D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents
D000975 - Antioxidants > D016166 - Free Radical Scavengers
D020011 - Protective Agents > D000975 - Antioxidants
The trans-isomer of 4-coumaric acid.
D000890 - Anti-Infective Agents
Acquisition and generation of the data is financially supported in part by CREST/JST.
CONFIDENCE standard compound; INTERNAL_ID 168
KEIO_ID C024
p-Coumaric acid is the abundant isomer of cinnamic acid which has antitumor and anti-mutagenic activities.
p-Coumaric acid is the abundant isomer of cinnamic acid which has antitumor and anti-mutagenic activities.
p-Hydroxycinnamic acid, a common dietary phenol, could inhibit platelet activity, with IC50s of 371 μM, 126 μM for thromboxane B2 production and lipopolysaccharide-induced prostaglandin E2 generation, respectively.
p-Hydroxycinnamic acid, a common dietary phenol, could inhibit platelet activity, with IC50s of 371 μM, 126 μM for thromboxane B2 production and lipopolysaccharide-induced prostaglandin E2 generation, respectively.

p-Coumaric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=7400-08-0 (retrieved 2024-09-04) (CAS RN: 7400-08-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

同义名列表

123 个代谢物同义名

InChI=1/C9H8O3/c10-8-4-1-7(2-5-8)3-6-9(11)12/h1-6,10H,(H,11,12)/b6-3; (E)-3-(4-hydroxyphenyl)prop-2-enoate;Trans-4-Hydroxycinnamic Acid; p-Coumaric acid, primary pharmaceutical reference standard; Dehydroepiandrosterone-[D6] (CertiMass solution); 2-propenoic acid, 3-(4-hydroxyphenyl)-, (2E)-; 2-Propenoic acid, 3-(4-hydroxyphenyl)-, (E)-; 4-10-00-01005 (Beilstein Handbook Reference); 2-Propenoic acid, 3-(4-hydroxyphenyl)-, (Z)-; 0-10-00-00297 (Beilstein Handbook Reference); (2E)-3-(4-Hydroxyphenyl)-2-propenoic acid #; trans-3-(4-Hydroxyphenyl)-2-propenoic acid; trans-3-(4-hydroxyphenyl)-2-propenoic acid; trans-p-Coumaric acid, analytical standard; (2E)-3-(4-Hydroxyphenyl)-2-propenoic acid; (2E)-3-(4-hydroxyphenyl)prop-2-enoic acid; (E)-3-[4-hydroxyphenyl]-2-propenoic acid; (E)-3-(4-hydroxyphenyl)prop-2-enoic acid; (E)-3-(4-Hydroxyphenyl)-2-propenoic acid; (E)-3-(4-hydroxyphenyl)prop-2-enoicacid; 2-Propenoic acid, 3-(4-hydroxyphenyl)-; p-Coumaric acid;p-Hydroxycinnamic acid; .BETA.-(4-HYDROXYPHENYL)ACRYLIC ACID; 0C1BFF2D-2CF7-4FC1-9F76-3268C2C7F783; (2E)-3-(4-hydroxyphenyl)acrylic acid; .beta.-[4-Hydroxyphenyl]acrylic acid; 3-(4-hydroxyphenyl)prop-2-enoic acid; (E)-3-(4-hydroxyphenyl)prop-2-enoate; 3-(4-Hydroxyphenyl)-2-propenoic acid; (e)-3-(4-Hydroxyphenyl)-2-propenoate; (E)-3-(4-Hydroxyphenyl)acrylic acid; beta-[4-Hydroxyphenyl]acrylic acid; beta-(4-Hydroxyphenyl)acrylic acid; phenol, 4-(3-hydroxy-1-propenyl)-; trans-p-HydroxyzimtsA currencyure; Cinnamic acid, 4-hydroxy-, trans-; p-Coumaric acid, >=98.0\\% (HPLC); 3-(4-Hydroxyphenyl)-2-propenoate; (2E)-3-(4-Hydroxyphenyl)acrylate; b-[4-Hydroxyphenyl]acrylic acid; 3-(4-hydroxyphenyl)acrylic acid; Cinnamic acid, p-hydroxy-, (E)-; β-[4-Hydroxyphenyl]acrylic acid; beta-[4-Hydroxyphenyl]acrylate; 4-coumaric acid, disodium salt; p-Hydroxy-trans-cinnamic acid; 4-HYDROXYPHENYLPROPENOIC ACID; p-Hydroxycinnamic acid, trans; trans-4-Hydroxycinnamic acid; trans-p-Hydroxycinnamic acid; HYDROXYCINNAMIC ACID [INCI]; trans-4-HydroxycinnamicAcid; p-Hydroxyphenylacrylic acid; p-hydroxycinnamic acid (M4); 3-(4-hydroxyphenyl)acrylate; 4-coumaric acid, (E)-isomer; b-[4-Hydroxyphenyl]acrylate; 4-coumaric acid, (Z)-isomer; (E)-p-Hydroxycinnamic acid; (E)-4-hydroxycinnamic acid; 4-Hydroxyphenylpropenoate; Cinnamic acid, p-hydroxy-; PARA HYDROXYCINNAMIC ACID; trans-4-hydroxycinnamate; P-COUMARIC ACID [WHO-DD]; trans-p-Hydroxycinnamate; SODIUM2,4-PENTANEDIONATE; parahydroxycinnamic acid; 4-hydroxy cinnamic acid; trans-p-Coumarinic acid; p-Hydroxy-cinnamic acid; P-Hydroxyphenylacrylate; 4’-Hydroxycinnamic acid; (e)-p-Hydroxycinnamate; 4-hydroxycinnamic acid; p-Coumaric acid, trans; p-hydroxycinnamic acid; 4-Hydroxycinamic acid; trans-p-Coumaric acid; p-Coumaric acid,trans; 4-Hydroxycinnamicacid; p-trans-Coumaric acid; trans-4-coumaric acid; P-COUMARIC ACID [MI]; trans-p-Cumaric Acid; p-Coumaric acid 98\\%; Hydroxycinnamic acid; 4-Hydroxy cinnamate; (E)-p-Coumaric acid; trans-p-Coumarinate; p-Hydroxy-cinnamic; p-Hydroxycinnamate; p-coumaryl alcohol; para-coumaric acid; 4-Hydroxycinnamate; Para coumaric acid; trans-p-coumarate; Naringeninic acid; trans-4-Coumarate; Coumaric acid, p-; naringeninic-acid; hydroxycinnamate; p-Coumaric acid; UNII-IBS9D1EU3J; 4-coumaric acid; (e)-p-Coumarate; cis-P-Coumarate; p-coumaric-acid; Para coumarate; p-Cumaric acid; Para-Coumarate; Naringeninate; Coumaric acid; 4-coumarate; ORISTAR PCA; p-coumarate; IBS9D1EU3J; p-Cumarate; trans-HPPA; p-Coumaric; 4qem; 4f8j; 4-Hydroxycinnamic acid; 4-Coumarate



数据库引用编号

63 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(1)

PlantCyc(0)

代谢反应

205 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(1)

WikiPathways(2)

Plant Reactome(198)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(4)

  • Flavanone Biosynthesis: 4-Hydroxycinnamic acid + Adenosine triphosphate + Coenzyme A ⟶ 4-Coumaroyl-CoA + Adenosine monophosphate + Pyrophosphate
  • Flavin Biosynthesis: 5-Amino-6-(5'-phosphoribosylamino)uracil + Hydrogen Ion + NADPH ⟶ 5-Amino-6-(5'-phosphoribitylamino)uracil + NADP
  • Flavin Biosynthesis: Adenosine triphosphate + Riboflavin ⟶ Adenosine diphosphate + Flavin Mononucleotide + Hydrogen Ion
  • Riboflavin Metabolism: Adenosine triphosphate + Riboflavin ⟶ Adenosine diphosphate + Flavin Mononucleotide

PharmGKB(0)

610 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 13 BCL2, CASP3, CAT, FASN, MAPK14, MAPK8, NFE2L2, NOS2, PIK3CA, PPARG, PTGS2, TYR, XDH
Peripheral membrane protein 3 ACHE, CYP1B1, PTGS2
Endoplasmic reticulum membrane 4 BCL2, CYP1B1, HMOX1, PTGS2
Nucleus 10 ACHE, BCL2, CASP3, HMOX1, MAPK14, MAPK8, MPO, NFE2L2, NOS2, PPARG
cytosol 12 BCL2, CASP3, CAT, FASN, HMOX1, MAPK14, MAPK8, NFE2L2, NOS2, PIK3CA, PPARG, XDH
centrosome 1 NFE2L2
nucleoplasm 8 CASP3, HMOX1, MAPK14, MAPK8, MPO, NFE2L2, NOS2, PPARG
RNA polymerase II transcription regulator complex 2 NFE2L2, PPARG
Cell membrane 1 ACHE
Cytoplasmic side 1 HMOX1
lamellipodium 1 PIK3CA
Synapse 2 ACHE, MAPK8
cell surface 2 ACHE, ADIPOQ
glutamatergic synapse 2 CASP3, MAPK14
Golgi apparatus 3 ACHE, FASN, NFE2L2
neuromuscular junction 1 ACHE
neuronal cell body 1 CASP3
Cytoplasm, cytosol 2 NFE2L2, NOS2
Lysosome 2 MPO, TYR
plasma membrane 5 ACHE, FASN, NFE2L2, NOS2, PIK3CA
Membrane 6 ACHE, BCL2, CAT, CYP1B1, FASN, HMOX1
axon 1 MAPK8
caveola 1 PTGS2
extracellular exosome 3 CAT, FASN, MPO
endoplasmic reticulum 4 ADIPOQ, BCL2, HMOX1, PTGS2
extracellular space 7 ACHE, ADIPOQ, CCL2, HMOX1, IL6, MPO, XDH
perinuclear region of cytoplasm 6 ACHE, HMOX1, NOS2, PIK3CA, PPARG, TYR
intercalated disc 1 PIK3CA
mitochondrion 4 BCL2, CAT, CYP1B1, MAPK14
protein-containing complex 3 BCL2, CAT, PTGS2
intracellular membrane-bounded organelle 5 CAT, CYP1B1, MPO, PPARG, TYR
Microsome membrane 2 CYP1B1, PTGS2
postsynaptic density 1 CASP3
Single-pass type I membrane protein 1 TYR
Secreted 4 ACHE, ADIPOQ, CCL2, IL6
extracellular region 7 ACHE, ADIPOQ, CAT, CCL2, IL6, MAPK14, MPO
Mitochondrion outer membrane 1 BCL2
Single-pass membrane protein 1 BCL2
mitochondrial outer membrane 2 BCL2, HMOX1
mitochondrial matrix 1 CAT
Extracellular side 1 ACHE
Nucleus membrane 1 BCL2
Bcl-2 family protein complex 1 BCL2
nuclear membrane 1 BCL2
Melanosome membrane 1 TYR
Cytoplasm, P-body 1 NOS2
P-body 1 NOS2
Golgi-associated vesicle 1 TYR
Cytoplasm, perinuclear region 1 NOS2
pore complex 1 BCL2
focal adhesion 1 CAT
Peroxisome 3 CAT, NOS2, XDH
basement membrane 1 ACHE
collagen trimer 1 ADIPOQ
sarcoplasmic reticulum 1 XDH
Peroxisome matrix 1 CAT
peroxisomal matrix 2 CAT, NOS2
peroxisomal membrane 1 CAT
collagen-containing extracellular matrix 1 ADIPOQ
secretory granule 1 MPO
nuclear speck 1 MAPK14
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
receptor complex 1 PPARG
neuron projection 1 PTGS2
chromatin 2 NFE2L2, PPARG
mediator complex 1 NFE2L2
spindle pole 1 MAPK14
Lipid-anchor, GPI-anchor 1 ACHE
Melanosome 2 FASN, TYR
side of membrane 1 ACHE
myelin sheath 1 BCL2
azurophil granule 1 MPO
ficolin-1-rich granule lumen 2 CAT, MAPK14
secretory granule lumen 2 CAT, MAPK14
endoplasmic reticulum lumen 2 IL6, PTGS2
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
azurophil granule lumen 1 MPO
Single-pass type IV membrane protein 1 HMOX1
phagocytic vesicle lumen 1 MPO
synaptic cleft 1 ACHE
protein-DNA complex 1 NFE2L2
basal dendrite 1 MAPK8
death-inducing signaling complex 1 CASP3
cortical cytoskeleton 1 NOS2
catalase complex 1 CAT
interleukin-6 receptor complex 1 IL6
BAD-BCL-2 complex 1 BCL2
[Isoform H]: Cell membrane 1 ACHE
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
glycogen granule 1 FASN


文献列表

  • Vahid Karimzadegan, Manoj Koirala, Sajjad Sobhanverdi, Natacha Merindol, Bharat Bhusan Majhi, Sarah-Eve Gélinas, Vitaliy I Timokhin, John Ralph, Mehran Dastmalchi, Isabel Desgagné-Penix. Characterization of cinnamate 4-hydroxylase (CYP73A) and p-coumaroyl 3'-hydroxylase (CYP98A) from Leucojum aestivum, a source of Amaryllidaceae alkaloids. Plant physiology and biochemistry : PPB. 2024 May; 210(?):108612. doi: 10.1016/j.plaphy.2024.108612. [PMID: 38598867]
  • Samet Tekin, Emin Sengul, Serkan Yildirim, Emrah Hicazi Aksu, İsmail Bolat, Burak Çınar, Azizeh Shadidizaji, Fikret Çelebi, Mohamad Warda. Molecular insights into the antioxidative and anti-inflammatory effects of P-coumaric acid against bisphenol A-induced testicular injury: In vivo and in silico studies. Reproductive toxicology (Elmsford, N.Y.). 2024 Apr; 125(?):108579. doi: 10.1016/j.reprotox.2024.108579. [PMID: 38513920]
  • Stanely Mainzen Prince Ponnian, Shervin Prince Stanely, Abhro Jyoti Roy. Cardioprotective effects of p-coumaric acid on tachycardia, inflammation, ion pump dysfunction, and electrolyte imbalance in isoproterenol-induced experimental myocardial infarction. Journal of biochemical and molecular toxicology. 2024 Mar; 38(3):e23668. doi: 10.1002/jbt.23668. [PMID: 38439645]
  • Cem Baltacıoğlu, Hande Baltacıoğlu, İlhami Okur, Mehmet Yetişen, Hami Alpas. Recovery of phenolic compounds from peach pomace using conventional solvent extraction and different emerging techniques. Journal of food science. 2024 Mar; 89(3):1672-1683. doi: 10.1111/1750-3841.16972. [PMID: 38343298]
  • Jiang-Yan Chen, Sheng Guo, Xiao-Xue Xu, Ya Yang, Yue Zhu, Hong-Jie Kang, Jin-Ao Duan. [Comparison of in vivo pharmacokinetics of twelve constituents in Qihe Fenqing Yin in normal rats and diabetic rats]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2024 Mar; 49(5):1378-1387. doi: 10.19540/j.cnki.cjcmm.20231210.201. [PMID: 38621986]
  • Faezeh Khosravi, Samin Mohammadi, Morteza Kosari-Nasab, Parina Asgharian. The impact of microcrystalline and nanocrystalline cellulose on the antioxidant phenolic compounds level of the cultured Artemisia absinthium. Scientific reports. 2024 02; 14(1):2692. doi: 10.1038/s41598-023-50772-3. [PMID: 38302508]
  • Feixiang Chen, Xinxin Zhang, Junxiang Wang, Fukai Wang, Jinlong Mao. P-Coumaric Acid: Advances in Pharmacological Research Based on Oxidative Stress. Current topics in medicinal chemistry. 2024 Jan; ?(?):. doi: 10.2174/0115680266276823231230183519. [PMID: 38279744]
  • Arun Kumar, Narpinder Singh, Robin Joshi. Deciphering the metabolic signatures of Trigonella microgreens as a function of photoperiod and temperature using targeted compound analysis and non-targeted UHPLC-QTOF-IMS based approach. Food research international (Ottawa, Ont.). 2024 Jan; 176(?):113834. doi: 10.1016/j.foodres.2023.113834. [PMID: 38163730]
  • Yalda Sabaghi, Farnaz PourFarzad, Leila Zolghadr, Azita Bahrami, Tahereh Shojazadeh, Alireza Farasat, Nematollah Gheibi. A nano-liposomal carrier containing p-coumaric acid for induction of targeted apoptosis on melanoma cells and kinetic modeling. Biochemical and biophysical research communications. 2024 Jan; 690(?):149219. doi: 10.1016/j.bbrc.2023.149219. [PMID: 37995451]
  • Bing Cao, Meng-Nan Zeng, Feng-Xiao Hao, Zhi-You Hao, Zhen-Kai Zhang, Xi-Wen Liang, Yuan-Yuan Wu, Yu-Han Zhang, Wei-Sheng Feng, Xiao-Ke Zheng. P-coumaric acid ameliorates Aβ25-35-induced brain damage in mice by modulating gut microbiota and serum metabolites. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2023 Dec; 168(?):115825. doi: 10.1016/j.biopha.2023.115825. [PMID: 37924791]
  • Mario Mutz, Dominic Kösters, Benedikt Wynands, Nick Wierckx, Jan Marienhagen. Microbial synthesis of the plant natural product precursor p-coumaric acid with Corynebacterium glutamicum. Microbial cell factories. 2023 Oct; 22(1):209. doi: 10.1186/s12934-023-02222-y. [PMID: 37833813]
  • Manas Kinra, Niraja Ranadive, Madhavan Nampoothiri, Devinder Arora, Jayesh Mudgal. Involvement of NLRP3 inflammasome pathway in the protective mechanisms of ferulic acid and p-coumaric acid in LPS-induced sickness behavior and neuroinflammation in mice. Naunyn-Schmiedeberg's archives of pharmacology. 2023 Sep; ?(?):. doi: 10.1007/s00210-023-02743-8. [PMID: 37755515]
  • Rizwan Khan, Imrana Naseem. Antiglycation, antifibrillation and antioxidative effects of para coumaric acid and vitamin D; an in-vitro and in-silico comparative-cum-synergistic approach. Biochimica et biophysica acta. General subjects. 2023 Sep; ?(?):130455. doi: 10.1016/j.bbagen.2023.130455. [PMID: 37678652]
  • Jiwei Mao, Marta Tous Mohedano, Jing Fu, Xiaowei Li, Quanli Liu, Jens Nielsen, Verena Siewers, Yun Chen. Fine-tuning of p-coumaric acid synthesis to increase (2S)-naringenin production in yeast. Metabolic engineering. 2023 Aug; 79(?):192-202. doi: 10.1016/j.ymben.2023.08.003. [PMID: 37611820]
  • Selvaraj Nivetha, Kumaraswami Radha Thayammal Asha, Subramani Srinivasan, Raju Murali, Ambothi Kanagalakshmi. Hepatoprotective effect of p-Coumaric acid against KBrO3 -induced apoptosis in HepG2 cells. Cell biochemistry and function. 2023 Aug; ?(?):. doi: 10.1002/cbf.3837. [PMID: 37573567]
  • Jorge A Cortes-Morales, Alejandro Zamilpa, David O Salinas-Sánchez, Manasés González-Cortazar, Daniel Tapia-Maruri, Pedro Mendoza-de Gives, Juan M Rivas-González, Agustín Olmedo-Juárez. In vitro ovicidal effect of p-coumaric acid from Acacia bilimekii aerial parts against Haemonchus contortus. Veterinary parasitology. 2023 Aug; 320(?):109971. doi: 10.1016/j.vetpar.2023.109971. [PMID: 37331171]
  • Farkhondeh Safari, Hamid Hassanpour, Ahmad Alijanpour. Evaluation of hackberry (Celtis australis L.) fruits as sources of bioactive compounds. Scientific reports. 2023 07; 13(1):12233. doi: 10.1038/s41598-023-39421-x. [PMID: 37507445]
  • David Fernando Dos Santos, Vandressa Alves, Edlaine Costa, André Martins, Alexia Flavia França Vieira, Gustavo Henrique Fidelis Dos Santos, Cátia Tavares Dos Passos Francisco, Vânia Zanella Pinto. Yerba Mate (Ilex paraguariensis) Processing and Extraction: Retention of Bioactive Compounds. Plant foods for human nutrition (Dordrecht, Netherlands). 2023 Jul; ?(?):. doi: 10.1007/s11130-023-01082-6. [PMID: 37466823]
  • Shi-Hui Lu, Xiao-Na Liang, Xiao-Jin Nong, Ran Chen, Xiu-Xia Li. A New HPLC-UV Method Using Hydrolyzation with Sodium Hydroxide for Quantitation of Trans-p-Hydroxycinnamic Acid and Total Trans-p-Hydroxycinnamic Acid Esters in the Leaves of Ligustrum robustum. Molecules (Basel, Switzerland). 2023 Jul; 28(14):. doi: 10.3390/molecules28145309. [PMID: 37513183]
  • Kateryna Kukil, Elias Englund, Nick Crang, Elton P Hudson, Pia Lindberg. Laboratory evolution of Synechocystis PCC6803 for phenylpropanoid production. Metabolic engineering. 2023 Jun; ?(?):. doi: 10.1016/j.ymben.2023.06.014. [PMID: 37392984]
  • Zhiyi Yuan, Xi Lu, Fan Lei, Hong Sun, Jingfei Jiang, Dongming Xing, Lijun Du. Novel Effect of p-Coumaric Acid on Hepatic Lipolysis: Inhibition of Hepatic Lipid-Droplets. Molecules (Basel, Switzerland). 2023 Jun; 28(12):. doi: 10.3390/molecules28124641. [PMID: 37375195]
  • Elisa Bernklau, H S Arathi. Seasonal patterns of beneficial phytochemical availability in honey and stored pollen from honey bee colonies in large apiaries. Journal of economic entomology. 2023 May; ?(?):. doi: 10.1093/jee/toad096. [PMID: 37247384]
  • Li-Chao Zhang, Ya-Ning Liu, Xiao-Qin La, Shuai-Tao Li, Li-Na Wen, Ting Liu, Han-Qing Li, Ai-Ping Li, Haitao Wu, Chang-Xin Wu, Zhuo-Yu Li. The bound polyphenols of foxtail millet (Setaria italica) inner shell inhibit breast cancer by promoting lipid accumulation-induced autophagic death. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2023 May; ?(?):113855. doi: 10.1016/j.fct.2023.113855. [PMID: 37230459]
  • Ana González Moreno, Jack M Woolley, Eva Domínguez, Abel de Cózar, Antonio Heredia, Vasilios G Stavros. Synergic photoprotection of phenolic compounds present in tomato fruit cuticle: a spectroscopic investigation in solution. Physical chemistry chemical physics : PCCP. 2023 May; ?(?):. doi: 10.1039/d3cp00630a. [PMID: 37129056]
  • Golnaz Goodarzi, Sadra Samavarchi Tehrani, Ghodratollah Panahi, Arash Bahramzadeh, Reza Meshkani. Combination Therapy of Metformin and p-Coumaric Acid Mitigates Metabolic Dysfunction Associated with Obesity and Non-Alcoholic Fatty Liver Disease in High-Fat Diet Obese C57BL/6 Mice. The Journal of nutritional biochemistry. 2023 Apr; ?(?):109369. doi: 10.1016/j.jnutbio.2023.109369. [PMID: 37100305]
  • Joo Young Kim, Keun Ho Cho, Shea A Keene, Thomas A Colquhoun. Altered profile of floral volatiles and lignin content by down-regulation of Caffeoyl Shikimate Esterase in Petunia. BMC plant biology. 2023 Apr; 23(1):210. doi: 10.1186/s12870-023-04203-0. [PMID: 37085749]
  • Zhu-Fa Hou, Bing-Jie Zhao, Song-Shan Liu, Wen-Jing Yi, Hong Che. [Effect of P-coumaric Acid on Apoptosis of Multiple Myeloma Cells Based on Oxidative Stress]. Zhongguo shi yan xue ye xue za zhi. 2023 Apr; 31(2):435-441. doi: 10.19746/j.cnki.issn.1009-2137.2023.02.018. [PMID: 37096516]
  • Muna Alariqi, Mohamed Ramadan, Qiongqiong Wang, Zhaoguang Yang, Xi Hui, Xinhui Nie, Amani Ahmed, Qiansi Chen, Yanyin Wang, Longfu Zhu, Xianlong Zhang, Shuangxia Jin. Cotton 4-coumarate-CoA ligase 3 enhanced plant resistance to Verticillium dahliae by promoting JA signaling mediated vascular lignification and metabolic flux. The Plant journal : for cell and molecular biology. 2023 Mar; ?(?):. doi: 10.1111/tpj.16223. [PMID: 36994650]
  • Yuxin Li, Tingting Zhang, Yuqian Kang, Peng Wang, Wengang Yu, Jian Wang, Wei Li, Xingyu Jiang, Yang Zhou. Integrated metabolome, transcriptome analysis, and multi-flux full-length sequencing offer novel insights into the function of lignin biosynthesis as a Sesuvium portulacastrum response to salt stress. International journal of biological macromolecules. 2023 Mar; 237(?):124222. doi: 10.1016/j.ijbiomac.2023.124222. [PMID: 36990407]
  • Gopika Selvakumar, Suguna Lonchin. A bio-polymeric scaffold incorporated with p-Coumaric acid enhances diabetic wound healing by modulating MMP-9 and TGF-β3 expression. Colloids and surfaces. B, Biointerfaces. 2023 Mar; 225(?):113280. doi: 10.1016/j.colsurfb.2023.113280. [PMID: 36989817]
  • Christina Ferousi, Christos Kosinas, Efstratios Nikolaivits, Evangelos Topakas, Maria Dimarogona. Crystal structure of the Fusarium oxysporum tannase-like feruloyl esterase FaeC in complex with p-coumaric acid provides insight into ligand binding. FEBS letters. 2023 Mar; ?(?):. doi: 10.1002/1873-3468.14615. [PMID: 36961270]
  • Xiang-Rong Cheng, Jia-Hui Ma, Issoufou Amadou, Wei Zhao, Yu-Yao Chen, Chen-Xi Zhang, Bin Guan. Electrophilic components from Xiaoheiyao (rhizomes of Inula nervosa Wall.) alleviate the production of heterocyclic aromatic amines via creatinine inhibition. Food chemistry. 2023 Mar; 404(Pt A):134561. doi: 10.1016/j.foodchem.2022.134561. [PMID: 36252379]
  • Mohamad Fawzi Mahomoodally, Gokhan Zengin, Seebaluck-Sandoram Roumita, Giovanni Caprioli, Ahmed M Mustafa, Diletta Piatti, Evren Yıldıztugay, Gunes Ak, Ayşe Esra Karadağ, Asaad Khalid, Ashraf N Abdalla, Abdullahi Ibrahim Uba, Fatih Demirci. Chemical Characterization and Multidirectional Biological Effects of Different Solvent Extracts of Arum elongatum: in Vitro and in Silico Approaches. Chemistry & biodiversity. 2023 Mar; ?(?):e202201181. doi: 10.1002/cbdv.202201181. [PMID: 36891864]
  • Inga Kwiecień, Aleksandra Łukaszyk, Natalizia Miceli, Maria Fernanda Taviano, Federica Davì, Elżbieta Kędzia, Halina Ekiert. In Vitro Cultures of Scutellaria brevibracteata subsp. subvelutina as a Source of Bioactive Phenolic Metabolites. Molecules (Basel, Switzerland). 2023 Feb; 28(4):. doi: 10.3390/molecules28041785. [PMID: 36838774]
  • Adna Prado Massarioli, Alan Giovanini de Oliveira Sartori, Fernanda Francetto Juliano, José Eduardo Pedroso Gomes do Amaral, Roseane Cavalcanti Dos Santos, Liziane Maria de Lima, Severino Matias de Alencar. Simulated gastrointestinal digestion/Caco-2 cell model to predict bioaccessibility and intestinal permeability of p-coumaric acid and p-coumaroyl derivatives in peanut. Food chemistry. 2023 Jan; 400(?):134033. doi: 10.1016/j.foodchem.2022.134033. [PMID: 36084590]
  • Agnieszka Szewczyk, Wojciech Paździora, Halina Ekiert. The Influence of Exogenous Phenylalanine on the Accumulation of Secondary Metabolites in Agitated Shoot Cultures of Ruta graveolens L. Molecules (Basel, Switzerland). 2023 Jan; 28(2):. doi: 10.3390/molecules28020727. [PMID: 36677781]
  • Ana González Moreno, Eva Domínguez, Konrad Mayer, Nannan Xiao, Peter Bock, Antonio Heredia, Notburga Gierlinger. 3D (x-y-t) Raman imaging of tomato fruit cuticle: Microchemistry during development. Plant physiology. 2023 01; 191(1):219-232. doi: 10.1093/plphys/kiac369. [PMID: 35972400]
  • Nurinee Dolrahman, Waritsara Mukkhaphrom, Jeanjira Sutirek, Wachiryah Thong-Asa. Benefits of p-coumaric acid in mice with rotenone-induced neurodegeneration. Metabolic brain disease. 2023 01; 38(1):373-382. doi: 10.1007/s11011-022-01113-2. [PMID: 36308586]
  • Amalan Venkatesan, Jose Vinoth Raja Antony Samy, Karthikeyan Balakrishnan, Vijayakumar Natesan, Sung-Jin Kim. In Vitro Antioxidant, Anti-inflammatory, Antimicrobial, and Antidiabetic Activities of Synthesized Chitosan-loaded p-Coumaric Acid Nanoparticles. Current pharmaceutical biotechnology. 2023; 24(9):1178-1194. doi: 10.2174/1389201023666220822112923. [PMID: 35996263]
  • Praveen Khatri, Ling Chen, Istvan Rajcan, Sangeeta Dhaubhadel. Functional characterization of Cinnamate 4-hydroxylase gene family in soybean (Glycine max). PloS one. 2023; 18(5):e0285698. doi: 10.1371/journal.pone.0285698. [PMID: 37186600]
  • Fatemeh Arabsalehi, Mehdi Rahimmalek, Mohammad R Sabzalian, Mustafa Ghanadian, Adam Matkowski, Antoni Szumny. Changes in polyphenolic composition, physiological characteristics, and yield-related traits of Moshgak (Ducrosia anethifolia Boiss.) populations in response to drought stress. Protoplasma. 2022 Dec; ?(?):. doi: 10.1007/s00709-022-01828-0. [PMID: 36526928]
  • Xin-Yu Lin, Jing Zhou, Cai-Feng Hao, He Zhu, Shan-Shan Zhou, Jin-Di Xu, Qian Mao, Song-Lin Li, Ming Kong. Quality consistency evaluation of commercial Prunellae Spica by integrating determination of secondary metabolites and saccharides. Phytochemical analysis : PCA. 2022 Dec; ?(?):. doi: 10.1002/pca.3197. [PMID: 36494085]
  • Kaili Cui, Lichao Zhang, Xiaoqin La, Haili Wu, Ruipeng Yang, Hanqing Li, Zhuoyu Li. Ferulic Acid and P-Coumaric Acid Synergistically Attenuate Non-Alcoholic Fatty Liver Disease through HDAC1/PPARG-Mediated Free Fatty Acid Uptake. International journal of molecular sciences. 2022 Dec; 23(23):. doi: 10.3390/ijms232315297. [PMID: 36499624]
  • Jungwon Choi, Quynh Nhu Nguyen, Ji Yun Baek, Da-Eun Cho, Ki Sung Kang, Dae-Hyun Hahm, Tae Won Jang, Jae Ho Park, Ah Young Lee, Sanghyun Lee. Beneficial role of Boehmeria nivea in health and phytochemical constituents. Journal of food biochemistry. 2022 12; 46(12):e14474. doi: 10.1111/jfbc.14474. [PMID: 36209491]
  • Mohd Shahhnawaz Khan, Majed Saeed Althobaiti, Ghaliah S Almutairi, Majed S Alokail, Nojood Altwaijry, Amal M Alenad, Moneerah Saud Al-Bagmi, Nouf Omar Alafaleq. Elucidating the binding and inhibitory potential of p-coumaric acid against amyloid fibrillation and their cytotoxicity: Biophysical and docking analysis. Biophysical chemistry. 2022 Dec; 291(?):106823. doi: 10.1016/j.bpc.2022.106823. [PMID: 35868967]
  • Monika Kalinowska, Anna Płońska, Magdalena Trusiak, Ewelina Gołębiewska, Anna Gorlewska-Pietluszenko. Comparing the extraction methods, chemical composition, phenolic contents and antioxidant activity of edible oils from Cannabis sativa and Silybum marianu seeds. Scientific reports. 2022 11; 12(1):20609. doi: 10.1038/s41598-022-25030-7. [PMID: 36446937]
  • Zhenghao Lv, Dongying Zhou, Xiaolong Shi, Jingyao Ren, He Zhang, Chao Zhong, Shuli Kang, Xinhua Zhao, Haiqiu Yu, Chuantang Wang. Comparative Multi-Omics Analysis Reveals Lignin Accumulation Affects Peanut Pod Size. International journal of molecular sciences. 2022 Nov; 23(21):. doi: 10.3390/ijms232113533. [PMID: 36362327]
  • Qi Luo, Wen-Wen Cao, Yong-Xian Cheng. Alkaloids, sesquiterpenoids and hybrids of terpenoid with p-hydroxycinnamic acid from Ganoderma sinensis and their biological evaluation. Phytochemistry. 2022 Nov; 203(?):113379. doi: 10.1016/j.phytochem.2022.113379. [PMID: 36029844]
  • Ali Naseri, Abolfazl Alirezalu, Parviz Noruzi, Kazem Alirezalu. The effect of different ammonium to nitrate ratios on antioxidant activity, morpho-physiological and phytochemical traits of Moldavian balm (Dracocephalum moldavica). Scientific reports. 2022 10; 12(1):16841. doi: 10.1038/s41598-022-21338-6. [PMID: 36207586]
  • Adel Abdel-Moneim, Sanaa M Abd El-Twab, Ahmed I Yousef, Mohamed B Ashour, Eman S Abdel Reheim, Mennat Allah A Hamed. New insights into the in vitro, in situ and in vivo antihyperglycemic mechanisms of gallic acid and p-coumaric acid. Archives of physiology and biochemistry. 2022 Oct; 128(5):1188-1194. doi: 10.1080/13813455.2020.1762659. [PMID: 32401050]
  • Jinqian Chen, Hao Zhang, Xia Hu, Mengyuan Xu, Yanjun Su, Chunze Zhang, Yuan Yue, Xiaomin Zhang, Xinyu Wang, Wei Cui, Zhenyu Zhao, Xichuan Li. Phloretin exhibits potential food-drug interactions by inhibiting human UDP-glucuronosyltransferases in vitro. Toxicology in vitro : an international journal published in association with BIBRA. 2022 Oct; 84(?):105447. doi: 10.1016/j.tiv.2022.105447. [PMID: 35868516]
  • Limpho M Ramorobi, Godfrey R Matowane, Samson S Mashele, Susanna L Bonnet, Anwar E M Noreljaleel, Shasank S Swain, Tshepiso J Makhafola, Chika I Chukwuma. Bioactive synergism between zinc mineral and p-coumaric acid: A multi-mode glycemic control and antioxidative study. Journal of food biochemistry. 2022 10; 46(10):e14360. doi: 10.1111/jfbc.14360. [PMID: 35929608]
  • Cong Wang, Xia-Ling Huang, Yun-Mei Mu, Yu-Sang Li, Yu-Min He, He-Bin Tang. Synergistic effects of trans-p-coumaric acid isolated from the ethanol extract of Gynura procumbens in promoting intestinal absorption of chlorogenic acid and reversing alcoholic fatty liver disease. Journal of ethnopharmacology. 2022 Sep; 295(?):115407. doi: 10.1016/j.jep.2022.115407. [PMID: 35640740]
  • Iwona Radziejewska, Katarzyna Supruniuk, Michał Tomczyk, Wiktoria Izdebska, Małgorzata Borzym-Kluczyk, Anna Bielawska, Krzysztof Bielawski, Anna Galicka. p-Coumaric acid, Kaempferol, Astragalin and Tiliroside Influence the Expression of Glycoforms in AGS Gastric Cancer Cells. International journal of molecular sciences. 2022 Aug; 23(15):. doi: 10.3390/ijms23158602. [PMID: 35955735]
  • Akhand Mani, Kriti Kushwaha, Navneet Khurana, Jeena Gupta. p-Coumaric acid attenuates high-fat diet-induced oxidative stress and nephropathy in diabetic rats. Journal of animal physiology and animal nutrition. 2022 Jul; 106(4):872-880. doi: 10.1111/jpn.13645. [PMID: 34596925]
  • Jean-François Rontani, Bruno Charrière, Dominique Aubert, Christophe Menniti, Frédéric Vaultier, Claude Aubert. Electron ionization mass spectrometric fragmentation and multiple reaction monitoring quantification of ferulic and p-coumaric acid trimethylsilyl derivatives in deposited atmospheric particles. Rapid communications in mass spectrometry : RCM. 2022 Jun; 36(11):e9287. doi: 10.1002/rcm.9287. [PMID: 35261107]
  • Da-Bin Pyeon, Seung-Eun Lee, Jae-Wook Yoon, Hyo-Jin Park, Seung-Hwan Oh, Do-Geon Lee, Eun-Young Kim, Se-Pill Park. Comparison of the improving embryo development effects of Sasa quelpaertensis Nakai extract, p-coumaric acid, and myricetin on porcine oocytes according to their antioxidant capacities. Theriogenology. 2022 Jun; 185(?):97-108. doi: 10.1016/j.theriogenology.2022.03.009. [PMID: 35395590]
  • Miao Cai, Jiayu Liu, Xiaofei Song, Hang Qi, Yuanzi Li, Zhenzhou Wu, Haijin Xu, Mingqiang Qiao. De novo biosynthesis of p-coumaric acid and caffeic acid from carboxymethyl-cellulose by microbial co-culture strategy. Microbial cell factories. 2022 May; 21(1):81. doi: 10.1186/s12934-022-01805-5. [PMID: 35538542]
  • Xu-Dong Yu, Dan Zhang, Chu-Li Xiao, Yu Zhou, Xing Li, Le Wang, Zhiming He, James Reilly, Zhi-Yong Xiao, Xinhua Shu. P-Coumaric Acid Reverses Depression-Like Behavior and Memory Deficit Via Inhibiting AGE-RAGE-Mediated Neuroinflammation. Cells. 2022 05; 11(10):. doi: 10.3390/cells11101594. [PMID: 35626632]
  • Liying Wang, Xinru You, Chunlei Dai, Yifen Fang, Jun Wu. Development of poly(p-coumaric acid) as a self-anticancer nanocarrier for efficient and biosafe cancer therapy. Biomaterials science. 2022 May; 10(9):2263-2274. doi: 10.1039/d2bm00027j. [PMID: 35362499]
  • Chang Min Oh, Joon Yong Choi, In Ah Bae, Hong Taek Kim, Seong Su Hong, Jay Kyun Noah, Yong Chool Boo. Identification of p-Coumaric Acid and Ethyl p-Coumarate as the Main Phenolic Components of Hemp (Cannabis sativa L.) Roots. Molecules (Basel, Switzerland). 2022 Apr; 27(9):. doi: 10.3390/molecules27092781. [PMID: 35566134]
  • Libao Cheng, Chen Zhao, Minrong Zhao, Yuyan Han, Shuyan Li. Lignin Synthesis, Affected by Sucrose in Lotus (Nelumbo nucifera) Seedlings, Was Involved in Regulation of Root Formation in the Arabidopsis thanliana. International journal of molecular sciences. 2022 Feb; 23(4):. doi: 10.3390/ijms23042250. [PMID: 35216366]
  • Da Hye Gam, Jae Hyun Park, So Hee Kim, Min Ho Kang, Se Bin Kim, Jin Woo Kim. Production of Bioactive Substances to Alleviates Hangover and Ethanol-Induced Liver Damage through Fermentation of Oenanthe javanica Using Lactiplantibacillus plantarum. Molecules (Basel, Switzerland). 2022 Feb; 27(4):. doi: 10.3390/molecules27041175. [PMID: 35208964]
  • Xiangting Xu, Rujun Tao, Kexian Li, Wei Wang. An UHPLC/LC-MS illustrated the dynamic profiling of balanophorin B, gallic acid, and 4-hydroxycinnamic acid in rat as 3 molecular entities from Balanophora simaoensis. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2022 Feb; 1190(?):123103. doi: 10.1016/j.jchromb.2022.123103. [PMID: 35021136]
  • Kateryna Kukil, Pia Lindberg. Expression of phenylalanine ammonia lyases in Synechocystis sp. PCC 6803 and subsequent improvements of sustainable production of phenylpropanoids. Microbial cell factories. 2022 Jan; 21(1):8. doi: 10.1186/s12934-021-01735-8. [PMID: 35012528]
  • Sonam Sarita Bal, Geeta Devi Leishangthem, Ram Saran Sethi, Amarjit Singh. P-coumaric acid ameliorates fipronil induced liver injury in mice through attenuation of structural changes, oxidative stress and inflammation. Pesticide biochemistry and physiology. 2022 Jan; 180(?):104997. doi: 10.1016/j.pestbp.2021.104997. [PMID: 34955181]
  • Seerat Mehdi, Fiaz-Ud-Din Ahmad, Arslan Hussain Lodhi, Umair Khurshid, Ahmed Awais Khalid, Sheikh Safeena Sidiq, Liaqat Hussain, Mirza Shaharyar Baig. Protective Effects of p-CA Against Acute Liver Damage Induced by LPS/D-GalN in Wistar Albino Rats. Drug design, development and therapy. 2022; 16(?):3327-3342. doi: 10.2147/dddt.s380324. [PMID: 36199629]
  • Rodrigo da Silva Viana, Fernanda Lima Torres de Aquino, Emiliano Barreto. Effect of trans-cinnamic acid and p-coumaric acid on fibroblast motility: a pilot comparative study of in silico lipophilicity measure. Natural product research. 2021 Dec; 35(24):5872-5878. doi: 10.1080/14786419.2020.1798664. [PMID: 32713206]
  • Catherine Lapierre, Richard Sibout, Françoise Laurans, Marie-Claude Lesage-Descauses, Annabelle Déjardin, Gilles Pilate. p-Coumaroylation of poplar lignins impacts lignin structure and improves wood saccharification. Plant physiology. 2021 11; 187(3):1374-1386. doi: 10.1093/plphys/kiab359. [PMID: 34618081]
  • Juliana C Ferreira, Mouzarllem B Reis, Giovanna D P Coelho, Gabriel H Gastaldello, Ana Paula F Peti, Débora M Rodrigues, Jairo K Bastos, Vanessa L Campo, Carlos A Sorgi, Lúcia H Faccioli, Luiz G Gardinassi, Cristiane Tefé-Silva, Karina F Zoccal. Baccharin and p-coumaric acid from green propolis mitigate inflammation by modulating the production of cytokines and eicosanoids. Journal of ethnopharmacology. 2021 Oct; 278(?):114255. doi: 10.1016/j.jep.2021.114255. [PMID: 34062248]
  • Dae Seong Yoon, Su Yeon Cho, Hye Jin Yoon, Sang Ryong Kim, Un Ju Jung. Protective effects of p-coumaric acid against high-fat diet-induced metabolic dysregulation in mice. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2021 Oct; 142(?):111969. doi: 10.1016/j.biopha.2021.111969. [PMID: 34333285]
  • Ze-Hua Liu, Bo Li. Procyanidin B1 and p-Coumaric Acid from Highland Barley Grain Showed Synergistic Effect on Modulating Glucose Metabolism via IRS-1/PI3K/Akt Pathway. Molecular nutrition & food research. 2021 09; 65(18):e2100454. doi: 10.1002/mnfr.202100454. [PMID: 34342938]
  • Sayan Biswas, Pulok K Mukherjee, Amit Kar, Subhadip Bannerjee, Shibu Narayan Jana, Pallab Kanti Haldar, Nanaocha Sharma. Enhanced permeability and photoprotective potential of optimized p-coumaric acid-phospholipid complex loaded gel against UVA mediated oxidative stress. Journal of photochemistry and photobiology. B, Biology. 2021 Aug; 221(?):112246. doi: 10.1016/j.jphotobiol.2021.112246. [PMID: 34243023]
  • Joel B Johnson, Daniel J Skylas, Janice S Mani, Jinle Xiang, Kerry B Walsh, Mani Naiker. Phenolic Profiles of Ten Australian Faba Bean Varieties. Molecules (Basel, Switzerland). 2021 Jul; 26(15):. doi: 10.3390/molecules26154642. [PMID: 34361795]
  • P Lakshmi Soujanya, J C Sekhar, C V Ratnavathi, Chikkappa G Karjagi, E Shobha, S B Suby, K R Yathish, N Sunil, Sujay Rakshit. Induction of cell wall phenolic monomers as part of direct defense response in maize to pink stem borer (Sesamia inferens Walker) and non-insect interactions. Scientific reports. 2021 07; 11(1):14770. doi: 10.1038/s41598-021-93727-2. [PMID: 34285266]
  • Arathi H S, Elisa Bernklau. Context-Dependent Effect of Dietary Phytochemicals on Honey Bees Exposed to a Pesticide, Thiamethoxam. Journal of insect science (Online). 2021 Jul; 21(4):. doi: 10.1093/jisesa/ieab053. [PMID: 34374762]
  • Xu-Xu Huang, Yong Wang, Ji-Shan Lin, Lu Chen, Yan-Jie Li, Qian Liu, Guan-Feng Wang, Fang Xu, Lijing Liu, Bing-Kai Hou. The novel pathogen-responsive glycosyltransferase UGT73C7 mediates the redirection of phenylpropanoid metabolism and promotes SNC1-dependent Arabidopsis immunity. The Plant journal : for cell and molecular biology. 2021 07; 107(1):149-165. doi: 10.1111/tpj.15280. [PMID: 33866633]
  • Seok Hee Seo, Sang-Mi Jo, Tien Thi My Truong, Guiguo Zhang, Dong-Shin Kim, Myoungsook Lee, Yunkyoung Lee, Inhae Kang. Peanut sprout rich in p-coumaric acid ameliorates obesity and lipopolysaccharide-induced inflammation and the inhibition of browning in adipocytes via mitochondrial activation. Food & function. 2021 Jun; 12(12):5361-5374. doi: 10.1039/d1fo00342a. [PMID: 33982705]
  • Ancuța Chetrariu, Adriana Dabija. Spent Grain from Malt Whisky: Assessment of the Phenolic Compounds. Molecules (Basel, Switzerland). 2021 May; 26(11):. doi: 10.3390/molecules26113236. [PMID: 34072250]
  • Jannes Vagts, Kristin Kalvelage, Arne Weiten, Ramona Buschen, Julian Gutsch, Sabine Scheve, Lars Wöhlbrand, Stefan Diener, Heinz Wilkes, Michael Winklhofer, Ralf Rabus. Responsiveness of Aromatoleum aromaticum EbN1T to Lignin-Derived Phenylpropanoids. Applied and environmental microbiology. 2021 05; 87(11):. doi: 10.1128/aem.03140-20. [PMID: 33741621]
  • R J M Lubbers, A Dilokpimol, J Visser, R P de Vries. Aspergillus niger uses the peroxisomal CoA-dependent β-oxidative genes to degrade the hydroxycinnamic acids caffeic acid, ferulic acid, and p-coumaric acid. Applied microbiology and biotechnology. 2021 May; 105(10):4199-4211. doi: 10.1007/s00253-021-11311-0. [PMID: 33950281]
  • Kamil Łuczykowski, Natalia Warmuzińska, Sylwia Operacz, Iga Stryjak, Joanna Bogusiewicz, Julia Jacyna, Renata Wawrzyniak, Wiktoria Struck-Lewicka, Michał J Markuszewski, Barbara Bojko. Metabolic Evaluation of Urine from Patients Diagnosed with High Grade (HG) Bladder Cancer by SPME-LC-MS Method. Molecules (Basel, Switzerland). 2021 Apr; 26(8):. doi: 10.3390/molecules26082194. [PMID: 33920347]
  • Hina Gul, Ghazala Kaukab Raja, Maryam Shahid, Mohsin Iqbal, Samra Irum, Arafa Agshar, Dawood Ahmad, Muhammad Gulfraz. Phytochemistry, antioxidant and antibacterial activities of fruit extracts of Myrsine africana L. Pakistan journal of pharmaceutical sciences. 2021 Mar; 34(2):507-512. doi: ". [PMID: 34275823]
  • Tommaso Stefani, Antonio Romo-Mancillas, Juan J J Carrizales-Castillo, Eder Arredondo-Espinoza, Karla Ramírez-Estrada, Victor M Alcantar-Rosales, Leticia González-Maya, Jessica Nayelli Sánchez-Carranza, Isaías Balderas-Renterías, María Del Rayo Camacho-Corona. Cytotoxic Fractions from Hechtia glomerata Extracts and p-Coumaric Acid as MAPK Inhibitors. Molecules (Basel, Switzerland). 2021 Feb; 26(4):. doi: 10.3390/molecules26041096. [PMID: 33669666]
  • Miao Cai, Yuzhen Wu, Hang Qi, Jiaze He, Zhenzhou Wu, Haijin Xu, Mingqiang Qiao. Improving the Level of the Tyrosine Biosynthesis Pathway in Saccharomyces cerevisiae through HTZ1 Knockout and Atmospheric and Room Temperature Plasma (ARTP) Mutagenesis. ACS synthetic biology. 2021 01; 10(1):49-62. doi: 10.1021/acssynbio.0c00448. [PMID: 33395268]
  • Amandine L Flourat, Jeanne Combes, Claire Bailly-Maitre-Grand, Kévin Magnien, Arnaud Haudrechy, Jean-Hugues Renault, Florent Allais. Accessing p-Hydroxycinnamic Acids: Chemical Synthesis, Biomass Recovery, or Engineered Microbial Production?. ChemSusChem. 2021 Jan; 14(1):118-129. doi: 10.1002/cssc.202002141. [PMID: 33058548]
  • Thatiane R Mota, Wagner R de Souza, Dyoni M Oliveira, Polyana K Martins, Bruno L Sampaio, Felipe Vinecky, Ana P Ribeiro, Karoline E Duarte, Thályta F Pacheco, Norberto de K V Monteiro, Raquel B Campanha, Rogério Marchiosi, Davi S Vieira, Adilson K Kobayashi, Patrícia A de O Molinari, Osvaldo Ferrarese-Filho, Rowan A C Mitchell, Hugo B C Molinari, Wanderley D Dos Santos. Suppression of a BAHD acyltransferase decreases p-coumaroyl on arabinoxylan and improves biomass digestibility in the model grass Setaria viridis. The Plant journal : for cell and molecular biology. 2021 01; 105(1):136-150. doi: 10.1111/tpj.15046. [PMID: 33111398]
  • Thaise Boeing, Philipe Costa, Larissa Venzon, Mariane Meurer, Luisa Nathália Bolda Mariano, Tauani Caroline Santos França, Luana Gouveia, Anny Caroline de Bassi, Viviane Steimbach, Priscila de Souza, Marília Oliveira de Almeida, Caroline Arruda, Sérgio Faloni de Andrade, Jairo Kenupp Bastos, Luisa Mota da Silva. Gastric healing effect of p-coumaric acid isolated from Baccharis dracunculifolia DC on animal model. Naunyn-Schmiedeberg's archives of pharmacology. 2021 01; 394(1):49-57. doi: 10.1007/s00210-020-01928-9. [PMID: 32780226]
  • Mohammad Foad Abazari, Navid Nasiri, Shohreh Zare Karizi, Fatemeh Nejati, Hamed Haghi-Aminjan, Sara Norouzi, Peyman Piri, Leila Estakhr, Davood Rabiei Faradonbeh, Mina Kohandani, Karim Daliri, Nima Sanadgol, Hassan Askari. An Updated Review of Various Medicinal Applications of p-Co umaric Acid: From Antioxidative and Anti-Inflammatory Properties to Effects on Cell Cycle and Proliferation. Mini reviews in medicinal chemistry. 2021; 21(15):2187-2201. doi: 10.2174/1389557521666210114163024. [PMID: 33459233]
  • Selin Şahin, Mehmet Bilgin, Özge Gülmez, Kubilay Güçlü, Mustafa Özyürek. Enrichment of Hazelnut Oil with Several Polyphenols: An Alternative Approach to A New Functional Food. Journal of oleo science. 2021; 70(1):11-19. doi: 10.5650/jos.ess20173. [PMID: 33431765]
  • Shuo Liu, Li Zhao, Yonghui Liao, Zhenling Luo, Hua Wang, Peng Wang, Han Zhao, Jixing Xia, Chao-Feng Huang. Dysfunction of the 4-coumarate:coenzyme A ligase 4CL4 impacts aluminum resistance and lignin accumulation in rice. The Plant journal : for cell and molecular biology. 2020 12; 104(5):1233-1250. doi: 10.1111/tpj.14995. [PMID: 32989851]
  • Yanan Huo, Fengli Wu, Guotian Song, Ran Tu, Wujiu Chen, Erbing Hua, Qinhong Wang. [Directed evolution of tyrosine ammonia-lyase to improve the production of p-coumaric acid in Escherichia coli]. Sheng wu gong cheng xue bao = Chinese journal of biotechnology. 2020 Nov; 36(11):2367-2376. doi: 10.13345/j.cjb.200122. [PMID: 33244931]
  • Charlotte Gautier, Laetitia Pinson-Gadais, Marie-Noelle Verdal-Bonnin, Christine Ducos, Judith Tremblay, Sylvain Chéreau, Vessela Atanasova, Florence Richard-Forget. Investigating the Efficiency of Hydroxycinnamic Acids to Inhibit the Production of Enniatins by Fusarium avenaceum and Modulate the Expression of Enniatins Biosynthetic Genes. Toxins. 2020 11; 12(12):. doi: 10.3390/toxins12120735. [PMID: 33255199]
  • Qiang Tong, Qinghu Wang, Bilegetu Pa, Wenqiang Bao, Junsheng Hao. Two new compounds from Artemisia ordosica Krasch. Natural product research. 2020 Nov; 34(21):3061-3065. doi: 10.1080/14786419.2019.1607857. [PMID: 31084212]
  • Young Hye Seo, Tuy An Trinh, Seung Mok Ryu, Hyo Seon Kim, Goya Choi, Byeong Cheol Moon, Sang Hee Shim, Dae Sik Jang, Dongho Lee, Ki Sung Kang, Jun Lee. Chemical Constituents from the Aerial Parts of Elsholtzia ciliata and Their Protective Activities on Glutamate-Induced HT22 Cell Death. Journal of natural products. 2020 10; 83(10):3149-3155. doi: 10.1021/acs.jnatprod.0c00756. [PMID: 32991171]
  • Jae-Sung Park, Beomkoo Chung, Won-Hee Lee, Jayho Lee, Youngbae Suh, Dong-Chan Oh, Ki-Bong Oh, Jongheon Shin. Sortase A-Inhibitory Coumarins from the Folk Medicinal Plant Poncirus trifoliata. Journal of natural products. 2020 10; 83(10):3004-3011. doi: 10.1021/acs.jnatprod.0c00551. [PMID: 32996318]
  • Siqi Zhang, Jingwen Zhou, Guoqiang Zhang, Jian Chen. [Construction and optimization of p-coumaric acid-producing Saccharomyces cerevisiae]. Sheng wu gong cheng xue bao = Chinese journal of biotechnology. 2020 Sep; 36(9):1838-1848. doi: 10.13345/j.cjb.200003. [PMID: 33164460]
  • Carolyn J Butts-Wilmsmeyer, Rita H Mumm, Martin O Bohn. Quantitative Genetic Analysis of Hydroxycinnamic Acids in Maize (Zea mays L.) for Plant Improvement and Production of Health-Promoting Compounds. Journal of agricultural and food chemistry. 2020 Sep; 68(35):9585-9593. doi: 10.1021/acs.jafc.0c02774. [PMID: 32786871]
  • Caroline Issler Rodrigues, Diego Mota da Costa, Acidália Carine Vieira Santos, Maria José Moreira Batatinha, Fernanda Vidigal Duarte Souza, Everton Hilo de Souza, Mariana Borges Botura, Clayton Queiroz Alves, Taliane Leila Soares, Hugo Neves Brandão. Assessment of in vitro anthelmintic activity and bio-guided chemical analysis of BRS Boyrá pineapple leaf extracts. Veterinary parasitology. 2020 Sep; 285(?):109219. doi: 10.1016/j.vetpar.2020.109219. [PMID: 32889401]