Lecithin (BioDeep_00000604596)

 

Secondary id: BioDeep_00000017482

PANOMIX_OTCML-2023


代谢物信息卡片


1-Eicosadienoyl-2-myristoyl-sn-glycero-3-phosphocholine

化学式: C42H80NO8P (757.562125)
中文名称: L-α-磷脂酰胆碱(大豆), 卵磷脂
谱图信息: 最多检出来源 Homo sapiens(blood) 0.3%

分子结构信息

SMILES: CCCCCCCCCCCCCCCC(=O)OCC(COP(=O)([O-])OCC[N+](C)(C)C)OC(=O)CCCCCCCC=CCC=CCCCCC
InChI: InChI=1S/C42H80NO8P/c1-6-8-10-12-14-16-18-20-21-23-25-27-29-31-33-35-42(45)51-40(39-50-52(46,47)49-37-36-43(3,4)5)38-48-41(44)34-32-30-28-26-24-22-19-17-15-13-11-9-7-2/h14,16,20-21,40H,6-13,15,17-19,22-39H2,1-5H3/b16-14+,21-20+

描述信息

Lecithin (/ˈlɛsɪθɪn/ LESS-ith-in; from the Ancient Greek λέκιθος lékithos "yolk") is a generic term to designate any group of yellow-brownish fatty substances occurring in animal and plant tissues which are amphiphilic – they attract both water and fatty substances (and so are both hydrophilic and lipophilic), and are used for smoothing food textures, emulsifying, homogenizing liquid mixtures, and repelling sticking materials.[1][2]

Lecithins are mixtures of glycerophospholipids including phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, phosphatidylserine, and phosphatidic acid.[3]

Lecithin was first isolated in 1845 by the French chemist and pharmacist Théodore Gobley.[4] In 1850, he named the phosphatidylcholine lécithine.[5] Gobley originally isolated lecithin from egg yolk and established the complete chemical formula of phosphatidylcholine in 1874;[6] in between, he demonstrated the presence of lecithin in a variety of biological materials, including venous blood, human lungs, bile, roe, and brains of humans, sheep and chicken.

Lecithin can easily be extracted chemically using solvents such as hexane, ethanol, acetone, petroleum ether or benzene; or extraction can be done mechanically. Common sources include egg yolk,[7] marine foods, soybeans,[7] milk, rapeseed, cottonseed, and sunflower oil. It has low solubility in water, but is an excellent emulsifier. In aqueous solution, its phospholipids can form either liposomes, bilayer sheets, micelles, or lamellar structures, depending on hydration and temperature. This results in a type of surfactant that usually is classified as amphipathic. Lecithin is sold as a food additive and dietary supplement. In cooking, it is sometimes used as an emulsifier and to prevent sticking, for example in non-stick cooking spray.

D013501 - Surface-Active Agents > D054709 - Lecithins
Lecithin is regarded as a safe, conventional phospholipid source. Phospholipids are reported to alter the fatty acid composition and microstructure of the membranes in animal cells.
Lecithin is regarded as a safe, conventional phospholipid source. Phospholipids are reported to alter the fatty acid composition and microstructure of the membranes in animal cells.

同义名列表

112 个代谢物同义名

1,2-Diacyl-sn-glycero-3-phosphocholine; Lecithin; 1-palmitoyl-2-linoleoylphosphatidylcholine; L-alpha-Phosphatidylcholine (Soy); 1-Eicosadienoyl-2-myristoyl-sn-glycero-3-phosphocholine; Phosphatidylcholine(20:2n6/14:0); Phosphatidylcholine(20:2w6/14:0); Phosphatidylcholine(20:2/14:0); Phosphatidylcholine(34:2); PC(20:2(11Z,14Z)/14:0); GPCho(20:2w6/14:0); GPCho(20:2n6/14:0); GPCho(20:2/14:0); PC(20:2n6/14:0); PC(20:2w6/14:0); PC(20:2/14:0); Gpcho(34:2); PC(34:2); 1-Eicosenoyl-2-myristoleoyl-sn-glycero-3-phosphocholine; Phosphatidylcholine(20:1w9/14:1w5); Phosphatidylcholine(20:1n9/14:1n5); Phosphatidylcholine(20:1/14:1); PC(20:1(11Z)/14:1(9Z)); GPCho(20:1w9/14:1w5); GPCho(20:1n9/14:1n5); PC(20:1w9/14:1w5); PC(20:1n9/14:1n5); GPCho(20:1/14:1); PC(20:1/14:1); 1-Linoleoyl-2-palmitoyl-sn-glycero-3-phosphocholine; Phosphatidylcholine(18:2W6/16:0); Phosphatidylcholine(18:2n6/16:0); Phosphatidylcholine(18:2/16:0); PC(18:2(9Z,12Z)/16:0); GPCho(18:2n6/16:0); GPCho(18:2W6/16:0); GPCho(18:2/16:0); PC(18:2W6/16:0); PC(18:2n6/16:0); PC(18:2/16:0); 1-Oleoyl-2-palmitoleoyl-sn-glycero-3-phosphocholine; Phosphatidylcholine(18:1W9/16:1W7); Phosphatidylcholine(18:1n9/16:1n7); Phosphatidylcholine(18:1/16:1); PC(18:1(9Z)/16:1(9Z)); GPCho(18:1n9/16:1n7); GPCho(18:1W9/16:1W7); PC(18:1W9/16:1W7); PC(18:1n9/16:1n7); Gpcho(18:1/16:1); PC(18:1/16:1); 1-Vaccenoyl-2-palmitoleoyl-sn-glycero-3-phosphocholine; Phosphatidylcholine(18:1n7/16:1n7); Phosphatidylcholine(18:1W7/16:1W7); PC(18:1(11Z)/16:1(9Z)); Gpcho(18:1n7/16:1n7); Gpcho(18:1W7/16:1W7); PC(18:1W7/16:1W7); PC(18:1n7/16:1n7); 1-Palmitoleoyl-2-oleoyl-sn-glycero-3-phosphocholine; Phosphatidylcholine(16:1W7/18:1W9); Phosphatidylcholine(16:1n7/18:1n9); Phosphatidylcholine(16:1/18:1); PC(16:1(9Z)/18:1(9Z)); GPCho(16:1W7/18:1W9); GPCho(16:1n7/18:1n9); PC(16:1W7/18:1W9); PC(16:1n7/18:1n9); GPCho(16:1/18:1); PC(16:1/18:1); 1-Palmitoleoyl-2-vaccenoyl-sn-glycero-3-phosphocholine; Phosphatidylcholine(16:1n7/18:1n7); Phosphatidylcholine(16:1W7/18:1W7); PC(16:1(9Z)/18:1(11Z)); GPCho(16:1n7/18:1n7); GPCho(16:1W7/18:1W7); PC(16:1W7/18:1W7); PC(16:1n7/18:1n7); 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphocholine; Phosphatidylcholine(16:0/18:2n6); Phosphatidylcholine(16:0/18:2w6); Phosphatidylcholine(16:0/18:2); PC(16:0/18:2(9Z,12Z)); GPCho(16:0/18:2W6); GPCho(16:0/18:2n6); GPCho(16:0/18:2); PC(16:0/18:2W6); PC(16:0/18:2n6); PC(16:0/18:2); 1-Myristoleoyl-2-eicosenoyl-sn-glycero-3-phosphocholine; Phosphatidylcholine(14:1W5/20:1W9); Phosphatidylcholine(14:1n5/20:1n9); Phosphatidylcholine(14:1/20:1); PC(14:1(9Z)/20:1(11Z)); Gpcho(14:1n5/20:1n9); Gpcho(14:1W5/20:1W9); PC(14:1W5/20:1W9); PC(14:1n5/20:1n9); Gpcho(14:1/20:1); PC(14:1/20:1); 1-Myristoyl-2-eicosadienoyl-sn-glycero-3-phosphocholine; Phosphatidylcholine(14:0/20:2W6); Phosphatidylcholine(14:0/20:2n6); Phosphatidylcholine(14:0/20:2); PC(14:0/20:2(11Z,14Z)); Gpcho(14:0/20:2W6); Gpcho(14:0/20:2n6); Gpcho(14:0/20:2); PC(14:0/20:2n6); PC(14:0/20:2W6); PC(14:0/20:2); Polyene phosphatidylcholine



数据库引用编号

19 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

117 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(117)

  • linoleate biosynthesis I (plants): a glycerolipid + linoleoyl-CoA ⟶ a [glycerolipid]-linoleate + coenzyme A
  • linoleate biosynthesis I (plants): a glycerolipid + linoleoyl-CoA ⟶ a [glycerolipid]-linoleate + coenzyme A
  • linoleate biosynthesis I (plants): a glycerolipid + linoleoyl-CoA ⟶ a [glycerolipid]-linoleate + coenzyme A
  • linoleate biosynthesis I (plants): a glycerolipid + linoleoyl-CoA ⟶ a [glycerolipid]-linoleate + coenzyme A
  • linoleate biosynthesis I (plants): a glycerolipid + linoleoyl-CoA ⟶ a [glycerolipid]-linoleate + coenzyme A
  • linoleate biosynthesis I (plants): a glycerolipid + linoleoyl-CoA ⟶ a [glycerolipid]-linoleate + coenzyme A
  • linoleate biosynthesis I (plants): a glycerolipid + linoleoyl-CoA ⟶ a [glycerolipid]-linoleate + coenzyme A
  • linoleate biosynthesis I (plants): a glycerolipid + linoleoyl-CoA ⟶ a [glycerolipid]-linoleate + coenzyme A
  • linoleate biosynthesis I (plants): a glycerolipid + linoleoyl-CoA ⟶ a [glycerolipid]-linoleate + coenzyme A
  • linoleate biosynthesis I (plants): a glycerolipid + linoleoyl-CoA ⟶ a [glycerolipid]-linoleate + coenzyme A
  • phospholipid remodeling (phosphatidylcholine, yeast): 1-palmitoyl-sn-glycero-3-phosphocholine + palmitoyl-CoA ⟶ 1,2-dipalmitoyl-sn-glycero-3-phosphocholine + coenzyme A
  • choline biosynthesis III: H2O + a phosphatidylcholine ⟶ H+ + a 1,2-diacyl-sn-glycerol 3-phosphate + choline
  • diacylglycerol and triacylglycerol biosynthesis: a 1,2-diacyl-sn-glycerol + an acyl-CoA ⟶ a triacyl-sn-glycerol + coenzyme A
  • phospholipases: H2O + a phosphatidylcholine ⟶ H+ + a 1,2-diacyl-sn-glycerol 3-phosphate + choline
  • phosphatidylcholine acyl editing: ATP + a long-chain fatty acid + coenzyme A ⟶ AMP + a long-chain acyl-CoA + diphosphate
  • phospholipid desaturation: 1-oleoyl-2-α-linolenoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-α-linolenoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-oleoyl-2-linoleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-oleoyl-2-linoleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-oleoyl-2-linoleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-oleoyl-2-linoleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-oleoyl-2-linoleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-linoleoyl-2-α-linolenoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-α-linolenoyl-2-α-linolenoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-oleoyl-2-linoleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-α-linolenoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-α-linolenoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-oleoyl-2-linoleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-oleoyl-2-linoleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • diacylglycerol and triacylglycerol biosynthesis: H2O + a phosphatidate ⟶ a 1,2-diacyl-sn-glycerol + phosphate
  • arachidonate biosynthesis IV (8-detaturase, lower eukaryotes): (3R,11Z,14Z)-3-hydroxyicosadienoyl-CoA + NADP+ ⟶ (11Z,14Z)-3-oxoicosadienoyl-CoA + H+ + NADPH

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

3 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • An Li, Koen Dewettinck, Yannick Verheust, Davy Van de Walle, Katleen Raes, Bernd Diehl, Daylan A Tzompa-Sosa. Edible insects as a novel source of lecithin: Extraction and lipid characterization of black soldier fly larvae and yellow mealworm. Food chemistry. 2024 Sep; 452(?):139391. doi: 10.1016/j.foodchem.2024.139391. [PMID: 38713980]
  • Waseem Ahmed, Aneesh Vincent Veluthandath, Jens Madsen, Howard W Clark, Ahilanandan Dushianthan, Anthony D Postle, James S Wilkinson, Ganapathy Senthil Murugan. Towards quantifying biomarkers for respiratory distress in preterm infants: Machine learning on mid infrared spectroscopy of lipid mixtures. Talanta. 2024 Aug; 275(?):126062. doi: 10.1016/j.talanta.2024.126062. [PMID: 38615457]
  • Shujie Wang, Yuyue Qin, Yaping Liu, Guoqin Liu, Guiguang Cheng, Thanapop Soteyome. Controlling release of astaxanthin in β-sitosterol oleogel-based emulsions via different self-assembled mechanisms and composition of the oleogelators. Food research international (Ottawa, Ont.). 2024 Jun; 186(?):114350. doi: 10.1016/j.foodres.2024.114350. [PMID: 38729698]
  • Nopparuj Soomherun, Narumol Kreua-Ongarjnukool, Saowapa Thumsing Niyomthai, Sorayouth Chumnanvej. Lipid-Polymer Hybrid Nanoparticles Synthesized via Lipid-Based Surface Engineering for a robust drug delivery platform. Colloids and surfaces. B, Biointerfaces. 2024 May; 237(?):113858. doi: 10.1016/j.colsurfb.2024.113858. [PMID: 38547797]
  • Qian Ma, Tao Zhou, Zhong Wang, Yanjie Zhao, Xiaodong Li, Lu Liu, Xiuxiu Zhang, Kouadio Jean Eric-Parfait Kouame, Shuo Chen. Ultrasound modification on milk fat globule membrane and soy lecithin to improve the physicochemical properties, microstructure and stability of mimicking human milk fat emulsions. Ultrasonics sonochemistry. 2024 May; 105(?):106873. doi: 10.1016/j.ultsonch.2024.106873. [PMID: 38608436]
  • Zhen Cheng, Wenwen Wei, Yi Chen, Aihua Xu, Yuehua Wang, Bin Li. Construction of nanoparticles from blueberry anthocyanins-lecithin/gum Arabic improves lipid droplet accumulation and gut microbiota disturbance in HFD-induced obese mice. International journal of biological macromolecules. 2024 Apr; 264(Pt 1):130595. doi: 10.1016/j.ijbiomac.2024.130595. [PMID: 38437939]
  • Foivi Nikolaou, Jack Yang, Lei Ji, Elke Scholten, Constantinos V Nikiforidis. The role of membrane components on the oleosome lubrication properties. Journal of colloid and interface science. 2024 Mar; 657(?):695-704. doi: 10.1016/j.jcis.2023.11.166. [PMID: 38071818]
  • Yeruva Sri Pooja, Naveen Rajana, Rati Yadav, Lakshmi Tulasi Naraharisetti, Chandraiah Godugu, Neelesh Kumar Mehra. Design, development, and evaluation of CDK-4/6 inhibitor loaded 4-carboxy phenyl boronic acid conjugated pH-sensitive chitosan lecithin nanoparticles in the management of breast cancer. International journal of biological macromolecules. 2024 Feb; 258(Pt 1):128821. doi: 10.1016/j.ijbiomac.2023.128821. [PMID: 38110163]
  • Yanjie Zhao, Qian Ma, Tao Zhou, Lu Liu, Yuxin Wang, Xiaodong Li, Xiuxiu Zhang, Xiaoqing Dang, Kouadio Jean Eric-Parfait Kouame. Ultrasound-induced structural changes of different milk fat globule membrane protein-phospholipids complexes and their effects on physicochemical and functional properties of emulsions. Ultrasonics sonochemistry. 2024 Feb; 103(?):106799. doi: 10.1016/j.ultsonch.2024.106799. [PMID: 38364484]
  • Li Yang, Fengxiang Zhang, Weiwei He, Boyuan Zhao, Ting Zhang, Shang Wang, Lifen Zhou, Junwei He. Extraction optimization and constituent analysis of total flavonoid from Hosta plantaginea (Lam.) Aschers flowers and its ameliorative effect on chronic prostatitis via inhibition of multiple inflammatory pathways in rats. Journal of ethnopharmacology. 2024 Jan; 318(Pt A):116922. doi: 10.1016/j.jep.2023.116922. [PMID: 37516390]
  • María A Luna, Valeria R Girardi, María C Sánchez-Cerviño, Guadalupe Rivero, R Dario Falcone, Fernando Moyano, N Mariano Correa. PRODAN Photophysics as a Tool to Determine the Bilayer Properties of Different Unilamellar Vesicles Composed of Phospholipids. Langmuir : the ACS journal of surfaces and colloids. 2024 01; 40(1):657-667. doi: 10.1021/acs.langmuir.3c02845. [PMID: 38100549]
  • Marcella Aparecida Stahl, Fernanda Luisa Lüdtke, Renato Grimaldi, Mirna Lúcia Gigante, Ana Paula Badan Ribeiro. Characterization and stability of solid lipid nanoparticles produced from different fully hydrogenated oils. Food research international (Ottawa, Ont.). 2024 Jan; 176(?):113821. doi: 10.1016/j.foodres.2023.113821. [PMID: 38163721]
  • Ewumi Azeez Folorunso, Radek Gebauer, Andrea Bohata, Josef Velíšek, Nikola Třešnáková, Petr Dvořák, Aleš Tomčala, Felix Kofi Agbeko Kuebutornye, Jan Mráz. Runoff of foliar-applied natural fungicides in aquaponics: Implications for fish and nitrification. Environmental toxicology and pharmacology. 2024 Jan; 105(?):104341. doi: 10.1016/j.etap.2023.104341. [PMID: 38072218]
  • Vesna Spasovski, Anna Romolo, Urška Zagorc, Vesna Arrigler, Matic Kisovec, Apolonija Bedina Zavec, Matevž Arko, Adrienn Molnár, Gitta Schlosser, Aleš Iglič, Ksenija Kogej, Veronika Kralj-Iglič. Characterization of Nanohybridosomes from Lipids and Spruce Homogenate Containing Extracellular Vesicles. International journal of nanomedicine. 2024; 19(?):1709-1721. doi: 10.2147/ijn.s432836. [PMID: 38410418]
  • Noha T ElNashar, Ulrike Breitinger, Hans-Georg Breitinger, Samar Mansour, Salma N Tammam. A liposomal platform for the delivery of ion channel proteins for treatment of channelopathies - Application in therapy of cystic fibrosis. International journal of biological macromolecules. 2023 Dec; 253(Pt 2):126652. doi: 10.1016/j.ijbiomac.2023.126652. [PMID: 37673169]
  • Caihong Wu, Wenxin Zhang, Feifei Yan, Wenwen Dai, Fang Fang, Yanli Gao, Weiwei Cui. Amelioration effects of the soybean lecithin-gallic acid complex on iron-overload-induced oxidative stress and liver damage in C57BL/6J mice. Pharmaceutical biology. 2023 Dec; 61(1):37-49. doi: 10.1080/13880209.2022.2151632. [PMID: 36573499]
  • Limin Lang, Jisong Zheng, Shuyi Liang, Fenglin Zhang, Yiming Fu, Kaixin Deng, Fan Li, Xiaohua Yang, Junfeng Wang, Yuexiang Luo, Shilei Zhang, Xiaotong Zhu, Lina Wang, Ping Gao, Canjun Zhu, Gang Shu, Qianyun Xi, Yongliang Zhang, Qingyan Jiang, Songbo Wang. Browning of Mammary Fat Suppresses Pubertal Mammary Gland Development of Mice via Elevation of Serum Phosphatidylcholine and Inhibition of PI3K/Akt Pathway. International journal of molecular sciences. 2023 Nov; 24(22):. doi: 10.3390/ijms242216171. [PMID: 38003364]
  • Ruslana Tagaeva, Svetlana Efimova, Alexander Ischenko, Alexander Zhakhov, Maxim Shevtsov, Olga Ostroumova. A new look at Hsp70 activity in phosphatidylserine-enriched membranes: chaperone-induced quasi-interdigitated lipid phase. Scientific reports. 2023 11; 13(1):19233. doi: 10.1038/s41598-023-46131-x. [PMID: 37932471]
  • David Chapron, Jean-Philippe Michel, Philippe Fontaine, Jérémy Godard, Frédérique Brégier, Vincent Sol, Véronique Rosilio. Thermodynamic and structural properties of lipid-photosensitizer conjugates mixed with phospholipids: Impact on the formation and stability of nano-assemblies. Colloids and surfaces. B, Biointerfaces. 2023 Nov; 231(?):113565. doi: 10.1016/j.colsurfb.2023.113565. [PMID: 37778109]
  • Hirofumi Watanabe, Shinya Hanashima, Yo Yano, Tomokazu Yasuda, Michio Murata. Passive Translocation of Phospholipids in Asymmetric Model Membranes: Solid-State 1H NMR Characterization of Flip-Flop Kinetics Using Deuterated Sphingomyelin and Phosphatidylcholine. Langmuir : the ACS journal of surfaces and colloids. 2023 10; 39(43):15189-15199. doi: 10.1021/acs.langmuir.3c01650. [PMID: 37729012]
  • Dongliang Wu, Di Peng, Xu-Fang Liang, Ruipeng Xie, Ming Zeng, Junliang Chen, Jie Lan, Ru Yang, Jiacheng Hu, Peisong Lu. Dietary soybean lecithin promoted growth performance and feeding in juvenile Chinese perch (Siniperca chuatsi) could be by optimizing glucolipid metabolism. Fish physiology and biochemistry. 2023 Oct; ?(?):. doi: 10.1007/s10695-023-01241-1. [PMID: 37855970]
  • Viktor Sedlmayr, Christina Horn, David Johannes Wurm, Oliver Spadiut, Julian Quehenberger. Archaeosomes facilitate storage and oral delivery of cannabidiol. International journal of pharmaceutics. 2023 Oct; 645(?):123434. doi: 10.1016/j.ijpharm.2023.123434. [PMID: 37739097]
  • Ioannis I Andreadis, Arne Schulzen, Julian Quodbach, Christel A S Bergström. Exploring the use of modified in vitro digestion assays for the evaluation of ritonavir loaded solid lipid-based formulations. European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences. 2023 Oct; 189(?):106524. doi: 10.1016/j.ejps.2023.106524. [PMID: 37433412]
  • Sahim Aziz Hazari, Afsana Sheikh, Mohammed A S Abourehab, Alaa S Tulbah, Prashant Kesharwani. Self-assembled Gallic acid loaded lecithin-chitosan hybrid nanostructured gel as a potential tool against imiquimod-induced psoriasis. Environmental research. 2023 10; 234(?):116562. doi: 10.1016/j.envres.2023.116562. [PMID: 37419194]
  • Seyyed Mojtaba Mousavi, Armin Towhidi, Mahdi Zhandi, Abdollah Mohammadi-Sangcheshmeh, Ghassem Amou-Abediny, Mehdi Moradi, John P Kastelic. A soy lecithin nanoparticles-based extender effectively cryopreserves Holstein bull sperm. Animal reproduction science. 2023 Oct; 257(?):107326. doi: 10.1016/j.anireprosci.2023.107326. [PMID: 37677889]
  • Shaimaa A Ahmed, Mohamed H Gaber, Aida A Salama, Said A Ali. Efficacy of copper nanoparticles encapsulated in soya lecithin liposomes in treating breast cancer cells (MCF-7) in vitro. Scientific reports. 2023 09; 13(1):15576. doi: 10.1038/s41598-023-42514-2. [PMID: 37730859]
  • Haden L Scott, Dima Bolmatov, Uvinduni I Premadasa, Benjamin Doughty, Jan-Michael Y Carrillo, Robert L Sacci, Maxim Lavrentovich, John Katsaras, Charles P Collier. Cations Control Lipid Bilayer Memcapacitance Associated with Long-Term Potentiation. ACS applied materials & interfaces. 2023 Sep; 15(37):44533-44540. doi: 10.1021/acsami.3c09056. [PMID: 37696028]
  • Hoda Javaheri Barfourooshi, Nader Asadzadeh, Reza Masoudi. The mitochondria-targeted antioxidant 'MitoQ' preserves quality and reproductive performance of ram spermatozoa cryopreserved in soybean lecithin-based extender. Theriogenology. 2023 Sep; 208(?):71-76. doi: 10.1016/j.theriogenology.2023.05.032. [PMID: 37301168]
  • Yan Shan Loo, N Idayu Zahid, Thiagarajan Madheswaran, Shinya Ikeno, Armania Nurdin, Intan Diana Mat Azmi. Coencapsulation of Gemcitabine and Thymoquinone in Citrem-Phosphatidylcholine Hexosome Nanocarriers Improves In Vitro Cellular Uptake in Breast Cancer Cells. Molecular pharmaceutics. 2023 09; 20(9):4611-4628. doi: 10.1021/acs.molpharmaceut.3c00333. [PMID: 37587099]
  • Pelinsu Korucu Aktas, Ipek Baysal, Samiye Yabanoglu-Ciftci, Betul Arica. Development and In Vitro Evaluation of Crizotinib-Loaded Lipid-Polymer Hybrid Nanoparticles Using Box-Behnken Design in Non-small Cell Lung Cancer. AAPS PharmSciTech. 2023 Sep; 24(7):178. doi: 10.1208/s12249-023-02634-4. [PMID: 37658977]
  • Dominika Kozon-Markiewicz, Rafał J Kopiasz, Martyna Głusiec, Agnieszka Łukasiak, Piotr Bednarczyk, Dominik Jańczewski. Membrane lytic activity of antibacterial ionenes, critical role of phosphatidylcholine (PC) and cardiolipin (CL). Colloids and surfaces. B, Biointerfaces. 2023 Sep; 229(?):113480. doi: 10.1016/j.colsurfb.2023.113480. [PMID: 37536168]
  • Pawel Krupa, Giovanni La Penna, Mai Suan Li. Amyloid-β Tetramers and Divalent Cations at the Membrane/Water Interface: Simple Models Support a Functional Role. International journal of molecular sciences. 2023 Aug; 24(16):. doi: 10.3390/ijms241612698. [PMID: 37628878]
  • Wenxin Li, Chi Zhang, Shuhei Aramaki, Lili Xu, Shogo Tsuge, Takumi Sakamoto, Md Al Mamun, Ariful Islam, Takamitsu Hayakawa, Yusuke Takanashi, Maxime Dubail, Kenta Konishi, Tomohito Sato, Tomoaki Kahyo, Charles Fouillade, Katsumasa Nakamura, Mitsutoshi Setou. Lipid Polyunsaturated Fatty Acid Chains in Mouse Kidneys Were Increased within 5 min of a Single High Dose Whole Body Irradiation. International journal of molecular sciences. 2023 Aug; 24(15):. doi: 10.3390/ijms241512439. [PMID: 37569813]
  • Regina Leibe, Susanne Fritsch-Decker, Florian Gussmann, Ane Marit Wagbo, Parvesh Wadhwani, Silvia Diabaté, Wolfgang Wenzel, Anne S Ulrich, Carsten Weiss. Key Role of Choline Head Groups in Large Unilamellar Phospholipid Vesicles for the Interaction with and Rupture by Silica Nanoparticles. Small (Weinheim an der Bergstrasse, Germany). 2023 08; 19(34):e2207593. doi: 10.1002/smll.202207593. [PMID: 37098631]
  • Ji-Min Lv, Balarabe B Ismail, Xing-Qian Ye, Xia-Yan Zhang, Ye Gu, Jian-Chu Chen. Ultrasonic-assisted nanoencapsulation of kiwi leaves proanthocyanidins in liposome delivery system for enhanced biostability and bioavailability. Food chemistry. 2023 Aug; 416(?):135794. doi: 10.1016/j.foodchem.2023.135794. [PMID: 36878119]
  • Jukka E Hintikka, Juha P Ahtiainen, Perttu Permi, Sirpa Jalkanen, Marko Lehtonen, Satu Pekkala. Aerobic exercise training and gut microbiome-associated metabolic shifts in women with overweight: a multi-omic study. Scientific reports. 2023 07; 13(1):11228. doi: 10.1038/s41598-023-38357-6. [PMID: 37433843]
  • Vesela Yordanova, Rusina Hazarosova, Victoria Vitkova, Albena Momchilova, Bozhil Robev, Biliana Nikolova, Plamen Krastev, Philippe Nuss, Miglena I Angelova, Galya Staneva. Impact of Truncated Oxidized Phosphatidylcholines on Phospholipase A2 Activity in Mono- and Polyunsaturated Biomimetic Vesicles. International journal of molecular sciences. 2023 Jul; 24(13):. doi: 10.3390/ijms241311166. [PMID: 37446342]
  • Maoxiang Sun, Xiaolong Liu, Binbin Zhang, Wen Yu, Yuansong Xiao, Futian Peng. Lipid Metabolomic and Transcriptomic Analyses Reveal That Phosphatidylcholine Enhanced the Resistance of Peach Seedlings to Salt Stress through Phosphatidic Acid. Journal of agricultural and food chemistry. 2023 Jun; 71(23):8846-8858. doi: 10.1021/acs.jafc.3c01383. [PMID: 37262364]
  • B W Mahde, A Abbas Hussein, A S Sahib. Preparation and in vitro Evaluation of Rasagiline Mesylate Hybrid Nanoparticles. Archives of Razi Institute. 2023 06; 78(3):1023-1028. doi: 10.22092/ari.2022.360193.2563. [PMID: 38028832]
  • Jing Zhang, Lulu Dong, Qianwang Zheng, Jie Xiao, Yong Cao, Yaqi Lan. Surfactant-free oleogel-based emulsion stabilized by co-assembled ceramide/lecithin crystals with controlled digestibility. Journal of the science of food and agriculture. 2023 Jun; 103(8):3812-3821. doi: 10.1002/jsfa.12285. [PMID: 36268716]
  • Weiqian Zhang, Ying Chen, Weifei Wang, Dongming Lan, Yonghua Wang. Soy lecithin increases the stability and lipolysis of encapsulated algal oil and probiotics complex coacervates. Journal of the science of food and agriculture. 2023 Jun; 103(8):4164-4173. doi: 10.1002/jsfa.12422. [PMID: 36585953]
  • Anju Yadav, Payam Kelich, Nathaniel Kallmyer, Nigel F Reuel, Lela Vuković. Characterizing the Interactions of Cell-Membrane-Disrupting Peptides with Lipid-Functionalized Single-Walled Carbon Nanotubes. ACS applied materials & interfaces. 2023 May; 15(20):24084-24096. doi: 10.1021/acsami.3c01217. [PMID: 37184257]
  • Jing Xue, Lijun Ge, Honghai Wang, Jingjing Liang, Qingcheng Wang, Weibo Lu, Yiwei Cui, Hujun Xie, Shikai Jian, Danping Jin, Qizhi Jin, Ting Li, Qing Shen. Comprehensive Screening for EPA/DHA-Structured Phospholipids in Aquatic Products by a Specific Precursor Ion Scanning-Based HILIC-MS/MS Method. Journal of agricultural and food chemistry. 2023 May; 71(20):7937-7946. doi: 10.1021/acs.jafc.3c00505. [PMID: 37166010]
  • S B Potts, K M Brady, C M Scholte, K M Moyes, N E Sunny, R A Erdman. Rumen-protected choline and methionine during the periparturient period affect choline metabolites, amino acids, and hepatic expression of genes associated with one-carbon and lipid metabolism. Journal of dairy science. 2023 May; ?(?):. doi: 10.3168/jds.2022-22334. [PMID: 37173256]
  • Bin Liu, Yanlan Wang, Na Du. Interactions between Layered Double Hydroxide Nanoparticles and Egg Yolk Lecithin Liposome Membranes. Molecules (Basel, Switzerland). 2023 May; 28(9):. doi: 10.3390/molecules28093929. [PMID: 37175337]
  • Kelly Picard, Melanie Griffiths, Peter A Senior, Diana R Mager, Caroline Richard. Phosphorus Additives and Their Impact on Phosphorus Content in Foods-An Analysis of the USDAs Branded Foods Product Database. Journal of renal nutrition : the official journal of the Council on Renal Nutrition of the National Kidney Foundation. 2023 05; 33(3):443-449. doi: 10.1053/j.jrn.2022.12.007. [PMID: 36731685]
  • De-Wei Chen, Peng Wan, Jingyu Yao, Xiaoying Yang, Jie Liu. Egg yolk phospholipids as an ideal precursor of fatty note odorants for chicken meat and fried foods: A review. Food chemistry. 2023 May; 407(?):135177. doi: 10.1016/j.foodchem.2022.135177. [PMID: 36527950]
  • Yu Yang, Lan Wu, Yan Lv, Zhijing Miao, Yuchuan Wang, Jun Yan, Jingyun Li, Chanjuan Li, Hongjuan Ding. LC-MS/MS based untargeted lipidomics uncovers lipid signatures of late-onset preeclampsia. Biochimie. 2023 May; 208(?):46-55. doi: 10.1016/j.biochi.2022.12.002. [PMID: 36496182]
  • Hui Yang, Yaran Gao, Shuyuan Sun, Yezhi Qu, Shuaiqi Ji, Rina Wu, Junrui Wu. Formation, characterization, and antigenicity of lecithin-β-conglycinin complexes. Food chemistry. 2023 May; 407(?):135178. doi: 10.1016/j.foodchem.2022.135178. [PMID: 36525804]
  • Safoura Shakoei, Hossein Mirmiranpoor, Manouchehr Nakhjavani, Maryam Nasimi, Ghazaleh Bakhshi, Arghavan Azizpour. Oxidative stress and antioxidant markers in patients with alopecia areata: A comparative cross-sectional study. Indian journal of dermatology, venereology and leprology. 2023 May; 89(3):411-415. doi: 10.25259/ijdvl_228_20. [PMID: 35962507]
  • Susanne Heimerl, Marcus Höring, Dominik Kopczynski, Alexander Sigruener, Christina Hart, Ralph Burkhardt, Anne Black, Robert Ahrends, Gerhard Liebisch. Quantification of bulk lipid species in human platelets and their thrombin-induced release. Scientific reports. 2023 04; 13(1):6154. doi: 10.1038/s41598-023-33076-4. [PMID: 37061580]
  • Hong-Ping Shen, Jing-Xian Xu, Li Wang, Zhi-Bo Zheng, Yi Yu, Ke-Qi Zhu, Xue-Qin Chen. [Simiaotongzhuo Decoction for the treatment of type III prostatitis: A clinical observation]. Zhonghua nan ke xue = National journal of andrology. 2023 Apr; 29(4):348-352. doi: ". [PMID: 38598220]
  • Lea Pašalić, Barbara Pem, Darija Domazet Jurašin, Mario Vazdar, Danijela Bakarić. Interaction of guanidinium and ammonium cations with phosphatidylcholine and phosphatidylserine lipid bilayers - Calorimetric, spectroscopic and molecular dynamics simulations study. Biochimica et biophysica acta. Biomembranes. 2023 04; 1865(4):184122. doi: 10.1016/j.bbamem.2023.184122. [PMID: 36739930]
  • Paula Emília Nunes Ribeiro Bellot, Melissa Nunes Moia, Bruna Zavarize Reis, Lucia Fatima Campos Pedrosa, Ljubica Tasic, Fernando Barbosa, Karine Cavalcanti Maurício Sena-Evangelista. Are Phosphatidylcholine and Lysophosphatidylcholine Body Levels Potentially Reliable Biomarkers in Obesity? A Review of Human Studies. Molecular nutrition & food research. 2023 04; 67(7):e2200568. doi: 10.1002/mnfr.202200568. [PMID: 36707969]
  • Min Zhang, Rina Su, Mirco Corazzin, Ran Hou, Yue Zhang, Lina Sun, Guanhua Hu, Lu Dou, Yueying Guo, Lin Su, Lihua Zhao, Ye Jin. Lipid transformation during postmortem chilled aging in Mongolian sheep using lipidomics. Food chemistry. 2023 Mar; 405(Pt B):134882. doi: 10.1016/j.foodchem.2022.134882. [PMID: 36435105]
  • Sornsawan Chomchoey, Supakchon Klongdee, Methavee Peanparkdee, Utai Klinkesorn. Fabrication and characterization of nanoemulsions for encapsulation and delivery of vitexin: antioxidant activity, storage stability and in vitro digestibility. Journal of the science of food and agriculture. 2023 Mar; 103(5):2532-2543. doi: 10.1002/jsfa.12375. [PMID: 36478565]
  • Xiaoxue Yu, Wenli Zhou, Zhibing Jia, Lu Liu, Xiaodong Li, Xiuxiu Zhang, Jinju Cheng, Chunli Ma, Lina Sun, Yang Jiao. Interfacial composition in infant formulas powder modulate lipid digestion in simulated in-vitro infant gastrointestinal digestion. Food research international (Ottawa, Ont.). 2023 03; 165(?):112553. doi: 10.1016/j.foodres.2023.112553. [PMID: 36869459]
  • Mahshid Keramatnejad, Christine DeWolf. A biophysical study of tear film lipid layer model membranes. Biochimica et biophysica acta. Biomembranes. 2023 03; 1865(3):184102. doi: 10.1016/j.bbamem.2022.184102. [PMID: 36535341]
  • Md Masum Billah, Md Mamun Or Rashid, Marzuk Ahmed, Masahito Yamazaki. Antimicrobial peptide magainin 2-induced rupture of single giant unilamellar vesicles comprising E. coli polar lipids. Biochimica et biophysica acta. Biomembranes. 2023 03; 1865(3):184112. doi: 10.1016/j.bbamem.2022.184112. [PMID: 36567034]
  • Xiaona Liu, Ragna Berthelsen, Daniel Bar-Shalom, Tania Kjellerup Lind, James Doutch, Anette Müllertz. Amphotericin B and monoacyl-phosphatidylcholine form a stable amorphous complex. International journal of pharmaceutics. 2023 Feb; 633(?):122601. doi: 10.1016/j.ijpharm.2023.122601. [PMID: 36632922]
  • Jelena R Mitrović, Branka Divović-Matović, Daniel E Knutson, Miloš Petković, Djordje Djorović, Danijela V Randjelović, Vladimir D Dobričić, Jelena B Đoković, Dominique J Lunter, James M Cook, Miroslav M Savić, Snežana D Savić. High amount of lecithin facilitates oral delivery of a poorly soluble pyrazoloquinolinone ligand formulated in lipid nanoparticles: Physicochemical, structural and pharmacokinetic performances. International journal of pharmaceutics. 2023 Feb; 633(?):122613. doi: 10.1016/j.ijpharm.2023.122613. [PMID: 36657554]
  • Yunling Wang, Jinyue Yang, Yuming Wang, Yaoguang Chang, Changhu Xue, Tiantian Zhang. Preparation and properties of fucoxanthin-loaded liposomes stabilized by sea cucumber derived cholesterol sulfate instead of cholesterol. Journal of bioscience and bioengineering. 2023 Feb; 135(2):160-166. doi: 10.1016/j.jbiosc.2022.11.004. [PMID: 36494249]
  • Mona M AbouSamra, Rania Elgohary, Soheir S Mansy. Innovated pirfenidone loaded lecithin nanocapsules for targeting liver fibrosis: Formulation, characterization and in vivo study. International journal of pharmaceutics. 2023 Jan; 631(?):122539. doi: 10.1016/j.ijpharm.2022.122539. [PMID: 36572266]
  • Juliana Ferreira Boelter, Solange Cristina Garcia, Gabriela Göethel, Mariele Feiffer Charão, Livia Marchi de Melo, Adriano Brandelli. Acute Toxicity Evaluation of Phosphatidylcholine Nanoliposomes Containing Nisin in Caenorhabditis elegans. Molecules (Basel, Switzerland). 2023 Jan; 28(2):. doi: 10.3390/molecules28020563. [PMID: 36677622]
  • Guizhen Zhang, Xuejian Li, Chunyun Huang, Yuanyuan Jiang, Jian Su, Ying Hu. Preparation of the Levo-Tetrahydropalmatine Liposome Gel and Its Transdermal Study. International journal of nanomedicine. 2023; 18(?):4617-4632. doi: 10.2147/ijn.s422305. [PMID: 37600118]
  • Abdel-Rahman Amer, Nabil M Eweedah, Asem A Amer, Mahmoud S Gewaily, Nehal A Younis, Hamada A Ahmed, Mahmoud A O Dawood. Dietary effect of soybean lecithin on the growth performance, digestive enzyme activity, blood biomarkers, and antioxidative status of striped catfish, Pangasianodon hypophthalmus. PloS one. 2023; 18(10):e0291954. doi: 10.1371/journal.pone.0291954. [PMID: 37796907]
  • Qian Ma, Shuaiyi Ma, Yanjie Zhao, Meng Sun, Xiaodong Li, Lu Liu, Xiuxiu Zhang, Yue Sun, Awa Fanny Massounga Bora, Songfan Tian, Qiumei Zhang, Youbin Leng. Interaction between whey protein and soy lecithin and its influence on physicochemical properties and in vitro digestibility of emulsion: A consideration for mimicking milk fat globule. Food research international (Ottawa, Ont.). 2023 01; 163(?):112181. doi: 10.1016/j.foodres.2022.112181. [PMID: 36596120]
  • Xinxin Lin, Shiqi He, Suyu Wu, Tianwen Zhang, Sisi Gong, Tang Minjie, Yao Gao. Diagnostic biomarker panels of osteoarthritis: UPLC-QToF/MS-based serum metabolic profiling. PeerJ. 2023; 11(?):e14563. doi: 10.7717/peerj.14563. [PMID: 36655043]
  • Jun Wan, Jie Yang, Wenrui Lei, Zezhou Xiao, Pengyu Zhou, Shaoyi Zheng, Peng Zhu. Anti-Oxidative, Anti-Apoptotic, and M2 Polarized DSPC Liposome Nanoparticles for Selective Treatment of Atherosclerosis. International journal of nanomedicine. 2023; 18(?):579-594. doi: 10.2147/ijn.s384675. [PMID: 36756051]
  • Clarissa Perez Faria, Barbara Ferreira, Ágata Lourenço, Inês Guerra, Tânia Melo, Pedro Domingues, Maria do Rosário Marques Domingues, Maria Teresa Cruz, Maria do Céu Sousa. Lipidome of extracellular vesicles from Giardia lamblia. PloS one. 2023; 18(9):e0291292. doi: 10.1371/journal.pone.0291292. [PMID: 37683041]
  • Júlia Teixé-Roig, Gemma Oms-Oliu, Isabel Odriozola-Serrano, Olga Martín-Belloso. Enhancing the Gastrointestinal Stability of Curcumin by Using Sodium Alginate-Based Nanoemulsions Containing Natural Emulsifiers. International journal of molecular sciences. 2022 Dec; 24(1):. doi: 10.3390/ijms24010498. [PMID: 36613938]
  • Nuria Goñi Ros, Ricardo González-Tarancón, Paula Sienes Bailo, Elvira Salvador-Ruperez, Martín Puzo Bayod, José Puzo Foncillas. A novel pathogenic variant in LCAT causing FLD. A case report. Acta clinica Belgica. 2022 Dec; 77(6):970-975. doi: 10.1080/17843286.2021.2007598. [PMID: 34789074]
  • Jun Wang, Yuxian Chen, Lili Zhao, Yu Zhang, Xiaoming Fang. Lipidomics reveals the molecular mechanisms underlying the changes in lipid profiles and lipid oxidation in rape bee pollen dried by different methods. Food research international (Ottawa, Ont.). 2022 12; 162(Pt B):112104. doi: 10.1016/j.foodres.2022.112104. [PMID: 36461344]
  • Edvinas Navakauskas, Gediminas Niaura, Simona Strazdaite. Effect of deuteration on a phosphatidylcholine lipid monolayer structure: New insights from vibrational sum-frequency generation spectroscopy. Colloids and surfaces. B, Biointerfaces. 2022 Dec; 220(?):112866. doi: 10.1016/j.colsurfb.2022.112866. [PMID: 36174490]
  • Ludovico Abenavoli, Roman Myazin, Sharmila Fagoonee, Pietro Cinaglia, Francesco Luzza, Rinaldo Pellicano, Dmitry Emelyanov. Treatment with phosphatidylcholine of patients with nonalcoholic fatty liver disease: a prospective pilot study. Minerva gastroenterology. 2022 Dec; 68(4):393-399. doi: 10.23736/s2724-5985.21.03066-7. [PMID: 35511653]
  • Andrey Anosov, Polina Astanina, Ivan Proskuryakov, Oksana Koplak, Roman Morgunov. Surface and Structure of Phosphatidylcholine Membranes Reconstructed with CoFe2O4 Nanoparticles. Langmuir : the ACS journal of surfaces and colloids. 2022 11; 38(47):14517-14526. doi: 10.1021/acs.langmuir.2c02659. [PMID: 36383134]
  • Broderick L Bills, Michelle K Knowles. Phosphatidic Acid Accumulates at Areas of Curvature in Tubulated Lipid Bilayers and Liposomes. Biomolecules. 2022 11; 12(11):. doi: 10.3390/biom12111707. [PMID: 36421720]
  • Laura Giorgi, Akseli Niemelä, Esa-Pekka Kumpula, Ossi Natri, Petteri Parkkila, Juha T Huiskonen, Artturi Koivuniemi. Mechanistic Insights into the Activation of Lecithin-Cholesterol Acyltransferase in Therapeutic Nanodiscs Composed of Apolipoprotein A-I Mimetic Peptides and Phospholipids. Molecular pharmaceutics. 2022 11; 19(11):4135-4148. doi: 10.1021/acs.molpharmaceut.2c00540. [PMID: 36111986]
  • Jessy Azarcoya-Barrera, Erin D Lewis, Catherine J Field, Susan Goruk, Alexander Makarowski, Yves Pouliot, René L Jacobs, Caroline Richard. The Lipid-Soluble Forms of Choline Enhance Ex Vivo Responses from the Gut-Associated Immune System in Young Female Rat Offspring. The Journal of nutrition. 2022 11; 152(11):2604-2614. doi: 10.1093/jn/nxac180. [PMID: 36774126]
  • Romaissaa Mokdad, Ali Aouabed, Vincent Ball, Feriel Fatima Si Youcef, Noureddine Nasrallah, Béatrice Heurtault, Abdelkader HadjSadok. Formulation and rheological evaluation of liposomes-loaded carbopol hydrogels based on thermal waters. Drug development and industrial pharmacy. 2022 Nov; 48(11):635-645. doi: 10.1080/03639045.2022.2152044. [PMID: 36420770]
  • Mitchell D Culler, Ipek Bayram, Eric A Decker. Enzymatic Modification of Lecithin for Improved Antioxidant Activity in Combination with Tocopherol in Emulsions and Bulk Oil. Journal of agricultural and food chemistry. 2022 Oct; 70(41):13404-13412. doi: 10.1021/acs.jafc.2c05182. [PMID: 36215731]
  • Émilie Velot, Florent Ducrocq, Loïc Girardeau, Alain Hehn, Séverine Piutti, Cyril Kahn, Michel Linder, Arnaud Bianchi, Elmira Arab-Tehrany. Hop Extract Anti-Inflammatory Effect on Human Chondrocytes Is Potentiated When Encapsulated in Rapeseed Lecithin Nanoliposomes. International journal of molecular sciences. 2022 Oct; 23(20):. doi: 10.3390/ijms232012423. [PMID: 36293278]
  • Alessandra Marega Motta, Maressa Donato, Giovanna Mobbili, Paolo Mariani, Rosangela Itri, Francesco Spinozzi. Unveiling the mono-rhamnolipid and di-rhamnolipid mechanisms of action upon plasma membrane models. Journal of colloid and interface science. 2022 Oct; 624(?):579-592. doi: 10.1016/j.jcis.2022.05.145. [PMID: 35690012]
  • Zi-Wei Xia, Jian-Guo Zhang, Zhi-Jing Ni, Fan Zhang, Kiran Thakur, Fei Hu, Zhao-Jun Wei. Functional and emulsification characteristics of phospholipids and derived o/w emulsions from peony seed meal. Food chemistry. 2022 Sep; 389(?):133112. doi: 10.1016/j.foodchem.2022.133112. [PMID: 35504077]
  • Man Thi Hong Nguyen, Denys Biriukov, Carmelo Tempra, Katarina Baxova, Hector Martinez-Seara, Hüseyin Evci, Vandana Singh, Radek Šachl, Martin Hof, Pavel Jungwirth, Matti Javanainen, Mario Vazdar. Ionic Strength and Solution Composition Dictate the Adsorption of Cell-Penetrating Peptides onto Phosphatidylcholine Membranes. Langmuir : the ACS journal of surfaces and colloids. 2022 09; 38(37):11284-11295. doi: 10.1021/acs.langmuir.2c01435. [PMID: 36083171]
  • Darcy Lacanilao Garza, Shinya Hanashima, Yuichi Umegawa, Michio Murata, Masanao Kinoshita, Nobuaki Matsumori, Peter Greimel. Behavior of Triterpenoid Saponin Ginsenoside Rh2 in Ordered and Disordered Phases in Model Membranes Consisting of Sphingomyelin, Phosphatidylcholine, and Cholesterol. Langmuir : the ACS journal of surfaces and colloids. 2022 08; 38(34):10478-10491. doi: 10.1021/acs.langmuir.2c01261. [PMID: 35984899]
  • Ting Zeng, Rong Zhang, Yanyan Chen, Wenjing Guo, Jianing Wang, Zongwei Cai. In situ localization of lipids on mouse kidney tissues with acute cadmium toxicity using atmospheric pressure-MALDI mass spectrometry imaging. Talanta. 2022 Aug; 245(?):123466. doi: 10.1016/j.talanta.2022.123466. [PMID: 35460980]
  • Hujun Xie, Fangfang Ni, Jian Gao, Chengzhi Liu, Jieyu Shi, Gerui Ren, Shiyi Tian, Qunfang Lei, Wenjun Fang. Preparation of zein-lecithin-EGCG complex nanoparticles stabilized peppermint oil emulsions: Physicochemical properties, stability and intelligent sensory analysis. Food chemistry. 2022 Jul; 383(?):132453. doi: 10.1016/j.foodchem.2022.132453. [PMID: 35180602]
  • Ceyda Tuba Sengel-Turk, Erva Ozkan, Filiz Bakar-Ates. Box-Behnken design optimization and in vitro cell based evaluation of piroxicam loaded core-shell type hybrid nanocarriers for prostate cancer. Journal of pharmaceutical and biomedical analysis. 2022 Jul; 216(?):114799. doi: 10.1016/j.jpba.2022.114799. [PMID: 35525111]
  • Wangjie Lv, Zhongda Zeng, Yuqing Zhang, Qingqing Wang, Lichao Wang, Zhaoxuan Zhang, Xianzhe Shi, Xinjie Zhao, Guowang Xu. Comprehensive metabolite quantitative assay based on alternate metabolomics and lipidomics analyses. Analytica chimica acta. 2022 Jul; 1215(?):339979. doi: 10.1016/j.aca.2022.339979. [PMID: 35680341]
  • Pavel Videv, Kirilka Mladenova, Tonya D Andreeva, Jong Hun Park, Veselina Moskova-Doumanova, Svetla D Petrova, Jordan A Doumanov. Cholesterol Alters the Phase Separation in Model Membranes Containing hBest1. Molecules (Basel, Switzerland). 2022 Jul; 27(13):. doi: 10.3390/molecules27134267. [PMID: 35807512]
  • Zhanxuan E Wu, Marlena C Kruger, Garth J S Cooper, Ivana R Sequeira, Anne-Thea McGill, Sally D Poppitt, Karl Fraser. Dissecting the relationship between plasma and tissue metabolome in a cohort of women with obesity: Analysis of subcutaneous and visceral adipose, muscle, and liver. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2022 Jul; 36(7):e22371. doi: 10.1096/fj.202101812r. [PMID: 35704337]
  • Sara E Long, Melanie H Jacobson, Yuyan Wang, Mengling Liu, Yelena Afanasyeva, Susan J Sumner, Susan McRitchie, David R Kirchner, Sara G Brubaker, Shilpi S Mehta-Lee, Linda G Kahn, Leonardo Trasande. Longitudinal associations of pre-pregnancy BMI and gestational weight gain with maternal urinary metabolites: an NYU CHES study. International journal of obesity (2005). 2022 07; 46(7):1332-1340. doi: 10.1038/s41366-022-01116-0. [PMID: 35411100]
  • Antonino Picataggi, Amrith Rodrigues, Debra A Cromley, Hu Wang, Joel P Wiener, Viktor Garliyev, Jeffrey T Billheimer, Brian C Grabiner, Jessica A Hurt, Allen C Chen, Xianlin Han, Daniel J Rader, Domenico Praticò, Nicholas N Lyssenko. Specificity of ABCA7-mediated cell lipid efflux. Biochimica et biophysica acta. Molecular and cell biology of lipids. 2022 07; 1867(7):159157. doi: 10.1016/j.bbalip.2022.159157. [PMID: 35381375]
  • Xiao Chen, Yan-Chao Wu, Pi-Xian Gong, Hui-Jing Li. Co-assembly of foxtail millet prolamin-lecithin/alginate sodium in citric acid-potassium phosphate buffer for delivery of quercetin. Food chemistry. 2022 Jul; 381(?):132268. doi: 10.1016/j.foodchem.2022.132268. [PMID: 35121326]
  • M Carro, J M Luquez, D A Peñalva, J Buschiazzo, F A Hozbor, N E Furland. PUFA-rich phospholipid classes and subclasses of ram spermatozoa are unevenly affected by cryopreservation with a soybean lecithin-based extender. Theriogenology. 2022 Jul; 186(?):122-134. doi: 10.1016/j.theriogenology.2022.03.035. [PMID: 35468546]
  • Nhan H Nguyen, Manlin Chen, Vincent Chak, Sathy V Balu-Iyer. Biophysical Characterization of Tolerogenic Lipid-Based Nanoparticles Containing Phosphatidylcholine and Lysophosphatidylserine. Journal of pharmaceutical sciences. 2022 07; 111(7):2072-2082. doi: 10.1016/j.xphs.2022.01.025. [PMID: 35108564]
  • Néstor Gutiérrez-Méndez, Dely R Chavez-Garay, Martha Y Leal-Ramos. Lecithins: A comprehensive review of their properties and their use in formulating microemulsions. Journal of food biochemistry. 2022 07; 46(7):e14157. doi: 10.1111/jfbc.14157. [PMID: 35355280]
  • Mussie K Araya, Alemayehu A Gorfe. Phosphatidylserine and Phosphatidylethanolamine Asymmetry Have a Negligible Effect on the Global Structure, Dynamics, and Interactions of the KRAS Lipid Anchor. The journal of physical chemistry. B. 2022 06; 126(24):4491-4500. doi: 10.1021/acs.jpcb.2c01253. [PMID: 35687481]