Chemical Formula: C6H12O6

Chemical Formula C6H12O6

Found 302 metabolite its formula value is C6H12O6

Galactose

(3R,4S,5R,6R)-6-(Hydroxymethyl)tetrahydro-2H-pyran-2,3,4,5-tetraol

C6H12O6 (180.0633852)


D-galactopyranose is a galactopyranose having D-configuration. It has a role as an Escherichia coli metabolite and a mouse metabolite. It is a D-galactose and a galactopyranose. D-Galactose is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). D-Galactose is a natural product found in Vigna subterranea, Lilium tenuifolium, and other organisms with data available. An aldohexose that occurs naturally in the D-form in lactose, cerebrosides, gangliosides, and mucoproteins. Deficiency of galactosyl-1-phosphate uridyltransferase (GALACTOSE-1-PHOSPHATE URIDYL-TRANSFERASE DEFICIENCY DISEASE) causes an error in galactose metabolism called GALACTOSEMIA, resulting in elevations of galactose in the blood. V - Various > V04 - Diagnostic agents > V04C - Other diagnostic agents > V04CE - Tests for liver functional capacity Acquisition and generation of the data is financially supported by the Max-Planck-Society

   

Fructose

(3S,4R,5R)-2-(hydroxymethyl)tetrahydro-2H-pyran-2,3,4,5-tetraol

C6H12O6 (180.0633852)


A D-fructopyranose in which the anomeric centre has beta-configuration. Fructose, a member of a group of carbohydrates known as simple sugars, or monosaccharides. Fructose, along with glucose, occurs in fruits, honey, and syrups; it also occurs in certain vegetables. It is a component, along with glucose, of the disaccharide sucrose, or common table sugar. Phosphate derivatives of fructose (e.g., fructose-1-phosphate, fructose-1,6-diphosphate) are important in the metabolism of carbohydrates. D-fructopyranose is a fructopyranose having D-configuration. It has a role as a sweetening agent. It is a fructopyranose, a D-fructose and a cyclic hemiketal. D-Fructose is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). D-Fructose is a natural product found in Gentiana orbicularis, Colchicum schimperi, and other organisms with data available. A monosaccharide in sweet fruits and honey that is soluble in water, alcohol, or ether. It is used as a preservative and an intravenous infusion in parenteral feeding. Fructose is a levorotatory monosaccharide and an isomer of glucose. Although fructose is a hexose (6 carbon sugar), it generally exists as a 5-member hemiketal ring (a furanose). D-Fructose (D(-)-Fructose) is a naturally occurring monosaccharide found in many plants. D-Fructose (D(-)-Fructose) is a naturally occurring monosaccharide found in many plants. Fructose is a simple ketonic monosaccharide found in many plants, where it is often bonded to glucose to form the disaccharide sucrose. Fructose is a simple ketonic monosaccharide found in many plants, where it is often bonded to glucose to form the disaccharide sucrose.

   

Glucose

(3R,4S,5S,6R)-6-(hydroxymethyl)oxane-2,3,4,5-tetrol

C6H12O6 (180.0633852)


Glucose, also known as D-glucose or dextrose, is a member of the class of compounds known as hexoses. Hexoses are monosaccharides in which the sugar unit is a is a six-carbon containing moiety. Glucose contains an aldehyde group and is therefore referred to as an aldohexose. The glucose molecule can exist in an open-chain (acyclic) and ring (cyclic) form, the latter being the result of an intramolecular reaction between the aldehyde C atom and the C-5 hydroxyl group to form an intramolecular hemiacetal. In aqueous solution, both forms are in equilibrium and at pH 7 the cyclic one is predominant. Glucose is a neutral, hydrophilic molecule that readily dissolves in water. It exists as a white crystalline powder. Glucose is the primary source of energy for almost all living organisms. As such, it is the most abundant monosaccharide and the most widely used aldohexose in living organisms. When not circulating freely in blood (in animals) or resin (in plants), glucose is stored as a polymer. In plants it is mainly stored as starch and amylopectin and in animals as glycogen. Glucose is produced by plants through the photosynthesis using sunlight, water and carbon dioxide where it is used as an energy and a carbon source Glucose is particularly abundant in fruits and other parts of plants in its free state. Foods that are particularly rich in glucose are honey, agave, molasses, apples (2g/100g), grapes (8g/100g), oranges (8.5g/100g), jackfruit, dried apricots, dates (32 g/100g), bananas (5.8 g/100g), grape juice, sweet corn, Glucose is about 75\\\\% as sweet as sucrose and about 50\\\\% as sweet as fructose. Sweetness is detected through the binding of sugars to the T1R3 and T1R2 proteins, to form a G-protein coupled receptor that is the sweetness receptor in mammals. Glucose was first isolated from raisins in 1747 by the German chemist Andreas Marggraf. It was discovered in grapes by Johann Tobias Lowitz in 1792 and recognized as different from cane sugar (sucrose). Industrially, glucose is mainly used for the production of fructose and in the production of glucose-containing foods. In foods, it is used as a sweetener, humectant, to increase the volume and to create a softer mouthfeel. Various sources of glucose, such as grape juice (for wine) or malt (for beer), are used for fermentation to ethanol during the production of alcoholic beverages. Glucose is found in many plants as glucosides. A glucoside is a glycoside that is derived from glucose. Glucosides are common in plants, but rare in animals. Glucose is produced when a glucoside is hydrolyzed by purely chemical means or decomposed by fermentation or enzymes. Glucose can be obtained by the hydrolysis of carbohydrates such as milk sugar (lactose), cane sugar (sucrose), maltose, cellulose, and glycogen. Glucose is a building block of the disaccharides lactose and sucrose (cane or beet sugar), of oligosaccharides such as raffinose and of polysaccharides such as starch and amylopectin, glycogen or cellulose. For most animals, while glucose is normally obtained from the diet, it can also be generated via gluconeogenesis. Gluconeogenesis is a metabolic pathway that results in the generation of glucose from certain non-carbohydrate carbon substrates. Gluconeogenesis is a ubiquitous process, present in plants, animals, fungi, bacteria, and other microorganisms. In vertebrates, gluconeogenesis takes place mainly in the liver and, to a lesser extent, in the cortex of the kidneys. In humans the main gluconeogenic precursors are lactate, glycerol (which is a part of the triacylglycerol molecule), alanine and glutamine. B - Blood and blood forming organs > B05 - Blood substitutes and perfusion solutions > B05C - Irrigating solutions V - Various > V04 - Diagnostic agents > V04C - Other diagnostic agents > V04CA - Tests for diabetes V - Various > V06 - General nutrients > V06D - Other nutrients > V06DC - Carbohydrates COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents CONFIDENCE standard compound; INTERNAL_ID 226 KEIO_ID G002 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS alpha-D-glucose is an endogenous metabolite. alpha-D-glucose is an endogenous metabolite.

   

(3R,4R,5R)-1,3,4,5,6-Pentahydroxyhexan-2-one

(3R,4R,5R)-1,3,4,5,6-Pentahydroxyhexan-2-one

C6H12O6 (180.0633852)


   

Glycoprotein-phospho-D-mannose

(2S,3S,4R,5R)-2,3,4,5,6-Pentahydroxyhexanal

C6H12O6 (180.0633852)


Glycoprotein-phospho-D-mannose, also known as (2S,3S,4R,5R)-2,3,4,5,6-Pentahydroxyhexanal or Mannose homopolymer, is classified as a member of the Hexoses. Hexoses are monosaccharides in which the sugar unit is a is a six-carbon containing moeity. Glycoprotein-phospho-D-mannose is considered to be soluble (in water) and acidic

   

Myo-Inositol

1,2,3,4,5,6-Hexahydroxycyclohexane, i-inositol, meso-Inositol

C6H12O6 (180.0633852)


myo-Inositol is an inositol isoform. Inositol is a derivative of cyclohexane with six hydroxyl groups, making it a polyol. It also is known as a sugar alcohol, having exactly the same molecular formula as glucose or other hexoses. Inositol exists in nine possible stereoisomers, of which cis-1,2,3,5-trans-4,6-cyclohexanehexol, or myo-inositol is the most widely occurring form in nature. The other known inositols include scyllo-inositol, muco-inositol, D-chiro-inositol, L-chiro-inositol, neo-inositol, allo-inositol, epi-inositol and cis-inositol. myo-Inositol is found naturally in many foods (particularly in cereals with high bran content) and can be used as a sweetner as it has half the sweetness of sucrose (table sugar). myo-Inositol was once considered a member of the vitamin B complex and given the name: vitamin B8. However, because it is produced by the human body from glucose, it is not an essential nutrient, and therefore cannot be called a vitamin. myo-Inositol is a precursor molecule for a number of secondary messengers including various inositol phosphates. In addition, inositol/myo-inositol is an important component of the lipids known as phosphatidylinositol (PI) phosphatidylinositol phosphate (PIP). myo-Inositol is synthesized from glucose, via glucose-6-phosphate (G-6-P) in two steps. First, G-6-P is isomerised by an inositol-3-phosphate synthase enzyme to myo-inositol 1-phosphate, which is then dephosphorylated by an inositol monophosphatase enzyme to give free myo-inositol. In humans, myo-inositol is primarily synthesized in the kidneys at a rate of a few grams per day. myo-Inositol can be used in the management of preterm babies who have or are at a risk of infant respiratory distress syndrome. It is also used as a treatment for polycystic ovary syndrome (PCOS). It works by increasing insulin sensitivity, which helps to improve ovarian function and reduce hyperandrogenism. Reduced levels of myo-inositol have been found in the spinal fluid of depressed patients and levels are significantly reduced in brain samples of suicide victims. Of common occurrence in plants and animals . obtained comly. from phytic acid in corn steep liquor. Dietary supplement C26170 - Protective Agent > C1509 - Neuroprotective Agent A - Alimentary tract and metabolism > A11 - Vitamins COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS D-chiro-Inositol is an epimer of myo-inositol found in certain mammalian glycosylphosphatidylinositol protein anchors and inositol phosphoglycans possessing insulin-like bioactivity. D-chiro-Inositol is used clinically for the treatment of polycystic ovary syndrome (PCOS) and diabetes mellitus, which can reduce hyperglycemia and ameliorate insulin resistance[1][2][3]. i-Inositol is a chemical compound related to lipids found in many foods, especially fruits such as cantaloupe and oranges. i-Inositol is a chemical compound related to lipids found in many foods, especially fruits such as cantaloupe and oranges. Scyllo-Inositol, an amyloid inhibitor, potentialy inhibits α-synuclein aggregation. Scyllo-Inositol stabilizes a non-fibrillar non-toxic form of amyloid-β peptide (Aβ42) in vitro, reverses cognitive deficits, and reduces synaptic toxicity and lowers amyloid plaques in an Alzheimer's disease mouse model[1]. Scyllo-Inositol, an amyloid inhibitor, potentialy inhibits α-synuclein aggregation. Scyllo-Inositol stabilizes a non-fibrillar non-toxic form of amyloid-β peptide (Aβ42) in vitro, reverses cognitive deficits, and reduces synaptic toxicity and lowers amyloid plaques in an Alzheimer's disease mouse model[1].

   

Levulose

(3S,4S,5R)-2,5-bis(hydroxymethyl)oxolane-2,3,4-triol

C6H12O6 (180.0633852)


D-Fructose (D(-)-Fructose) is a naturally occurring monosaccharide found in many plants. D-Fructose (D(-)-Fructose) is a naturally occurring monosaccharide found in many plants.

   

Laevuflex

L-Sorbose

C6H12O6 (180.0633852)


(3S,4R,5S)-1,3,4,5,6-Pentahydroxyhexan-2-one is an endogenous metabolite. (3S,4R,5S)-1,3,4,5,6-Pentahydroxyhexan-2-one is an endogenous metabolite.

   

fuconic acid

D-fuconic acid

C6H12O6 (180.0633852)


   

Hamamelose

(3R,4R,5R)-3-(hydroxymethyl)oxane-2,3,4,5-tetrol

C6H12O6 (180.0633852)


   

2-Deoxy-D-gluconate

3,4,5,6-tetrahydroxyhexanoic acid

C6H12O6 (180.0633852)


   

hexofuranose

d-Galactofuranose

C6H12O6 (180.0633852)


   

D-Glucose

(2R,3R,4S,5S,6R)-6-(hydroxymethyl)oxane-2,3,4,5-tetrol

C6H12O6 (180.0633852)


Glucose is a monosaccharide containing six carbon atoms and an aldehyde group. It is referred to as an aldohexose. The glucose molecule can exist in an open-chain (acyclic) and ring (cyclic) form, the latter being the result of an intramolecular reaction between the aldehyde C atom and the C-5 hydroxyl group to form an intramolecular hemiacetal. In aqueous solution, both forms are in equilibrium and at pH 7 the cyclic one is predominant. Glucose is a primary source of energy for all living organisms. It is a fundamental metabolite found in all organisms, ranging from bacteria to plants to humans. Most of the world’s glucose is made by plants and algae during photosynthesis from water and carbon dioxide, where it is used to make cellulose (and other polymeric forms of glucose called polysaccharides) that stabilize plant cell walls. Glucose is also found in fruits and other parts of plants in its free state. In animals, glucose can be generated from the breakdown of glycogen in a process known as glycogenolysis. Glucose can also be synthesized de novo in animals. In particular it can be synthesized in the liver and kidneys from non-carbohydrate intermediates, such as pyruvate and glycerol, by a process known as gluconeogenesis. Humans also consume large amounts of glucose as part of their regular diet. Ingested glucose initially binds to the receptor for sweet taste on the tongue in humans. This complex of the proteins T1R2 and T1R3 makes it possible to identify glucose-containing food sources. Glucose in the body mainly comes from food - about 300 g per day for the average adult. In humans, the breakdown of glucose-containing polysaccharides happens partly during chewing by means of the enzyme known as amylase, which is contained in saliva, as well as by other enzymes such as maltase, lactase and sucrase on the brush border of the small intestine. The blood sugar content of a healthy person in the short-time fasting state, e.g. after overnight fasting, is about 70 to 100 mg/dL of blood (4 to 5.5 mM). In blood plasma, the measured values are about 10–15\\\\% higher. Dysregulated metabolism of glucose can lead to a number of diseases including diabetes. Diabetes is a metabolic disorder where the body is unable to regulate levels of glucose in the blood either because of a lack of insulin in the body or the failure, by cells in the body, to respond properly to insulin. Each of these situations can be caused by persistently high elevations of blood glucose levels, through pancreatic burnout and insulin resistance. A glucoside is a glycoside that is derived from glucose. Glucosides are common in plants, but rare in animals. Glucose is produced when a glucoside is hydrolysed by purely chemical means, or decomposed by fermentation or enzymes. COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS alpha-D-glucose is an endogenous metabolite. alpha-D-glucose is an endogenous metabolite.

   

Glucose

(2S,3R,4S,5R,6R)-6-(hydroxymethyl)oxane-2,3,4,5-tetrol

C6H12O6 (180.0633852)


D-Galactose (CAS: 59-23-4) is an aldohexose that occurs naturally in the D-form in lactose, cerebrosides, gangliosides, and mucoproteins. D-Galactose is an energy-providing nutrient and also a necessary basic substrate for the biosynthesis of many macromolecules in the body. Metabolic pathways for D-galactose are important not only for the provision of these pathways but also for the prevention of D-galactose metabolite accumulation. The main source of D-galactose is lactose in the milk of mammals, but it can also be found in some fruits and vegetables. Utilization of D-galactose in all living cells is initiated by the phosphorylation of the hexose by the enzyme galactokinase (E.C. 2.7.1.6) (GALK) to form D-galactose-1-phosphate. In the presence of D-galactose-1-phosphate uridyltransferase (E.C. 2.7.7.12) (GALT) D-galactose-1-phosphate is exchanged with glucose-1-phosphate in UDP-glucose to form UDP-galactose. Glucose-1-phosphate will then enter the glycolytic pathway for energy production. Deficiency of the enzyme GALT in galactosemic patients leads to the accumulation of D-galactose-1-phosphate. Classic galactosemia, a term that denotes the presence of D-galactose in the blood, is the rare inborn error of D-galactose metabolism, diagnosed by the deficiency of the second enzyme of the D-galactose assimilation pathway, GALT, which, in turn, is caused by mutations at the GALT gene (PMID: 15256214, 11020650, 10408771). Galactose in the urine is a biomarker for the consumption of milk. Alpha-D-Pyranose-form of the compound Galactose [CCD]. alpha-D-Galactose is found in many foods, some of which are kelp, fig, spelt, and rape. Galactose. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=59-23-4 (retrieved 2024-07-16) (CAS RN: 59-23-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

D-Mannose

(2S,3S,4S,5S,6R)-6-(hydroxymethyl)oxane-2,3,4,5-tetrol

C6H12O6 (180.0633852)


D-Mannose (also called Mannose or D-mannopyranose) is a hexose or a six-carbon sugar. It is also classified as an aldohexose. It is fermentable monosaccharide and an isomer of glucose. Mannose commonly exists as two different-sized rings, the pyranose (six-membered) form and the furanose (five-membered) form. Formally, D-Mannose is the 2-epimer of glucose and exists primarily as sweet-tasting alpha- (67\\\\%) or as a bitter-tasting beta- (33\\\\%) anomer of the pyranose form (PMID: 24931670). Mannose is not an essential nutrient, meaning that it can be produced in the human body from glucose or converted into glucose. Mannose is ~5x as active as glucose in non-enzyamtic glycation, which may explain why evolution did not favor it as a biological energy source (PMID: 24931670). Mannose occurs in microbes, plants and animals. Free mannose is found in small amounts in many fruits such as oranges, apples and peaches and in mammalian plasma at 50–100 uM (PMID: 24931670). More often, mannose occurs in homo-or hetero-polymers such as yeast mannans (alpha-mannose) where it can account for nearly 16\\\\% of dry weight or in galactomannans. Coffee beans, fenugreek and guar gums are rich sources of galactomannans. However, these plant polysaccharides are not degraded in the mammalian GI tract and, therefore, provide very little bio-available mannose for glycan synthesis. The digestion of many polysaccharides and glycoproteins also yields mannose. Once mannose is released, it is phosphorylated by hexokinase to generate mannose-6-phosphate. Mannose-6-phosphate is then converted to fructose-6-phosphate, by the enzyme phosphomannose isomerase, whereupon it enters the glycolytic pathway or is converted to glucose-6-phosphate by the gluconeogenic pathway. Mannose is a dominant monosaccharide in N-linked glycosylation, which is a post-translational modification of proteins. N-linked glycosylation is initiated by the transfer of Glc3Man9GlcNAc2 to nascent glycoproteins in the endoplasmic reticulum in a co-translational manner as the protein enters the transport system. Typically, mature human glycoproteins only contain three mannose residues buried under sequential modification by GlcNAc, galactose, and sialic acid. High-mannose-type oligosaccharides have been shown to play important roles in protein quality control. Several intracellular proteins such as lectins, chaperones, and glycan-processing enzymes, are involved in this process. These include calnexin/calreticulin, UDP-glucose:glycoprotein glucosyltransferase (UGGT), cargo receptors (such as VIP36 and ERGIC-53), mannosidase-like proteins (e.g. EDEM and Htm1p) and ubiquitin ligase (Fbs). They are thought to recognize high-mannose-type glycans with subtly different structures. Mannose-binding lectin (MBL) is an important constituent of the innate immune system. This protein binds through multiple lectin domains to the repeating sugar arrays that decorate many microbial surfaces and is then able to activate the complement system through a specific protease called MBL-associated protease-2. Mannose (D-mannose) is used as a nutritional supplement, packaged as "D-mannose", to prevent recurrent urinary tract infections (PMID: 21105658). D-mannose prevents FimH-mediated bacterial adhesion in the urinary tract through a competitive inhibition mechanism. This mechanism is based on the structural similarity between D-mannose and urothelial mannosylated receptors exposed by the epithelium of the urinary tract (PMID: 21105658). When D-mannose is administered in sufficient amounts, it is rapidly absorbed and then excreted by the urinary tract where it saturates bacterial FimH, thereby preventing bacterial binding to urothelial cells. Occurs in trace amounts in apples and peaches. obtained from the hydrolysates of D-mannans of the corms of Amorphophallus konjac (devils tongue). D-Mannose is found in many foods, some of which are carob, arabica coffee, fenugreek, and mung bean. D009676 - Noxae > D011042 - Poisons > D014688 - Venoms COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS D-Mannose is a carbohydrate, which plays an important role in human metabolism, especially in the glycosylation of specific proteins. D-Mannose is a carbohydrate, which plays an important role in human metabolism, especially in the glycosylation of specific proteins.

   

D-Fructose

(2R,3S,4S,5R)-2,5-bis(hydroxymethyl)oxolane-2,3,4-triol

C6H12O6 (180.0633852)


Fructose, or levulose, is a levorotatory monosaccharide and an isomer of glucose (C6H12O6). Pure fructose has a sweet taste similar to cane sugar, but with a "fruity" aroma. Pure, dry fructose is a sweet, white, odorless, crystalline solid, and is the most water-soluble of all the sugars. Although fructose is a hexose (6-carbon sugar), it generally exists as a 5-member hemiketal ring (a furanose). This structure is responsible for the long metabolic pathway and high reactivity compared to glucose. Fructose is a reducing sugar, as are all monosaccharides. Fructose is found in many foods including honey, tree fruits, berries, melons, and some root vegetables, such as beets, sweet potatoes, parsnips, and onions. Commercially, fructose is derived from sugar cane, sugar beets, and maize. Fructose is also derived from the digestion of sucrose, a disaccharide consisting of glucose and fructose that is broken down by enzymes during digestion. Fructose is the sweetest naturally occurring sugar, estimated to be twice as sweet as sucrose. It is used as a preservative and an intravenous infusion in parenteral feeding. Excessive consumption of fructose (especially from sugar-sweetened beverages) may contribute to insulin resistance, obesity, elevated LDL cholesterol and triglycerides, leading to metabolic syndrome (PMID: 26429086). Fructose exists in foods either as a monosaccharide (free fructose) or as a unit of a disaccharide (sucrose). Free fructose is absorbed directly by the intestine. When fructose is consumed in the form of sucrose, it is digested (broken down) and then absorbed as free fructose. As sucrose comes into contact with the membrane of the small intestine, the enzyme sucrase catalyzes the cleavage of sucrose to yield one glucose unit and one fructose unit, which are then each absorbed. After absorption, it enters the hepatic portal vein and is directed toward the liver. fructose absorption occurs on the mucosal membrane via facilitated transport involving GLUT5 transport proteins. Since the concentration of fructose is higher in the lumen, fructose is able to flow down a concentration gradient into the enterocytes, assisted by transport proteins. Fructose may be transported out of the enterocyte across the basolateral membrane by either GLUT2 or GLUT5, although the GLUT2 transporter has a greater capacity for transporting fructose, and, therefore, the majority of fructose is transported out of the enterocyte through GLUT2. The catabolism of fructose is sometimes referred to as fructolysis. In fructolysis, the enzyme fructokinase produces fructose 1-phosphate, which is split by aldolase B to produce the trioses dihydroxyacetone phosphate (DHAP) and glyceraldehyde. Unlike glycolysis, in fructolysis the triose glyceraldehyde lacks a phosphate group. A third enzyme, triokinase, is therefore required to phosphorylate glyceraldehyde, producing glyceraldehyde 3-phosphate. The resulting trioses can enter the gluconeogenic pathway for glucose or glycogen synthesis, or be further catabolized through the lower glycolytic pathway to pyruvate. Fructose metabolism leads to significant increases of plasma uric acid levels (PMID: 28420204). In fructolysis, fructose 1-phosphate accumulates, and intracellular phosphate decreases. This decrease stimulates AMP deaminase (AMPD), which catalyzes the degradation of AMP to inosine monophosphate, increasing the rate of purine degradation (PMID: 28420204). The purine degradation produces uric acid and generates mitochondrial oxidants. Mitochondrial oxidative stress then induces aconitase inhibition in the Krebs cycle, with accumulation of citrate and stimulation of ATP citrate lyase and fatty acid synthase (PMID: 28420204). The result is de novo lipogenesis and hepatic fat accumulation. Physiologically, the increase in intracellular uric acid is followed by an acute rise in circulating levels of uric acid, which is likely due to its release from the liver. Fructose also stimulates uric acid synt... β-d-fructofuranose, also known as fructose or beta-levulose, is a member of the class of compounds known as C-glycosyl compounds. C-glycosyl compounds are glycoside in which a sugar group is bonded through one carbon to another group via a C-glycosidic bond. β-d-fructofuranose is very soluble (in water) and a very weakly acidic compound (based on its pKa). β-d-fructofuranose can be found in a number of food items such as yardlong bean, red huckleberry, towel gourd, and burdock, which makes β-d-fructofuranose a potential biomarker for the consumption of these food products. β-d-fructofuranose can be found primarily in most biofluids, including cerebrospinal fluid (CSF), feces, urine, and saliva, as well as in human liver, prostate and sperm tissues. β-d-fructofuranose exists in all living organisms, ranging from bacteria to humans. In humans, β-d-fructofuranose is involved in several metabolic pathways, some of which include amino sugar metabolism, fructose intolerance, hereditary, starch and sucrose metabolism, and fructose and mannose degradation. β-d-fructofuranose is also involved in several metabolic disorders, some of which include glycogen synthetase deficiency, salla disease/infantile sialic acid storage disease, mucopolysaccharidosis VI. sly syndrome, and galactosemia. Moreover, β-d-fructofuranose is found to be associated with diabetes mellitus type 2. β-d-fructofuranose is a non-carcinogenic (not listed by IARC) potentially toxic compound. Acute consumption of fructose or high fructose corn syrup is essentially non-toxic. Chronic, excess fructose consumption has been shown to be a cause (or indirect cause) of gout, insulin resistance, hypertension, obesity, fatty liver disease, elevated LDL cholesterol and elevated triglycerides, leading to metabolic syndrome. In Wistar rats, a laboratory model of diabetes, 10\\\\% fructose feeding as opposed to 10\\\\% glucose feeding was found to increase blood triglyceride levels by 86\\\\%, whereas the same amount of glucose had no effect on triglycerides. A 2008 study found a substantial risk of incident gout associated with the consumption of fructose or fructose-rich foods. It is suspected that the fructose found in soft drinks (e.g., carbonated beverages) and other sweetened drinks is the primary reason for this increased incidence (T3DB). CONFIDENCE standard compound; INTERNAL_ID 235 D-Fructose (D(-)-Fructose) is a naturally occurring monosaccharide found in many plants. D-Fructose (D(-)-Fructose) is a naturally occurring monosaccharide found in many plants.

   

Allose

(3S,4S,5R,6S)-6-(hydroxymethyl)oxane-2,3,4,5-tetrol

C6H12O6 (180.0633852)


Allose is an aldohexose sugar. Allose is a C-3 epimer of glucose. D-allose is a rare sugar found in nature and, because of its very limited amount and of the high cost associated with its synthesis, its physiological functions remain virtually unknown (PMID 16080505). It is believed to have inhibitory effect on cancer cell proliferation (PMID 16142305), protective effects against ischemia reperfusion injury (PMID 14605979, 16716947), immunosuppressant on allogenic orthotopic liver transplantation (PMID 11120048), neuroprotective effects against retinal ischemia (PMID 16565406), suppress development of salt-induced hypertension (PMID 16148613) and an inhibitory effect on human ovarian carcinoma cells (PMID 16080505). It is a rare monosaccharide that has been isolated from the leaves of the African shrub Protea rubropilosa. It is soluble in water and practically insoluble in methanol. D-allose is a rare sugar found in nature and, because of its very limited amount and of the high cost associated with its synthesis, its physiological functions remain virtually unknown (PMID 16080505). D-Allose is an endogenous metabolite. D-Allose is an endogenous metabolite.

   

L-Sorbose

(2R,3S,4R,5S)-2-(hydroxymethyl)oxane-2,3,4,5-tetrol

C6H12O6 (180.0633852)


L-Sorbose, also known as L-sorbinose or L-xylo-hexulose, belongs to the class of organic compounds known as monosaccharides. Monosaccharides are compounds containing one carbohydrate unit not glycosidically linked to another such unit, and no set of two or more glycosidically linked carbohydrate units. Monosaccharides have the general formula CnH2nOn. L-Sorbose exists in all living species, ranging from bacteria to humans. The commercial production of vitamin C (ascorbic acid) often begins with sorbose. L-Sorbose (CAS: 87-79-6) is a ketose belonging to the group of sugars known as monosaccharides. Sorbose has been found to be a metabolite of Ketogulonicigenium (PMID:15785002). Indirect food additive arising from its use as a constituent of cotton, cotton fabrics, paper and paperboard in contact with dry food

   

alpha-D-Glucose

(2S,3R,4S,5S,6R)-6-(hydroxymethyl)oxane-2,3,4,5-tetrol

C6H12O6 (180.0633852)


alpha-D-Glucose, also known as alpha-dextrose or alpha-D-GLC, belongs to the class of organic compounds known as hexoses. These are monosaccharides in which the sugar unit is a is a six-carbon containing moeity. alpha-D-Glucose exists in all living species, ranging from bacteria to humans. Outside of the human body, alpha-D-Glucose has been detected, but not quantified in several different foods, such as lemon grass, sourdoughs, mixed nuts, sweet rowanberries, and ginsengs. This could make alpha-D-glucose a potential biomarker for the consumption of these foods. D-Glucopyranose having alpha-configuration at the anomeric centre. A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. COVID info from COVID-19 Disease Map, PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS alpha-D-glucose is an endogenous metabolite. alpha-D-glucose is an endogenous metabolite.

   

D-Tagatose

(2R,3S,4S,5R)-2-(hydroxymethyl)oxane-2,3,4,5-tetrol

C6H12O6 (180.0633852)


D-Tagatose (CAS: 87-81-0), a rare natural hexoketose, is an isomer of D-galactose. D-Tagatose occurs naturally in Sterculia setigera gum, and it is also found in small quantities in various foods such as sterilized and powdered cows milk, hot cocoa, and a variety of cheeses, yogurts, and other dairy products. It can be synthesized from D-galactose by isomerization under alkaline conditions in the presence of calcium. D-Tagatose has numerous health benefits, including promotion of weight loss; no glycemic effect; anti-plaque, non-cariogenic, anti-halitosis, prebiotic, and anti-biofilm properties; organ transplants; enhancement of flavor; improvement of pregnancy and fetal development; obesity treatment; and reduction in symptoms associated with type 2 diabetes, hyperglycemia, anemia, and hemophilia (PMID:17492284). GRAS status for use as a sweetener, humectant, texturiser or stabiliser in food, especies low calorie products D064449 - Sequestering Agents > D002614 - Chelating Agents > D007502 - Iron Chelating Agents

   

beta-D-Galactose

(2R,3R,4S,5R,6R)-6-(hydroxymethyl)oxane-2,3,4,5-tetrol

C6H12O6 (180.0633852)


Galactose is an optical isomer of glucose. An aldohexose that occurs naturally in the D-form in lactose, cerebrosides, gangliosides, and mucoproteins. Deficiency of galactosyl-1-phosphate uridyltransferase (Galactose-1-phosphate uridyl-transferase deficiency disease) causes an error in galactose metabolism called galactosemia, resulting in elevations of galactose in the blood. Galactose (Gal) (also called brain sugar) is a type of sugar found in dairy products, in sugar beets and other gums and mucilages. It is also synthesized by the body, where it forms part of glycolipids and glycoproteins in several tissues. It is considered a nutritive sweetener because it has food energy. Galactose is less sweet than glucose and not very water-soluble. Galactose is a monosaccharide constituent, together with glucose, of the disaccharide lactose. The hydrolysis of lactose to glucose and galactose is catalyzed by the enzyme beta-galactosidase, a lactase. In the human body, glucose is changed into galactose in order to enable the mammary glands to secrete lactose. Galactan is a polymer of the sugar galactose. It is found in hemicellulose and can be converted to galactose by hydrolysis. Galactose is an aldohexose that occurs naturally in the D-form in lactose, cerebrosides, gangliosides, and mucoproteins. Deficiency of galactosyl-1-phosphate uridyltransferase (Galactose-1-phosphate uridyl-transferase deficiency disease) causes an error in galactose metabolism called galactosemia, resulting in elevations of galactose in the blood. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

L-Gulose

(3S,4S,5S,6S)-6-(hydroxymethyl)oxane-2,3,4,5-tetrol

C6H12O6 (180.0633852)


Gulose is an aldohexose sugar and a C-3 epimer of galactose. It is an unnatural monosaccharide that exists as a syrup with a sweet taste. It is soluble in water and slightly soluble in methanol. Both the D- and L-forms are not fermentable by yeast. L-gulose is an L-hexose sugar and an intermediate in the biosynthesis of L-Ascorbate (vitamin C). It can be oxidized to L-guluno-1-4-lactone and it is also produced by the hydrolysis of L-gulose-1-P. Vitamic C is an important antioxidant and an enzyme cofactor. Higher plants and higher animals (but not humans) can synthesize ascorbate. Plants provide the major dietary vitamin C source for humans. The plant ascorbate biosynthesis pathways have only been recently proposed and they differ from what was found in mammals. Gulose has been found to be a metabolite of Ketogulonicigenium (PMID: 15785002). Gulose is an aldohexose sugar and a C-3 epimer of galactose. It is an unnatural monosaccharide that exists as a syrup with a sweet taste. It is soluble in water and slightly soluble in methanol. Both the D- and L-forms are not fermentable by yeast. L-gulose is an L-hexose sugar and an intermediate in the biosynthesis of L-Ascorbate (vitamin C). It can be oxidized to L-guluno-1-4-lactone and it is also produced by the hydrolysis of L-gulose-1-P. Vitamic C is an important antioxidant and an enzyme cofactor. Higher plants and higher animals (but not humans) can synthesize ascorbate. Plants provide the major dietary vitamin C source for humans. The plant ascorbate biosynthesis pathways have only been recently proposed and they differ from what was found in mammals. [HMDB]

   

L-Galactose

(2R,3S,4R,5S,6S)-6-(hydroxymethyl)oxane-2,3,4,5-tetrol

C6H12O6 (180.0633852)


L-Galactose (CAS: 15572-79-9) belongs to the class of organic compounds known as hexoses. These are monosaccharides in which the sugar unit is a six-carbon containing moiety. L-Galactose is found in flaxseed. L-Galactose occurs in the polymer agar-agar. Galactose is an optical isomer of glucose that occurs naturally in the D-form in lactose, cerebrosides, gangliosides, and mucoproteins.

   

(2R,4S,5S)-1,2,4,5,6-Pentahydroxyhexan-3-one

(2R,4S,5S)-1,2,4,5,6-Pentahydroxyhexan-3-one

C6H12O6 (180.0633852)


   

D-Gulose

6-(hydroxymethyl)oxane-2,3,4,5-tetrol

C6H12O6 (180.0633852)


   

D-Mannose

D-(+)-Mannose,from wood

C6H12O6 (180.0633852)


D-Mannose in its six-membered ring form. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS D-Mannose is a carbohydrate, which plays an important role in human metabolism, especially in the glycosylation of specific proteins. D-Mannose is a carbohydrate, which plays an important role in human metabolism, especially in the glycosylation of specific proteins.

   

D-Psicose

(3R,4R,5R)-1,3,4,5,6-Pentahydroxyhexan-2-one

C6H12O6 (180.0633852)


The D-enantiomer of psicose.

   

beta-D-Mannopyranose

beta-D-Mannopyranose

C6H12O6 (180.0633852)


COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

D-sorbopyranose

D-sorbopyranose

C6H12O6 (180.0633852)


The D-stereoisomer of sorbopyranose.

   

D-Gulose

D-gulopyranose

C6H12O6 (180.0633852)


The D-enantiomer of gulopyranose.

   

D-Altrose

(2R,3S,4S,5R)-2,3,4,5,6-pentahydroxyhexanal

C6H12O6 (180.0633852)


D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents D-Allose is an endogenous metabolite. D-Allose is an endogenous metabolite.

   

d-talose

aldehydo-D-talose

C6H12O6 (180.0633852)


D-Talose in its acyclic form. D-Talose in its pyranose ring form.

   
   

L-fructofuranose

L-fructofuranose

C6H12O6 (180.0633852)


The L-enantiomer of fructofuranose.

   
   
   
   

L-Rhamnonate

L-rhamnonic acid

C6H12O6 (180.0633852)


   
   

L-Gulose

L-Gulopyranose

C6H12O6 (180.0633852)


The L-enantiomer of gulopyranose.

   

L-Mannose

D-(+)-Mannose

C6H12O6 (180.0633852)


   

Dihydroxyacetone (dimer)

2,5-Bis(hydroxymethyl)-1,4-dioxane-2,5-diol

C6H12O6 (180.0633852)


Dihydroxyacetone (dimer) is used as a food additive [EAFUS] ("EAFUS: Everything Added to Food in the United States. [http://www.eafus.com/]")

   

3-Deoxyarabinohexonic acid

3-Deoxy-arabino-hexonic acid, monosodium salt, (D)-isomer

C6H12O6 (180.0633852)


3-Deoxyarabinohexonic acid, also known as arabino-3-deoxyhexonate or D-2-keto-3-deoxygluconate, belongs to the class of organic compounds known as medium-chain hydroxy acids and derivatives. These are hydroxy acids with a 6 to 12 carbon atoms. 3-deoxyarabinohexonic acid is a thermal decomposition product of plant-derived sugars such as nigerose (3-O-α-D-glucopyranosyl-D-glucose), turanose and 3-O-methyl glucose. 3-deoxyarabinohexonic acid is found in plants and plant products that have been heated. As a consequence, it can be detected in the biofluids of animals that have consumed plant foods (including humans). 3-Deoxyarabinohexonic acid is an organic acid that has been identified in serum from a series of uremic patients. The characterization procedure calls for gas chromatographic profiling of components in ultrafiltrated uremic serum using glass capillary columns and appropriate sample pretreatment and derivatization. (PMID: 541389, 534687) [HMDB]

   

scyllo-Inositol

(1R,2R,3R,4R,5R,6R)-Cyclohexane-1,2,3,4,5,6-hexol

C6H12O6 (180.0633852)


scyllo-Inositol or scyllitol is an inositol isoform. Inositol is a derivative of cyclohexane with six hydroxyl groups, making it a polyol. It also is known as a sugar alcohol, having exactly the same molecular formula as glucose or other hexoses. Inositol exists in nine possible stereoisomers, including scyllo-inositol, myo-inositol (the most abundant), muco-inositol, D-chiro-inositol, L-chiro-inositol, neo-inositol, allo-inositol, epi-inositol, and cis-inositol. scyllo-Inositol was first isolated from the kidneys of fish in 1858 by Staedeler and Freierchs. scyllo-Inositol is a naturally occurring plant sugar alcohol found most abundantly in the coconut palm. It appears to accumulate in a number of human tissues and biofluids through dietary consumption. It has traditionally been considered to be a B vitamin although it has an uncertain status as a vitamin and a deficiency syndrome has not been identified in man. (From Martindale, The Extra Pharmacopoeia, 30th ed, p1379). Results reported by Viola et al (PMID: 15340856) suggest that high CSF concentrations of scyllo-inositol can be induced by chronic alcoholism. scyllo-Inositol when fed to transgenic mice that exhibit a memory disease very similar to human Alzheimers disease, can block the accumulation of soluble amyloid-beta (Aβ) plaques in the brain. scyllo-Inositol was found to reverse memory deficits in the mice, reduce the amount of Aβ plaque in the brains of the mice, and reversed other symptoms associated with the presence of Aβ in the brain (PMID: 16767098). Scyllitol is an isomer of cyclohexanehexol or inositol. It was first isolated from the kidneys of fish in 1858 by Staedeler and Freierchs. Scyllitol is a naturally occurring plant sugar alcohol found most abundantly in the coconut palm. It appears to accumulate in a number of human tissues and biofluids through dietary consumption. It has traditionally been considered to be a B vitamin although it has an uncertain status as a vitamin and a deficiency syndrome has not been identified in man. (From Martindale, The Extra Pharmacopoeia, 30th ed, p1379). Results reported by Viola et al (PMID: 15340856) suggest that high CSF concentrations of scyllo-inositol can be induced by chronic alcoholism. scyllo-Inositol (also called "scyllitol") when fed to transgenic mice that exhibit a memory disease very similar to human Alzheimers disease, can block the accumulation of soluble amyloid-beta (Aβ) plaques in the brain. Scyllitol was found to reverse memory deficits in the mice, reduce the amount of Aβ plaque in the brains of the mice, and reversed other symptoms associated with the presence of Aβ in the brain (PMID: 16767098). [HMDB] C26170 - Protective Agent > C1509 - Neuroprotective Agent A - Alimentary tract and metabolism > A11 - Vitamins COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS D-chiro-Inositol is an epimer of myo-inositol found in certain mammalian glycosylphosphatidylinositol protein anchors and inositol phosphoglycans possessing insulin-like bioactivity. D-chiro-Inositol is used clinically for the treatment of polycystic ovary syndrome (PCOS) and diabetes mellitus, which can reduce hyperglycemia and ameliorate insulin resistance[1][2][3]. i-Inositol is a chemical compound related to lipids found in many foods, especially fruits such as cantaloupe and oranges. i-Inositol is a chemical compound related to lipids found in many foods, especially fruits such as cantaloupe and oranges. Scyllo-Inositol, an amyloid inhibitor, potentialy inhibits α-synuclein aggregation. Scyllo-Inositol stabilizes a non-fibrillar non-toxic form of amyloid-β peptide (Aβ42) in vitro, reverses cognitive deficits, and reduces synaptic toxicity and lowers amyloid plaques in an Alzheimer's disease mouse model[1]. Scyllo-Inositol, an amyloid inhibitor, potentialy inhibits α-synuclein aggregation. Scyllo-Inositol stabilizes a non-fibrillar non-toxic form of amyloid-β peptide (Aβ42) in vitro, reverses cognitive deficits, and reduces synaptic toxicity and lowers amyloid plaques in an Alzheimer's disease mouse model[1].

   

Levoinositol

(1R,2R,3R,4R,5S,6S)-Cyclohexane-1,2,3,4,5,6-hexol

C6H12O6 (180.0633852)


Levoinositol (also known as 1L-chiro-Inositol or L-chiro-inositol, abbreviated LCI) is an inositol isoform. Inositol is a derivative of cyclohexane with six hydroxyl groups, making it a polyol. It also is known as a sugar alcohol, having exactly the same molecular formula as glucose or other hexoses. Inositol exists in nine possible stereoisomers, including scyllo-inositol, myo-inositol (the most abundant), muco-inositol, D-chiro-inositol, L-chiro-inositol, neo-inositol, allo-inositol, epi-inositol and cis-inositol. In humans, most inositol is synthesized in the kidneys, typically in amounts of a few grams per day. Levoinositol is found in dandelion and is widely distributed in higher plants predominantly as its monomethyl ether. Inositol is a cyclic polyalcohol that plays an important role as a second messenger in a cell, in the form of inositol phosphates. It is found in many foods, particularly in cereals with high bran content. It is an isomer of glucose that has traditionally been considered to be a B vitamin although it has an uncertain status as a vitamin and a deficiency syndrome has not been identified in man. (From Martindale, The Extra Pharmacopoeia, 30th ed., p1379) Inositol phospholipids are important in signal transduction.

   

muco-Inositol

(1R,2S,3S,4R,5S,6r)-cyclohexane-1,2,3,4,5,6-hexol

C6H12O6 (180.0633852)


muco-Inositol is an inositol isoform. Inositol is a derivative of cyclohexane with six hydroxyl groups, making it a polyol. It also is known as a sugar alcohol, having exactly the same molecular formula as glucose or other hexoses. Inositol exists in nine possible stereoisomers, including scyllo-inositol, myo-inositol (the most abundant), muco-inositol, D-chiro-inositol, L-chiro-inositol, neo-inositol, allo-inositol, epi-inositol, and cis-inositol. While classed as a sugar-alcohol for historical reasons, muco-inositol is more properly described as a sweet-alcohol due its perception as sweet. However, muco-inositol is perceived as both sweet and salty by humans. It is perceived as salty due to its pair of diaxial-trans-hydroxyl pairs. This pair of hydroxyl groups can form a dimer with the diaxial-trans-hydroxyl pair of the hydrated sodium-ion receptor. muco-Inositol is a critically important chemical in the gustatory (taste) process in mammals. It is coupled to a phospholipid of the outer lemma of the sensory neurons associated with the sodium ion sensitive channel (previously known as the "salty" channel) of gustation. muco-Inositol is typically phosphorylated (becoming muco-inositol phosphate) in the process of being attached to a lipid of the outer lemma of the sensory neurons of taste. The final chemical is phosphatidyl muco-inositol (PtdIns). PtdIns occurs in a specialized area of the cilia of the sensory neurons where it exists in a liquid crystalline form. C26170 - Protective Agent > C1509 - Neuroprotective Agent A - Alimentary tract and metabolism > A11 - Vitamins COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS D-chiro-Inositol is an epimer of myo-inositol found in certain mammalian glycosylphosphatidylinositol protein anchors and inositol phosphoglycans possessing insulin-like bioactivity. D-chiro-Inositol is used clinically for the treatment of polycystic ovary syndrome (PCOS) and diabetes mellitus, which can reduce hyperglycemia and ameliorate insulin resistance[1][2][3]. i-Inositol is a chemical compound related to lipids found in many foods, especially fruits such as cantaloupe and oranges. i-Inositol is a chemical compound related to lipids found in many foods, especially fruits such as cantaloupe and oranges. Scyllo-Inositol, an amyloid inhibitor, potentialy inhibits α-synuclein aggregation. Scyllo-Inositol stabilizes a non-fibrillar non-toxic form of amyloid-β peptide (Aβ42) in vitro, reverses cognitive deficits, and reduces synaptic toxicity and lowers amyloid plaques in an Alzheimer's disease mouse model[1]. Scyllo-Inositol, an amyloid inhibitor, potentialy inhibits α-synuclein aggregation. Scyllo-Inositol stabilizes a non-fibrillar non-toxic form of amyloid-β peptide (Aβ42) in vitro, reverses cognitive deficits, and reduces synaptic toxicity and lowers amyloid plaques in an Alzheimer's disease mouse model[1].

   

epi-Inositol

(1R,2R,3R,4R,5R,6R)-Cyclohexane-1,2,3,4,5,6-hexol

C6H12O6 (180.0633852)


epi-Inositol is an inositol isoform. Inositol is a derivative of cyclohexane with six hydroxyl groups, making it a polyol. It also is known as a sugar alcohol, having exactly the same molecular formula as glucose or other hexoses. Inositol exists in nine possible stereoisomers, including scyllo-inositol, myo-inositol (the most abundant), muco-inositol, D-chiro-inositol, L-chiro-inositol, neo-inositol, allo-inositol, epi-inositol, and cis-inositol. In humans, most inositol is synthesized in the kidneys, typically in amounts of a few grams per day.

   

neo-Inositol

(1S,2R,3R,4S,5S,6S)-Cyclohexane-1,2,3,4,5,6-hexol

C6H12O6 (180.0633852)


neo-Inositol is an inositol isoform. Inositol is a derivative of cyclohexane with six hydroxyl groups, making it a polyol. It also is known as a sugar alcohol, having exactly the same molecular formula as glucose or other hexoses. Inositol exists in nine possible stereoisomers, including scyllo-inositol, myo-inositol (the most abundant), muco-inositol, D-chiro-inositol, L-chiro-inositol, neo-inositol, allo-inositol, epi-inositol, and cis-inositol. neo-Inositol is naturally occurring, but only in small amounts. A simple synthesis of neo-inositol has been described (PMID: 10724534). In humans, most inositol is synthesized in the kidneys, typically in amounts of a few grams per day.

   

Chiro-inositol

(1R,2R,3S,4S,5S,6s)-cyclohexane-1,2,3,4,5,6-hexol

C6H12O6 (180.0633852)


Chiro-inositol, also known as (+)-inositol or (1r,2r,3s,4s,5s,6s)-cyclohexane-1,2,3,4,5,6-hexol, is a member of the class of compounds known as cyclohexanols. Cyclohexanols are compounds containing an alcohol group attached to a cyclohexane ring. Chiro-inositol is soluble (in water) and a very weakly acidic compound (based on its pKa). Chiro-inositol can be found in carob and soy bean, which makes chiro-inositol a potential biomarker for the consumption of these food products. Inositol or its phosphates and associated lipids are found in many foods, in particular fruit, especially cantaloupe and oranges. In plants, the hexaphosphate of inositol, phytic acid or its salts, the phytates, serve as phosphate stores in seed, for example in nuts and beans. Phytic acid also occurs in cereals with high bran content. Phytate is, however, not directly bioavailable to humans in the diet, since it is not digestible. Some food preparation techniques partly break down phytates to change this. However, inositol in the form of glycerophospholipids, as found in certain plant-derived substances such as lecithins is well-absorbed and relatively bioavailable . D-chiro-Inositol (also known as 1D-chiro-inositol, abbreviated DCI) is an inositol isoform. Inositol is a derivative of cyclohexane with six hydroxyl groups, making it a polyol. It also is known as a sugar alcohol, having exactly the same molecular formula as glucose or other hexoses. Inositol exists in nine possible stereoisomers, including scyllo-inositol, myo-inositol (the most abundant), muco-inositol, D-chiro-inositol, L-chiro-inositol, neo-inositol, allo-inositol, epi-inositol, and cis-inositol. myo-Inositol is converted into DCI by an insulin dependent NAD/NADH epimerase enzyme. It is known to be an important secondary messenger in insulin signal transduction. DCI accelerates the dephosphorylation of glycogen synthase and pyruvate dehydrogenase, rate limiting enzymes of non-oxidative and oxidative glucose disposal. DCI may act to bypass defective normal epimerization of myo-inositol to DCI associated with insulin resistance and at least partially restore insulin sensitivity and glucose disposal. C26170 - Protective Agent > C1509 - Neuroprotective Agent A - Alimentary tract and metabolism > A11 - Vitamins COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS D-chiro-Inositol is an epimer of myo-inositol found in certain mammalian glycosylphosphatidylinositol protein anchors and inositol phosphoglycans possessing insulin-like bioactivity. D-chiro-Inositol is used clinically for the treatment of polycystic ovary syndrome (PCOS) and diabetes mellitus, which can reduce hyperglycemia and ameliorate insulin resistance[1][2][3]. i-Inositol is a chemical compound related to lipids found in many foods, especially fruits such as cantaloupe and oranges. i-Inositol is a chemical compound related to lipids found in many foods, especially fruits such as cantaloupe and oranges. Scyllo-Inositol, an amyloid inhibitor, potentialy inhibits α-synuclein aggregation. Scyllo-Inositol stabilizes a non-fibrillar non-toxic form of amyloid-β peptide (Aβ42) in vitro, reverses cognitive deficits, and reduces synaptic toxicity and lowers amyloid plaques in an Alzheimer's disease mouse model[1]. Scyllo-Inositol, an amyloid inhibitor, potentialy inhibits α-synuclein aggregation. Scyllo-Inositol stabilizes a non-fibrillar non-toxic form of amyloid-β peptide (Aβ42) in vitro, reverses cognitive deficits, and reduces synaptic toxicity and lowers amyloid plaques in an Alzheimer's disease mouse model[1].

   

cis-Inositol

(1R,2R,3S,4S,5S,6s)-cyclohexane-1,2,3,4,5,6-hexol

C6H12O6 (180.0633852)


cis-Inositol is an inositol isoform. Inositol is a derivative of cyclohexane with six hydroxyl groups, making it a polyol. It also is known as a sugar alcohol, having exactly the same molecular formula as glucose or other hexoses. Inositol exists in nine possible stereoisomers, including scyllo-inositol, myo-inositol (the most abundant), muco-inositol, D-chiro-inositol, L-chiro-inositol, neo-inositol, allo-inositol, epi-inositol, and cis-inositol. In humans, most inositol is synthesized in the kidneys, typically in amounts of a few grams per day.

   

allo-Inositol

(1R,2R,3S,4R,5S,6S)-Cyclohexane-1,2,3,4,5,6-hexol

C6H12O6 (180.0633852)


allo-Inositol is an inositol isoform. Inositol is a derivative of cyclohexane with six hydroxyl groups, making it a polyol. It also is known as a sugar alcohol, having exactly the same molecular formula as glucose or other hexoses. Inositol exists in nine possible stereoisomers, including scyllo-inositol, myo-inositol (the most abundant), muco-inositol, D-chiro-inositol, L-chiro-inositol, neo-inositol, allo-inositol, epi-inositol, and cis-inositol.

   

(2R,3R,4R,5R)-2,3,4,5,6-Pentahydroxyhexanal

(2R,3R,4R,5R)-2,3,4,5,6-Pentahydroxyhexanal

C6H12O6 (180.0633852)


β-d-galactose is a member of the class of compounds known as hexoses. Hexoses are monosaccharides in which the sugar unit is a is a six-carbon containing moeity. β-d-galactose is soluble (in water) and a very weakly acidic compound (based on its pKa). β-d-galactose can be found in a number of food items such as other cereal product, almond, sea-buckthornberry, and pepper (capsicum), which makes β-d-galactose a potential biomarker for the consumption of these food products. Galactose (galacto- + -ose, "milk sugar"), sometimes abbreviated Gal, is a monosaccharide sugar that is about as sweet as glucose, and about 30\\% as sweet as sucrose. It is a C-4 epimer of glucose .

   

alpha-D-Galactofuranose

5-(1,2-dihydroxyethyl)oxolane-2,3,4-triol

C6H12O6 (180.0633852)


   

D-Fructofuranose

2,5-bis(hydroxymethyl)oxolane-2,3,4-triol

C6H12O6 (180.0633852)


   

D-Psicose

2-(hydroxymethyl)oxane-2,3,4,5-tetrol

C6H12O6 (180.0633852)


   

alpha-D-Allofuranose

(2S,3R,4S,5R)-5-[(1R)-1,2-dihydroxyethyl]oxolane-2,3,4-triol

C6H12O6 (180.0633852)


   

dextrose

Isobar: glucose,fructose,mannose,galactose

C6H12O6 (180.0633852)


COVID info from COVID-19 Disease Map, PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS alpha-D-glucose is an endogenous metabolite. alpha-D-glucose is an endogenous metabolite.

   

alpha-D-Furanallulose

alpha-D-Furanallulose

C6H12O6 (180.0633852)


   

Glucose

alpha-D-Glucose

C6H12O6 (180.0633852)


B - Blood and blood forming organs > B05 - Blood substitutes and perfusion solutions > B05C - Irrigating solutions V - Various > V04 - Diagnostic agents > V04C - Other diagnostic agents > V04CA - Tests for diabetes V - Various > V06 - General nutrients > V06D - Other nutrients > V06DC - Carbohydrates COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS alpha-D-glucose is an endogenous metabolite. alpha-D-glucose is an endogenous metabolite.

   

D-sorbose

1,3,4,5,6-pentahydroxyhexan-2-one

C6H12O6 (180.0633852)


   

SCHEMBL18383123

SCHEMBL18383123

C6H12O6 (180.0633852)


   

2,4,5-trihydroxy-2-(hydroxymethyl)pentanoic acid

2,4,5-trihydroxy-2-(hydroxymethyl)pentanoic acid

C6H12O6 (180.0633852)


   

Arabinonic acid, methyl ester

Arabinonic acid, methyl ester

C6H12O6 (180.0633852)


   

SCHEMBL14339418

SCHEMBL14339418

C6H12O6 (180.0633852)


   

3-C-hydroxymethyl-alpha-L-lyxopyranose

3-C-hydroxymethyl-alpha-L-lyxopyranose

C6H12O6 (180.0633852)


   

mannose

(2S,3S,4R,5R)-2,3,4,5,6-Pentahydroxyhexanal

C6H12O6 (180.0633852)


Acquisition and generation of the data is financially supported by the Max-Planck-Society D-Mannose is a carbohydrate, which plays an important role in human metabolism, especially in the glycosylation of specific proteins. D-Mannose is a carbohydrate, which plays an important role in human metabolism, especially in the glycosylation of specific proteins.

   

1,3-Dihydroxyacetone dimer

1,3-Dihydroxypropan-2-one dimer

C6H12O6 (180.0633852)


Acquisition and generation of the data is financially supported in part by CREST/JST.

   

D(-)-Fructose

Fructose (Generic Ketohexose)

C6H12O6 (180.0633852)


relative retention time with respect to 9-anthracene Carboxylic Acid is 0.054 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.051 D-Fructose (D(-)-Fructose) is a naturally occurring monosaccharide found in many plants. D-Fructose (D(-)-Fructose) is a naturally occurring monosaccharide found in many plants.

   
   

D-Fructose

β-D-Fructofuranose

C6H12O6 (180.0633852)


D-Fructose occurs in honey and a large number of fruits, particularly apples and tomatoes. It is fluid and nutrient replenisher, and nutritive sweetener. Inulin from dandelion roots has also been used as a source. Present in polymeric form in the inulins, the energy reserve polysaccharides of many plants, e.g. dahlia and Jerusalem artichoke tubers. D-Fructose is also found in many other foods, some of which are sweet cherry, anise, and tinda. D-Fructose (D(-)-Fructose) is a naturally occurring monosaccharide found in many plants. D-Fructose (D(-)-Fructose) is a naturally occurring monosaccharide found in many plants.

   

D-Glucose

β-D-Glucopyranose

C6H12O6 (180.0633852)


B - Blood and blood forming organs > B05 - Blood substitutes and perfusion solutions > B05C - Irrigating solutions V - Various > V04 - Diagnostic agents > V04C - Other diagnostic agents > V04CA - Tests for diabetes V - Various > V06 - General nutrients > V06D - Other nutrients > V06DC - Carbohydrates COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Occurs free in fruits, honey and plant juices. Major component of many oligosaccharides and polysaccharides. Occurs in sucrose combined with fructose. Comly. available by the acid hydrol. of potato starch (Europe) and cornstarch (USA). Food additive: nutritive sweetener, humectant. D-Glucose is found in many foods, some of which are wheat bread, sour cherry, toffee, and other soy product.

   

inositol

1,2,3,4,5,6-Cyclohexanehexol

C6H12O6 (180.0633852)


C26170 - Protective Agent > C1509 - Neuroprotective Agent A - Alimentary tract and metabolism > A11 - Vitamins COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS D-chiro-Inositol is an epimer of myo-inositol found in certain mammalian glycosylphosphatidylinositol protein anchors and inositol phosphoglycans possessing insulin-like bioactivity. D-chiro-Inositol is used clinically for the treatment of polycystic ovary syndrome (PCOS) and diabetes mellitus, which can reduce hyperglycemia and ameliorate insulin resistance[1][2][3]. i-Inositol is a chemical compound related to lipids found in many foods, especially fruits such as cantaloupe and oranges. i-Inositol is a chemical compound related to lipids found in many foods, especially fruits such as cantaloupe and oranges. Scyllo-Inositol, an amyloid inhibitor, potentialy inhibits α-synuclein aggregation. Scyllo-Inositol stabilizes a non-fibrillar non-toxic form of amyloid-β peptide (Aβ42) in vitro, reverses cognitive deficits, and reduces synaptic toxicity and lowers amyloid plaques in an Alzheimer's disease mouse model[1]. Scyllo-Inositol, an amyloid inhibitor, potentialy inhibits α-synuclein aggregation. Scyllo-Inositol stabilizes a non-fibrillar non-toxic form of amyloid-β peptide (Aβ42) in vitro, reverses cognitive deficits, and reduces synaptic toxicity and lowers amyloid plaques in an Alzheimer's disease mouse model[1].

   

Allose

β-D-Allopyranose

C6H12O6 (180.0633852)


D-Allose is an endogenous metabolite. D-Allose is an endogenous metabolite.

   

dextrose

alpha-D-Glucose

C6H12O6 (180.0633852)


COVID info from COVID-19 Disease Map, PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS alpha-D-glucose is an endogenous metabolite. alpha-D-glucose is an endogenous metabolite.

   

D-Tagatose

D-Tagatose

C6H12O6 (180.0633852)


D064449 - Sequestering Agents > D002614 - Chelating Agents > D007502 - Iron Chelating Agents

   

beta-D-Galactose

beta-D-Galactose

C6H12O6 (180.0633852)


A D-galactopyranose having beta-configuration at the anomeric centre.

   
   

Sorbose

L-(−)-Sorbose

C6H12O6 (180.0633852)


(3S,4R,5S)-1,3,4,5,6-Pentahydroxyhexan-2-one is an endogenous metabolite. (3S,4R,5S)-1,3,4,5,6-Pentahydroxyhexan-2-one is an endogenous metabolite.

   

Tagatose

D-(-)-Tagatose

C6H12O6 (180.0633852)


   
   

(1R,2R,3S,4S,5S,6s)-cyclohexane-1,2,3,4,5,6-hexol

(1R,2R,3S,4S,5S,6s)-cyclohexane-1,2,3,4,5,6-hexol

C6H12O6 (180.0633852)


   

L-Sorbose

L-Sorbose

C6H12O6 (180.0633852)


The L enantiomer of sorbose, a ketone-containing hexose (a six-carbon monosaccharide). (3S,4R,5S)-1,3,4,5,6-Pentahydroxyhexan-2-one is an endogenous metabolite. (3S,4R,5S)-1,3,4,5,6-Pentahydroxyhexan-2-one is an endogenous metabolite.

   

scyllo-Inositol

scyllo-Inositol

C6H12O6 (180.0633852)


Scyllo-Inositol, an amyloid inhibitor, potentialy inhibits α-synuclein aggregation. Scyllo-Inositol stabilizes a non-fibrillar non-toxic form of amyloid-β peptide (Aβ42) in vitro, reverses cognitive deficits, and reduces synaptic toxicity and lowers amyloid plaques in an Alzheimer's disease mouse model[1]. Scyllo-Inositol, an amyloid inhibitor, potentialy inhibits α-synuclein aggregation. Scyllo-Inositol stabilizes a non-fibrillar non-toxic form of amyloid-β peptide (Aβ42) in vitro, reverses cognitive deficits, and reduces synaptic toxicity and lowers amyloid plaques in an Alzheimer's disease mouse model[1].

   

l-galactose

(2S,3R,4R,5S)-2,3,4,5,6-pentahydroxyhexanal

C6H12O6 (180.0633852)


Occurs in agar-agar. L-Galactose is found in flaxseed and italian sweet red pepper.

   

D-Glucopyranoside

D-Glucopyranoside

C6H12O6 (180.0633852)


   
   

alpha-D-Glucose

alpha-D-Glucose

C6H12O6 (180.0633852)


D-Glucopyranose having alpha-configuration at the anomeric centre.

   

Beta-D-allose

Beta-D-allose

C6H12O6 (180.0633852)


A D-allopyranose with a beta-configuration at the anomeric position.

   
   

Lyxo-2-hexulose

Lyxo-2-hexulose

C6H12O6 (180.0633852)


   
   

myo-Inositol

myo-Inositol

C6H12O6 (180.0633852)


An inositol having myo- configuration.

   
   

IS_GLUCOSE-1,2,3,4,5,6,6-D7

IS_GLUCOSE-1,2,3,4,5,6,6-D7

C6H12O6 (180.0633852)


   
   

b-D-Galactopyranose

b-D-Galactopyranose

C6H12O6 (180.0633852)


   

1,3-Dihydroxyacetone

1,3-Dihydroxyacetone dimer

C6H12O6 (180.0633852)


   

3-Deoxyarabinohexonic acid

3-Deoxyarabinohexonic acid

C6H12O6 (180.0633852)


   

Mucic acid

2,3,4,5-tetrahydroxyhexanoic acid

C6H12O6 (180.0633852)


   

3,6-bis(hydroxymethyl)-1,4-dioxane-2,5-diol

3,6-bis(hydroxymethyl)-1,4-dioxane-2,5-diol

C6H12O6 (180.0633852)


   

(2R,3S,4S,5S)-2,3,4,5,6-pentahydroxyhexanal-14C

(2R,3S,4S,5S)-2,3,4,5,6-pentahydroxyhexanal-14C

C6H12O6 (180.0633852)


   

(2R,3S,4S,5S)-2,3,4,5,6-pentahydroxyhexanal-13C

(2R,3S,4S,5S)-2,3,4,5,6-pentahydroxyhexanal-13C

C6H12O6 (180.0633852)


   

L-Talose

l-(-)-talose

C6H12O6 (180.0633852)


   

poly(ethylene glycol succinate)

poly(ethylene glycol succinate)

C6H12O6 (180.0633852)


   

L-Psicose

D-(−)-Fructose

C6H12O6 (180.0633852)


   

L-Glucose

(2S,3R,4S,5S)-2,3,4,5,6-pentahydroxyhexanal

C6H12O6 (180.0633852)


D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents L-Glucose (L-(-)-Glucose) is an enantiomer of D-glucose. L-Glucose can promote food intake[1].

   

dl-glyceraldehyde dimer

dl-glyceraldehyde dimer

C6H12O6 (180.0633852)


   
   
   

D(+)-Glucose

(2R,3S,4R,5R)-2,3,4,5,6-pentahydroxyhexanal

C6H12O6 (180.0633852)


D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents

   

β-D-Fructofuranose

2,5-bis(hydroxymethyl)oxolane-2,3,4-triol

C6H12O6 (180.0633852)


   

D-mannofuranose

alpha-D-Galactofuranose

C6H12O6 (180.0633852)


A mannofuranose that has D configuration. A D-mannofuranose in which the carbon bearing the anomeric hydroxy group has alpha configuration. A D-galactofuranose that has alpha- configuration at the anomeric centre.

   

beta-d-Psicopyranose

psicose (β-pyranose)

C6H12O6 (180.0633852)


   

D-Gal

beta-D-galactofuranose

C6H12O6 (180.0633852)


A D-galactofuranose that has beta- configuration at the anomeric centre.

   

α-D-Allopyranose

alpha-D-allopyranose

C6H12O6 (180.0633852)


   
   

d-glucose-1-14c

d-glucose-1-14c

C6H12O6 (180.0633852)


   

D-(+)-Allose

(2R,3S,4S,5S)-2,3,4,5,6-pentahydroxyhexanal

C6H12O6 (180.0633852)


   

D-(-)-Tagatose

(3S,4S,5R)-1,3,4,5,6-pentahydroxyhexan-2-one

C6H12O6 (180.0633852)


D064449 - Sequestering Agents > D002614 - Chelating Agents > D007502 - Iron Chelating Agents

   

beta-L-fructofuranose

beta-L-fructofuranose

C6H12O6 (180.0633852)


A L-fructofuranose with a beta-configuration at the anomeric position.

   

beta-L-sorbopyranose

beta-L-sorbopyranose

C6H12O6 (180.0633852)


   

L-(−)-Sorbose

L-(-)-Sorbose

C6H12O6 (180.0633852)


(3S,4R,5S)-1,3,4,5,6-Pentahydroxyhexan-2-one is an endogenous metabolite. (3S,4R,5S)-1,3,4,5,6-Pentahydroxyhexan-2-one is an endogenous metabolite.

   

alpha-D-fructofuranose

alpha-D-fructofuranose

C6H12O6 (180.0633852)


   

β-D-Allopyranose

(2R,3R,4R,5R)-2,3,4,5,6-Pentahydroxyhexanal

C6H12O6 (180.0633852)


D-Allose is an endogenous metabolite. D-Allose is an endogenous metabolite.

   

beta-L-idopyranose

beta-L-idopyranose

C6H12O6 (180.0633852)


The beta-anomer of L-idopyranose.

   

alpha-D-Talopyranose

alpha-D-Talopyranose

C6H12O6 (180.0633852)


D-Talopyranose having alpha-configuration at the anomeric centre.

   

L-mannopyranose

L-mannopyranose

C6H12O6 (180.0633852)


The L-enantiomer of mannopyranose.

   

beta-D-allofuranose

beta-D-allofuranose

C6H12O6 (180.0633852)


   

beta-L-galactopyranose

beta-L-galactopyranose

C6H12O6 (180.0633852)


   

alpha-D-Allofuranose

alpha-D-Allofuranose

C6H12O6 (180.0633852)


   

beta-D-gulopyranose

beta-D-gulopyranose

C6H12O6 (180.0633852)


   

Alpha-D-Altropyranose

Alpha-D-Altropyranose

C6H12O6 (180.0633852)


   

beta-D-altropyranose

beta-D-altropyranose

C6H12O6 (180.0633852)


   

alpha-L-mannopyranose

alpha-L-mannopyranose

C6H12O6 (180.0633852)


   

alpha-D-idopyranose

alpha-D-idopyranose

C6H12O6 (180.0633852)


   

alpha-D-gulopyranose

alpha-D-gulopyranose

C6H12O6 (180.0633852)


   

beta-L-gulopyranose

beta-L-gulopyranose

C6H12O6 (180.0633852)


   

alpha-D-Psicopyranose

alpha-D-Psicopyranose

C6H12O6 (180.0633852)


   

beta-D-idopyranose

beta-D-idopyranose

C6H12O6 (180.0633852)


   

alpha-D-fructopyranose

alpha-D-fructopyranose

C6H12O6 (180.0633852)


   

alpha-L-sorbofuranose

alpha-L-sorbofuranose

C6H12O6 (180.0633852)


   

beta-L-mannopyranose

beta-L-mannopyranose

C6H12O6 (180.0633852)


   

alpha-L-gulopyranose

alpha-L-gulopyranose

C6H12O6 (180.0633852)


   

D-(−)-Gulose

(2R,3R,4S,5R)-2,3,4,5,6-pentahydroxyhexanal

C6H12O6 (180.0633852)


   

beta-L-fructopyranose

beta-L-fructopyranose

C6H12O6 (180.0633852)


A L-fructopyranose with a beta-configuration at the anomeric position.

   
   

alpha-L-fructopyranose

alpha-L-fructopyranose

C6H12O6 (180.0633852)


A L-fructopyranose with an alpha-configuration at the anomeric position.

   

alpha-L-fructofuranose

alpha-L-fructofuranose

C6H12O6 (180.0633852)


A L-fructofuranose with an alpha-configuration at the anomeric position.

   

beta-L-sorbofuranose

beta-L-sorbofuranose

C6H12O6 (180.0633852)


   

L-allopyranose

L-allopyranose

C6H12O6 (180.0633852)


The L-enantiomer of allopyranose.

   

alpha-D-tagatopyranose

alpha-D-tagatopyranose

C6H12O6 (180.0633852)


A D-tagatopyranose with an alpha-configuration at the anomeric center.

   

2-C-Hydroxymethyl-D-ribose

2-C-Hydroxymethyl-D-ribose

C6H12O6 (180.0633852)


   

alpha-L-idopyranose

alpha-L-idopyranose

C6H12O6 (180.0633852)


The alpha-anomer of L-idopyranose.

   

alpha-D-sorbopyranose

alpha-D-sorbopyranose

C6H12O6 (180.0633852)


A D-sorbopyranose with an alpha-configuration at the anomeric center.

   

beta-D-tagatofuranose

beta-D-tagatofuranose

C6H12O6 (180.0633852)


A D-tagatofuranose with a beta-configuration at the anomeric center.

   

beta-L-altrose

beta-L-altrose

C6H12O6 (180.0633852)


Pyranose form of altrose in beta-L configuration

   

Unii-OG95YI8xcf

Unii-OG95YI8xcf

C6H12O6 (180.0633852)


   

alpha-L-glucopyranose

alpha-L-glucopyranose

C6H12O6 (180.0633852)


   

beta-D-mannofuranose

beta-D-mannofuranose

C6H12O6 (180.0633852)


A D-mannofuranose that has beta configuration at the anomeric centre.

   

3-Deoxyhexonic acid

3-Deoxyhexonic acid

C6H12O6 (180.0633852)


   

alpha-D-sorbofuranose

alpha-D-sorbofuranose

C6H12O6 (180.0633852)


A D-sorbofuranose with an alpha-configuration at the anomeric center.

   

alpha-L-mannofuranose

alpha-L-mannofuranose

C6H12O6 (180.0633852)


An L-mannofuranose that has alpha- configuration at the anomeric centre.

   

beta-L-galactofuranose

beta-L-galactofuranose

C6H12O6 (180.0633852)


An L-galactofuranose in which the anomeric centre has beta configuration.

   

alpha-L-galactofuranose

alpha-L-galactofuranose

C6H12O6 (180.0633852)


An L-galactofuranose that has alpha- configuration at the anomeric centre.

   

beta-D-Talofuranose

beta-D-Talofuranose

C6H12O6 (180.0633852)


A D-talotyranose that has beta- configuration at the anomeric centre.

   

(2R,3S,4R,5S)-2,3,4,5,6-pentahydroxyhexanal

(2R,3S,4R,5S)-2,3,4,5,6-pentahydroxyhexanal

C6H12O6 (180.0633852)


   

D-Glucofuranose

D-Glucofuranose

C6H12O6 (180.0633852)


The furanose form of D-glucose.

   

beta-D-glucofuranose

beta-D-glucofuranose

C6H12O6 (180.0633852)


A D-glucofuranose that has beta- configuration at the anomeric centre.

   

beta-D-sorbofuranose

beta-D-sorbofuranose

C6H12O6 (180.0633852)


A D-sorbofuranose with a beta-configuration at the anomeric center.

   

alpha-D-glucofuranose

alpha-D-glucofuranose

C6H12O6 (180.0633852)


A D-glucofuranose that has alpha configuration at the anomeric centre.

   

beta-L-mannofuranose

beta-L-mannofuranose

C6H12O6 (180.0633852)


An L-mannofuranose that has beta configuration at the anomeric centre.

   

beta-D-Altrofuranose

beta-D-Altrofuranose

C6H12O6 (180.0633852)


   

alpha-D-tagatofuranose

alpha-D-tagatofuranose

C6H12O6 (180.0633852)


A D-tagatofuranose with an alpha-configuration at the anomeric center.

   

beta-L-glucofuranose

beta-L-glucofuranose

C6H12O6 (180.0633852)


An L-glucofuranose which has beta- configuration at the anomeric centre.

   

alpha-L-glucofuranose

alpha-L-glucofuranose

C6H12O6 (180.0633852)


An L-glucofuranose that has alpha configuration at the anomeric centre.

   

beta-D-Gulofuranose

beta-D-Gulofuranose

C6H12O6 (180.0633852)


A D-gulofuranose that has beta configuration at the anomeric centre.

   

alpha-L-Idofuranose

alpha-L-Idofuranose

C6H12O6 (180.0633852)


An L-idofuranose that has alpha configuration at the carbon bearing the anomeric hydroxy group.

   

beta-D-sorbopyranose

beta-D-sorbopyranose

C6H12O6 (180.0633852)


A D-sorbopyranose with a beta-configuration at the anomeric center.

   

alpha-D-Altrofuranose

alpha-D-Altrofuranose

C6H12O6 (180.0633852)


   

alpha-D-Gulofuranose

alpha-D-Gulofuranose

C6H12O6 (180.0633852)


A D-gulofuranose that has alpha- configuration at the anomeric centre.

   

beta-L-Idofuranose

beta-L-Idofuranose

C6H12O6 (180.0633852)


L-idofuranose in which the carbon bearing the anomeric hydroxy group has beta configuration.

   

beta-D-Idofuranose

beta-D-Idofuranose

C6H12O6 (180.0633852)


   

alpha-D-Idofuranose

alpha-D-Idofuranose

C6H12O6 (180.0633852)


   

beta-L-Gulofuranose

beta-L-Gulofuranose

C6H12O6 (180.0633852)


An L-gulofuranose in which the anomeric centre has beta- configuration.

   

alpha-L-Gulofuranose

alpha-L-Gulofuranose

C6H12O6 (180.0633852)


An L-gulofuranose that has alpha configuration at the anomeric cenrtre.

   

3-Deoxy-D-lyxo-hexonic acid

3-Deoxy-D-lyxo-hexonic acid

C6H12O6 (180.0633852)


   

Fructon

(3S,4R,5R)-1,3,4,5,6-pentahydroxyhexan-2-one

C6H12O6 (180.0633852)


D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents D-Fructose (D(-)-Fructose) is a naturally occurring monosaccharide found in many plants. D-Fructose (D(-)-Fructose) is a naturally occurring monosaccharide found in many plants.

   

maltodextrin

(2R,3S,4R,5R)-2,3,4,5,6-pentahydroxyhexanal

C6H12O6 (180.0633852)


D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents

   

CHEBI:28729

(2S,3S,4S,5S,6R)-6-(hydroxymethyl)tetrahydropyran-2,3,4,5-tetrol

C6H12O6 (180.0633852)


D009676 - Noxae > D011042 - Poisons > D014688 - Venoms COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS D-Mannose is a carbohydrate, which plays an important role in human metabolism, especially in the glycosylation of specific proteins. D-Mannose is a carbohydrate, which plays an important role in human metabolism, especially in the glycosylation of specific proteins.

   

CHEBI:37720

(2S,3S,4S,5R)-2,5-bis(hydroxymethyl)tetrahydrofuran-2,3,4-triol

C6H12O6 (180.0633852)


   

CHEBI:17118

(2R,3S,4S,5R)-2,3,4,5,6-pentahydroxyhexanal

C6H12O6 (180.0633852)


   

CHEBI:28034

(2R,3R,4S,5R,6R)-6-(hydroxymethyl)tetrahydropyran-2,3,4,5-tetrol

C6H12O6 (180.0633852)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Mannose-b

(2R,3S,4S,5S,6R)-6-(hydroxymethyl)tetrahydropyran-2,3,4,5-tetrol

C6H12O6 (180.0633852)


COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Frutabs

(2R,3S,4R,5R)-2-(hydroxymethyl)tetrahydropyran-2,3,4,5-tetrol

C6H12O6 (180.0633852)


COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Fructose is a simple ketonic monosaccharide found in many plants, where it is often bonded to glucose to form the disaccharide sucrose. Fructose is a simple ketonic monosaccharide found in many plants, where it is often bonded to glucose to form the disaccharide sucrose.

   

CHEBI:28645

(2R,3S,4S,5R)-2,5-bis(hydroxymethyl)tetrahydrofuran-2,3,4-triol

C6H12O6 (180.0633852)


   

alpha-D-Psicofuranose

alpha-D-Psicofuranose

C6H12O6 (180.0633852)


   

beta-d-Talopyranose

beta-d-Talopyranose

C6H12O6 (180.0633852)


A D-talopyranose with a beta-configuration at the anomeric position.

   

L-xylo-3-hexulose

L-xylo-3-hexulose

C6H12O6 (180.0633852)


   

alpha-L-allopyranose

alpha-L-allopyranose

C6H12O6 (180.0633852)


   

L-sorbofuranose

L-sorbofuranose

C6H12O6 (180.0633852)


   
   

L-fructopyranose

L-fructopyranose

C6H12O6 (180.0633852)


The L-enantiomer of fructopyranose.

   

D-tagatofuranose

D-tagatofuranose

C6H12O6 (180.0633852)


The furanose form of D-tagatose.

   
   
   

alpha-D-(+)-Talose

alpha-D-(+)-Talose

C6H12O6 (180.0633852)


   

beta-L-allopyranose

beta-L-allopyranose

C6H12O6 (180.0633852)


   

alpha-L-altropyranose

alpha-L-altropyranose

C6H12O6 (180.0633852)


   

(2r,3r,4s,5r)-5-[(1s)-1,2-Dihydroxyethyl]oxolane-2,3,4-Triol

(2r,3r,4s,5r)-5-[(1s)-1,2-Dihydroxyethyl]oxolane-2,3,4-Triol

C6H12O6 (180.0633852)


   

beta-l-Talopyranose

beta-l-Talopyranose

C6H12O6 (180.0633852)


An L-talopyranose in which the carbon bearing the anomeric hydroxy group has beta configuration.

   
   

(2S,3R,4S,5R)-5-[(1S)-1,2-dihydroxyethyl]oxolane-2,3,4-triol

(2S,3R,4S,5R)-5-[(1S)-1,2-dihydroxyethyl]oxolane-2,3,4-triol

C6H12O6 (180.0633852)


   

D-sorbofuranose

D-sorbofuranose

C6H12O6 (180.0633852)


The D-stereoisomer of sorbofuranose.

   

L-Glucofuranose

L-Glucofuranose

C6H12O6 (180.0633852)


The furanose form of L-glucose.

   

L-Idofuranose

L-Idofuranose

C6H12O6 (180.0633852)


The furanose form of L-idose.

   

beta-L-allofuranose

beta-L-allofuranose

C6H12O6 (180.0633852)


   

alpha-L-allofuranose

alpha-L-allofuranose

C6H12O6 (180.0633852)


   

l-Gulofuranose

l-Gulofuranose

C6H12O6 (180.0633852)


The furanose form of L-gulose.

   

l-Mannofuranose

l-Mannofuranose

C6H12O6 (180.0633852)


A mannofuranose that has L configuration.

   

L-talopyranose

L-talopyranose

C6H12O6 (180.0633852)


The pyranose form of L-talose.

   

D-Talofuranose

D-Talofuranose

C6H12O6 (180.0633852)


The furanose form of D-talose.

   
   
   

L-galactofuranose

L-galactofuranose

C6H12O6 (180.0633852)


The furanose form of L-galactose.

   

beta-L-altrofuranose

beta-L-altrofuranose

C6H12O6 (180.0633852)


   

(2R,3R,4R,5S)-5-[(1S)-1,2-Dihydroxyethyl]oxolane-2,3,4-triol

(2R,3R,4R,5S)-5-[(1S)-1,2-Dihydroxyethyl]oxolane-2,3,4-triol

C6H12O6 (180.0633852)


   
   

alpha-D-glucose-1,2-((13)C2)

alpha-D-glucose-1,2-((13)C2)

C6H12O6 (180.0633852)


   

alpha-D-Talofuranose

alpha-D-Talofuranose

C6H12O6 (180.0633852)


A D-talofuranose that has alpha configuration at the anomeric centre.

   

l-Talofuranose

l-Talofuranose

C6H12O6 (180.0633852)


L-Talose in its furanose ring form.

   

D-altrofuranose

D-altrofuranose

C6H12O6 (180.0633852)


   

L-altrofuranose

L-altrofuranose

C6H12O6 (180.0633852)


   

Rac-2-hydroxypropanoic acid

Rac-2-hydroxypropanoic acid

C6H12O6 (180.0633852)


   

ZYMOSAN A

BETA-D-GLUCOSE (CONTAINS ALPHA-D-GLUCOSE)

C6H12O6 (180.0633852)


COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

(2R,3S,4S,5R)-2,3,4,5,6-pentahydroxyhexanal

(2R,3S,4S,5R)-2,3,4,5,6-pentahydroxyhexanal

C6H12O6 (180.0633852)


   

alpha-D-Mannopyranose

alpha-D-Mannopyranose

C6H12O6 (180.0633852)


D009676 - Noxae > D011042 - Poisons > D014688 - Venoms COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS D-Mannose is a carbohydrate, which plays an important role in human metabolism, especially in the glycosylation of specific proteins. D-Mannose is a carbohydrate, which plays an important role in human metabolism, especially in the glycosylation of specific proteins.

   

Hexose

D-Galactose-1-13C

C6H12O6 (180.0633852)


   

D-Allose

D-Allose

C6H12O6 (180.0633852)


D-Allose is an endogenous metabolite. D-Allose is an endogenous metabolite.

   

alpha-D-Galactose

alpha-D-Galactose

C6H12O6 (180.0633852)


D-Galactopyranose having alpha-configuration at the anomeric centre. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

beta-D-Galactopyranose

beta-D-Galactopyranose

C6H12O6 (180.0633852)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

alpha-L-Sorbopyranose

alpha-L-Sorbopyranose

C6H12O6 (180.0633852)


   

L-Galactopyranose

L-Galactopyranose

C6H12O6 (180.0633852)


The L-enantiomer of galactopyranose.

   

D-Fructofuranose

D-Fructofuranose

C6H12O6 (180.0633852)


A fructofuranose that has D configuration. D-Fructose (D(-)-Fructose) is a naturally occurring monosaccharide found in many plants. D-Fructose (D(-)-Fructose) is a naturally occurring monosaccharide found in many plants.

   

d-Galactofuranose

d-Galactofuranose

C6H12O6 (180.0633852)


The furanose form of D-galactose.

   

beta-D-Hamamelopyranose

beta-D-Hamamelopyranose

C6H12O6 (180.0633852)


   

L-rhamnonic acid

L-rhamnonic acid

C6H12O6 (180.0633852)


   

2-deoxy-D-gluconic acid

2-deoxy-D-gluconic acid

C6H12O6 (180.0633852)


   
   

3-Deoxy-D-arabino-hexonic acid

3-Deoxy-D-arabino-hexonic acid

C6H12O6 (180.0633852)


A hexonic acid that is 6-hydroxyhexanoic acid carrying a hydroxy group at positions 2S, 4S and 5R.

   

aldehydo-D-allose

aldehydo-D-allose

C6H12O6 (180.0633852)


A D-allose in open-chain form.

   

alpha-L-Galactopyranose

alpha-L-Galactopyranose

C6H12O6 (180.0633852)


   

L-glucopyranose

L-glucopyranose

C6H12O6 (180.0633852)


The L-enantiomer of glucopyranose.

   

alpha-D-allose

alpha-D-allose

C6H12O6 (180.0633852)


A D-allopyranose with an alpha-configuration at the anomeric position.

   

beta-L-galactose

beta-L-galactose

C6H12O6 (180.0633852)


A L-galactopyranose with a beta-configuration at the anomeric position.

   

beta-D-gulose

beta-D-gulose

C6H12O6 (180.0633852)


A D-gulopyranose with a beta-configuration at the anomeric position.

   

alpha-L-mannose

alpha-L-mannose

C6H12O6 (180.0633852)


A L-mannopyranose with an alpha-configuration at the anomeric position.

   

beta-L-gulose

beta-L-gulose

C6H12O6 (180.0633852)


A L-gulopyranose with a beta-configuration.

   

aldehydo-L-mannose

aldehydo-L-mannose

C6H12O6 (180.0633852)


The L-enantiomer of aldehydo-mannose.

   

beta-L-mannose

beta-L-mannose

C6H12O6 (180.0633852)


A L-mannopyranose with a beta-configuration at the anomeric position.

   

alpha-L-gulose

alpha-L-gulose

C6H12O6 (180.0633852)


A L-gulopyranose with an alpha-configuration at the anomeric position.

   

beta-D-Tagatopyranose

beta-D-Tagatopyranose

C6H12O6 (180.0633852)


A D-tagatopyranose with a beta-configuration at the anomeric center.

   

alpha-L-talopyranose

alpha-L-talopyranose

C6H12O6 (180.0633852)


An L-talopyranose that has alpha- configuration at the anomeric centre.

   

keto-L-fructose

keto-L-fructose

C6H12O6 (180.0633852)


   

beta-L-allose

beta-L-allose

C6H12O6 (180.0633852)


A L-allopyranose with a beta-configuration at the anomeric position.

   

alpha-L-talofuranose

alpha-L-talofuranose

C6H12O6 (180.0633852)


An L-talofuranose in which the anomeric carbon has alpha configuration.

   

beta-L-glucose

beta-L-glucose

C6H12O6 (180.0633852)


A L-glucopyranose with a beta-configuration at the anomeric position.

   

2,3,4,5-tetrahydroxyhexanoic acid

2,3,4,5-tetrahydroxyhexanoic acid

C6H12O6 (180.0633852)


   

beta-L-talofuranose

beta-L-talofuranose

C6H12O6 (180.0633852)


An L-talofuranose in which the anomeric centre has beta configuration.

   

aldehydo-L-idose

aldehydo-L-idose

C6H12O6 (180.0633852)


The open chain form of L-idose.

   
   

keto-L-tagatose

keto-L-tagatose

C6H12O6 (180.0633852)


The straight-chain keto form of L-tagatose.

   

muco-Inositol

muco-Inositol

C6H12O6 (180.0633852)


An inositol that is cyclohexane-1,2,3,4,5,6-hexol having a (1R,2R,3r,4R,5S,6r)-configuration.

   

aldehydo-L-galactose

aldehydo-L-galactose

C6H12O6 (180.0633852)


   

aldehydo-L-glucose

aldehydo-L-glucose

C6H12O6 (180.0633852)


The L-enantiomer of aldehydo-glucose.

   

alpha-L-glucose

alpha-L-glucose

C6H12O6 (180.0633852)


A L-glucopyranose with an alpha-configuration at the anomeric position.

   

aldehydo-D-mannose

aldehydo-D-mannose

C6H12O6 (180.0633852)


The D-enantiomer of aldehydo-mannose.

   

alpha-D-gulose

alpha-D-gulose

C6H12O6 (180.0633852)


A D-gulopyranose with an alpha-configuration at the anomeric position.

   

aldehydo-D-gulose

aldehydo-D-gulose

C6H12O6 (180.0633852)


The open chain form of D-gulose.

   

aldehydo-L-gulose

aldehydo-L-gulose

C6H12O6 (180.0633852)


   

D-Fructopyranose

D-Fructopyranose

C6H12O6 (180.0633852)


A fructopyranose having D-configuration.

   

alpha-L-allose

alpha-L-allose

C6H12O6 (180.0633852)


A L-allopyranose with an alpha-configuration a the anomeric position.

   

aldehydo-L-allose

aldehydo-L-allose

C6H12O6 (180.0633852)


An L-allose in open-chain form.

   

keto-D-fructose

keto-D-fructose

C6H12O6 (180.0633852)


The open-chain form of D-fructose.

   

aldehydo-L-talose

aldehydo-L-talose

C6H12O6 (180.0633852)


The acyclic form of L-talose.

   

L-idopyranose

L-idopyranose

C6H12O6 (180.0633852)


The pyranose form of L-idose.

   

keto-D-tagatose

keto-D-tagatose

C6H12O6 (180.0633852)


The straight-chain keto form of D-tagatose.

   

beta-D-Mannose

beta-D-Mannose

C6H12O6 (180.0633852)


A D-mannopyranose in which the anomeric centre has beta-configuration.

   

D-allopyranose

D-allopyranose

C6H12O6 (180.0633852)


The D-enantiomer of allopyranose.

   

D-Galactopyranose

D-Galactopyranose

C6H12O6 (180.0633852)


A galactopyranose having D-configuration.

   

D-Glucopyranose

D-Glucopyranose

C6H12O6 (180.0633852)


A glucopyranose having D-configuration.

   

L-sorbopyranose

L-sorbopyranose

C6H12O6 (180.0633852)


The L-stereoisomer of sorbopyranose.

   

beta-D-Glucose

beta-D-Glucose

C6H12O6 (180.0633852)


D-Glucopyranose with beta configuration at the anomeric centre.

   
   

D-gulofuranose

D-gulofuranose

C6H12O6 (180.0633852)


The furanose form of D-gulose.

   

alpha-D-Mannose

alpha-D-Mannose

C6H12O6 (180.0633852)


D-Mannopyranose having alpha-configuration at the anomeric centre.

   

D-Tagatopyranose

D-Tagatopyranose

C6H12O6 (180.0633852)


The pyranose form of D-tagatose.

   

aldehydo-D-glucose

aldehydo-D-glucose

C6H12O6 (180.0633852)


The open chain form of D-glucose.

   

alpha-L-Galactose

alpha-L-Galactose

C6H12O6 (180.0633852)


A L-galactopyranose with an alpha-configuration at the anomeric center.

   

aldehydo-D-galactose

aldehydo-D-galactose

C6H12O6 (180.0633852)


   
   
   

Fructose

D-arabino-2-Hexulose

C6H12O6 (180.0633852)


Fructose. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=57-48-7 (retrieved 2024-06-26) (CAS RN: 57-48-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Fructose is an abundant monosaccharide in the human diet that the body needs to metabolize. It is present in honey, fruits, vegetables, and high-fructose corn syrup used during manufacturing beverages (soft drinks) and food. Their consumption results in a significant amount of added sugars entering the diet, approximately half of which is fructose. Sucrose (table sugar) converts to fructose and glucose by acid hydrolysis in the stomach, and sucrase-isomaltase cleavage in the small intestine.[1] Transport and metabolism of fructose do not require insulin; only a few tissues, such as the liver, intestine, kidney, adipose tissue, and muscle, can metabolize it (see Image. The Metabolic Pathway of Fructose). Glucose and fructose have similar metabolic fates because most of the dietary fructose converts into glucose.[2] The mechanism of fructose sensing helps to understand the metabolism and potential pathophysiological consequences of excessive sugar intake. Fructose is a common sugar found in fruits, vegetables, and honey. It's also a major ingredient in high-fructose corn syrup and table sugar. Recent studies have cast fructose as a bad guy, linking it to obesity, diabetes, and nonalcoholic fatty liver disease and inflammation, and leading to anti-fructose sentiment in the general media. But don't reject a food just because it contains fructose, says Dr. Bruce Bistrian, a professor at Harvard Medical School. "Fructose is naturally found in fruits. Fruits are not harmful and are even beneficial in almost any amount," he explains. Fruits contain lots of fiber. The fructose is bound to the fiber, which slows its absorption. Even more important, says Dr. Bistrian, "fruits and vegetables contain many other essential nutrients, such as flavonoids." D-Fructose (D(-)-Fructose) is a naturally occurring monosaccharide found in many plants. D-Fructose (D(-)-Fructose) is a naturally occurring monosaccharide found in many plants.