Tyrosol (BioDeep_00000000441)
Secondary id: BioDeep_00000861852, BioDeep_00000871956
human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite Chemicals and Drugs BioNovoGene_Lab2019 natural product
代谢物信息卡片
化学式: C8H10O2 (138.0681)
中文名称: 对羟基苯乙醇, 酪醇, 2-(4-羟基苯基)乙酸乙酯, 2-(4-羟苯基)乙醇, 2-(4-羟基苯基)乙醇
谱图信息:
最多检出来源 Homo sapiens(blood) 22.44%
分子结构信息
SMILES: C1=CC(=CC=C1CCO)O
InChI: InChI=1S/C8H10O2/c9-6-5-7-1-3-8(10)4-2-7/h1-4,9-10H,5-6H2
描述信息
Tyrosol is a phenolic compound present in two of the traditional components of the Mediterranean diet: wine and virgin olive oil. The presence of tyrosol has been described in red and white wines. Tyrosol is also present in vermouth and beer. Tyrosol has been shown to be able to exert antioxidant activity in vitro studies. Oxidation of low-density lipoprotein (LDL) appears to occur predominantly in arterial intimae in microdomains sequestered from antioxidants of plasma. The antioxidant content of the LDL particle is critical for its protection. The ability of tyrosol to bind human LDL has been reported. The bioavailability of tyrosol in humans from virgin olive oil in its natural form has been demonstrated. Urinary tyrosol increases, reaching a peak at 0-4 h after virgin olive oil administration. Men and women show a different pattern of urinary excretion of tyrosol. Moreover, tyrosol is absorbed in a dose-dependent manner after sustained and moderate doses of virgin olive oil. Tyrosol from wine or virgin olive oil could exert beneficial effects on human health in vivo if its biological properties are confirmed (PMID 15134375). Tyrosol is a microbial metabolite found in Bifidobacterium, Escherichia and Lactobacillus (PMID:28393285).
2-(4-hydroxyphenyl)ethanol is a phenol substituted at position 4 by a 2-hydroxyethyl group. It has a role as an anti-arrhythmia drug, an antioxidant, a cardiovascular drug, a protective agent, a fungal metabolite, a geroprotector and a plant metabolite. It is functionally related to a 2-phenylethanol.
2-(4-Hydroxyphenyl)ethanol is a natural product found in Thalictrum petaloideum, Casearia sylvestris, and other organisms with data available.
Tyrosol is a metabolite found in or produced by Saccharomyces cerevisiae.
See also: Sedum roseum root (part of); Rhodiola crenulata root (part of).
D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents
A phenol substituted at position 4 by a 2-hydroxyethyl group.
D020011 - Protective Agents > D000975 - Antioxidants
Tyrosol is a derivative of phenethyl alcohol. Tyrosol attenuates pro-inflammatory cytokines from cultured astrocytes and NF-κB activation. Anti-oxidative and anti-inflammatory effects[1].
Tyrosol is a derivative of phenethyl alcohol. Tyrosol attenuates pro-inflammatory cytokines from cultured astrocytes and NF-κB activation. Anti-oxidative and anti-inflammatory effects[1].
同义名列表
69 个代谢物同义名
4-hydroxy-Benzeneethanol;4-Hydroxyphenylethanol;beta-(4-Hydroxyphenyl)ethanol; InChI=1/C8H10O2/c9-6-5-7-1-3-8(10)4-2-7/h1-4,9-10H,5-6H; 2-(4-Hydroxyphenyl)ethanol, analytical standard; TYROSOL (CONSTITUENT OF RHODIOLA ROSEA) [DSC]; METOPROLOL SUCCINATE IMPURITY G [EP IMPURITY]; METOPROLOL SUCCINATE IMPURITY G (EP IMPURITY); METOPROLOL TARTRATE IMPURITY G (EP IMPURITY); METOPROLOL TARTRATE IMPURITY G [EP IMPURITY]; TYROSOL (CONSTITUENT OF RHODIOLA ROSEA); 2-(4-hydroxyphenyl)ethyl acetate; 2-(4-Hydroxyphenyl)ethyl Alcohol; 2-(4-Hydroxyphenyl)ethanol, 98\\%; .beta.-(p-Hydroxyphenyl)ethanol; .beta.-(4-Hydroxyphenyl)ethanol; 2-(3,4-dihydroxyphenyl)ethanol; beta-(p-Hydroxyphenyl)ethanol; beta-(4-hydroxyphenyl)ethanol; Ethanol, 2-(4-hydroxyphenyl)-; 2-(4-Hydroxyphenyl)-1-ethanol; Phenethyl alcohol, p-hydroxy-; 4-Hydroxyphenylmethylcarbinol; (4-Hydroxyphenethyl) alcohol; Ethanol, 2-(4-hydroxyphenyl); 4-Hydroxyphenylethyl alcohol; HYDROXYPHENETHYL ALCOHOL, P-; p-Hydroxyphenylethyl alcohol; 2-(4-hydroxyphenyl) ethanol; 2-(4-hydroxyphenyl)-ethanol; 2-(p-hydroxyphenyl) ethanol; β-(4-Hydroxyphenyl)ethanol; p-Hydroxyphenethyl alcohol; 4-Hydroxyphenethyl alcohol; Benzeneethanol, 4-hydroxy-; b-(4-Hydroxyphenyl)ethanol; β-(p-Hydroxyphenyl)ethanol; b-(p-Hydroxyphenyl)ethanol; 2-(4-Hydroxyphenyl)ethanol; 2-(P-HYDROXYPHENYL)ETHANOL; 4-(2-Hydroxy-ethyl)-phenol; 4-hydroxyphenethylalcohol; para-hydroxyphenylethanol; p-Hydroxy-benzeneethanol; p-(2-Hydroxyethyl)phenol; 4-hydroxy-Benzeneethanol; 4-(2-Hydroxyethyl)phenol; 4-Hydroxyphenyl ethanol; 4-hydroxybenzeneethanol; 4-Hydroxyphenyl alcohol; Metoprolol IMpurity 07; 4-hydroxybenzenethanol; 4-(Hydroxyethyl)phenol; 4-hydroxyphenylethanol; p-hydroxyphenylethanol; tyrosol acetate; UNII-1AK4MU3SNX; Tyrosol ,(S); TYROSOL [MI]; 1AK4MU3SNX; p-Thyrosol; 4-tyrosol; Tyrosol C; p-tyrosol; n-tyrosol; Tyrosol; p-HPEA; YRL; 2-(4-Hydroxyphenyl)ethanol; 4-Hydroxyphenylethanol; 2-(4-Hydroxyphenyl)ethyl acetate
数据库引用编号
27 个数据库交叉引用编号
- ChEBI: CHEBI:1879
- KEGG: C06044
- PubChem: 10393
- HMDB: HMDB0004284
- Metlin: METLIN7044
- DrugBank: DB16855
- ChEMBL: CHEMBL53566
- Wikipedia: Tyrosol
- MeSH: 4-hydroxyphenylethanol
- ChemIDplus: 0000501940
- MetaCyc: CPD3O-4151
- KNApSAcK: C00029515
- foodb: FDB012695
- chemspider: 9964
- CAS: 501-94-0
- medchemexpress: HY-N0474
- PMhub: MS000000119
- MetaboLights: MTBLC1879
- PubChem: 8315
- PDB-CCD: YRL
- 3DMET: B00890
- NIKKAJI: J68J
- RefMet: Tyrosol
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-811
- KNApSAcK: 1879
- CAS: 58556-55-1
- LOTUS: LTS0132195
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
95 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(6)
- salidroside biosynthesis:
4-tyrosol + UDP-α-D-glucose ⟶ H+ + UDP + salidroside
- salidroside biosynthesis:
4-tyrosol + UDP-α-D-glucose ⟶ H+ + UDP + salidroside
- tyrosine degradation:
pyruvate + tyr ⟶ 4-hydroxyphenylpyruvate + ala
- tyrosine degradation III:
4-hydroxyphenylpyruvate + ala ⟶ pyruvate + tyr
- tyrosine degradation III:
pyruvate + tyr ⟶ 4-hydroxyphenylpyruvate + ala
- L-tyrosine degradation III:
4-tyrosol + NAD+ ⟶ (4-hydroxyphenyl)acetaldehyde + H+ + NADH
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(88)
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
4-tyrosol + NAD+ ⟶ (4-hydroxyphenyl)acetaldehyde + H+ + NADH
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
4-tyrosol + NAD+ ⟶ (4-hydroxyphenyl)acetaldehyde + H+ + NADH
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
H2O + O2 + tyramine ⟶ (4-hydroxyphenyl)acetaldehyde + ammonium + hydrogen peroxide
- salidroside biosynthesis:
4-tyrosol + NAD+ ⟶ (4-hydroxyphenyl)acetaldehyde + H+ + NADH
- salidroside biosynthesis:
4-tyrosol + NAD+ ⟶ (4-hydroxyphenyl)acetaldehyde + H+ + NADH
COVID-19 Disease Map(0)
PathBank(1)
- Tyrosine Metabolism:
4-Hydroxyphenylpyruvic acid + L-Alanine ⟶ L-Tyrosine + Pyruvic acid
PharmGKB(0)
456 个相关的物种来源信息
- 3808 - Acacia: LTS0132195
- 561729 - Acarnidae: LTS0132195
- 3624 - Actinidia: LTS0132195
- 64478 - Actinidia arguta: 10.1016/J.PHYTOCHEM.2005.12.021
- 64478 - Actinidia arguta: LTS0132195
- 3623 - Actinidiaceae: LTS0132195
- 155619 - Agaricomycetes: LTS0132195
- 5340 - Agaricus: 10.1021/NP1005345
- 201006 - Aglaia: LTS0132195
- 1475093 - Aglaia foveolata: 10.1002/CHIN.200438214
- 1475093 - Aglaia foveolata: LTS0132195
- 5598 - Alternaria: LTS0132195
- 160391 - Alternaria tagetica: 10.1021/JF000872K
- 160391 - Alternaria tagetica: LTS0132195
- 54958 - Amphisphaeriaceae: LTS0132195
- 4037 - Apiaceae: LTS0132195
- 4056 - Apocynaceae: LTS0132195
- 3817 - Arachis: LTS0132195
- 3818 - Arachis hypogaea: 10.1055/S-2001-14319
- 3818 - Arachis hypogaea: LTS0132195
- 12947 - Aristolochia: LTS0132195
- 16727 - Aristolochiaceae: LTS0132195
- 6656 - Arthropoda: LTS0132195
- 4890 - Ascomycota: LTS0132195
- 155124 - Aspalathus linearis: 10.1248/BPB.29.1271
- 1131492 - Aspergillaceae: LTS0132195
- 4210 - Asteraceae: LTS0132195
- 124942 - Azadirachta: LTS0132195
- 124943 - Azadirachta indica:
- 124943 - Azadirachta indica: 10.1002/CHIN.200352233
- 124943 - Azadirachta indica: 10.1002/HLCA.200390229
- 124943 - Azadirachta indica: LTS0132195
- 2 - Bacteria: LTS0132195
- 5204 - Basidiomycota: LTS0132195
- 41773 - Berberidaceae: LTS0132195
- 24079 - Bignoniaceae: LTS0132195
- 5368 - Boletaceae: LTS0132195
- 39153 - Bongardia: LTS0132195
- 39279 - Bongardia chrysogonum: 10.1021/NP50064A024
- 39279 - Bongardia chrysogonum: LTS0132195
- 45132 - Botryosphaeria: 10.1021/JF070082B
- 45132 - Botryosphaeria: LTS0132195
- 45131 - Botryosphaeriaceae: LTS0132195
- 3705 - Brassica: LTS0132195
- 3708 - Brassica napus: 10.1016/J.FOODCHEM.2006.08.014
- 3708 - Brassica napus: LTS0132195
- 3700 - Brassicaceae: LTS0132195
- 46366 - Bupleurum: LTS0132195
- 199751 - Bupleurum salicifolium:
- 199751 - Bupleurum salicifolium: 10.1016/S0040-4020(01)90430-2
- 199751 - Bupleurum salicifolium: 10.1021/NP50110A009
- 199751 - Bupleurum salicifolium: LTS0132195
- 62133 - Capnodiaceae: LTS0132195
- 3648 - Carica: LTS0132195
- 3649 - Carica papaya: 10.1016/0031-9422(88)80450-3
- 3649 - Carica papaya: LTS0132195
- 3647 - Caricaceae: LTS0132195
- 112816 - Casearia: LTS0132195
- 112817 - Casearia sylvestris: 10.1016/J.FITOTE.2009.05.013
- 112817 - Casearia sylvestris: LTS0132195
- 1028423 - Ceratocystidaceae: LTS0132195
- 5157 - Ceratocystis: LTS0132195
- 5158 - Ceratocystis fimbriata: 10.1016/0031-9422(96)00166-5
- 5158 - Ceratocystis fimbriata: LTS0132195
- 981380 - Ceratocystis huntii: 10.1139/V86-149
- 103474 - Cestrum: LTS0132195
- 142762 - Cestrum parqui: 10.1021/JF049847V
- 142762 - Cestrum parqui: LTS0132195
- 51326 - Chaetopeltidaceae: LTS0132195
- 16737 - Chloranthaceae: LTS0132195
- 3166 - Chlorophyceae: LTS0132195
- 3041 - Chlorophyta: LTS0132195
- 87753 - Cistanche: LTS0132195
- 161397 - Cistanche tubulosa: LTS0132195
- 161397 - Cistanche tubulosa: NA
- 34397 - Clavicipitaceae: LTS0132195
- 55961 - Clusiaceae: LTS0132195
- 5455 - Colletotrichum: LTS0132195
- 474922 - Colletotrichum gloeosporioides:
- 474922 - Colletotrichum gloeosporioides: 10.1016/J.BMCL.2006.08.071
- 474922 - Colletotrichum gloeosporioides: LTS0132195
- 4118 - Convolvulaceae: LTS0132195
- 4046 - Coriandrum: LTS0132195
- 4047 - Coriandrum sativum: 10.1016/0031-9422(95)00930-2
- 4047 - Coriandrum sativum: LTS0132195
- 3781 - Crassulaceae: LTS0132195
- 58949 - Crocus: LTS0132195
- 82528 - Crocus sativus:
- 82528 - Crocus sativus: 10.1002/CHIN.200313168
- 82528 - Crocus sativus: 10.1021/NP0302854
- 82528 - Crocus sativus: 10.1248/CPB.50.1305
- 82528 - Crocus sativus: LTS0132195
- 100370 - Croton: LTS0132195
- 323038 - Croton chilensis: 10.1016/0031-9422(92)80479-X
- 323038 - Croton chilensis: LTS0132195
- 323063 - Croton lechleri:
- 323063 - Croton lechleri: 10.1016/S0031-9422(00)95166-5
- 323063 - Croton lechleri: 10.1055/S-2006-959567
- 323063 - Croton lechleri: LTS0132195
- 70072 - Cyclopia: LTS0132195
- 384038 - Cyclopia intermedia: 10.1021/JF0210730
- 384038 - Cyclopia intermedia: LTS0132195
- 6042 - Demospongiae: LTS0132195
- 767018 - Diaporthaceae: LTS0132195
- 683158 - Didymellaceae: LTS0132195
- 221678 - Didymosphaeriaceae: LTS0132195
- 50998 - Distylium racemosum: 10.1002/PTR.3439
- 56524 - Dittrichia: LTS0132195
- 56525 - Dittrichia viscosa: LTS0132195
- 147541 - Dothideomycetes: LTS0132195
- 139931 - Engelhardia: LTS0132195
- 139932 - Engelhardia roxburghiana: 10.1016/J.PHYTOCHEM.2007.01.018
- 139932 - Engelhardia roxburghiana: LTS0132195
- 5112 - Epichloe: LTS0132195
- 35717 - Epichloe festucae: 10.1016/S0031-9422(00)89639-9
- 35717 - Epichloe festucae: LTS0132195
- 5113 - Epichloe typhina: 10.1016/0031-9422(88)80188-2
- 5113 - Epichloe typhina: LTS0132195
- 2759 - Eukaryota: LTS0132195
- 3977 - Euphorbiaceae: LTS0132195
- 147545 - Eurotiomycetes: LTS0132195
- 3803 - Fabaceae: LTS0132195
- 3503 - Fagaceae: LTS0132195
- 38871 - Fraxinus: LTS0132195
- 38872 - Fraxinus americana: 10.1016/S0031-9422(00)00319-8
- 38872 - Fraxinus americana: LTS0132195
- 56033 - Fraxinus chinensis: LTS0132195
- 126596 - Fraxinus chinensis subsp. rhynchophylla: 10.1248/CPB.29.2391
- 126596 - Fraxinus chinensis subsp. rhynchophylla: 10.1248/CPB.31.2262
- 126596 - Fraxinus chinensis subsp. rhynchophylla: LTS0132195
- 490840 - Fraxinus floribunda: 10.1016/S0031-9422(00)91068-9
- 490840 - Fraxinus floribunda: LTS0132195
- 880136 - Fraxinus formosana:
- 880136 - Fraxinus formosana: 10.1016/0031-9422(92)80118-X
- 880136 - Fraxinus formosana: 10.1016/0031-9422(92)80382-O
- 880136 - Fraxinus formosana: LTS0132195
- 880137 - Fraxinus griffithii:
- 880137 - Fraxinus griffithii: 10.1016/0031-9422(92)80118-X
- 880137 - Fraxinus griffithii: 10.1016/0031-9422(92)80382-O
- 880137 - Fraxinus griffithii: LTS0132195
- 56035 - Fraxinus longicuspis:
- 880141 - Fraxinus malacophylla: 10.1016/S0031-9422(00)90529-6
- 880141 - Fraxinus malacophylla: LTS0132195
- 490844 - Fraxinus micrantha: 10.1016/S0031-9422(00)88243-6
- 490844 - Fraxinus micrantha: LTS0132195
- 38874 - Fraxinus ornus:
- 38874 - Fraxinus ornus: 10.1016/0031-9422(91)80032-V
- 38874 - Fraxinus ornus: 10.1055/S-2006-960003
- 38874 - Fraxinus ornus: LTS0132195
- 4751 - Fungi: LTS0132195
- 58227 - Garcinia: LTS0132195
- 180101 - Garcinia atroviridis: 10.1111/J.1574-695X.2007.00331.X
- 180101 - Garcinia atroviridis: LTS0132195
- 452340 - Gloeophyllaceae: LTS0132195
- 40443 - Gloeophyllum: 10.1016/S0031-9422(00)00137-0
- 40443 - Gloeophyllum: LTS0132195
- 681950 - Glomerellaceae: LTS0132195
- 360145 - Grosmannia: LTS0132195
- 226899 - Grosmannia clavigera: 10.1139/V86-149
- 5161 - Grosmannia crassivaginata: 10.1016/0031-9422(94)00630-C
- 5161 - Grosmannia crassivaginata: LTS0132195
- 155651 - Grosmannia huntii: 10.1139/V86-149
- 155651 - Grosmannia huntii: LTS0132195
- 23066 - Grossulariaceae: LTS0132195
- 43219 - Herpotrichiellaceae: LTS0132195
- 9606 - Homo sapiens: -
- 56007 - Hormotilopsis: 10.1016/S0031-9422(00)00137-0
- 56007 - Hormotilopsis: LTS0132195
- 5129 - Hypocreaceae: LTS0132195
- 13097 - Illicium: LTS0132195
- 124778 - Illicium verum:
- 124778 - Illicium verum: 10.1021/NP9800553
- 124778 - Illicium verum: LTS0132195
- 162809 - Inga: LTS0132195
- 486058 - Inga feuillei: 10.1248/CPB.57.863
- 50557 - Insecta: LTS0132195
- 4119 - Ipomoea: LTS0132195
- 35883 - Ipomoea nil: 10.1248/CPB.59.1425
- 35883 - Ipomoea nil: LTS0132195
- 26339 - Iridaceae: LTS0132195
- 161755 - Isatis: LTS0132195
- 161756 - Isatis tinctoria: LTS0132195
- 161756 - Isatis tinctoria: NA
- 4147 - Jasminum: LTS0132195
- 126433 - Jasminum officinale: 10.1248/CPB.47.1582
- 126433 - Jasminum officinale: LTS0132195
- 16714 - Juglandaceae: LTS0132195
- 34444 - Lactarius: LTS0132195
- 55514 - Lactarius deliciosus: 10.1021/NP50108A026
- 55514 - Lactarius deliciosus: LTS0132195
- 22788 - Lardizabalaceae: LTS0132195
- 66739 - Lasiodiplodia: LTS0132195
- 45133 - Lasiodiplodia theobromae: 10.1021/JF070082B
- 45133 - Lasiodiplodia theobromae: LTS0132195
- 5473 - Leptoxyphium: LTS0132195
- 5474 - Leptoxyphium fumago: 10.1016/0031-9422(88)80280-2
- 5474 - Leptoxyphium fumago: LTS0132195
- 13596 - Ligustrum: LTS0132195
- 46072 - Ligustrum japonicum: 10.3746/JKFN.2006.35.6.713
- 46072 - Ligustrum japonicum: LTS0132195
- 458695 - Ligustrum lucidum: 10.3746/JKFN.2006.35.6.713
- 178760 - Ligustrum obtusifolium:
- 178760 - Ligustrum obtusifolium: 10.1248/YAKUSHI1947.103.3_360
- 178760 - Ligustrum obtusifolium: 10.1248/YAKUSHI1947.104.4_390
- 178760 - Ligustrum obtusifolium: LTS0132195
- 13597 - Ligustrum vulgare: 10.1016/J.PHYTOCHEM.2009.09.009
- 13597 - Ligustrum vulgare: LTS0132195
- 4447 - Liliopsida: LTS0132195
- 3398 - Magnoliopsida: LTS0132195
- 96479 - Malva: LTS0132195
- 145754 - Malva sylvestris: 10.1016/J.PHYTOCHEM.2005.11.023
- 3629 - Malvaceae: LTS0132195
- 1450294 - Melanopsaceae: LTS0132195
- 43707 - Meliaceae: LTS0132195
- 33208 - Metazoa: LTS0132195
- 45284 - Neotyphodium: LTS0132195
- 114230 - Nigrospora: 10.1016/J.PHYTOCHEM.2009.01.008
- 114230 - Nigrospora: LTS0132195
- 335854 - Nigrospora oryzae: 10.1016/J.PHYTOL.2013.09.001
- 335854 - Nigrospora oryzae: LTS0132195
- 114231 - Nigrospora sphaerica: 10.1016/J.PHYTOL.2013.09.001
- 114231 - Nigrospora sphaerica: LTS0132195
- 4145 - Olea: LTS0132195
- 4146 - Olea europaea:
- 4146 - Olea europaea: 10.1002/(SICI)1521-4133(199909)101:9<328::AID-LIPI328>3.0.CO;2-M
- 4146 - Olea europaea: 10.1002/EJLT.200400942
- 4146 - Olea europaea: 10.1002/EJLT.200500227
- 4146 - Olea europaea: 10.1002/ELPS.200500202
- 4146 - Olea europaea: 10.1002/JSFA.2384
- 4146 - Olea europaea: 10.1002/JSFA.2449
- 4146 - Olea europaea: 10.1002/JSSC.200390053
- 4146 - Olea europaea: 10.1002/JSSC.200390054
- 4146 - Olea europaea: 10.1007/BF02523530
- 4146 - Olea europaea: 10.1007/BF02552708
- 4146 - Olea europaea: 10.1007/S00217-002-0604-0
- 4146 - Olea europaea: 10.1007/S00217-005-0160-5
- 4146 - Olea europaea: 10.1016/0021-9673(95)01375-X
- 4146 - Olea europaea: 10.1016/B978-0-12-374420-3.00099-1
- 4146 - Olea europaea: 10.1016/J.FOODCHEM.2003.07.012
- 4146 - Olea europaea: 10.1016/J.FOODCHEM.2005.09.003
- 4146 - Olea europaea: 10.1016/J.FOODCHEM.2006.08.014
- 4146 - Olea europaea: 10.1016/J.JFOODENG.2005.05.061
- 4146 - Olea europaea: 10.1016/J.LWT.2006.07.003
- 4146 - Olea europaea: 10.1016/J.SCIENTA.2006.12.036
- 4146 - Olea europaea: 10.1016/S0003-2670(01)01241-7
- 4146 - Olea europaea: 10.1016/S0031-9422(00)94849-0
- 4146 - Olea europaea: 10.1016/S0308-8146(00)00322-8
- 4146 - Olea europaea: 10.1016/S0308-8146(98)00146-0
- 4146 - Olea europaea: 10.1016/S0963-9969(00)00072-7
- 4146 - Olea europaea: 10.1021/JF0115138
- 4146 - Olea europaea: 10.1021/JF0205211
- 4146 - Olea europaea: 10.1021/JF035300P
- 4146 - Olea europaea: 10.1021/JF0602267
- 4146 - Olea europaea: 10.1021/JF061122Z
- 4146 - Olea europaea: 10.1021/JF0617925
- 4146 - Olea europaea: 10.1021/JF9507349
- 4146 - Olea europaea: 10.1021/JF9800256
- 4146 - Olea europaea: 10.1021/JF980049C
- 4146 - Olea europaea: 10.1111/J.1745-4514.2007.00107.X
- 4146 - Olea europaea: LTS0132195
- 4144 - Oleaceae: LTS0132195
- 5152 - Ophiostomataceae: LTS0132195
- 91896 - Orobanchaceae: LTS0132195
- 33128 - Papaver rhoeas: 10.1055/S-2004-818956
- 344041 - Papulaspora: LTS0132195
- 403092 - Parahancornia: LTS0132195
- 403093 - Parahancornia fasciculata: 10.1590/S0102-695X2008000500004
- 403093 - Parahancornia fasciculata: LTS0132195
- 125369 - Paraphaeosphaeria: LTS0132195
- 565426 - Paraphaeosphaeria minitans: 10.1016/S0031-9422(01)00129-7
- 565426 - Paraphaeosphaeria minitans: LTS0132195
- 43174 - Pedicularis: LTS0132195
- 1392133 - Pedicularis artselaeri: 10.1080/10286029808039851
- 1392133 - Pedicularis artselaeri: LTS0132195
- 5073 - Penicillium: LTS0132195
- 5076 - Penicillium chrysogenum: 10.1021/NP1008976
- 5076 - Penicillium chrysogenum: LTS0132195
- 13196 - Peperomia: LTS0132195
- 2045269 - Peperomia heyneana: 10.1021/NP030247K
- 2045269 - Peperomia heyneana: LTS0132195
- 63205 - Pestalotia: LTS0132195
- 63219 - Pestalotia palmarum: 10.1080/10575639608044894
- 173185 - Pestalotiopsis palmarum: 10.1080/10575639608044894
- 68553 - Phellodendron: LTS0132195
- 68554 - Phellodendron amurense: 10.1016/S0031-9422(00)90536-3
- 68554 - Phellodendron amurense: LTS0132195
- 5600 - Phialophora: LTS0132195
- 34399 - Phomopsis: LTS0132195
- 1807033 - Phomopsis velata: 10.1016/S0031-9422(00)83157-X
- 1807033 - Phomopsis velata: LTS0132195
- 3328 - Picea: LTS0132195
- 3330 - Picea glauca: 10.1021/NP800192F
- 3330 - Picea glauca: LTS0132195
- 4919 - Pichia: LTS0132195
- 4926 - Pichia membranifaciens: 10.1021/NP070605+
- 4926 - Pichia membranifaciens: LTS0132195
- 1156497 - Pichiaceae: LTS0132195
- 3318 - Pinaceae: LTS0132195
- 58019 - Pinopsida: LTS0132195
- 16739 - Piperaceae: LTS0132195
- 156152 - Plantaginaceae: LTS0132195
- 26867 - Plantago: LTS0132195
- 29818 - Plantago major:
- 29818 - Plantago major: 10.1055/S-0028-1099839
- 29818 - Plantago major: 10.1086/325089
- 29818 - Plantago major: LTS0132195
- 33090 - Plants: -
- 1033978 - Plectosphaerellaceae: LTS0132195
- 980945 - Plectris: 10.1248/CPB.43.1663
- 980945 - Plectris: LTS0132195
- 28556 - Pleosporaceae: LTS0132195
- 4479 - Poaceae: LTS0132195
- 35932 - Podophyllum: LTS0132195
- 6040 - Porifera: LTS0132195
- 3754 - Prunus: LTS0132195
- 36596 - Prunus armeniaca: 10.1021/JF00004A032
- 36596 - Prunus armeniaca: LTS0132195
- 3758 - Prunus domestica: 10.1021/JF00004A032
- 3758 - Prunus domestica: LTS0132195
- 3760 - Prunus persica: 10.1021/JF00004A032
- 3760 - Prunus persica: LTS0132195
- 3511 - Quercus: LTS0132195
- 97702 - Quercus phillyraeoides: 10.1248/CPB.37.2030
- 97702 - Quercus phillyraeoides: LTS0132195
- 3440 - Ranunculaceae: LTS0132195
- 889442 - Retiboletus: LTS0132195
- 1282276 - Retiboletus ornatipes: 10.1002/EJOC.200700579
- 1282276 - Retiboletus ornatipes: LTS0132195
- 46059 - Rhinanthus: LTS0132195
- 469774 - Rhinanthus angustifolius: 10.1016/0031-9422(93)85460-9
- 469774 - Rhinanthus angustifolius: LTS0132195
- 1835028 - Rhinanthus major: 10.1016/0031-9422(93)85460-9
- 202994 - Rhodiola: LTS0132195
- 242839 - Rhodiola crenulata:
- 242839 - Rhodiola crenulata: 10.1021/JF204660C
- 242839 - Rhodiola crenulata: 10.1248/CPB.56.536
- 242839 - Rhodiola crenulata: LTS0132195
- 203003 - Rhodiola fastigiata: 10.4268/CJCMM20111611
- 203003 - Rhodiola fastigiata: LTS0132195
- 1439918 - Rhodiola gelida: 10.1007/BF00565596
- 1439918 - Rhodiola gelida: LTS0132195
- 203004 - Rhodiola heterodonta:
- 203004 - Rhodiola heterodonta: 10.1007/BF00564822
- 203004 - Rhodiola heterodonta: 10.1016/J.PHYTOCHEM.2006.07.026
- 203004 - Rhodiola heterodonta: LTS0132195
- 203008 - Rhodiola kirilowii: 10.5246/JCPS.2011.02.019
- 203008 - Rhodiola kirilowii: LTS0132195
- 203015 - Rhodiola rosea:
- 203015 - Rhodiola rosea: 10.1007/BF00564116
- 203015 - Rhodiola rosea: 10.1007/BF00575035
- 203015 - Rhodiola rosea: 10.1007/BF00629750
- 203015 - Rhodiola rosea: 10.1016/J.MOLP.2017.12.007
- 203015 - Rhodiola rosea: 10.1016/J.PHYMED.2007.10.003
- 203015 - Rhodiola rosea: 10.1248/BPB.25.1101
- 203015 - Rhodiola rosea: 10.1248/CPB.49.396
- 203015 - Rhodiola rosea: 10.1248/CPB.51.467
- 203015 - Rhodiola rosea: 10.1248/CPB.55.1505
- 203015 - Rhodiola rosea: LTS0132195
- 265354 - Rhodiola sachalinensis:
- 265354 - Rhodiola sachalinensis: 10.1248/BPB.25.1101
- 265354 - Rhodiola sachalinensis: 10.1248/CPB.49.396
- 265354 - Rhodiola sachalinensis: 10.1248/CPB.55.1505
- 265354 - Rhodiola sachalinensis: LTS0132195
- 3801 - Ribes: LTS0132195
- 78511 - Ribes nigrum:
- 78511 - Ribes nigrum: 10.1007/BF02273935
- 78511 - Ribes nigrum: 10.1016/0031-9422(92)80196-L
- 78511 - Ribes nigrum: LTS0132195
- 3745 - Rosaceae: LTS0132195
- 5401 - Russulaceae: LTS0132195
- 23513 - Rutaceae: LTS0132195
- 400538 - Sabia japonica: 10.1002/HLCA.200900081
- 4893 - Saccharomycetaceae: LTS0132195
- 4891 - Saccharomycetes: LTS0132195
- 3688 - Salicaceae: LTS0132195
- 23672 - Sapindaceae: LTS0132195
- 13669 - Sarcandra: LTS0132195
- 92927 - Sarcandra glabra: 10.1016/J.FITOTE.2009.12.009
- 92927 - Sarcandra glabra: LTS0132195
- 50505 - Sargentodoxa: LTS0132195
- 50506 - Sargentodoxa cuneata: 10.3987/COM-03-9777
- 50506 - Sargentodoxa cuneata: LTS0132195
- 7055 - Scarabaeidae: LTS0132195
- 124790 - Schisandra propinqua: 10.1016/S0367-326X(01)00269-6
- 16733 - Schisandraceae: LTS0132195
- 468156 - Senegalia: LTS0132195
- 138017 - Senegalia catechu: 10.1080/10286020.2011.597384
- 875646 - Senegalia polyacantha: 10.1080/10286020.2011.597384
- 875646 - Senegalia polyacantha: LTS0132195
- 4070 - Solanaceae: LTS0132195
- 147550 - Sordariomycetes: LTS0132195
- 796327 - Stachylidium: 10.1021/NP1005345
- 796327 - Stachylidium: LTS0132195
- 260324 - Stereospermum: LTS0132195
- 2708984 - Stereospermum acuminatissimum: 10.1016/J.FITOTE.2011.10.014
- 2708984 - Stereospermum acuminatissimum: LTS0132195
- 1883 - Streptomyces: 10.1007/S12272-001-1276-4
- 1883 - Streptomyces: LTS0132195
- 285515 - Streptomyces albospinus: 10.1007/S12272-001-1276-4
- 285515 - Streptomyces albospinus: LTS0132195
- 2062 - Streptomycetaceae: LTS0132195
- 35493 - Streptophyta: LTS0132195
- 24208 - Syringa: LTS0132195
- 178762 - Syringa oblata: 10.1016/B978-0-12-811655-5.00006-4
- 178762 - Syringa oblata: LTS0132195
- 126367 - Syringa reticulata:
- 126367 - Syringa reticulata: 10.1248/CPB.57.863
- 126367 - Syringa reticulata: 10.1248/YAKUSHI1947.107.1_23
- 126367 - Syringa reticulata: LTS0132195
- 149021 - Syringa reticulata subsp. amurensis: 10.1248/CPB.57.863
- 149021 - Syringa reticulata subsp. amurensis: LTS0132195
- 34270 - Syringa vulgaris:
- 34270 - Syringa vulgaris: 10.1007/BF00597667
- 34270 - Syringa vulgaris: 10.1007/BF00629789
- 34270 - Syringa vulgaris: 10.1016/S0031-9422(00)94288-2
- 34270 - Syringa vulgaris: LTS0132195
- 49743 - Taraxacum: LTS0132195
- 268103 - Taraxacum alpinum: 10.1002/CHIN.200740173
- 268103 - Taraxacum alpinum: LTS0132195
- 46968 - Thalictrum: LTS0132195
- 1084684 - Thalictrum petaloideum: 10.1055/S-2006-957556
- 1084684 - Thalictrum petaloideum: LTS0132195
- 58023 - Tracheophyta: LTS0132195
- 28568 - Trichocomaceae: LTS0132195
- 5543 - Trichoderma: 10.1248/CPB.43.1663
- 5543 - Trichoderma: LTS0132195
- 97093 - Trichoderma koningii:
- 97093 - Trichoderma koningii: 10.1248/CPB.43.1035
- 97093 - Trichoderma koningii: 10.1248/CPB.43.1663
- 97093 - Trichoderma koningii: LTS0132195
- 5547 - Trichoderma viride: 10.1016/J.TET.2009.04.051
- 5547 - Trichoderma viride: LTS0132195
- 152648 - Trichosphaeriaceae: LTS0132195
- 5117 - Valsaceae: LTS0132195
- 4173 - Veronica: LTS0132195
- 138560 - Veronica persica: 10.1016/S0305-1978(99)00122-2
- 138560 - Veronica persica: LTS0132195
- 33090 - Viridiplantae: LTS0132195
- 3602 - Vitaceae: LTS0132195
- 3603 - Vitis: LTS0132195
- 29760 - Vitis vinifera:
- 29760 - Vitis vinifera: 10.1016/J.FOODCHEM.2005.02.007
- 29760 - Vitis vinifera: 10.1016/S0308-8146(02)00590-3
- 29760 - Vitis vinifera: 10.1021/JF9601628
- 29760 - Vitis vinifera: 10.3389/FMICB.2017.00457
- 29760 - Vitis vinifera: LTS0132195
- 99657 - Xanthoceras: LTS0132195
- 99658 - Xanthoceras sorbifolium: 10.1016/J.FITOTE.2007.04.005
- 99658 - Xanthoceras sorbifolium: LTS0132195
- 37991 - Xylaria: LTS0132195
- 114818 - Xylaria longipes: 10.1515/ZNC-1996-11-1206
- 114818 - Xylaria longipes: LTS0132195
- 37990 - Xylariaceae: LTS0132195
- 561730 - Zyzzya: LTS0132195
- 1346156 - Zyzzya fuliginosa: 10.1248/CPB.49.1628
- 1346156 - Zyzzya fuliginosa: LTS0132195
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Daniela Gabbia, Katia Sayaf, Ilaria Zanotto, Martina Colognesi, Yahima Frion-Herrera, Maria Carrara, Francesco Paolo Russo, Sara De Martin. Tyrosol attenuates NASH features by reprogramming the hepatic immune milieu.
European journal of pharmacology.
2024 Apr; 969(?):176453. doi:
10.1016/j.ejphar.2024.176453
. [PMID: 38408597] - Yu Wang, Jihang Hou, Xiaoping Li, Pan Chen, Fang Chen, Yao Pan, Zeyuan Deng, Jing Li, Rong Liu, Ting Luo. Tyrosol regulates hepatic lipid metabolism in high-fat diet-induced NAFLD mice.
Food & function.
2024 Apr; 15(7):3752-3764. doi:
10.1039/d3fo05345h
. [PMID: 38506160] - Ágnes Jakab, Kinga Csillag, Károly Antal, Imre Boczonádi, Renátó Kovács, István Pócsi, Tamás Emri. Total transcriptome response for tyrosol exposure in Aspergillus nidulans.
Fungal biology.
2024 04; 128(2):1664-1674. doi:
10.1016/j.funbio.2024.01.003
. [PMID: 38575239] - Guosi Li, Wei Wang, Heng Guo, Shanyong Yi, Fang Wang, Shiping Huang, Nan Hu, Qilin Xu, Yongjun Zang, Bangxing Han, Xinjian Yin. Mutability landscape guided engineering of a promiscuous microbial glycosyltransferase for regioselective synthesis of salidroside and icariside D2.
International journal of biological macromolecules.
2024 Apr; 263(Pt 1):130229. doi:
10.1016/j.ijbiomac.2024.130229
. [PMID: 38378110] - Fazheng Yu, Xueyu Hu, HongLin Ren, Xiaoxu Wang, Ruoran Shi, Jian Guo, Jiang Chang, Xiaoshi Zhou, Yuanyuan Jin, Yansong Li, Zengshan Liu, Pan Hu. Protective effect of synbiotic combination of Lactobacillus plantarum SC-5 and olive oil extract tyrosol in a murine model of ulcerative colitis.
Journal of translational medicine.
2024 Mar; 22(1):308. doi:
10.1186/s12967-024-05026-9
. [PMID: 38528541] - Anabel González-Acedo, Rebeca Illescas-Montes, Elvira de Luna-Bertos, Concepción Ruiz, Javier Ramos-Torrecillas, Olga García-Martínez, Lucía Melguizo-Rodríguez. Extra Virgin Olive Oil Phenolic Compounds Modulate the Gene Expression of Biomarkers Involved in Fibroblast Proliferation and Differentiation.
Genes.
2024 Jan; 15(2):. doi:
10.3390/genes15020173
. [PMID: 38397163] - Michalis K Stefanakis, Olga St Tsiftsoglou, Pavle Z Mašković, Diamanto Lazari, Haralambos E Katerinopoulos. Chemical Constituents and Anticancer Activities of the Extracts from Phlomis × commixta Rech. f. (P. cretica × P. lanata).
International journal of molecular sciences.
2024 Jan; 25(2):. doi:
10.3390/ijms25020816
. [PMID: 38255889] - Guosi Li, Qilin Xu, Nan Hu, Xinyang Liu, Yiqi Jiang, Hailong Xue, Yongjun Zang, Fucheng Zhu. Highly efficient biosynthesis of salidroside by a UDP-glucosyltransferase-catalyzed cascade reaction.
Biotechnology letters.
2024 Jan; ?(?):. doi:
10.1007/s10529-023-03453-0
. [PMID: 38184486] - Yuping Shen, Ziwei Zhou, Xi He, Leyi Yin, Chunlan He, Zujiao Zhang. [Dynamic regulation using a quorum-sensing circuit enhances the production of tyrosol by Escherichia coli].
Sheng wu gong cheng xue bao = Chinese journal of biotechnology.
2023 Aug; 39(8):3379-3393. doi:
10.13345/j.cjb.230136
. [PMID: 37622367] - Jurga Bernatoniene, Valdas Jakstas, Dalia M Kopustinskiene. Phenolic Compounds of Rhodiola rosea L. as the Potential Alternative Therapy in the Treatment of Chronic Diseases.
International journal of molecular sciences.
2023 Jul; 24(15):. doi:
10.3390/ijms241512293
. [PMID: 37569669] - Yushiro Fuji, Kai Uchida, Tomoyoshi Akashi, Takashi Ohtsuki, Hiroshi Matsufuji, Masami Yokota Hirai. Molecular Identification of UDP-Sugar Dependent Glycosyltransferase and Acyltransferase Involved in the Phenylethanoid Glycoside Biosynthesis Induced by Methyl Jasmonate in Sesamum indicum L.
Plant & cell physiology.
2023 May; ?(?):. doi:
10.1093/pcp/pcad053
. [PMID: 37233612] - Adam Yasgar, Danielle Bougie, Richard T Eastman, Ruili Huang, Misha Itkin, Jennifer Kouznetsova, Caitlin Lynch, Crystal McKnight, Mitch Miller, Deborah K Ngan, Tyler Peryea, Pranav Shah, Paul Shinn, Menghang Xia, Xin Xu, Alexey V Zakharov, Anton Simeonov. Quantitative Bioactivity Signatures of Dietary Supplements and Natural Products.
ACS pharmacology & translational science.
2023 May; 6(5):683-701. doi:
10.1021/acsptsci.2c00194
. [PMID: 37200814] - Joana Madureira, Bianca Albuquerque, Maria Inês Dias, José Pinela, Ricardo C Calhelha, Celestino Santos-Buelga, Fernanda M A Margaça, Isabel C F R Ferreira, Sandra Cabo Verde, Lillian Barros. Ultrasound-assisted extraction of hydroxytyrosol and tyrosol from olive pomace treated by gamma radiation: process optimization and bioactivity assessment.
Food & function.
2023 Apr; 14(7):3038-3050. doi:
10.1039/d2fo03607j
. [PMID: 36896737] - Pragya Paramita Pal, Ahil Sajeli Begum, S Ameer Basha, Hiroshi Araya, Yoshinori Fujimoto. New natural pro-inflammatory cytokines (TNF-α, IL-6 and IL-1β) and iNOS inhibitors identified from Penicillium polonicum through in vitro and in vivo studies.
International immunopharmacology.
2023 Apr; 117(?):109940. doi:
10.1016/j.intimp.2023.109940
. [PMID: 37012863] - Fazheng Yu, Jian Guo, Hong Lin Ren, Shiying Lu, Zhaoqi He, Jiang Chang, Xueyu Hu, Ruoran Shi, Yuanyuan Jin, Yansong Li, Zengshan Liu, Xiaoxu Wang, Pan Hu. Tyrosol inhibits NF-κB pathway in the treatment of enterotoxigenic Escherichia coli-induced diarrhea in mice.
Microbial pathogenesis.
2023 Mar; 176(?):105944. doi:
10.1016/j.micpath.2022.105944
. [PMID: 36526033] - Pragya Paramita Pal, Sajeli A Begum, Ameer S Basha, Hiroshi Araya, Yoshinori Fujimoto. A New Lignan (Polonilignan) and Inhibitors of Nitric Oxide Production from Penicillium polonicum, an Endophytic Fungi of Piper nigrum.
Chemistry & biodiversity.
2023 Mar; 20(3):e202200840. doi:
10.1002/cbdv.202200840
. [PMID: 36662670] - Rana Mohammad Qasaymeh, Dino Rotondo, Veronique Seidel. Phytochemical study and immunomodulatory activity of Fraxinus excelsior L.
The Journal of pharmacy and pharmacology.
2023 Jan; 75(1):117-128. doi:
10.1093/jpp/rgac076
. [PMID: 36332078] - Hanna Nikolaichuk, Marek Studziński, Marek Stankevič, Irena M Choma. Qualitative and Quantitative Evaluation of Rosavin, Salidroside, and p-Tyrosol in Artic Root Products via TLC-Screening, HPLC-DAD, and NMR Spectroscopy.
Molecules (Basel, Switzerland).
2022 Nov; 27(23):. doi:
10.3390/molecules27238299
. [PMID: 36500392] - Bruna Colombari, Davide Tagliazucchi, Alessandra Odorici, Eva Pericolini, Ismaela Foltran, Diego Pinetti, Aida Meto, Samuele Peppoloni, Elisabetta Blasi. Pomegranate Extract Affects Fungal Biofilm Production: Consumption of Phenolic Compounds and Alteration of Fungal Autoinducers Release.
International journal of environmental research and public health.
2022 10; 19(21):. doi:
10.3390/ijerph192114146
. [PMID: 36361021] - Yingjie Liu, Dong Song, Haitao Hu, Ruijin Yang, Xiaomei Lyu. De Novo Production of Hydroxytyrosol by Saccharomyces cerevisiae-Escherichia coli Coculture Engineering.
ACS synthetic biology.
2022 09; 11(9):3067-3077. doi:
10.1021/acssynbio.2c00300
. [PMID: 35952699] - Mi-Jin Kwon, Ju-Woon Lee, Kwan-Soo Kim, Hao Chen, Cheng-Bi Cui, Gye Won Lee, Young Ho Cho. The Influence of Tyrosol-Enriched Rhodiola sachalinensis Extracts Bioconverted by the Mycelium of Bovista plumbe on Scopolamine-Induced Cognitive, Behavioral, and Physiological Responses in Mice.
Molecules (Basel, Switzerland).
2022 Jul; 27(14):. doi:
10.3390/molecules27144455
. [PMID: 35889329] - Xinmiao Wang, Kefan Chen, Jin Qiu, Yuanyuan Hu, Fawen Yin, Xiaoyang Liu, Dayong Zhou. Gastrointestinal Distribution of Tyrosol Acyl Esters in Orally Infected Mice and Their Hydrolysis by Lactobacillus Species Isolated from the Feces of Mice.
Journal of agricultural and food chemistry.
2022 Feb; 70(4):1316-1326. doi:
10.1021/acs.jafc.1c07432
. [PMID: 35068150] - Parikshit Kumar, S C Sati. Chemical composition, antioxidant and antimicrobial activities of Himalayan Fraxinus micrantha Lingelsh leaf extract.
Natural product research.
2021 Oct; 35(20):3519-3523. doi:
10.1080/14786419.2019.1710706
. [PMID: 31920103] - Mustafa Cellat, Müslüm Kuzu, Cafer Tayer İşler, Muhammed Etyemez, Nursel Dikmen, Ahmet Uyar, İshak Gökçek, Erdinç Türk, Mehmet Güvenç. Tyrosol improves ovalbumin (OVA)-induced asthma in rat model through prevention of airway inflammation.
Naunyn-Schmiedeberg's archives of pharmacology.
2021 10; 394(10):2061-2075. doi:
10.1007/s00210-021-02117-y
. [PMID: 34287677] - Antonella Maria Aresta, Nicolella De Vietro, Maria Lisa Clodoveo, Riccardo Amirante, Filomena Corbo, Francesco Paolo Schena, Carlo Zambonin. Determination of hydroxytyrosol and tyrosol in human urine after intake of extra virgin olive oil produced with an ultrasounds-based technology.
Journal of pharmaceutical and biomedical analysis.
2021 Sep; 203(?):114204. doi:
10.1016/j.jpba.2021.114204
. [PMID: 34130008] - Ramasamy Chandramohan, Leelavinothan Pari. Antihyperlipidemic effect of tyrosol, a phenolic compound in streptozotocin-induced diabetic rats.
Toxicology mechanisms and methods.
2021 Sep; 31(7):507-516. doi:
10.1080/15376516.2021.1926030
. [PMID: 33942700] - Aurélia Malapert, Emmanuelle Reboul, Olivier Dangles, Alain Thiéry, N'nabinty Sylla, Valérie Tomao. One-Step Extraction of Olive Phenols from Aqueous Solution Using β-Cyclodextrin in the Solid State, a Simple Eco-Friendly Method Providing Photochemical Stability to the Extracts.
Molecules (Basel, Switzerland).
2021 Jul; 26(15):. doi:
10.3390/molecules26154463
. [PMID: 34361616] - Camila Macaúbas-Silva, Maysa D G Félix, Ana Karoline S de Aquino, Paulo G Pereira-Júnior, Emmily Vieira de O Brito, Abrahão A de Oliveira-Filho, John O Igoli, David G Watson, Yanna C F Teles. Araçain, a tyrosol derivative and other phytochemicals from Psidium guineense Sw.
Natural product research.
2021 Jul; 35(14):2424-2428. doi:
10.1080/14786419.2019.1672683
. [PMID: 31581838] - Zelin Yang, Xin Huang, Wenfang Lai, Yuheng Tang, Junjie Liu, Yingzheng Wang, Kedan Chu, John Brown, Guizhu Hong. Synthesis and identification of a novel derivative of salidroside as a selective, competitive inhibitor of monoamine oxidase B with enhanced neuroprotective properties.
European journal of medicinal chemistry.
2021 Jan; 209(?):112935. doi:
10.1016/j.ejmech.2020.112935
. [PMID: 33097301] - Evangelia Kritikou, Natasa P Kalogiouri, Lydia Kolyvira, Nikolaos S Thomaidis. Target and Suspect HRMS Metabolomics for the Determination of Functional Ingredients in 13 Varieties of Olive Leaves and Drupes from Greece.
Molecules (Basel, Switzerland).
2020 Oct; 25(21):. doi:
10.3390/molecules25214889
. [PMID: 33105803] - Sara Fernandes, Catarina Ribeiro, Fátima Paiva-Martins, Cristina Catarino, Alice Santos-Silva. Protective effect of olive oil polyphenol phase II sulfate conjugates on erythrocyte oxidative-induced hemolysis.
Food & function.
2020 Oct; 11(10):8670-8679. doi:
10.1039/d0fo01690j
. [PMID: 32939526] - Antonio Francioso, Rodolfo Federico, Anna Maggiore, Mario Fontana, Alberto Boffi, Maria D'Erme, Luciana Mosca. Green Route for the Isolation and Purification of Hyrdoxytyrosol, Tyrosol, Oleacein and Oleocanthal from Extra Virgin Olive Oil.
Molecules (Basel, Switzerland).
2020 Aug; 25(16):. doi:
10.3390/molecules25163654
. [PMID: 32796621] - Tatsuya Hayakawa, Miran Yanagawa, Atsushi Yamamoto, Sen-Ichi Aizawa, Atsushi Taga, Naoki Mochizuki, Yutaka Itabashi, Hajime Uchida, Yoshimi Ishihara, Shuji Kodama. A Simple Screening Method for Extra Virgin Olive Oil Adulteration by Determining Squalene and Tyrosol.
Journal of oleo science.
2020 Jul; 69(7):677-684. doi:
10.5650/jos.ess20033
. [PMID: 32522947] - T G Borovskaya, A V Vychuzhanina, V A Grigor'eva, O V Kollantay, V E Goldberg, A M Dygai. Evaluation of the Effect of p-Tyrosol on the Level of DNA Damage in the DNA Comet Assay In Vivo.
Bulletin of experimental biology and medicine.
2020 Jun; 169(2):233-236. doi:
10.1007/s10517-020-04857-y
. [PMID: 32651820] - Alexander N Shikov, Vera M Kosman, Elena V Flissyuk, Irina E Smekhova, Abdelhameed Elameen, Olga N Pozharitskaya. Natural Deep Eutectic Solvents for the Extraction of Phenyletanes and Phenylpropanoids of Rhodiola rosea L.
Molecules (Basel, Switzerland).
2020 Apr; 25(8):. doi:
10.3390/molecules25081826
. [PMID: 32316279] - Fawen Yin, Xinmiao Wang, Yuanyuan Hu, Hongkai Xie, Xiaoyang Liu, Lei Qin, Jianghua Zhang, Dayong Zhou, Fereidoon Shahidi. Evaluation of Absorption and Plasma Pharmacokinetics of Tyrosol Acyl Esters in Rats.
Journal of agricultural and food chemistry.
2020 Feb; 68(5):1248-1256. doi:
10.1021/acs.jafc.9b05112
. [PMID: 31927921] - Francesca Pacifici, Carolina Lane Alves Farias, Silvia Rea, Barbara Capuani, Alessandra Feraco, Andrea Coppola, Caterina Mammi, Donatella Pastore, Pasquale Abete, Valentina Rovella, Chiara Salimei, Mauro Lombardo, Massimiliano Caprio, Alfonso Bellia, Paolo Sbraccia, Nicola Di Daniele, Davide Lauro, David Della-Morte. Tyrosol May Prevent Obesity by Inhibiting Adipogenesis in 3T3-L1 Preadipocytes.
Oxidative medicine and cellular longevity.
2020; 2020(?):4794780. doi:
10.1155/2020/4794780
. [PMID: 33376578] - Damiano Gabotti, Franca Locatelli, Erica Cusano, Elena Baldoni, Annamaria Genga, Laura Pucci, Roberto Consonni, Monica Mattana. Cell Suspensions of Cannabis sativa (var. Futura): Effect of Elicitation on Metabolite Content and Antioxidant Activity.
Molecules (Basel, Switzerland).
2019 Nov; 24(22):. doi:
10.3390/molecules24224056
. [PMID: 31717508] - Anna Boronat, Julian Mateus, Natalia Soldevila-Domenech, Mercè Guerra, Jose Rodríguez-Morató, Carlota Varon, Daniel Muñoz, Francina Barbosa, Juan Carlos Morales, Andreas Gaedigk, Klaus Langohr, Maria-Isabel Covas, Clara Pérez-Mañá, Montserrat Fitó, Rachel F Tyndale, Rafael de la Torre. Cardiovascular benefits of tyrosol and its endogenous conversion into hydroxytyrosol in humans. A randomized, controlled trial.
Free radical biology & medicine.
2019 11; 143(?):471-481. doi:
10.1016/j.freeradbiomed.2019.08.032
. [PMID: 31479717] - Mercedes Sotos-Prieto, Costas Christophi, Alicen Black, Jeremy D Furtado, Yiqing Song, Prokopios Magiatis, Aikaterini Papakonstantinou, Eleni Melliou, Steven Moffatt, Stefanos N Kales. Assessing Validity of Self-Reported Dietary Intake within a Mediterranean Diet Cluster Randomized Controlled Trial among US Firefighters.
Nutrients.
2019 Sep; 11(9):. doi:
10.3390/nu11092250
. [PMID: 31546768] - Natalia Soldevila-Domenech, Anna Boronat, Julian Mateus, Patricia Diaz-Pellicer, Iris Matilla, Marta Pérez-Otero, Ana Aldea-Perona, Rafael de la Torre. Generation of the Antioxidant Hydroxytyrosol from Tyrosol Present in Beer and Red Wine in a Randomized Clinical Trial.
Nutrients.
2019 Sep; 11(9):. doi:
10.3390/nu11092241
. [PMID: 31540384] - Iman Mirmazloum, Márta Ladányi, László Beinrohr, Erzsébet Kiss-Bába, Attila Kiss, Zsuzsanna György. Identification of a novel UDP-glycosyltransferase gene from Rhodiola rosea and its expression during biotransformation of upstream precursors in callus culture.
International journal of biological macromolecules.
2019 Sep; 136(?):847-858. doi:
10.1016/j.ijbiomac.2019.06.086
. [PMID: 31226374] - Vito Michele Paradiso, Giacomo Squeo, Antonella Pasqualone, Francesco Caponio, Carmine Summo. An easy and green tool for olive oils labelling according to the contents of hydroxytyrosol and tyrosol derivatives: Extraction with a natural deep eutectic solvent and direct spectrophotometric analysis.
Food chemistry.
2019 Sep; 291(?):1-6. doi:
10.1016/j.foodchem.2019.03.139
. [PMID: 31006446] - Beligh Mechri, Meriem Tekaya, Mohamed Hammami, Hechmi Chehab. Root verbascoside and oleuropein are potential indicators of drought resistance in olive trees (Olea europaea L.).
Plant physiology and biochemistry : PPB.
2019 Aug; 141(?):407-414. doi:
10.1016/j.plaphy.2019.06.024
. [PMID: 31228797] - Rocío Casadey, Cecilia Challier, Alejandro Senz, Susana Criado. Antioxidant ability of tyrosol and derivative-compounds in the presence of O2(1Δg)-species. Studies of synergistic antioxidant effect with commercial antioxidants.
Food chemistry.
2019 Jul; 285(?):275-281. doi:
10.1016/j.foodchem.2019.01.161
. [PMID: 30797345] - Wei Chen, Jun Yao, Jie Meng, Wenjing Han, Yong Tao, Yihua Chen, Yixin Guo, Guizhi Shi, Yang He, Jian-Ming Jin, Shuang-Yan Tang. Promiscuous enzymatic activity-aided multiple-pathway network design for metabolic flux rearrangement in hydroxytyrosol biosynthesis.
Nature communications.
2019 02; 10(1):960. doi:
10.1038/s41467-019-08781-2
. [PMID: 30814511] - Kaori Taniguchi, Fumiko Yamamoto, Takuya Arai, Jinwei Yang, Yusuke Sakai, Masayuki Itoh, Naomi Mamada, Masayuki Sekiguchi, Daisuke Yamada, Akiyoshi Saitoh, Fuyuki Kametani, Akira Tamaoka, Yumiko M Araki, Keiji Wada, Hidehiro Mizusawa, Wataru Araki. Tyrosol Reduces Amyloid-β Oligomer Neurotoxicity and Alleviates Synaptic, Oxidative, and Cognitive Disturbances in Alzheimer's Disease Model Mice.
Journal of Alzheimer's disease : JAD.
2019; 70(3):937-952. doi:
10.3233/jad-190098
. [PMID: 31227651] - Roberta Ascrizzi, Isabella Taglieri, Cristina Sgherri, Guido Flamini, Monica Macaluso, Chiara Sanmartin, Francesca Venturi, Mike Frank Quartacci, Luisa Pistelli, Angela Zinnai. Nutraceutical Oils Produced by Olives and Citrus Peel of Tuscany Varieties as Sources of Functional Ingredients.
Molecules (Basel, Switzerland).
2018 Dec; 24(1):. doi:
10.3390/molecules24010065
. [PMID: 30585205] - Fawen Yin, Xiaopei Hu, Dayong Zhou, Xiaochi Ma, Xiangge Tian, Xiaokui Huo, Kanyasiri Rakariyatham, Fereidoon Shahidi, Beiwei Zhu. Hydrolysis and Transport Characteristics of Tyrosol Acyl Esters in Rat Intestine.
Journal of agricultural and food chemistry.
2018 Nov; 66(47):12521-12526. doi:
10.1021/acs.jafc.8b04487
. [PMID: 30403136] - Silvia Marzocchi, Maria Fiorenza Caboni. Study of the Effect of Tyrosyl Oleate on Lipid Oxidation in a Typical Italian Bakery Product.
Journal of agricultural and food chemistry.
2018 Nov; 66(47):12555-12560. doi:
10.1021/acs.jafc.8b04826
. [PMID: 30398866] - Aurélia Malapert, Valérie Tomao, Marielle Margier, Marion Nowicki, Béatrice Gleize, Olivier Dangles, Emmanuelle Reboul. β-Cyclodextrin Does not Alter the Bioaccessibility and the Uptake by Caco-2 Cells of Olive By-Product Phenolic Compounds.
Nutrients.
2018 Nov; 10(11):. doi:
10.3390/nu10111653
. [PMID: 30400310] - Mark B Plotnikov, Oleg I Aliev, Anastasia V Sidekhmenova, Alexander Y Shamanaev, Anna M Anishchenko, Tatiana I Fomina, Tatiana M Plotnikova, Alexander M Arkhipov. Effect of p-tyrosol on hemorheological parameters and cerebral capillary network in young spontaneously hypertensive rats.
Microvascular research.
2018 09; 119(?):91-97. doi:
10.1016/j.mvr.2018.04.005
. [PMID: 29742453] - Souad Lahcene, Faiza Taibi, Nadjet Mestar, Samira Ali Ahmed, Mahieddine Boumendjel, Saida Ouafi, Karim Houali. Insecticidal effects of the Olea europaea subsp. laperrinei extracts on the flour Pyralid Ephestia kuehniella.
Cellular and molecular biology (Noisy-le-Grand, France).
2018 Aug; 64(11):6-12. doi:
10.14715/cmb/2018.64.11.2
. [PMID: 30213282] - Fa-Wen Yin, Xiao-Pei Hu, Da-Yong Zhou, Xiao-Chi Ma, Xiang-Ge Tian, Xiao-Kui Huo, Kanyasiri Rakariyatham, Fereidoon Shahidi, Bei-Wei Zhu. Evaluation of the stability of tyrosol esters during in vitro gastrointestinal digestion.
Food & function.
2018 Jul; 9(7):3610-3616. doi:
10.1039/c8fo00788h
. [PMID: 29968877] - Liwei Sun, Ran Zhou, Jinling Sui, Yujun Liu. Simultaneous Preparation of Salidroside and p-Tyrosol from Rhodiola crenulata by DIAION HP-20 Macroporous Resin Chromatography Combined with Silica Gel Chromatography.
Molecules (Basel, Switzerland).
2018 Jul; 23(7):. doi:
10.3390/molecules23071602
. [PMID: 30004426] - Marco Masi, Maria Chiara Zonno, Alessio Cimmino, Pierluigi Reveglia, Alexander Berestetskiy, Angela Boari, Maurizio Vurro, Antonio Evidente. On the metabolites produced by Colletotrichum gloeosporioides a fungus proposed for the Ambrosia artemisiifolia biocontrol; spectroscopic data and absolute configuration assignment of colletochlorin A.
Natural product research.
2018 Jul; 32(13):1537-1547. doi:
10.1080/14786419.2017.1385020
. [PMID: 29027474] - Jingjie Jiang, Hua Yin, Shuai Wang, Yibin Zhuang, Shaowei Liu, Tao Liu, Yanhe Ma. Metabolic Engineering of Saccharomyces cerevisiae for High-Level Production of Salidroside from Glucose.
Journal of agricultural and food chemistry.
2018 May; 66(17):4431-4438. doi:
10.1021/acs.jafc.8b01272
. [PMID: 29671328] - Silvia Marzocchi, Sampson Anankanbil, Maria Fiorenza Caboni, Zheng Guo. Enzymatic alkylsuccinylation of tyrosol: Synthesis, characterization and property evaluation as a dual-functional antioxidant.
Food chemistry.
2018 Apr; 246(?):108-114. doi:
10.1016/j.foodchem.2017.10.142
. [PMID: 29291828] - Michael P Torrens-Spence, Tomáš Pluskal, Fu-Shuang Li, Valentina Carballo, Jing-Ke Weng. Complete Pathway Elucidation and Heterologous Reconstitution of Rhodiola Salidroside Biosynthesis.
Molecular plant.
2018 01; 11(1):205-217. doi:
10.1016/j.molp.2017.12.007
. [PMID: 29277428] - Zhihua Liao, Fei Qiu, Junlan Zeng, Li Gu, Bangjun Wang, Xiaozhong Lan, Min Chen. A Novel UDP-Glycosyltransferase of Rhodiola crenulata Converts Tyrosol to Specifically Produce Icariside D2.
BioMed research international.
2018; 2018(?):7970590. doi:
10.1155/2018/7970590
. [PMID: 30027099] - Ramasamy Chandramohan, Settu Saravanan, Leelavinothan Pari. Beneficial effects of tyrosol on altered glycoprotein components in streptozotocin-induced diabetic rats.
Pharmaceutical biology.
2017 Dec; 55(1):1631-1637. doi:
10.1080/13880209.2017.1315603
. [PMID: 28427293] - Yundong Xie, Yanhong Xu, Zizhang Chen, Wenfang Lu, Na Li, Qiutang Wang, Lihua Shao, Yiping Li, Guangde Yang, Xiaoli Bian. A new multifunctional hydroxytyrosol-fenofibrate with antidiabetic, antihyperlipidemic, antioxidant and antiinflammatory action.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2017 Nov; 95(?):1749-1758. doi:
10.1016/j.biopha.2017.09.073
. [PMID: 28962080] - Jin-Long Cui, Ya-Nan Wang, Jin Jiao, Yi Gong, Jun-Hong Wang, Meng-Liang Wang. Fungal endophyte-induced salidroside and tyrosol biosynthesis combined with signal cross-talk and the mechanism of enzyme gene expression in Rhodiola crenulata.
Scientific reports.
2017 10; 7(1):12540. doi:
10.1038/s41598-017-12895-2
. [PMID: 28970519] - Daeun Chung, So Yeon Kim, Joong-Hoon Ahn. Production of three phenylethanoids, tyrosol, hydroxytyrosol, and salidroside, using plant genes expressing in Escherichia coli.
Scientific reports.
2017 05; 7(1):2578. doi:
10.1038/s41598-017-02042-2
. [PMID: 28566694] - Aikaterini Papazi, Andreas Ioannou, Myrto Symeonidi, Andreas G Doulis, Kiriakos Kotzabasis. Bioenergetic strategy of microalgae for the biodegradation of tyrosol and hydroxytyrosol.
Zeitschrift fur Naturforschung. C, Journal of biosciences.
2017 May; 72(5-6):227-236. doi:
10.1515/znc-2016-0214
. [PMID: 28170343] - Alessio Cimmino, Tamara Cinelli, Marco Masi, Pierluigi Reveglia, Marcondes Araujo da Silva, Laura Mugnai, Sami J Michereff, Giuseppe Surico, Antonio Evidente. Phytotoxic Lipophilic Metabolites Produced by Grapevine Strains of Lasiodiplodia Species in Brazil.
Journal of agricultural and food chemistry.
2017 Feb; 65(6):1102-1107. doi:
10.1021/acs.jafc.6b04906
. [PMID: 28110532] - Shuai Chen, Yuan-yuan Xia, Guang-li Wei, Quan-sheng Li, Meng-jie Liu, Yong Chen, Duan-yun Si. [Simultaneous determination of salidroside and tyrosol in Beagle dog plasma using UHPLC-MS/MS after pre-column dansyl chloride derivatization].
Yao xue xue bao = Acta pharmaceutica Sinica.
2017 Feb; 52(2):296-301. doi:
NULL
. [PMID: 29979526] - Raúl Domínguez-Perles, David Auñón, Federico Ferreres, Angel Gil-Izquierdo. Gender differences in plasma and urine metabolites from Sprague-Dawley rats after oral administration of normal and high doses of hydroxytyrosol, hydroxytyrosol acetate, and DOPAC.
European journal of nutrition.
2017 Feb; 56(1):215-224. doi:
10.1007/s00394-015-1071-2
. [PMID: 26463517] - Kervin O Evans, David L Compton. Phosphatidyl-hydroxytyrosol and phosphatidyl-tyrosol bilayer properties.
Chemistry and physics of lipids.
2017 Jan; 202(?):69-76. doi:
10.1016/j.chemphyslip.2016.11.010
. [PMID: 27986474] - Kang-Kang Zhi, Zhong-Duo Yang, Shuang-Yan Zhou, Xiao-Jun Yao, Shuo Li, Fei Zhang. A new furanosteroid from Talaromyces sp. lgt-4, a fungal endophyte isolated from Tripterygium wilfordii.
Natural product research.
2016 Oct; 30(19):2137-41. doi:
10.1080/14786419.2016.1138301
. [PMID: 26828954] - Nataša Zorić, Nevenka Kopjar, Klara Kraljić, Nada Oršolić, Siniša Tomić, Ivan Kosalec. Olive leaf extract activity against Candida albicans and C. dubliniensis - the in vitro viability study.
Acta pharmaceutica (Zagreb, Croatia).
2016 Sep; 66(3):411-21. doi:
10.1515/acph-2016-0033
. [PMID: 27383889] - Dmitriy N Atochin, Galina A Chernysheva, Vera I Smolyakova, Anton N Osipenko, Sergey V Logvinov, Anna A Zhdankina, Sergey V Sysolyatin, Yuri A Kryukov, Yana Anfinogenova, Tatiana M Plotnikova, Mark B Plotnikov. Neuroprotective effects of p-tyrosol after the global cerebral ischemia in rats.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2016 Jun; 23(7):784-92. doi:
10.1016/j.phymed.2016.03.015
. [PMID: 27180226] - Jose Rodríguez-Morató, Anna Boronat, Aristotelis Kotronoulas, Mitona Pujadas, Antoni Pastor, Eulalia Olesti, Clara Pérez-Mañá, Olha Khymenets, Montserrat Fitó, Magí Farré, Rafael de la Torre. Metabolic disposition and biological significance of simple phenols of dietary origin: hydroxytyrosol and tyrosol.
Drug metabolism reviews.
2016 05; 48(2):218-36. doi:
10.1080/03602532.2016.1179754
. [PMID: 27186796] - Paola Stiuso, Maria Libera Bagarolo, Concetta Paola Ilisso, Daniela Vanacore, Elisa Martino, Michele Caraglia, Marina Porcelli, Giovanna Cacciapuoti. Protective Effect of Tyrosol and S-Adenosylmethionine against Ethanol-Induced Oxidative Stress of Hepg2 Cells Involves Sirtuin 1, P53 and Erk1/2 Signaling.
International journal of molecular sciences.
2016 Apr; 17(5):. doi:
10.3390/ijms17050622
. [PMID: 27128904] - Seyed Fazel Nabavi, Nady Braidy, Ilkay Erdogan Orhan, Arash Badiee, Maria Daglia, Seyed Mohammad Nabavi. Rhodiola rosea L. and Alzheimer's Disease: From Farm to Pharmacy.
Phytotherapy research : PTR.
2016 Apr; 30(4):532-9. doi:
10.1002/ptr.5569
. [PMID: 27059687] - Ivana Sedej, Rebecca Milczarek, Selina C Wang, Runqi Sheng, Roberto de Jesús Avena-Bustillos, Lan Dao, Gary Takeoka. Membrane-Filtered Olive Mill Wastewater: Quality Assessment of the Dried Phenolic-Rich Fraction.
Journal of food science.
2016 Apr; 81(4):E889-96. doi:
10.1111/1750-3841.13267
. [PMID: 26989993] - Ana Cañuelo, Francisco J Esteban, Juan Peragón. Gene expression profiling to investigate tyrosol-induced lifespan extension in Caenorhabditis elegans.
European journal of nutrition.
2016 Mar; 55(2):639-650. doi:
10.1007/s00394-015-0884-3
. [PMID: 25804201] - Da-Hye Lee, Yang-Ji Kim, Min Jung Kim, Jiyun Ahn, Tae-Youl Ha, Sang Hee Lee, Young Jin Jang, Chang Hwa Jung. Pharmacokinetics of Tyrosol Metabolites in Rats.
Molecules (Basel, Switzerland).
2016 Jan; 21(1):E128. doi:
10.3390/molecules21010128
. [PMID: 26805800] - Hyunjung Lee, Sung Won Im, Chang Hwa Jung, Young Jin Jang, Tae Youl Ha, Jiyun Ahn. Tyrosol, an olive oil polyphenol, inhibits ER stress-induced apoptosis in pancreatic β-cell through JNK signaling.
Biochemical and biophysical research communications.
2016 Jan; 469(3):748-52. doi:
10.1016/j.bbrc.2015.12.036
. [PMID: 26692476] - Ilavarasi Kalaiselvan, Muniasamy Samuthirapandi, Archunan Govindaraju, Dicson Sheeja Malar, Pandima Devi Kasi. Olive oil and its phenolic compounds (hydroxytyrosol and tyrosol) ameliorated TCDD-induced heptotoxicity in rats via inhibition of oxidative stress and apoptosis.
Pharmaceutical biology.
2016; 54(2):338-46. doi:
10.3109/13880209.2015.1042980
. [PMID: 25955957] - Andoni Zuriarrain, Juan Zuriarrain, Ana Isabel Puertas, María Teresa Dueñas, Miren Ostra, Iñaki Berregi. Polyphenolic profile in cider and antioxidant power.
Journal of the science of food and agriculture.
2015 Nov; 95(14):2931-43. doi:
10.1002/jsfa.7036
. [PMID: 25475490] - Ioanna C Vlachogianni, Elizabeth Fragopoulou, George M Stamatakis, Ioannis K Kostakis, Smaragdi Antonopoulou. Platelet Activating Factor (PAF) biosynthesis is inhibited by phenolic compounds in U-937 cells under inflammatory conditions.
Prostaglandins & other lipid mediators.
2015 Sep; 121(Pt B):176-83. doi:
10.1016/j.prostaglandins.2015.09.001
. [PMID: 26358846] - José Pedro De La Cruz, Maria Isabel Ruiz-Moreno, Ana Guerrero, José Julio Reyes, Adela Benitez-Guerrero, José Luis Espartero, José Antonio González-Correa. Differences in the Neuroprotective Effect of Orally Administered Virgin Olive Oil (Olea europaea) Polyphenols Tyrosol and Hydroxytyrosol in Rats.
Journal of agricultural and food chemistry.
2015 Jul; 63(25):5957-63. doi:
10.1021/acs.jafc.5b00627
. [PMID: 26066316] - Ioanna C Vlachogianni, Elizabeth Fragopoulou, Ioannis K Kostakis, Smaragdi Antonopoulou. In vitro assessment of antioxidant activity of tyrosol, resveratrol and their acetylated derivatives.
Food chemistry.
2015 Jun; 177(?):165-73. doi:
10.1016/j.foodchem.2014.12.092
. [PMID: 25660873] - Clara Pérez-Mañá, Magí Farré, Jose Rodríguez-Morató, Esther Papaseit, Mitona Pujadas, Montserrat Fitó, Patricia Robledo, Maria-Isabel Covas, Véronique Cheynier, Emmanuelle Meudec, Jean-Louis Escudier, Rafael de la Torre. Moderate consumption of wine, through both its phenolic compounds and alcohol content, promotes hydroxytyrosol endogenous generation in humans. A randomized controlled trial.
Molecular nutrition & food research.
2015 Jun; 59(6):1213-6. doi:
10.1002/mnfr.201400842
. [PMID: 25712532] - Kervin O Evans, Joseph A Laszlo, David L Compton. Hydroxytyrosol and tyrosol esters partitioning into, location within, and effect on DOPC liposome bilayer behavior.
Biochimica et biophysica acta.
2015 May; 1848(5):1175-82. doi:
10.1016/j.bbamem.2015.02.002
. [PMID: 25687972] - Ramasamy Chandramohan, Leelavinothan Pari, Ayyasamy Rathinam, Bashir Ahmad Sheikh. Tyrosol, a phenolic compound, ameliorates hyperglycemia by regulating key enzymes of carbohydrate metabolism in streptozotocin induced diabetic rats.
Chemico-biological interactions.
2015 Mar; 229(?):44-54. doi:
10.1016/j.cbi.2015.01.026
. [PMID: 25641191] - Hamid-Reza Adhami, Martin Zehl, Christina Dangl, Dominic Dorfmeister, Marco Stadler, Ernst Urban, Peter Hewitson, Svetlana Ignatova, Liselotte Krenn. Preparative isolation of oleocanthal, tyrosol, and hydroxytyrosol from olive oil by HPCCC.
Food chemistry.
2015 Mar; 170(?):154-9. doi:
10.1016/j.foodchem.2014.08.079
. [PMID: 25306330] - Massimiliano Migliori, Vincenzo Panichi, Rafael de la Torre, Montserrat Fitó, Maribel Covas, Alberto Bertelli, Daniel Muñoz-Aguayo, Alessia Scatena, Sabrina Paoletti, Claudio Ronco. Anti-inflammatory effect of white wine in CKD patients and healthy volunteers.
Blood purification.
2015; 39(1-3):218-223. doi:
10.1159/000371570
. [PMID: 25833063] - Ilavarasi Kalaiselvan, Sheeja Malar Dicson, Pandima Devi Kasi. Olive oil and its phenolic constituent tyrosol attenuates dioxin-induced toxicity in peripheral blood mononuclear cells via an antioxidant-dependent mechanism.
Natural product research.
2015; 29(22):2129-32. doi:
10.1080/14786419.2014.989393
. [PMID: 25496362] - Pablo Miralles, Alberto Chisvert, Amparo Salvador. Determination of hydroxytyrosol and tyrosol by liquid chromatography for the quality control of cosmetic products based on olive extracts.
Journal of pharmaceutical and biomedical analysis.
2015 Jan; 102(?):157-61. doi:
10.1016/j.jpba.2014.09.016
. [PMID: 25277667] - Joseph A Laszlo, Leslie J Smith, Kervin O Evans, David L Compton. Phenol esterase activity of porcine skin.
European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.
2015 Jan; 89(?):175-81. doi:
10.1016/j.ejpb.2014.12.004
. [PMID: 25497179] - Qiu-mei Zhang, Zeng-yu Sun. [Study on Chemical Constituents of Oldenlandia diffusa].
Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials.
2014 Dec; 37(12):2216-8. doi:
"
. [PMID: 26080507] - Alexander Panossian, Rebecca Hamm, Georg Wikman, Thomas Efferth. Mechanism of action of Rhodiola, salidroside, tyrosol and triandrin in isolated neuroglial cells: an interactive pathway analysis of the downstream effects using RNA microarray data.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2014 Sep; 21(11):1325-48. doi:
10.1016/j.phymed.2014.07.008
. [PMID: 25172797] - Jaouad Anter, Inmaculada Tasset, Sebastián Demyda-Peyrás, Isidora Ranchal, Miguel Moreno-Millán, Magdalena Romero-Jimenez, Jordi Muntané, María Dolores Luque de Castro, Andrés Muñoz-Serrano, Ángeles Alonso-Moraga. Evaluation of potential antigenotoxic, cytotoxic and proapoptotic effects of the olive oil by-product "alperujo", hydroxytyrosol, tyrosol and verbascoside.
Mutation research. Genetic toxicology and environmental mutagenesis.
2014 Sep; 772(?):25-33. doi:
10.1016/j.mrgentox.2014.07.002
. [PMID: 25308544] - Juana I Mosele, Sandra Martín-Peláez, Alba Macià, Marta Farràs, Rosa-Maria Valls, Úrsula Catalán, María-José Motilva. Faecal microbial metabolism of olive oil phenolic compounds: in vitro and in vivo approaches.
Molecular nutrition & food research.
2014 Sep; 58(9):1809-19. doi:
10.1002/mnfr.201400124
. [PMID: 24990102] - Yoshiyuki Mizushina, Yoshiaki Ogawa, Takefumi Onodera, Isoko Kuriyama, Yuka Sakamoto, Shu Nishikori, Shinji Kamisuki, Fumio Sugawara. Inhibition of mammalian DNA polymerases and the suppression of inflammatory and allergic responses by tyrosol from used activated charcoal waste generated during sake production.
Journal of agricultural and food chemistry.
2014 Aug; 62(31):7779-86. doi:
10.1021/jf502095p
. [PMID: 25029297] - Paola Priore, Luisa Siculella, Gabriele Vincenzo Gnoni. Extra virgin olive oil phenols down-regulate lipid synthesis in primary-cultured rat-hepatocytes.
The Journal of nutritional biochemistry.
2014 Jul; 25(7):683-91. doi:
10.1016/j.jnutbio.2014.01.009
. [PMID: 24742469] - Na Guo, Weimin Ding, Yu Wang, Zhiwei Hu, Ziming Wang, Yang Wang. An LC-MS/MS method for the determination of salidroside and its metabolite p-tyrosol in rat liver tissues.
Pharmaceutical biology.
2014 May; 52(5):637-45. doi:
10.3109/13880209.2013.863946
. [PMID: 24479765]