Indole-3-carboxaldehyde (BioDeep_00000001084)
Secondary id: BioDeep_00000400204, BioDeep_00000400366, BioDeep_00000860841
natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite Marine Natural Products
代谢物信息卡片
化学式: C9H7NO (145.0528)
中文名称: 3-吲哚甲醛, 吲哚-3-甲醛
谱图信息:
最多检出来源 Homo sapiens(blood) 15.8%
Last reviewed on 2024-07-02.
Cite this Page
Indole-3-carboxaldehyde. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/indole-3-carboxaldehyde (retrieved
2024-12-22) (BioDeep RN: BioDeep_00000001084). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C1=CC=C2C(=C1)C(=CN2)C=O
InChI: InChI=1/C9H7NO/c11-6-7-5-10-9-4-2-1-3-8(7)9/h1-6,10H
描述信息
Indole-3-carboxaldehyde (IAld or I3A), also known as 3-formylindole or 3-indolealdehyde, belongs to the class of organic compounds known as indoles. Indoles are compounds containing an indole moiety, which consists of a pyrrole ring fused to benzene to form 2,3-benzopyrrole. In humans, I3A is a biologically active metabolite which acts as a receptor agonist at the aryl hydrocarbon receptor in intestinal immune cells. It stimulates the production of interleukin-22 which facilitates mucosal reactivity (PMID:27102537). I3A is a microbially derived tryptophan metabolite produced by Clostridium and Lactobacillus (PMID:30120222, 27102537). I3A has also been found in the urine of patients with untreated phenylketonuria (PMID:5073866). I3A has been detected, but not quantified, in several different foods, such as beans, Brussels sprouts, cucumbers, cereals and cereal products, and white cabbages. This could make I3A a potential biomarker for the consumption of these foods.
Indole-3-carbaldehyde is a heteroarenecarbaldehyde that is indole in which the hydrogen at position 3 has been replaced by a formyl group. It has a role as a plant metabolite, a human xenobiotic metabolite, a bacterial metabolite and a marine metabolite. It is a heteroarenecarbaldehyde, an indole alkaloid and a member of indoles.
Indole-3-carboxaldehyde is a natural product found in Euphorbia hirsuta, Derris ovalifolia, and other organisms with data available.
A heteroarenecarbaldehyde that is indole in which the hydrogen at position 3 has been replaced by a formyl group.
Found in barley and tomato seedlings and cotton
Indole-3-carboxaldehyde. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=487-89-8 (retrieved 2024-07-02) (CAS RN: 487-89-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Indole-3-carboxaldehyde (3-Formylindole), a banlangen extract, is the product of the oxidative degradation of indole-3-acetic acid (IAA) by crude enzyme preparations from etiolated pea seedlings. Indole-3-carboxaldehyde (3-Formylindole) is a biochemical used to prepare analogs of the indole phytoalexin cyclobrassinin[1].
Indole-3-carboxaldehyde (3-Formylindole), a banlangen extract, is the product of the oxidative degradation of indole-3-acetic acid (IAA) by crude enzyme preparations from etiolated pea seedlings. Indole-3-carboxaldehyde (3-Formylindole) is a biochemical used to prepare analogs of the indole phytoalexin cyclobrassinin[1].
同义名列表
52 个代谢物同义名
1H-indole-3-carbaldehyde1H-Indole-3-carboxaldehyde487-89-8246045-99-8.beta.-IndolylaldehydeIndole-3-carbaldehydeIndole-3-carboxaldehyde57210_FLUKA129445_ALDRICHZINC00087959SBB004120BAS 07339836C084933; 3-Indolylformaldehyde, 3-Formylindole, Indole-3-carbaldehyde; InChI=1/C9H7NO/c11-6-7-5-10-9-4-2-1-3-8(7)9/h1-6,10H; Indole-3-carboxaldehyde, purum, >=98.0\\% (T); 5-21-08-00246 (Beilstein Handbook Reference); Indole-3-carboxaldehyde, 97\\%; 1H-Indol-3-yl carboxaldehyde; OLNJUISKUQQNIM-UHFFFAOYSA-; 1H-Indole-3-carboxaldehyde; Indole-3-carboxylaldehyde; 1H-Indole-3-carboxaldehde; indole-3-carboxy-aldehyde; INDOLE-3-CARBOXYALDEHYDE; 1H-Indole-3-carbaldehyde; 1H-indole-3-carbaldehyd; indole 3-carboxaldehyde; Indole-3-carboxaldehyde; 3-Indolecarboxaldehyde; .beta.-Indolylaldehyde; Indol-3-carboxaldehyde; indole-3-carboaldehyde; Indole-3-formaldehyde; indole-3-carbaldehyde; 3-indolylformaldehyde; beta-Indolylaldehyde; 1H-indole-3-aldehyde; 3-Indolecarbaldehyde; Indol-3-carbaldehyde; 1H-Indole-3-methanal; Indol-3-carbaldehyd; 3-Formyl-1H-indole; 3-indole aldehyde; Β-indolylaldehyde; indole-3-aldehyde; b-Indolylaldehyde; A-Indolylaldehyde; 3-indolemethanal; Indol-3-aldehyde; 3-Indolealdehyde; UNII-7FN04C32UO; 3-formyl indole; 3-formyl-indole; 3-Formylindole; 3-Formylindol; 7FN04C32UO; AI3-52407; I3CHO; I3CA; I3A; Indole-3-carboxaldehyde; Indole-3-carboxaldehyde; Indole-3-carboxaldehyde
数据库引用编号
44 个数据库交叉引用编号
- ChEBI: CHEBI:28238
- KEGG: C08493
- PubChem: 10256
- HMDB: HMDB0029737
- Metlin: METLIN67018
- ChEMBL: CHEMBL147741
- Wikipedia: Indole-3-carboxaldehyde
- MeSH: indole-3-carbaldehyde
- ChemIDplus: 0000487898
- MetaCyc: INDOLE-3-CARBOXALDEHYDE
- KNApSAcK: C00000112
- foodb: FDB000934
- chemspider: 9838
- CAS: 487-89-8
- MoNA: PS108903
- MoNA: PS009103
- MoNA: PB000507
- MoNA: PB000508
- MoNA: PS108905
- MoNA: UA005101
- MoNA: PR100509
- MoNA: PR100054
- MoNA: PR100986
- MoNA: PS009105
- MoNA: PB000509
- MoNA: PS108902
- MoNA: PS009101
- MoNA: PS009104
- MoNA: PR100508
- MoNA: PR101043
- MoNA: PR100985
- MoNA: PS108901
- MoNA: PB000506
- MoNA: PS009102
- MoNA: PS108904
- medchemexpress: HY-W007376
- PMhub: MS000008206
- MetaboLights: MTBLC28238
- PDB-CCD: I3A
- NIKKAJI: J26.057F
- RefMet: 1H-Indole-3-carboxaldehyde
- PubChem: 10686
- KNApSAcK: 28238
- LOTUS: LTS0137179
分类词条
相关代谢途径
Reactome(0)
代谢反应
12 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(2)
- indole glucosinolate activation (herbivore attack):
indole-3-carbinol ⟶ 3,3'-di(indol-3-yl)methane + H2O + formaldehyde
- indole glucosinolate activation (herbivore attack):
indole-3-carbinol ⟶ 3,3'-di(indol-3-yl)methane + H2O + formaldehyde
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(10)
- indole glucosinolate activation (herbivore attack):
H2O + glucobrassicin ⟶ D-glucopyranose + H+ + indol-3-yl-acetothiohydroxamate-O-sulfonate
- indole glucosinolate activation (herbivore attack):
H2O + glucobrassicin ⟶ D-glucopyranose + H+ + indol-3-yl-acetothiohydroxamate-O-sulfonate
- indole glucosinolate activation (herbivore attack):
indole-3-carbinol ⟶ 3,3'-di(indol-3-yl)methane + H2O + formaldehyde
- indole glucosinolate activation (herbivore attack):
H2O + glucobrassicin ⟶ D-glucopyranose + H+ + indol-3-yl-acetothiohydroxamate-O-sulfonate
- indole glucosinolate activation (herbivore attack):
H2O + glucobrassicin ⟶ D-glucopyranose + H+ + indol-3-yl-acetothiohydroxamate-O-sulfonate
- indole glucosinolate activation (herbivore attack):
H2O + glucobrassicin ⟶ D-glucopyranose + H+ + indol-3-yl-acetothiohydroxamate-O-sulfonate
- indole glucosinolate activation (herbivore attack):
H2O + glucobrassicin ⟶ D-glucopyranose + H+ + indol-3-yl-acetothiohydroxamate-O-sulfonate
- indole glucosinolate activation (herbivore attack):
H2O + glucobrassicin ⟶ D-glucopyranose + H+ + indol-3-yl-acetothiohydroxamate-O-sulfonate
- indole glucosinolate activation (herbivore attack):
indole-3-carbinol ⟶ 3,3'-di(indol-3-yl)methane + H2O + formaldehyde
- indole glucosinolate activation (herbivore attack):
indole-3-carbinol ⟶ 3,3'-di(indol-3-yl)methane + H2O + formaldehyde
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
292 个相关的物种来源信息
- 469 - Acinetobacter: 10.1023/B:JOEC.0000006663.28348.03
- 469 - Acinetobacter: LTS0137179
- 155619 - Agaricomycetes: LTS0137179
- 3812 - Albizia: LTS0137179
- 3813 - Albizia julibrissin: LTS0137179
- 3813 - Albizia julibrissin: NA
- 74663 - Amorphophallus: LTS0137179
- 78372 - Amorphophallus konjac: 10.1271/BBB.66.1386
- 78372 - Amorphophallus konjac: LTS0137179
- 22140 - Annonaceae: LTS0137179
- 6101 - Anthozoa: LTS0137179
- 69461 - Aquilaria: LTS0137179
- 210372 - Aquilaria sinensis: 10.3390/MOLECULES21050555
- 210372 - Aquilaria sinensis: LTS0137179
- 3701 - Arabidopsis: LTS0137179
- 3702 - Arabidopsis thaliana:
- 3702 - Arabidopsis thaliana: 10.1016/J.PHYTOCHEM.2009.03.021
- 3702 - Arabidopsis thaliana: 10.1016/J.PHYTOCHEM.2014.10.003
- 3702 - Arabidopsis thaliana: 10.1104/PP.108.117754
- 3702 - Arabidopsis thaliana: 10.1371/JOURNAL.PONE.0163572
- 3702 - Arabidopsis thaliana: 10.3390/IJMS17091565
- 3702 - Arabidopsis thaliana: LTS0137179
- 4454 - Araceae: LTS0137179
- 241727 - Arthrographis: 10.1139/M90-016
- 241727 - Arthrographis: LTS0137179
- 6656 - Arthropoda: LTS0137179
- 7713 - Ascidiacea: LTS0137179
- 4890 - Ascomycota: LTS0137179
- 1131492 - Aspergillaceae: LTS0137179
- 41479 - Aster: LTS0137179
- 415155 - Aster indicus: 10.1016/J.PHYTOCHEM.2007.05.027
- 415155 - Aster indicus: LTS0137179
- 4210 - Asteraceae: LTS0137179
- 91061 - Bacilli: LTS0137179
- 2 - Bacteria: LTS0137179
- 47067 - Balanophyllia: LTS0137179
- 5204 - Basidiomycota: LTS0137179
- 3681 - Begonia: LTS0137179
- 78253 - Begonia nantoensis:
- 78253 - Begonia nantoensis: 10.1002/CHIN.200434239
- 78253 - Begonia nantoensis: 10.1248/CPB.52.345
- 78253 - Begonia nantoensis: LTS0137179
- 3680 - Begoniaceae: LTS0137179
- 29600 - Blechnaceae: LTS0137179
- 72903 - Boltonia: LTS0137179
- 72904 - Boltonia asteroides: 10.1016/S0031-9422(00)89801-5
- 72904 - Boltonia asteroides: LTS0137179
- 38326 - Botryocladia: LTS0137179
- 366940 - Botryocladia leptopoda: 10.1021/NP50045A038
- 366940 - Botryocladia leptopoda: LTS0137179
- 3705 - Brassica: LTS0137179
- 3712 - Brassica oleracea:
- 3712 - Brassica oleracea: 10.1016/0031-9422(91)83690-M
- 3712 - Brassica oleracea: 10.1021/NP50055A020
- 3712 - Brassica oleracea: LTS0137179
- 3711 - Brassica rapa: 10.1021/NP50055A020
- 3711 - Brassica rapa: LTS0137179
- 51351 - Brassica rapa subsp. pekinensis: 10.1021/NP50055A020
- 51351 - Brassica rapa subsp. pekinensis: 10.1246/CL.1990.209
- 51351 - Brassica rapa subsp. pekinensis: LTS0137179
- 3700 - Brassicaceae: LTS0137179
- 301453 - Capparaceae: LTS0137179
- 13394 - Capparis: LTS0137179
- 65558 - Capparis spinosa: 10.1021/JF302075W
- 65558 - Capparis spinosa: LTS0137179
- 4200 - Caprifoliaceae: LTS0137179
- 6056 - Chalinidae: LTS0137179
- 31392 - Chondria: LTS0137179
- 245901 - Chondria: 10.1016/S0040-4039(00)79823-6
- 7711 - Chordata: LTS0137179
- 34397 - Clavicipitaceae: LTS0137179
- 6073 - Cnidaria: LTS0137179
- 4743 - Commelina: LTS0137179
- 4744 - Commelina communis: 10.1007/S10600-009-9253-X
- 4744 - Commelina communis: LTS0137179
- 4740 - Commelinaceae: LTS0137179
- 4118 - Convolvulaceae: LTS0137179
- 34450 - Cortinariaceae: LTS0137179
- 3655 - Cucumis: LTS0137179
- 3659 - Cucumis sativus:
- 3659 - Cucumis sativus: 10.1055/S-0028-1088338
- 3659 - Cucumis sativus: 10.1248/CPB.55.133
- 3659 - Cucumis sativus: LTS0137179
- 869827 - Cucumis sativus var. sativus: 10.1055/S-0028-1088338
- 869827 - Cucumis sativus var. sativus: LTS0137179
- 3650 - Cucurbitaceae: LTS0137179
- 31386 - Delesseriaceae: LTS0137179
- 6042 - Demospongiae: LTS0137179
- 130058 - Dendrophyllia: 10.1002/HLCA.19890720703
- 130058 - Dendrophyllia: LTS0137179
- 44299 - Dendrophylliidae: LTS0137179
- 53864 - Derris: LTS0137179
- 1288011 - Derris ovalifolia: 10.1080/14786410903306126
- 1288011 - Derris ovalifolia: LTS0137179
- 147541 - Dothideomycetes: LTS0137179
- 190526 - Dysidea: LTS0137179
- 283597 - Dysidea etheria: 10.1021/NP50048A015
- 283597 - Dysidea etheria: LTS0137179
- 190525 - Dysideidae: LTS0137179
- 196997 - Endomychidae: LTS0137179
- 547 - Enterobacter: LTS0137179
- 550 - Enterobacter cloacae: 10.1080/14786419.2014.983507
- 550 - Enterobacter cloacae: LTS0137179
- 543 - Enterobacteriaceae: LTS0137179
- 5112 - Epichloe: LTS0137179
- 35717 - Epichloe festucae: 10.1021/JF990685Q
- 35717 - Epichloe festucae: LTS0137179
- 3256 - Equisetaceae: LTS0137179
- 3257 - Equisetum: LTS0137179
- 3260 - Equisetum telmateia: 10.1016/S0031-9422(00)86463-8
- 3260 - Equisetum telmateia: LTS0137179
- 241722 - Eremomycetaceae: LTS0137179
- 561 - Escherichia: LTS0137179
- 562 - Escherichia coli: LTS0137179
- 2759 - Eukaryota: LTS0137179
- 3990 - Euphorbia: LTS0137179
- 1087767 - Euphorbia hirsuta: 10.1055/S-2003-38875
- 1087767 - Euphorbia hirsuta: LTS0137179
- 54672 - Euphorbia lagascae: 10.1021/OL062854F
- 54672 - Euphorbia lagascae: LTS0137179
- 3977 - Euphorbiaceae: LTS0137179
- 147545 - Eurotiomycetes: LTS0137179
- 3803 - Fabaceae: LTS0137179
- 2806 - Florideophyceae: LTS0137179
- 4751 - Fungi: LTS0137179
- 1236 - Gammaproteobacteria: LTS0137179
- 76967 - Glycosmis pentaphylla: 10.1016/S0031-9422(00)94088-3
- 3633 - Gossypium: LTS0137179
- 3635 - Gossypium hirsutum:
- 3635 - Gossypium hirsutum: 10.1177/004051758305300109
- 3635 - Gossypium hirsutum: 10.1177/004051758505500104
- 3635 - Gossypium hirsutum: LTS0137179
- 31454 - Grateloupia: LTS0137179
- 6057 - Haliclona: LTS0137179
- 6058 - Haliclona oculata: 10.1021/NP0600494
- 6058 - Haliclona oculata: LTS0137179
- 31453 - Halymeniaceae: LTS0137179
- 131065 - Haraldiophyllum: 10.1002/HLCA.19940770726
- 131065 - Haraldiophyllum: LTS0137179
- 34453 - Hebeloma: LTS0137179
- 91672 - Hebeloma hiemale: 10.1139/B89-285
- 91672 - Hebeloma hiemale: LTS0137179
- 9606 - Homo sapiens: -
- 80649 - Hymenogastraceae: LTS0137179
- 50557 - Insecta: LTS0137179
- 4119 - Ipomoea: LTS0137179
- 4120 - Ipomoea batatas: 10.1016/J.FOODCHEM.2016.03.079
- 4120 - Ipomoea batatas: LTS0137179
- 161755 - Isatis: LTS0137179
- 161756 - Isatis tinctoria:
- 161756 - Isatis tinctoria: 10.1016/J.PHYTOCHEM.2009.04.019
- 161756 - Isatis tinctoria: 10.1021/NP3002833
- 161756 - Isatis tinctoria: LTS0137179
- 161756 - Isatis tinctoria: NA
- 157226 - Jeotgalibacillus: LTS0137179
- 86667 - Jeotgalibacillus marinus: 10.1021/NP50126A026
- 86667 - Jeotgalibacillus marinus: LTS0137179
- 34444 - Lactarius: LTS0137179
- 55514 - Lactarius deliciosus: 10.1021/NP50108A026
- 55514 - Lactarius deliciosus: LTS0137179
- 439404 - Lactarius subplinthogalus: 10.1080/14786410310001608073
- 439404 - Lactarius subplinthogalus: LTS0137179
- 4136 - Lamiaceae: LTS0137179
- 4447 - Liliopsida: LTS0137179
- 3398 - Magnoliopsida: LTS0137179
- 3629 - Malvaceae: LTS0137179
- 28253 - Marinomonas: 10.1080/08927014.2016.1154545
- 28253 - Marinomonas: LTS0137179
- 672824 - Meehania: LTS0137179
- 672825 - Meehania urticifolia: 10.1007/S11418-010-0501-Y
- 672825 - Meehania urticifolia: LTS0137179
- 33208 - Metazoa: LTS0137179
- 296851 - Monodora: LTS0137179
- 489342 - Monodora brevipes: 10.1016/S0031-9422(00)98011-7
- 489342 - Monodora brevipes: LTS0137179
- 468 - Moraxellaceae: LTS0137179
- 43710 - Murraya: LTS0137179
- 159059 - Murraya exotica: 10.1016/S0031-9422(00)94088-3
- 2901850 - Murraya exotica: 10.1016/S0031-9422(00)94088-3
- 2901850 - Murraya exotica: LTS0137179
- 43711 - Murraya paniculata: 10.1016/S0031-9422(00)94088-3
- 43711 - Murraya paniculata: LTS0137179
- 86015 - Mycale: LTS0137179
- 86014 - Mycalidae: LTS0137179
- 135620 - Oceanospirillaceae: LTS0137179
- 1745122 - Ophryosporus: 10.1016/0031-9422(96)00106-9
- 1745122 - Ophryosporus: LTS0137179
- 186822 - Paenibacillaceae: LTS0137179
- 44249 - Paenibacillus: LTS0137179
- 1406 - Paenibacillus polymyxa: 10.1111/J.1574-6941.1997.TB00384.X
- 1406 - Paenibacillus polymyxa: LTS0137179
- 59171 - Patrinia: LTS0137179
- 183944 - Patrinia villosa: 10.4103/0973-1296.175988
- 183944 - Patrinia villosa: LTS0137179
- 5073 - Penicillium: LTS0137179
- 69790 - Penicillium vinaceum: 10.1016/J.PHYTOL.2015.05.014
- 69790 - Penicillium vinaceum: LTS0137179
- 48386 - Perilla frutescens: 10.1016/J.FITOTE.2018.08.006
- 15740 - Phalaris: LTS0137179
- 28479 - Phalaris aquatica: 10.1016/S0021-9673(00)82490-5
- 28479 - Phalaris aquatica: LTS0137179
- 37728 - Phalaris truncata: 10.1016/S0021-9673(00)82490-5
- 37728 - Phalaris truncata: LTS0137179
- 68553 - Phellodendron: LTS0137179
- 68554 - Phellodendron amurense: 10.1021/NP030034V
- 68554 - Phellodendron amurense: LTS0137179
- 2902704 - Phellodendron amurense var. japonicum: LTS0137179
- 697203 - Phellodendron amurense var. wilsonii:
- 697203 - Phellodendron amurense var. wilsonii: 10.1021/NP030034V
- 697203 - Phellodendron amurense var. wilsonii: LTS0137179
- 354508 - Phellodendron chinense: LTS0137179
- 354509 - Phellodendron chinense var. glabriusculum:
- 354509 - Phellodendron chinense var. glabriusculum: 10.1021/NP030034V
- 354509 - Phellodendron chinense var. glabriusculum: LTS0137179
- 233880 - Phyllanthaceae: LTS0137179
- 58880 - Phyllanthus: LTS0137179
- 296033 - Phyllanthus virgatus: 10.1021/NP970336V
- 3318 - Pinaceae: LTS0137179
- 58019 - Pinopsida: LTS0137179
- 3337 - Pinus: LTS0137179
- 3349 - Pinus sylvestris: 10.1111/J.1399-3054.1986.TB03390.X
- 3349 - Pinus sylvestris: LTS0137179
- 235790 - Piptostigma: LTS0137179
- 3888 - Pisum sativum: 10.1248/CPB.15.1256
- 186818 - Planococcaceae: LTS0137179
- 33090 - Plants: -
- 4479 - Poaceae: LTS0137179
- 241806 - Polypodiopsida: LTS0137179
- 6040 - Porifera: LTS0137179
- 31456 - Prionitis: LTS0137179
- 31457 - Prionitis lanceolata: 10.1016/0031-9422(90)85315-7
- 31457 - Prionitis lanceolata: LTS0137179
- 135621 - Pseudomonadaceae: LTS0137179
- 286 - Pseudomonas: LTS0137179
- 36746 - Pseudomonas cichorii: 10.1016/S0031-9422(00)81417-X
- 36746 - Pseudomonas cichorii: LTS0137179
- 317 - Pseudomonas syringae: 10.1021/NP50047A035
- 317 - Pseudomonas syringae: LTS0137179
- 3725 - Raphanus: LTS0137179
- 3726 - Raphanus sativus: 10.1016/0031-9422(95)00011-U
- 3726 - Raphanus sativus: LTS0137179
- 2803 - Rhodomelaceae: LTS0137179
- 2763 - Rhodophyta: LTS0137179
- 31501 - Rhodymeniaceae: LTS0137179
- 5401 - Russulaceae: LTS0137179
- 23513 - Rutaceae: LTS0137179
- 147550 - Sordariomycetes: LTS0137179
- 53736 - Sphagneticola: LTS0137179
- 53737 - Sphagneticola trilobata: LTS0137179
- 53737 - Sphagneticola trilobata: NA
- 29601 - Stenochlaena: LTS0137179
- 32079 - Stenochlaena palustris: 10.1016/S0031-9422(98)00352-5
- 32079 - Stenochlaena palustris: LTS0137179
- 1883 - Streptomyces:
- 1883 - Streptomyces: 10.1016/J.JIPH.2019.09.004
- 1883 - Streptomyces: 10.1021/NP050358E
- 1883 - Streptomyces: 10.1021/NP050358E.S001
- 1883 - Streptomyces: 10.1080/10286020.2017.1349758
- 1883 - Streptomyces: 10.1080/14786419.2018.1468331
- 1883 - Streptomyces: LTS0137179
- 97398 - Streptomyces abikoensis: 10.1248/CPB.32.354
- 97398 - Streptomyces abikoensis: LTS0137179
- 1890 - Streptomyces antibioticus:
- 1890 - Streptomyces antibioticus: LTS0137179
- 2062 - Streptomycetaceae: LTS0137179
- 35493 - Streptophyta: LTS0137179
- 49743 - Taraxacum: LTS0137179
- 170733 - Taraxacum formosanum:
- 170733 - Taraxacum formosanum: 10.1002/CHIN.200342212
- 170733 - Taraxacum formosanum: 10.1248/CPB.51.599
- 170733 - Taraxacum formosanum: 10.1248/CPB.53.853
- 170733 - Taraxacum formosanum: LTS0137179
- 90037 - Taraxacum mongolicum:
- 90037 - Taraxacum mongolicum: 10.1002/CHIN.200342212
- 90037 - Taraxacum mongolicum: 10.1248/CPB.51.599
- 90037 - Taraxacum mongolicum: 10.1248/CPB.53.853
- 90037 - Taraxacum mongolicum: LTS0137179
- 39987 - Thymelaeaceae: LTS0137179
- 58023 - Tracheophyta: LTS0137179
- 28568 - Trichocomaceae: LTS0137179
- 662 - Vibrio: LTS0137179
- 670 - Vibrio parahaemolyticus: LTS0137179
- 641 - Vibrionaceae: LTS0137179
- 33090 - Viridiplantae: LTS0137179
- 29760 - Vitis vinifera: 10.1016/J.DIB.2020.106469
- 36590 - Xanthium: LTS0137179
- 318068 - Xanthium strumarium: 10.1055/S-2008-1081295
- 318068 - Xanthium strumarium: LTS0137179
- 67937 - Zanthoxylum: LTS0137179
- 354528 - Zanthoxylum nitidum: 10.1016/J.FOODCHEM.2010.09.069
- 354528 - Zanthoxylum nitidum: LTS0137179
- 569774 - 金线莲: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Mingfei Liu, Yuxuan Wang, Haixin Xiang, Meng Guo, Shirong Li, Ming Liu, Jingchun Yao. The Tryptophan Metabolite Indole-3-Carboxaldehyde Alleviates Mice with DSS-Induced Ulcerative Colitis by Balancing Amino Acid Metabolism, Inhibiting Intestinal Inflammation, and Improving Intestinal Barrier Function.
Molecules (Basel, Switzerland).
2023 Apr; 28(9):. doi:
10.3390/molecules28093704
. [PMID: 37175112] - Gabin Thierry M Bitchagno, Anja Schüffler, Jonathan Gross, Matthias Krumb, Pierre Tane, Till Opatz. Sesquiterpene Lactones from Vernonia tufnelliae: Structural Characterization and Biological Evaluation.
Journal of natural products.
2022 07; 85(7):1681-1690. doi:
10.1021/acs.jnatprod.2c00055
. [PMID: 35704432] - Sonali B Suryawanshi, Netaji K Desai, Anita J Bodake, Shivajirao R Patil. Fluorescence Enhancement Based Quantification of Human Serum Albumin from Biological Sample Using Indole Based Nanosuspension: Molecular Interactions and Molecular Docking Studies.
Journal of fluorescence.
2022 Jan; 32(1):293-305. doi:
10.1007/s10895-021-02847-5
. [PMID: 34783944] - Xuejin Zhao, Lianzhong Zhao, Ya Zhao, Kun Huang, Wenxiao Gong, Ying Yang, Li Zhao, Xiaohan Xia, Zaiyun Li, Feng Sheng, Xuezhu Du, Meilin Jin. 3-Indoleacetonitrile Is Highly Effective in Treating Influenza A Virus Infection In Vitro and In Vivo.
Viruses.
2021 07; 13(8):. doi:
10.3390/v13081433
. [PMID: 34452298] - Zhan Huang, Tessa Schoones, Jerry M Wells, Vincenzo Fogliano, Edoardo Capuano. Substrate-Driven Differences in Tryptophan Catabolism by Gut Microbiota and Aryl Hydrocarbon Receptor Activation.
Molecular nutrition & food research.
2021 07; 65(13):e2100092. doi:
10.1002/mnfr.202100092
. [PMID: 33964185] - Xianbang Hou, Xueyuan Zhang, Jingting Bi, Anhong Zhu, Liwei He. Indole-3-carboxaldehyde regulates RSV-induced inflammatory response in RAW264.7 cells by moderate inhibition of the TLR7 signaling pathway.
Journal of natural medicines.
2021 Jun; 75(3):602-611. doi:
10.1007/s11418-021-01506-0
. [PMID: 33755912] - Chien-Chang Shen, Wen-Chi Wei, Lie-Chwen Lin. Diterpenoids and Bisnorditerpenoids from Blumea aromatica.
Journal of natural products.
2019 11; 82(11):3181-3185. doi:
10.1021/acs.jnatprod.9b00674
. [PMID: 31646857] - Yun Teng, Yi Ren, Mohammed Sayed, Xin Hu, Chao Lei, Anil Kumar, Elizabeth Hutchins, Jingyao Mu, Zhongbin Deng, Chao Luo, Kumaran Sundaram, Mukesh K Sriwastva, Lifeng Zhang, Michael Hsieh, Rebecca Reiman, Bodduluri Haribabu, Jun Yan, Venkatakrishna Rao Jala, Donald M Miller, Kendall Van Keuren-Jensen, Michael L Merchant, Craig J McClain, Juw Won Park, Nejat K Egilmez, Huang-Ge Zhang. Plant-Derived Exosomal MicroRNAs Shape the Gut Microbiota.
Cell host & microbe.
2018 11; 24(5):637-652.e8. doi:
10.1016/j.chom.2018.10.001
. [PMID: 30449315] - Hyo Hee Yang, Kyung-Eon Oh, Yang Hee Jo, Jong Hoon Ahn, Qing Liu, Ayman Turk, Jae Young Jang, Bang Yeon Hwang, Ki Yong Lee, Mi Kyeong Lee. Characterization of tyrosinase inhibitory constituents from the aerial parts of Humulus japonicus using LC-MS/MS coupled online assay.
Bioorganic & medicinal chemistry.
2018 01; 26(2):509-515. doi:
10.1016/j.bmc.2017.12.011
. [PMID: 29254897] - War War May Zin, Suradet Buttachon, Tida Dethoup, José A Pereira, Luís Gales, Ângela Inácio, Paulo M Costa, Michael Lee, Nazim Sekeroglu, Artur M S Silva, Madalena M M Pinto, Anake Kijjoa. Antibacterial and antibiofilm activities of the metabolites isolated from the culture of the mangrove-derived endophytic fungus Eurotium chevalieri KUFA 0006.
Phytochemistry.
2017 Sep; 141(?):86-97. doi:
10.1016/j.phytochem.2017.05.015
. [PMID: 28586721] - M Soledade C Pedras, Abbas Abdoli, Vijay K Sarma-Mamillapalle. Inhibitors of the Detoxifying Enzyme of the Phytoalexin Brassinin Based on Quinoline and Isoquinoline Scaffolds.
Molecules (Basel, Switzerland).
2017 Aug; 22(8):. doi:
10.3390/molecules22081345
. [PMID: 28805743] - Lu Zhang, Zong-Cai Tu, Tao Yuan, Hui Wang, Xing Xie, Zhi-Feng Fu. Antioxidants and α-glucosidase inhibitors from Ipomoea batatas leaves identified by bioassay-guided approach and structure-activity relationships.
Food chemistry.
2016 Oct; 208(?):61-7. doi:
10.1016/j.foodchem.2016.03.079
. [PMID: 27132824] - Veit Rothhammer, Ivan D Mascanfroni, Lukas Bunse, Maisa C Takenaka, Jessica E Kenison, Lior Mayo, Chun-Cheih Chao, Bonny Patel, Raymond Yan, Manon Blain, Jorge I Alvarez, Hania Kébir, Niroshana Anandasabapathy, Guillermo Izquierdo, Steffen Jung, Nikolaus Obholzer, Nathalie Pochet, Clary B Clish, Marco Prinz, Alexandre Prat, Jack Antel, Francisco J Quintana. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor.
Nature medicine.
2016 06; 22(6):586-97. doi:
10.1038/nm.4106
. [PMID: 27158906] - Hui Ren, Li-mei Dong, Zhong-yu Zhou, Qiao-lin Xu, Jian-wen Tan. [Chemical Constituents from Sphagneticola trilobata].
Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials.
2015 Jul; 38(7):1426-9. doi:
. [PMID: 26946839]
- Yao Lu, Zhi-Hong Li, Lin Ma, An-Jun Deng, Feng Wu, Zhi-Hui Zhang, Hai-Lin Qin. [Study on chemical constituents from cultivated Gynura nepalensis].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2014 Oct; 39(19):3777-81. doi:
. [PMID: 25612439]
- Pierluigi Caboni, Giorgia Sarais, Nadhem Aissani, Graziella Tocco, Nicola Sasanelli, Barbara Liori, Annarosa Carta, Alberto Angioni. Nematicidal activity of 2-thiophenecarboxaldehyde and methylisothiocyanate from caper (Capparis spinosa) against Meloidogyne incognita.
Journal of agricultural and food chemistry.
2012 Aug; 60(30):7345-51. doi:
10.1021/jf302075w
. [PMID: 22769561] - Jin-Tong Chen, Huey-Jen Su, Jenn-Wen Huang. Isolation and identification of secondary metabolites of Clitocybe nuda responsible for inhibition of zoospore germination of Phytophthora capsici.
Journal of agricultural and food chemistry.
2012 Aug; 60(30):7341-4. doi:
10.1021/jf301570y
. [PMID: 22738079] - Minghua Chen, Lishe Gan, Sheng Lin, Xiaoliang Wang, Li Li, Yuhuan Li, Chenggen Zhu, Yanan Wang, Bingya Jiang, Jiandong Jiang, Yongchun Yang, Jiangong Shi. Alkaloids from the root of Isatis indigotica.
Journal of natural products.
2012 Jun; 75(6):1167-76. doi:
10.1021/np3002833
. [PMID: 22694318] - Dimas M Ribeiro, Wagner L Araújo, Alisdair R Fernie, Jos H M Schippers, Bernd Mueller-Roeber. Translatome and metabolome effects triggered by gibberellins during rosette growth in Arabidopsis.
Journal of experimental botany.
2012 Apr; 63(7):2769-86. doi:
10.1093/jxb/err463
. [PMID: 22291129] - Simon P B Ovenden, Jonathan L Nielson, Catherine H Liptrot, Richard H Willis, Dianne M Tapiolas, Anthony D Wright, Cherie A Motti. Update of spectroscopic data for 4-hydroxydictyolactone and dictyol E isolated from a Halimeda stuposa - Dictyota sp. assemblage.
Molecules (Basel, Switzerland).
2012 Mar; 17(3):2929-38. doi:
10.3390/molecules17032929
. [PMID: 22402763] - M Soledade C Pedras, Sajjad Hossain. Interaction of cruciferous phytoanticipins with plant fungal pathogens: indole glucosinolates are not metabolized but the corresponding desulfo-derivatives and nitriles are.
Phytochemistry.
2011 Dec; 72(18):2308-16. doi:
10.1016/j.phytochem.2011.08.018
. [PMID: 21920565] - Marta D Heis, Elisabeth M Ditmer, Luisa A de Oliveira, Ana Paula G Frazzon, Rogério Margis, Jeverson Frazzon. Differential expression of cysteine desulfurases in soybean.
BMC plant biology.
2011 Nov; 11(?):166. doi:
10.1186/1471-2229-11-166
. [PMID: 22099069] - Hexon Angel Contreras-Cornejo, Lourdes Macías-Rodríguez, Elda Beltrán-Peña, Alfredo Herrera-Estrella, José López-Bucio. Trichoderma-induced plant immunity likely involves both hormonal- and camalexin-dependent mechanisms in Arabidopsis thaliana and confers resistance against necrotrophic fungi Botrytis cinerea.
Plant signaling & behavior.
2011 Oct; 6(10):1554-63. doi:
10.4161/psb.6.10.17443
. [PMID: 21931272] - David P Dixon, Jonathan D Sellars, Robert Edwards. The Arabidopsis phi class glutathione transferase AtGSTF2: binding and regulation by biologically active heterocyclic ligands.
The Biochemical journal.
2011 Aug; 438(1):63-70. doi:
10.1042/bj20101884
. [PMID: 21631432] - Johanna Hauder, Stefanie Winkler, Achim Bub, Corinna E Rüfer, Marc Pignitter, Veronika Somoza. LC-MS/MS quantification of sulforaphane and indole-3-carbinol metabolites in human plasma and urine after dietary intake of selenium-fortified broccoli.
Journal of agricultural and food chemistry.
2011 Aug; 59(15):8047-57. doi:
10.1021/jf201501x
. [PMID: 21732669] - Yong-Guy Kim, Jin-Hyung Lee, Moo Hwan Cho, Jintae Lee. Indole and 3-indolylacetonitrile inhibit spore maturation in Paenibacillus alvei.
BMC microbiology.
2011 May; 11(?):119. doi:
10.1186/1471-2180-11-119
. [PMID: 21619597] - Jin-Hyung Lee, Moo Hwan Cho, Jintae Lee. 3-indolylacetonitrile decreases Escherichia coli O157:H7 biofilm formation and Pseudomonas aeruginosa virulence.
Environmental microbiology.
2011 Jan; 13(1):62-73. doi:
10.1111/j.1462-2920.2010.02308.x
. [PMID: 20649646] - E V Kul'chavenia, A A Breusov, E V Brizhatiuk, D P Kholtobin. [Approaches to raising efficacy of treatment of patients with chronic prostatitis associated with intracellular infections].
Urologiia (Moscow, Russia : 1999).
2010 Nov; ?(6):55-8. doi:
. [PMID: 21427997]
- Edyta Zdunek-Zastocka. The activity pattern and gene expression profile of aldehyde oxidase during the development of Pisum sativum seeds.
Plant science : an international journal of experimental plant biology.
2010 Nov; 179(5):543-8. doi:
10.1016/j.plantsci.2010.08.005
. [PMID: 21802613] - Md Mujahid, Ch Sasikala, Ch V Ramana. Aniline-induced tryptophan production and identification of indole derivatives from three purple bacteria.
Current microbiology.
2010 Oct; 61(4):285-90. doi:
10.1007/s00284-010-9609-2
. [PMID: 20852980] - Julia Teschner, Nicole Lachmann, Jutta Schulze, Mirco Geisler, Kristina Selbach, Jose Santamaria-Araujo, Janneke Balk, Ralf R Mendel, Florian Bittner. A novel role for Arabidopsis mitochondrial ABC transporter ATM3 in molybdenum cofactor biosynthesis.
The Plant cell.
2010 Feb; 22(2):468-80. doi:
10.1105/tpc.109.068478
. [PMID: 20164445] - Marc Morant, Claus Ekstrøm, Peter Ulvskov, Charlotte Kristensen, Mats Rudemo, Carl Erik Olsen, Jørgen Hansen, Kirsten Jørgensen, Bodil Jørgensen, Birger Lindberg Møller, Søren Bak. Metabolomic, transcriptional, hormonal, and signaling cross-talk in superroot2.
Molecular plant.
2010 Jan; 3(1):192-211. doi:
10.1093/mp/ssp098
. [PMID: 20008451] - Christoph Böttcher, Lore Westphal, Constanze Schmotz, Elke Prade, Dierk Scheel, Erich Glawischnig. The multifunctional enzyme CYP71B15 (PHYTOALEXIN DEFICIENT3) converts cysteine-indole-3-acetonitrile to camalexin in the indole-3-acetonitrile metabolic network of Arabidopsis thaliana.
The Plant cell.
2009 Jun; 21(6):1830-45. doi:
10.1105/tpc.109.066670
. [PMID: 19567706] - Thangaraj Shankar, Shanmugam Muthusubramanian, Rathinasamy Gandhidasan. A chromanone alkaloid from Derris ovalifolia stem.
Natural product research.
2009; 23(17):1652-6. doi:
10.1080/14786410903306126
. [PMID: 19851932] - Ralf Tautenhahn, Christoph Böttcher, Steffen Neumann. Highly sensitive feature detection for high resolution LC/MS.
BMC bioinformatics.
2008 Nov; 9(?):504. doi:
10.1186/1471-2105-9-504
. [PMID: 19040729] - Kakul Husain, Abdul Roouf Bhat, Amir Azam. New Pd(II) complexes of the synthesized 1-N-substituted thiosemicarbazones of 3-indole carboxaldehyde: characterization and antiamoebic assessment against E. histolytica.
European journal of medicinal chemistry.
2008 Sep; 43(9):2016-28. doi:
10.1016/j.ejmech.2007.12.002
. [PMID: 18222017] - Feng-Min Lin, Li-Ru Chen, En-Hau Lin, Ferng-Chun Ke, Hsin-Yi Chen, Meng-Jen Tsai, Pei-Wen Hsiao. Compounds from Wedelia chinensis synergistically suppress androgen activity and growth in prostate cancer cells.
Carcinogenesis.
2007 Dec; 28(12):2521-9. doi:
10.1093/carcin/bgm137
. [PMID: 17942463] - Qian-Rui Zhang, Zhi-Nan Mei, Guang-Zhong Yang, Yu-Xiu Xiao. [Chemical constituents from aerial parts of Plumbago zeylanica Linn].
Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials.
2007 May; 30(5):558-60. doi:
. [PMID: 17727061]
- Li Zuo, Jian-bei Li, Jing Xu, Jing-zhi Yang, Dong-ming Zhang, Yong-ling Tong. [Studies on chemical constituents in root of Isatis indigotica].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2007 Apr; 32(8):688-91. doi:
. [PMID: 17608220]
- Noélia Duarte, Maria-José U Ferreira. Lagaspholones A and B: two new jatropholane-type diterpenes from Euphorbia lagascae.
Organic letters.
2007 Feb; 9(3):489-92. doi:
10.1021/ol062854f
. [PMID: 17249794] - M Soledade C Pedras, Mukund Jha. Toward the control of Leptosphaeria maculans: design, syntheses, biological activity, and metabolism of potential detoxification inhibitors of the crucifer phytoalexin brassinin.
Bioorganic & medicinal chemistry.
2006 Jul; 14(14):4958-79. doi:
10.1016/j.bmc.2006.03.014
. [PMID: 16616505] - Anna M Vetrano, Diane E Heck, Thomas M Mariano, Vladimir Mishin, Debra L Laskin, Jeffrey D Laskin. Characterization of the oxidase activity in mammalian catalase.
The Journal of biological chemistry.
2005 Oct; 280(42):35372-81. doi:
10.1074/jbc.m503991200
. [PMID: 16079130] - Elena Fedorova, Francisco J Redondo, Tomokazu Koshiba, José J Pueyo, M Rosario de Felipe, M Mercedes Lucas. Aldehyde oxidase (AO) in the root nodules of Lupinus albus and Medicago truncatula: identification of AO in meristematic and infection zones.
Molecular plant-microbe interactions : MPMI.
2005 May; 18(5):405-13. doi:
10.1094/mpmi-18-0405
. [PMID: 15915639] - Mark J Anderton, Margaret M Manson, Richard D Verschoyle, Andreas Gescher, John H Lamb, Peter B Farmer, William P Steward, Marion L Williams. Pharmacokinetics and tissue disposition of indole-3-carbinol and its acid condensation products after oral administration to mice.
Clinical cancer research : an official journal of the American Association for Cancer Research.
2004 Aug; 10(15):5233-41. doi:
10.1158/1078-0432.ccr-04-0163
. [PMID: 15297427] - Jianwen Tan, Pawel Bednarek, Jikai Liu, Bernd Schneider, Ales Svatos, Klaus Hahlbrock. Universally occurring phenylpropanoid and species-specific indolic metabolites in infected and uninfected Arabidopsis thaliana roots and leaves.
Phytochemistry.
2004 Mar; 65(6):691-9. doi:
10.1016/j.phytochem.2003.12.009
. [PMID: 15016565] - Cláudia Valente, Maria José Ferreira, Pedro M Abreu, Madalena Pedro, Fátima Cerqueira, Maria São José Nascimento. Three new jatrophane-type diterpenes from Euphorbia pubescens.
Planta medica.
2003 Apr; 69(4):361-6. doi:
10.1055/s-2003-38875
. [PMID: 12709905] - Hong-Jie Zhang, Pamela A Tamez, Zeynep Aydogmus, Ghee Teng Tan, Yoko Saikawa, Kimiko Hashimoto, Masaya Nakata, Nguyen Van Hung, Le Thi Xuan, Nguyen Manh Cuong, D Doel Soejarto, John M Pezzuto, Harry H S Fong. Antimalarial agents from plants. III. Trichothecenes from Ficus fistulosa and Rhaphidophora decursiva.
Planta medica.
2002 Dec; 68(12):1088-91. doi:
10.1055/s-2002-36350
. [PMID: 12494335] - Eri Nakajima, Hiroshi Nakano, Kosumi Yamada, Hideyuki Shigemori, Koji Hasegawa. Isolation and identification of lateral bud growth inhibitor, indole-3-aldehyde, involved in apical dominance of pea seedlings.
Phytochemistry.
2002 Dec; 61(7):863-5. doi:
10.1016/s0031-9422(02)00400-4
. [PMID: 12453580] - M Soledade C Pedras, Corwin M Nycholat, Sabine Montaut, Yiming Xu, Abdul Q Khan. Chemical defenses of crucifers: elicitation and metabolism of phytoalexins and indole-3-acetonitrile in brown mustard and turnip.
Phytochemistry.
2002 Mar; 59(6):611-25. doi:
10.1016/s0031-9422(02)00026-2
. [PMID: 11867093] - J L Celenza. Metabolism of tyrosine and tryptophan--new genes for old pathways.
Current opinion in plant biology.
2001 Jun; 4(3):234-40. doi:
10.1016/s1369-5266(00)00166-7
. [PMID: 11312134] - Q Yue, C J Miller, J F White, M D Richardson. Isolation and characterization of fungal inhibitors from Epichloë festucae.
Journal of agricultural and food chemistry.
2000 Oct; 48(10):4687-92. doi:
10.1021/jf990685q
. [PMID: 11052720] - I G Gazarian, L M Lagrimini, F A Mellon, M J Naldrett, G A Ashby, R N Thorneley. Identification of skatolyl hydroperoxide and its role in the peroxidase-catalysed oxidation of indol-3-yl acetic acid.
The Biochemical journal.
1998 Jul; 333 ( Pt 1)(?):223-32. doi:
10.1042/bj3330223
. [PMID: 9639583] - M P De Mello, S M De Toledo, M Haun, G Cilento, N Durán. Excited indole-3-aldehyde from the peroxidase-catalyzed aerobic oxidation of indole-3-acetic acid. Reaction with and energy transfer to transfer ribonucleic acid.
Biochemistry.
1980 Nov; 19(23):5270-5. doi:
10.1021/bi00564a019
. [PMID: 7448169] - D J Byrd, H W Berthold, K F Trefz, W Kochen, G Gilli, K Schärer, H W Schüler, H W Asbach. Indolic tryptophan metabolism in uraemia.
Proceedings of the European Dialysis and Transplant Association. European Dialysis and Transplant Association.
1976; 12(?):347-54. doi:
. [PMID: 935125]