PC 36:2 (BioDeep_00000410755)

 

Secondary id: BioDeep_00000019226, BioDeep_00001871870

LipidSearch


代谢物信息卡片


Choline phosphate, 3-ester with L-1,2-diolein;Olein, 1,2-di-, L-, dihydrogen phosphate, monoester with choline hydroxide

化学式: C44H84NO8P (785.5934234)
中文名称: 1,2-二油酰基-sn-甘油-3-磷酸胆
谱图信息: 最多检出来源 Homo sapiens(blood) 0.01%

分子结构信息

SMILES: CCC=CCCCCCCCCCCCCCC(=O)OCC(COP(=O)([O-])OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCCC=CCC
InChI: InChI=1S/C44H84NO8P/c1-6-8-10-12-14-16-18-20-22-24-26-28-30-32-34-36-43(46)50-40-42(41-52-54(48,49)51-39-38-45(3,4)5)53-44(47)37-35-33-31-29-27-25-23-21-19-17-15-13-11-9-7-2/h8-11,42H,6-7,12-41H2,1-5H3/b10-8-,11-9-/t42-/m1/s1

描述信息

Found in mouse brain; TwoDicalId=185; MgfFile=160720_brain_DHA_12_Neg; MgfId=1172
Found in mouse small intestine; TwoDicalId=38; MgfFile=160907_Small_Intestine_EPA_Neg_08; MgfId=1404

同义名列表

105 个代谢物同义名

1-(13Z-docosenoyl)-2-(9Z-tetradecenoyl)-sn-glycero-3-phosphocholine; PC(22:1(13Z)/14:1(9Z)); PC(14:1_22:1); PC(36:2); PC 36:2; 1-(9Z-octadecenoyl)-2-(11Z-octadecenoyl)-sn-glycero-3-phosphocholine; PC(18:1(9Z)/18:1(11Z)); PC(18:1/18:1); 1-(11Z-octadecenoyl)-2-(9Z-octadecenoyl)-sn-glycero-3-phosphocholine; PC(18:1(11Z)/18:1(9Z)); 1-(9Z-tetradecenoyl)-2-(13Z-docosenoyl)-sn-glycero-3-phosphocholine; PC(14:1(9Z)/22:1(13Z)); 1-(13Z,16Z-docosadienoyl)-2-tetradecanoyl-glycero-3-phosphocholine; PC(22:2(13Z,16Z)/14:0); PC(14:0_22:2); 1-(11Z-docosenoyl)-2-(9Z-tetradecenoyl)-glycero-3-phosphocholine; PC(22:1(11Z)/14:1(9Z)); 1-(11Z,14Z-eicosadienoyl)-2-hexadecanoyl-glycero-3-phosphocholine; PC(20:2(11Z,14Z)/16:0); PC(16:0_20:2); 1-(11Z-eicosenoyl)-2-(9Z-hexadecenoyl)-glycero-3-phosphocholine; PC(20:1(11Z)/16:1(9Z)); PC(16:1_20:1); 1-(9Z-nonadecenoyl)-2-(9Z-heptadecenoyl)-glycero-3-phosphocholine; PC(19:1(9Z)/17:1(9Z)); PC(17:1_19:1); 1-nonadecanoyl-2-(9Z,12Z-heptadecadienoyl)-glycero-3-phosphocholine; PC(19:0/17:2(9Z,12Z)); PC(17:2_19:0); 1-(9Z,12Z-heptadecadienoyl)-2-nonadecanoyl-glycero-3-phosphocholine; PC(17:2(9Z,12Z)/19:0); 1-(9Z-heptadecenoyl)-2-(9Z-nonadecenoyl)-glycero-3-phosphocholine; PC(17:1(9Z)/19:1(9Z)); 1-(9Z-hexadecenoyl)-2-(11Z-eicosenoyl)-glycero-3-phosphocholine; PC(16:1(9Z)/20:1(11Z)); 1-hexadecanoyl-2-(11Z,14Z-eicosadienoyl)-glycero-3-phosphocholine; PC(16:0/20:2(11Z,14Z)); 1-(9Z-tetradecenoyl)-2-(11Z-docosenoyl)-glycero-3-phosphocholine; PC(14:1(9Z)/22:1(11Z)); 1-tetradecanoyl-2-(13Z,16Z-docosadienoyl)-glycero-3-phosphocholine; PC(14:0/22:2(13Z,16Z)); 1,2-di-(4Z-octadecenoyl)-sn-glycero-3-phosphocholine; PC(18:1(4Z)/18:1(4Z)); 1-(9Z,12Z-octadecadienoyl)-2-octadecanoyl-sn-glycero-3-phosphocholine; 1-Linoleoyl-2-stearoyl-sn-glycero-3-phosphocholine; PC(18:2(9Z,12Z)/18:0); PC(18:0_18:2); PC(18:2/18:0); Choline phosphate, 3-ester with L-1,2-diolein;Olein, 1,2-di-, L-, dihydrogen phosphate, monoester with choline hydroxide; 1,2-di-(9Z-octadecenoyl)-sn-glycero-3-phosphocholine; 1,2-DIOLEOYL-SN-GLYCERO-3-PHOSPHOCHOLINE; 1,2-Dioleoyl-L-alpha-lecithin; Dioleoyl phosphatidylcholine; PC(18:1(9Z)/18:1(9Z)); DOPC; 1,2-di-(9E-octadecenoyl)-sn-glycero-3-phosphocholine; PC(18:1(9E)/18:1(9E)); 1,2-di-(8Z-octadecenoyl)-sn-glycero-3-phosphocholine; PC(18:1(8Z)/18:1(8Z)); 1,2-di-(7Z-octadecenoyl)-sn-glycero-3-phosphocholine; PC(18:1(7Z)/18:1(7Z)); 1,2-di-(6Z-octadecenoyl)-sn-glycero-3-phosphocholine; Dipetroselinoyl-L-alpha-glycerophosphorylcholine; L-Dipetroselinoyl lecithin; PC(18:1(6Z)/18:1(6Z)); 1,2-di-(6E-octadecenoyl)-sn-glycero-3-phosphocholine; Di-6-octadecenoyl L-alpha-lecithin; PC(18:1(6E)/18:1(6E)); 1,2-di-(5Z-octadecenoyl)-sn-glycero-3-phosphocholine; PC(18:1(5Z)/18:1(5Z)); 1,2-di-(3Z-octadecenoyl)-sn-glycero-3-phosphocholine; PC(18:1(3Z)/18:1(3Z)); 1,2-di-(2Z-octadecenoyl)-sn-glycero-3-phosphocholine; PC(18:1(2Z)/18:1(2Z)); 1,2-di-(17Z-octadecenoyl)-sn-glycero-3-phosphocholine; PC(18:1(17Z)/18:1(17Z)); 1,2-di-(16Z-octadecenoyl)-sn-glycero-3-phosphocholine; PC(18:1(16Z)/18:1(16Z)); 1,2-di-(15Z-octadecenoyl)-sn-glycero-3-phosphocholine; PC(18:1(15Z)/18:1(15Z)); 1,2-di-(14Z-octadecenoyl)-sn-glycero-3-phosphocholine; PC(18:1(14Z)/18:1(14Z)); 1,2-di-(13Z-octadecenoyl)-sn-glycero-3-phosphocholine; PC(18:1(13Z)/18:1(13Z)); 1,2-di-(12Z-octadecenoyl)-sn-glycero-3-phosphocholine; PC(18:1(12Z)/18:1(12Z)); 1,2-di-(11Z-octadecenoyl)-sn-glycero-3-phosphocholine; PC(18:1(11Z)/18:1(11Z)); 1,2-di-(11E-octadecenoyl)-sn-glycero-3-phosphocholine; PC(18:1(11E)/18:1(11E)); 1,2-di-(10Z-octadecenoyl)-sn-glycero-3-phosphocholine; PC(18:1(10Z)/18:1(10Z)); 1-octadecanoyl-2-(9Z,12Z-octadecadienoyl)-sn-glycero-3-phosphocholine; 1-Stearoyl-2-linoleoyl-sn-glycero-3-phosphatidylcholine; 1-stearoyl-2-linoleoyl-sn-glycero-3-phosphocholine; 1-Stearoyl-2-linoleoylphosphatidylcholine; Phosphatidylcholine(18:0/18:2w6); PC(18:0/18:2(9Z,12Z)); 1-octadecanoyl-2-(6Z,9Z-octadecadienoyl)-sn-glycero-3-phosphocholine; PC(18:0/18:2(6Z,9Z)); PC(18:0/18:2); 1-octadecanoyl-2-(2E,4E-octadecadienoyl)-sn-glycero-3-phosphocholine; PC(18:0/18:2(2E,4E)); 1-octadecanoyl-2-(10Z,12Z-octadecadienoyl)-sn-glycero-3-phosphocholine; PC(18:0/18:2(10Z,12Z))



数据库引用编号

96 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

19 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(19)

PharmGKB(0)

8 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Mai Yotsumoto, Risa Fujita, Muneyuki Matsuo, Shinobu Nakanishi, Mitsuhiro Denda, Satoshi Nakata. Effects of the Molecular Structure of Malodor Substances and Their Masking on 1,2-Dioleoyl-sn-glycero-3-phosphocholine Molecular Layers. Langmuir : the ACS journal of surfaces and colloids. 2024 Apr; 40(13):6878-6883. doi: 10.1021/acs.langmuir.3c03796. [PMID: 38501274]
  • Mohd Ibrahim, Jennifer Gilbert, Marcel Heinz, Tommy Nylander, Nadine Schwierz. Structural insights on ionizable Dlin-MC3-DMA lipids in DOPC layers by combining accurate atomistic force fields, molecular dynamics simulations and neutron reflectivity. Nanoscale. 2023 Jul; 15(27):11647-11656. doi: 10.1039/d3nr00987d. [PMID: 37377412]
  • Christopher J Garvey, Saffron J Bryant, Aaron Elbourne, Taavi Hunt, Ben Kent, Martin Kreuzer, Markus Strobl, Roland Steitz, Gary Bryant. Phase separation in a ternary DPPC/DOPC/POPC system with reducing hydration. Journal of colloid and interface science. 2023 May; 638(?):719-732. doi: 10.1016/j.jcis.2023.01.145. [PMID: 36774881]
  • Seungho Choe. Translocation of a single Arg[Formula: see text] peptide across a DOPC/DOPG(4:1) model membrane using the weighted ensemble method. Scientific reports. 2023 01; 13(1):1168. doi: 10.1038/s41598-023-28493-4. [PMID: 36670187]
  • Olga Press-Sandler, Yifat Miller. Molecular insights into the primary nucleation of polymorphic amyloid β dimers in DOPC lipid bilayer membrane. Protein science : a publication of the Protein Society. 2022 05; 31(5):e4283. doi: 10.1002/pro.4283. [PMID: 35129859]
  • Yu V Zaytseva, I V Zaytseva, N V Surovtsev. Conformational state diagram of DOPC/DPPCd62/cholesterol mixtures. Biochimica et biophysica acta. Biomembranes. 2022 04; 1864(4):183869. doi: 10.1016/j.bbamem.2022.183869. [PMID: 35063400]
  • Samira Jadavi, Ester Canepa, Alberto Diaspro, Claudio Canale, Annalisa Relini, Silvia Dante. α-Synuclein interacts differently with membranes mimicking the inner and outer leaflets of neuronal membranes. Biochimica et biophysica acta. Biomembranes. 2022 02; 1864(1):183814. doi: 10.1016/j.bbamem.2021.183814. [PMID: 34774499]
  • Iad Alhallak, Peter J N Kett. Modelling the adsorption of phospholipid vesicles to a silicon dioxide surface using Langmuir kinetics. Physical chemistry chemical physics : PCCP. 2022 Jan; 24(4):2139-2149. doi: 10.1039/d1cp03385a. [PMID: 34994358]
  • Zachary Graber, Desmond Owusu Kwarteng, Shannon M Lange, Yannis Koukanas, Hady Khalifa, Jean W Mutambuze, Edgar E Kooijman. The Electrostatic Basis of Diacylglycerol Pyrophosphate-Protein Interaction. Cells. 2022 01; 11(2):. doi: 10.3390/cells11020290. [PMID: 35053406]
  • Ryo Ishiguro, Keiichi Kameyama, Tetsuro Fujisawa. Simple Thermodynamic Description of the Micellar-Bilayer State Transition of Assemblies Composed of n-Octyl-β-D-glucopyranoside and 1,2-Dioleolyl-sn-glycero-3-phosphocholine Dispersed in Aqueous Media or Supported on Solid Substrates. Journal of oleo science. 2022; 71(2):235-246. doi: 10.5650/jos.ess21257. [PMID: 35110466]
  • Ryo Ishiguro, Keiichi Kameyama. Solid-Supported Assembly Composed of n-Octyl-β-D-glucopyranoside and 1,2-Dioleoyl-sn-glycero-3-phosphocholine in Equilibrium with Its Ambient Aqueous Solution System Including Dispersed Assembly. Journal of oleo science. 2022; 71(2):223-233. doi: 10.5650/jos.ess21097. [PMID: 35110465]
  • Mohammad Abu Sayem Karal, Nadia Akter Mokta, Victor Levadny, Marina Belaya, Marzuk Ahmed, Md Kabir Ahamed, Shareef Ahammed. Effects of cholesterol on the size distribution and bending modulus of lipid vesicles. PloS one. 2022; 17(1):e0263119. doi: 10.1371/journal.pone.0263119. [PMID: 35089965]
  • Agustín Mangiarotti, Luis A Bagatolli. Impact of macromolecular crowding on the mesomorphic behavior of lipid self-assemblies. Biochimica et biophysica acta. Biomembranes. 2021 12; 1863(12):183728. doi: 10.1016/j.bbamem.2021.183728. [PMID: 34416246]
  • Juan Wang, Shun Feng, Hao Zhu. Influence of amphotericin B on the DPPC/DOPC/sterols mixed monolayer in the presence of calcium ions. Biophysical chemistry. 2021 12; 279(?):106695. doi: 10.1016/j.bpc.2021.106695. [PMID: 34649214]
  • Jasleen Kaur Daljit Singh, Esther Darley, Pietro Ridone, James P Gaston, Ali Abbas, Shelley F J Wickham, Matthew A B Baker. Binding of DNA origami to lipids: maximizing yield and switching via strand displacement. Nucleic acids research. 2021 11; 49(19):10835-10850. doi: 10.1093/nar/gkab888. [PMID: 34614184]
  • Michalina Zaborowska, Damian Dziubak, Dorota Matyszewska, Slawomir Sek, Renata Bilewicz. Designing a Useful Lipid Raft Model Membrane for Electrochemical and Surface Analytical Studies. Molecules (Basel, Switzerland). 2021 Sep; 26(18):. doi: 10.3390/molecules26185483. [PMID: 34576954]
  • Tomáš Kondela, Ermuhammad Dushanov, Maria Vorobyeva, Kahramon Mamatkulov, Elizabeth Drolle, Dmytro Soloviov, Pavol Hrubovčák, Kholmirzo Kholmurodov, Grigory Arzumanyan, Zoya Leonenko, Norbert Kučerka. Investigating the competitive effects of cholesterol and melatonin in model lipid membranes. Biochimica et biophysica acta. Biomembranes. 2021 09; 1863(9):183651. doi: 10.1016/j.bbamem.2021.183651. [PMID: 34023300]
  • Juan Hu, Wesley G Cochrane, Alexander X Jones, Donna G Blackmond, Brian M Paegel. Chiral lipid bilayers are enantioselectively permeable. Nature chemistry. 2021 08; 13(8):786-791. doi: 10.1038/s41557-021-00708-z. [PMID: 34112989]
  • Masroor Hossain, G J Blanchard. Ceramide-mediation of diffusion in supported lipid bilayers. Chemistry and physics of lipids. 2021 08; 238(?):105090. doi: 10.1016/j.chemphyslip.2021.105090. [PMID: 33971138]
  • Masroor Hossain, G J Blanchard. Effects of ethanol and n-butanol on the fluidity of supported lipid bilayers. Chemistry and physics of lipids. 2021 08; 238(?):105091. doi: 10.1016/j.chemphyslip.2021.105091. [PMID: 33992653]
  • N de Lange, J M Kleijn, F A M Leermakers. Self-consistent field modeling of mesomorphic phase changes of monoolein and phospholipids in response to additives. Physical chemistry chemical physics : PCCP. 2021 Jun; 23(25):14093-14108. doi: 10.1039/d1cp00697e. [PMID: 34159985]
  • Guilherme B Berselli, Aurélien V Gimenez, Alexandra O'Connor, Tia E Keyes. Robust Photoelectric Biomolecular Switch at a Microcavity-Supported Lipid Bilayer. ACS applied materials & interfaces. 2021 Jun; 13(24):29158-29169. doi: 10.1021/acsami.1c06798. [PMID: 34121400]
  • Lorena Ruano, Gustavo Cárdenas, Juan J Nogueira. The Permeation Mechanism of Cisplatin Through a Dioleoylphosphocholine Bilayer*. Chemphyschem : a European journal of chemical physics and physical chemistry. 2021 06; 22(12):1251-1261. doi: 10.1002/cphc.202100059. [PMID: 33829637]
  • Thais A Enoki, Joy Wu, Frederick A Heberle, Gerald W Feigenson. Investigation of the domain line tension in asymmetric vesicles prepared via hemifusion. Biochimica et biophysica acta. Biomembranes. 2021 06; 1863(6):183586. doi: 10.1016/j.bbamem.2021.183586. [PMID: 33647248]
  • Keigo Murakami, Masashi Sato, Yoshiya Miyasaka, Kuniyuki Hatori. Selective association of desmin intermediate filaments with a phospholipid layer in droplets. Biochemical and biophysical research communications. 2021 05; 555(?):109-114. doi: 10.1016/j.bbrc.2021.03.131. [PMID: 33813269]
  • Guillermo J Amador, Dennis van Dijk, Roland Kieffer, Marie-Eve Aubin-Tam, Daniel Tam. Hydrodynamic shear dissipation and transmission in lipid bilayers. Proceedings of the National Academy of Sciences of the United States of America. 2021 05; 118(21):. doi: 10.1073/pnas.2100156118. [PMID: 34021088]
  • Maria Giovanna Lizio, Mario Campana, Matteo De Poli, Damien F Jefferies, William Cullen, Valery Andrushchenko, Nikola P Chmel, Petr Bouř, Syma Khalid, Jonathan Clayden, Ewan Blanch, Alison Rodger, Simon J Webb. Insight into the Mechanism of Action and Peptide-Membrane Interactions of Aib-Rich Peptides: Multitechnique Experimental and Theoretical Analysis. Chembiochem : a European journal of chemical biology. 2021 05; 22(9):1656-1667. doi: 10.1002/cbic.202000834. [PMID: 33411956]
  • Laura J Fox, Anna Slastanova, Nicolas Taylor, Magdalena Wlodek, Oier Bikondoa, Robert M Richardson, Wuge H Briscoe. Interactions between PAMAM dendrimers and DOPC lipid multilayers: Membrane thinning and structural disorder. Biochimica et biophysica acta. General subjects. 2021 04; 1865(4):129542. doi: 10.1016/j.bbagen.2020.129542. [PMID: 31987955]
  • Eduart Gutiérrez-Pineda, Patrizia Andreozzi, Eleftheria Diamanti, Ramiro Anguiano, Ronald F Ziolo, Sergio E Moya, María José Rodríguez-Presa, Claudio A Gervasi. Effects of valinomycin doping on the electrical and structural properties of planar lipid bilayers supported on polyelectrolyte multilayers. Bioelectrochemistry (Amsterdam, Netherlands). 2021 Apr; 138(?):107688. doi: 10.1016/j.bioelechem.2020.107688. [PMID: 33227594]
  • Naomi Hamada, Sukriti Gakhar, Marjorie L Longo. Hybrid lipid/block copolymer vesicles display broad phase coexistence region. Biochimica et biophysica acta. Biomembranes. 2021 04; 1863(4):183552. doi: 10.1016/j.bbamem.2021.183552. [PMID: 33444620]
  • Yuhong Zhen, Kai K Ewert, William S Fisher, Victoria M Steffes, Youli Li, Cyrus R Safinya. Paclitaxel loading in cationic liposome vectors is enhanced by replacement of oleoyl with linoleoyl tails with distinct lipid shapes. Scientific reports. 2021 03; 11(1):7311. doi: 10.1038/s41598-021-86484-9. [PMID: 33790325]
  • Francisco Melo, Leonardo Caballero, Esteban Zamorano, Natalia Ventura, Camilo Navarro, Irving Doll, Pedro Zamorano, Alberto Cornejo. The Cytotoxic Effect of α-Synuclein Aggregates. Chemphyschem : a European journal of chemical physics and physical chemistry. 2021 03; 22(6):526-532. doi: 10.1002/cphc.202000831. [PMID: 33482036]
  • Avijit Sardar, Aritraa Lahiri, Mithila Kamble, Amirul I Mallick, Pradip K Tarafdar. Translation of Mycobacterium Survival Strategy to Develop a Lipo-peptide based Fusion Inhibitor*. Angewandte Chemie (International ed. in English). 2021 03; 60(11):6101-6106. doi: 10.1002/anie.202013848. [PMID: 33241871]
  • Gourab Prasad Pattnaik, Surajit Bhattacharjya, Hirak Chakraborty. Enhanced Cholesterol-Dependent Hemifusion by Internal Fusion Peptide 1 of SARS Coronavirus-2 Compared to Its N-Terminal Counterpart. Biochemistry. 2021 03; 60(8):559-562. doi: 10.1021/acs.biochem.1c00046. [PMID: 33569952]
  • Aarthi Devarajan, Yeu-Chun Kim, A F Isakovic, Deborah L Gater. Effect of cholecalciferol on unsaturated model membranes. Chemistry and physics of lipids. 2021 03; 235(?):105058. doi: 10.1016/j.chemphyslip.2021.105058. [PMID: 33516662]
  • Bruntha Arunachalam, Maheshkumar Jaganathan, Thanikaivelan Palanisamy, Aruna Dhathathreyan. Physico-chemical studies of elastic compliance and adsorption of DOPC vesicles and its mixture with charged lipids at fluid/solid interface. Colloids and surfaces. B, Biointerfaces. 2021 Mar; 199(?):111544. doi: 10.1016/j.colsurfb.2020.111544. [PMID: 33383550]
  • Ramalingam Venkat Kalyana Sundaram, Huaizhou Jin, Feng Li, Tong Shu, Jeff Coleman, Jie Yang, Frederic Pincet, Yongli Zhang, James E Rothman, Shyam S Krishnakumar. Munc13 binds and recruits SNAP25 to chaperone SNARE complex assembly. FEBS letters. 2021 02; 595(3):297-309. doi: 10.1002/1873-3468.14006. [PMID: 33222163]
  • Yixiao Zhang, Csaba Daday, Ruo-Xu Gu, Charles D Cox, Boris Martinac, Bert L de Groot, Thomas Walz. Visualization of the mechanosensitive ion channel MscS under membrane tension. Nature. 2021 02; 590(7846):509-514. doi: 10.1038/s41586-021-03196-w. [PMID: 33568813]
  • Jie Liu, Bing Bu, Michael Crowe, Dechang Li, Jiajie Diao, Baohua Ji. Membrane packing defects in synaptic vesicles recruit complexin and synuclein. Physical chemistry chemical physics : PCCP. 2021 Jan; 23(3):2117-2125. doi: 10.1039/d0cp03546g. [PMID: 33437978]
  • Mattia I Morandi, Monika Kluzek, Jean Wolff, André Schroder, Fabrice Thalmann, Carlos M Marques. Accumulation of styrene oligomers alters lipid membrane phase order and miscibility. Proceedings of the National Academy of Sciences of the United States of America. 2021 01; 118(4):. doi: 10.1073/pnas.2016037118. [PMID: 33468682]
  • Katherine J Kearney, Juliet Butler, Olga M Posada, Clare Wilson, Samantha Heal, Majid Ali, Lewis Hardy, Josefin Ahnström, David Gailani, Richard Foster, Emma Hethershaw, Colin Longstaff, Helen Philippou. Kallikrein directly interacts with and activates Factor IX, resulting in thrombin generation and fibrin formation independent of Factor XI. Proceedings of the National Academy of Sciences of the United States of America. 2021 01; 118(3):. doi: 10.1073/pnas.2014810118. [PMID: 33397811]
  • Miki Mori, Kohei Sato, Toru Ekimoto, Shinichi Okumura, Mitsunori Ikeguchi, Kazuhito V Tabata, Hiroyuki Noji, Kazushi Kinbara. Imidazolinium-based Multiblock Amphiphile as Transmembrane Anion Transporter. Chemistry, an Asian journal. 2021 Jan; 16(2):147-157. doi: 10.1002/asia.202001106. [PMID: 33247535]
  • Malay Kumar Sarkar, Mohammad Abu Sayem Karal, Marzuk Ahmed, Md Kabir Ahamed, Shareef Ahammed, Sabrina Sharmin, Sayed Ul Alam Shibly. Effects of osmotic pressure on the irreversible electroporation in giant lipid vesicles. PloS one. 2021; 16(5):e0251690. doi: 10.1371/journal.pone.0251690. [PMID: 33989363]
  • Mohammad Abu Sayem Karal, Md Kabir Ahamed, Urbi Shyamolima Orchi, Md Towhiduzzaman, Marzuk Ahmed, Shareef Ahammed, Nadia Akter Mokta, Muhammad Samir Ullah. An investigation into the critical tension of electroporation in anionic lipid vesicles. European biophysics journal : EBJ. 2021 Jan; 50(1):99-106. doi: 10.1007/s00249-020-01477-2. [PMID: 33245397]
  • Tjeerd Pols, Shubham Singh, Cecile Deelman-Driessen, Bauke F Gaastra, Bert Poolman. Enzymology of the pathway for ATP production by arginine breakdown. The FEBS journal. 2021 01; 288(1):293-309. doi: 10.1111/febs.15337. [PMID: 32306469]
  • Inna Ermilova, Jan Swenson. DOPC versus DOPE as a helper lipid for gene-therapies: molecular dynamics simulations with DLin-MC3-DMA. Physical chemistry chemical physics : PCCP. 2020 Dec; 22(48):28256-28268. doi: 10.1039/d0cp05111j. [PMID: 33295352]
  • Sagar Kamble, Snehal Patil, Mandar Kulkarni, Venkata Ramana Murthy Appala. Interleaflet Decoupling in a Lipid Bilayer at Excess Cholesterol Probed by Spectroscopic Ellipsometry and Simulations. The Journal of membrane biology. 2020 12; 253(6):647-659. doi: 10.1007/s00232-020-00156-9. [PMID: 33221946]
  • Maryssa Beasley, Alyssa R Stonebraker, Justin Legleiter. Normalizing polydiacetylene colorimetric assays of vesicle binding across lipid systems. Analytical biochemistry. 2020 11; 609(?):113864. doi: 10.1016/j.ab.2020.113864. [PMID: 32846147]
  • S S Efimova, D A Khaleneva, E V Litasova, L B Piotrovskiy, O S Ostroumova. The mechanisms of action of water-soluble aminohexanoic and malonic adducts of fullerene C60 with hexamethonium on model lipid membranes. Biochimica et biophysica acta. Biomembranes. 2020 11; 1862(11):183433. doi: 10.1016/j.bbamem.2020.183433. [PMID: 32763244]
  • Ankur Kumar, Prateek Kumar, Rajanish Giri. Zika virus NS4A cytosolic region (residues 1-48) is an intrinsically disordered domain and folds upon binding to lipids. Virology. 2020 11; 550(?):27-36. doi: 10.1016/j.virol.2020.07.017. [PMID: 32871423]
  • Saziye Yorulmaz Avsar, Larisa E Kapinos, Cora-Ann Schoenenberger, Gebhard F X Schertler, Jonas Mühle, Benoit Meger, Roderick Y H Lim, Martin K Ostermaier, Elena Lesca, Cornelia G Palivan. Immobilization of arrestin-3 on different biosensor platforms for evaluating GPCR binding. Physical chemistry chemical physics : PCCP. 2020 Oct; 22(41):24086-24096. doi: 10.1039/d0cp01464h. [PMID: 33079118]
  • Hanumantha Rao Vutukuri, Masoud Hoore, Clara Abaurrea-Velasco, Lennard van Buren, Alessandro Dutto, Thorsten Auth, Dmitry A Fedosov, Gerhard Gompper, Jan Vermant. Active particles induce large shape deformations in giant lipid vesicles. Nature. 2020 10; 586(7827):52-56. doi: 10.1038/s41586-020-2730-x. [PMID: 32999485]
  • Guang Chen, Zhiqiang Shen, Ying Li. A machine-learning-assisted study of the permeability of small drug-like molecules across lipid membranes. Physical chemistry chemical physics : PCCP. 2020 Sep; 22(35):19687-19696. doi: 10.1039/d0cp03243c. [PMID: 32830206]
  • Mohammad Abu Sayem Karal, Urbi Shyamolima Orchi, Md Towhiduzzaman, Md Kabir Ahamed, Marzuk Ahmed, Shareef Ahammed, Nadia Akter Mokta, Sabrina Sharmin, Malay Kumar Sarkar. Electrostatic effects on the electrical tension-induced irreversible pore formation in giant unilamellar vesicles. Chemistry and physics of lipids. 2020 09; 231(?):104935. doi: 10.1016/j.chemphyslip.2020.104935. [PMID: 32569600]
  • Judith U De Mel, Sudipta Gupta, Rasangi M Perera, Ly Ngo, Piotr Zolnierczuk, Markus Bleuel, Sai Venkatesh Pingali, Gerald J Schneider. Influence of External NaCl Salt on Membrane Rigidity of Neutral DOPC Vesicles. Langmuir : the ACS journal of surfaces and colloids. 2020 08; 36(32):9356-9367. doi: 10.1021/acs.langmuir.0c01004. [PMID: 32672981]
  • Mayank Dixit, Themis Lazaridis. Free energy of hydrophilic and hydrophobic pores in lipid bilayers by free energy perturbation of a restraint. The Journal of chemical physics. 2020 Aug; 153(5):054101. doi: 10.1063/5.0016682. [PMID: 32770888]
  • Jan Kollar, Miloslav Machacek, Marie Halaskova, Juraj Lenco, Radim Kucera, Jiri Demuth, Monika Rohlickova, Katerina Hasonova, Miroslav Miletin, Veronika Novakova, Petr Zimcik. Cationic Versus Anionic Phthalocyanines for Photodynamic Therapy: What a Difference the Charge Makes. Journal of medicinal chemistry. 2020 07; 63(14):7616-7632. doi: 10.1021/acs.jmedchem.0c00481. [PMID: 32618190]
  • Yutaka Kazoe, Kazuma Mawatari, Lixiao Li, Hisaki Emon, Naoya Miyawaki, Hiroyuki Chinen, Kyojiro Morikawa, Ayumi Yoshizaki, Petra S Dittrich, Takehiko Kitamori. Lipid Bilayer-Modified Nanofluidic Channels of Sizes with Hundreds of Nanometers for Characterization of Confined Water and Molecular/Ion Transport. The journal of physical chemistry letters. 2020 Jul; 11(14):5756-5762. doi: 10.1021/acs.jpclett.0c01084. [PMID: 32633535]
  • Hiroto Furukawa, Hiroshi Inaba, Fumihito Inoue, Yoshihiro Sasaki, Kazunari Akiyoshi, Kazunori Matsuura. Enveloped artificial viral capsids self-assembled from anionic β-annulus peptide and cationic lipid bilayer. Chemical communications (Cambridge, England). 2020 Jul; 56(52):7092-7095. doi: 10.1039/d0cc02622k. [PMID: 32490862]
  • Bo Kyeong Yoon, Soohyun Park, Gamaliel J Ma, Kavoos Kolahdouzan, Vladimir P Zhdanov, Joshua A Jackman, Nam-Joon Cho. Competing Interactions of Fatty Acids and Monoglycerides Trigger Synergistic Phospholipid Membrane Remodeling. The journal of physical chemistry letters. 2020 Jul; 11(13):4951-4957. doi: 10.1021/acs.jpclett.0c01138. [PMID: 32478524]
  • Sirin Celiksoy, Weixiang Ye, Karl Wandner, Felix Schlapp, Katharina Kaefer, Rubén Ahijado-Guzmán, Carsten Sönnichsen. Plasmonic Nanosensors for the Label-Free Imaging of Dynamic Protein Patterns. The journal of physical chemistry letters. 2020 Jun; 11(12):4554-4558. doi: 10.1021/acs.jpclett.0c01400. [PMID: 32436712]
  • Cheng Xu, Wendong Ma, Kang Wang, Kejie He, Zhonglan Chen, Jiaojiao Liu, Kai Yang, Bing Yuan. Correlation between Single-Molecule Dynamics and Biological Functions of Antimicrobial Peptide Melittin. The journal of physical chemistry letters. 2020 Jun; 11(12):4834-4841. doi: 10.1021/acs.jpclett.0c01169. [PMID: 32478521]
  • Terumasa Omatsu, Kisho Hori, Yasuhiro Naka, Megumi Shimazaki, Kazushige Sakai, Koji Murakami, Kohji Maeda, Mao Fukuyama, Yumi Yoshida. Dynamic behavior analysis of ion transport through a bilayer lipid membrane by an electrochemical method combined with fluorometry. The Analyst. 2020 Jun; 145(11):3839-3845. doi: 10.1039/d0an00222d. [PMID: 32253394]
  • Barmak Mostofian, Quentin R Johnson, Jeremy C Smith, Xiaolin Cheng. Carotenoids promote lateral packing and condensation of lipid membranes. Physical chemistry chemical physics : PCCP. 2020 Jun; 22(21):12281-12293. doi: 10.1039/d0cp01031f. [PMID: 32432296]
  • William C Wimley. How We Came to Understand the 'Tumultuous Chemical Heterogeneity' of the Lipid Bilayer Membrane. The Journal of membrane biology. 2020 06; 253(3):185-190. doi: 10.1007/s00232-020-00126-1. [PMID: 32488366]
  • Maximilien Lopes-Rodrigues, André Matagne, David Zanuy, Carlos Alemán, Eric A Perpète, Catherine Michaux. Structural and functional characterization of Solanum tuberosum VDAC36. Proteins. 2020 06; 88(6):729-739. doi: 10.1002/prot.25861. [PMID: 31833115]
  • Amrita Basu, Prasanta Karmakar, Sanat Karmakar. Supported Planar Single and Multiple Bilayer Formation by DOPC Vesicle Rupture on Mica Substrate: A Mechanism as Revealed by Atomic Force Microscopy Study. The Journal of membrane biology. 2020 06; 253(3):205-219. doi: 10.1007/s00232-020-00117-2. [PMID: 32279087]
  • Mohammad Kaji Yazdi, E Ghazizadeh, Mahya Noroozi, Ali Neshastehriz. Design of a DOPC-MoS2/AuNP hybrid as an organic bed with higher amplification for miR detection in electrochemical biosensors. Analytical and bioanalytical chemistry. 2020 May; 412(13):3209-3219. doi: 10.1007/s00216-020-02579-8. [PMID: 32222807]
  • Takaha Mizuguchi, Atsuya Momotake, Mafumi Hishida, Masato Yasui, Yasuhiko Yamamoto, Toshiharu Saiki, Mutsuo Nuriya. Multimodal Multiphoton Imaging of the Lipid Bilayer by Dye-Based Sum-Frequency Generation and Coherent Anti-Stokes Raman Scattering. Analytical chemistry. 2020 04; 92(8):5656-5660. doi: 10.1021/acs.analchem.0c00673. [PMID: 32202108]
  • Keni Yang, Bárbara Mesquita, Peter Horvatovich, Anna Salvati. Tuning liposome composition to modulate corona formation in human serum and cellular uptake. Acta biomaterialia. 2020 04; 106(?):314-327. doi: 10.1016/j.actbio.2020.02.018. [PMID: 32081780]
  • Agustín Bruzzese, James A R Dalton, Jesús Giraldo. Insights into adenosine A2A receptor activation through cooperative modulation of agonist and allosteric lipid interactions. PLoS computational biology. 2020 04; 16(4):e1007818. doi: 10.1371/journal.pcbi.1007818. [PMID: 32298258]
  • Zening Liu, Jinyan Cui, Wei Zhan. Dipolar Janus liposomes: formation, electrokinetic motion and self-assembly. Soft matter. 2020 Mar; 16(9):2177-2184. doi: 10.1039/c9sm02254f. [PMID: 31998919]
  • Qi Gao, Guangfu Wu, King Wai Chiu Lai. Cholesterol Modulates the Formation of the Aβ Ion Channel in Lipid Bilayers. Biochemistry. 2020 03; 59(8):992-998. doi: 10.1021/acs.biochem.9b00968. [PMID: 31914730]
  • Tatiana Murugova, Oleksandr Ivankov, Elena Ermakova, Tomáš Kondela, Pavol Hrubovčák, Vadim Skoi, Alexander Kuklin, Norbert Kučerka. Structural changes introduced by cholesterol and melatonin to the model membranes mimicking preclinical conformational diseases. General physiology and biophysics. 2020 Mar; 39(2):135-144. doi: 10.4149/gpb_2019054. [PMID: 32329441]
  • Katarína Želinská, Jana Gallová, Silvia Huláková, Daniela Uhríková, Oleksandr Ivankov. Solubilisation of model membrane by DDAO surfactant - partitioning, permeabilisation and liposome-micelle transition. General physiology and biophysics. 2020 Mar; 39(2):107-122. doi: 10.4149/gpb_2019056. [PMID: 32329439]
  • Martin Jakubec, Christian Totland, Frode Rise, Elahe Jafari Chamgordani, Britt Paulsen, Louis Maes, An Matheeussen, Lise-Lotte Gundersen, Øyvind Halskau. Bioactive Metabolites of Marine Origin Have Unusual Effects on Model Membrane Systems. Marine drugs. 2020 Feb; 18(2):. doi: 10.3390/md18020125. [PMID: 32092956]
  • Yong-Hao Ma, Bolin Li, Jingjing Yang, Xiaofeng Han, Zhan Chen, Xiaolin Lu. Calcium-dependent and -independent annexin V binding: distinct molecular behaviours at cell membrane interfaces. Chemical communications (Cambridge, England). 2020 Feb; 56(11):1653-1656. doi: 10.1039/c9cc09184j. [PMID: 31939470]
  • Adrian H Kopf, Jonas M Dörr, Martijn C Koorengevel, Federico Antoniciello, Helene Jahn, J Antoinette Killian. Factors influencing the solubilization of membrane proteins from Escherichia coli membranes by styrene-maleic acid copolymers. Biochimica et biophysica acta. Biomembranes. 2020 02; 1862(2):183125. doi: 10.1016/j.bbamem.2019.183125. [PMID: 31738899]
  • Atsuya Momotake, Takaha Mizuguchi, Mafumi Hishida, Yasuhiko Yamamoto, Masato Yasui, Mutsuo Nuriya. Monitoring the morphological evolution of giant vesicles by azo dye-based sum-frequency generation (SFG) microscopy. Colloids and surfaces. B, Biointerfaces. 2020 Feb; 186(?):110716. doi: 10.1016/j.colsurfb.2019.110716. [PMID: 31865122]
  • Elena A Golysheva, Sergei A Dzuba. Lipid chain mobility and packing in DOPC bilayers at cryogenic temperatures. Chemistry and physics of lipids. 2020 01; 226(?):104817. doi: 10.1016/j.chemphyslip.2019.104817. [PMID: 31525380]
  • Cheng-Zhi Xie, Shih-Min Chang, Eugene Mamontov, Laura R Stingaciu, Yi-Fan Chen. Uncoupling between the lipid membrane dynamics of differing hierarchical levels. Physical review. E. 2020 Jan; 101(1-1):012416. doi: 10.1103/physreve.101.012416. [PMID: 32069643]
  • Seong-Eun Kim, Jin-Won Park. Analysis of interactions between cinnamycin and biomimetic membranes. Colloids and surfaces. B, Biointerfaces. 2020 Jan; 185(?):110595. doi: 10.1016/j.colsurfb.2019.110595. [PMID: 31735419]
  • Alexandre M Almeida, Osvaldo N Oliveira, Pedro H B Aoki. Role of Toluidine Blue-O Binding Mechanism for Photooxidation in Bioinspired Bacterial Membranes. Langmuir : the ACS journal of surfaces and colloids. 2019 12; 35(51):16745-16751. doi: 10.1021/acs.langmuir.9b03045. [PMID: 31746210]
  • Enamul Haque Mojumdar, Carl Grey, Emma Sparr. Self-Assembly in Ganglioside‒Phospholipid Systems: The Co-Existence of Vesicles, Micelles, and Discs. International journal of molecular sciences. 2019 Dec; 21(1):. doi: 10.3390/ijms21010056. [PMID: 31861839]
  • Tetsuya Fujie, Makoto Yoshimoto. Rapid leakage from PEGylated liposomes triggered by bubbles. Soft matter. 2019 Dec; 15(46):9537-9546. doi: 10.1039/c9sm01820d. [PMID: 31712795]
  • An Ghysels, Andreas Krämer, Richard M Venable, Walter E Teague, Edward Lyman, Klaus Gawrisch, Richard W Pastor. Permeability of membranes in the liquid ordered and liquid disordered phases. Nature communications. 2019 12; 10(1):5616. doi: 10.1038/s41467-019-13432-7. [PMID: 31819053]
  • F Perissinotto, V Rondelli, P Parisse, N Tormena, A Zunino, L Almásy, D G Merkel, L Bottyán, Sz Sajti, L Casalis. GM1 Ganglioside role in the interaction of Alpha-synuclein with lipid membranes: Morphology and structure. Biophysical chemistry. 2019 12; 255(?):106272. doi: 10.1016/j.bpc.2019.106272. [PMID: 31698188]
  • James A Goodchild, Danielle L Walsh, Simon D Connell. Nanoscale Substrate Roughness Hinders Domain Formation in Supported Lipid Bilayers. Langmuir : the ACS journal of surfaces and colloids. 2019 11; 35(47):15352-15363. doi: 10.1021/acs.langmuir.9b01990. [PMID: 31626551]
  • Mehdi Azouz, Christophe Cullin, Sophie Lecomte, Michel Lafleur. Membrane domain modulation of Aβ1-42 oligomer interactions with supported lipid bilayers: an atomic force microscopy investigation. Nanoscale. 2019 Nov; 11(43):20857-20867. doi: 10.1039/c9nr06361g. [PMID: 31657431]
  • Cesar A Löpez, Velimir V Vesselinov, S Gnanakaran, Boian S Alexandrov. Unsupervised Machine Learning for Analysis of Phase Separation in Ternary Lipid Mixture. Journal of chemical theory and computation. 2019 Nov; 15(11):6343-6357. doi: 10.1021/acs.jctc.9b00074. [PMID: 31476122]
  • Andrew Zgorski, Richard W Pastor, Edward Lyman. Surface Shear Viscosity and Interleaflet Friction from Nonequilibrium Simulations of Lipid Bilayers. Journal of chemical theory and computation. 2019 Nov; 15(11):6471-6481. doi: 10.1021/acs.jctc.9b00683. [PMID: 31476126]
  • Yudi Ding, Nicholas H Williams, Christopher A Hunter. A Synthetic Vesicle-to-Vesicle Communication System. Journal of the American Chemical Society. 2019 11; 141(44):17847-17853. doi: 10.1021/jacs.9b09102. [PMID: 31642667]
  • Kumiko Sakai-Kato, Kohki Yoshida, Ken-Ichi Izutsu. Effect of surface charge on the size-dependent cellular internalization of liposomes. Chemistry and physics of lipids. 2019 11; 224(?):104726. doi: 10.1016/j.chemphyslip.2019.01.004. [PMID: 30660745]
  • Margaret M Elmer-Dixon, John Hoody, Harmen B B Steele, Dustin C Becht, Bruce E Bowler. Cardiolipin Preferentially Partitions to the Inner Leaflet of Mixed Lipid Large Unilamellar Vesicles. The journal of physical chemistry. B. 2019 10; 123(43):9111-9122. doi: 10.1021/acs.jpcb.9b07690. [PMID: 31589821]
  • Hsin-Yu Huang, Ming-Lun Syue, I-Chia Chen, Tsyr-Yan Yu, Li-Kang Chu. Influence of Lipid Compositions in the Events of Retinal Schiff Base of Bacteriorhodopsin Embedded in Covalently Circularized Nanodiscs: Thermal Isomerization, Photoisomerization, and Deprotonation. The journal of physical chemistry. B. 2019 10; 123(43):9123-9133. doi: 10.1021/acs.jpcb.9b07788. [PMID: 31584816]
  • Lisa B Dreier, Amanuel Wolde-Kidan, Douwe Jan Bonthuis, Roland R Netz, Ellen H G Backus, Mischa Bonn. Unraveling the Origin of the Apparent Charge of Zwitterionic Lipid Layers. The journal of physical chemistry letters. 2019 Oct; 10(20):6355-6359. doi: 10.1021/acs.jpclett.9b02587. [PMID: 31568720]
  • Soohyun Park, Joshua A Jackman, Nam-Joon Cho. Quantitative accounting of dye leakage and photobleaching in single lipid vesicle measurements: Implications for biomacromolecular interaction analysis. Colloids and surfaces. B, Biointerfaces. 2019 Oct; 182(?):110338. doi: 10.1016/j.colsurfb.2019.06.067. [PMID: 31301580]
  • Muhammad Jan Akhunzada, Luca Sagresti, Andrea Catte, Nicholus Bhattacharjee, Tommaso D'Agostino, Giuseppe Brancato. Temperature Dependence of the Structure and Dynamics of a Dye-Labeled Lipid in a Planar Phospholipid Bilayer: A Computational Study. The Journal of membrane biology. 2019 10; 252(4-5):227-240. doi: 10.1007/s00232-019-00081-6. [PMID: 31332471]
  • Mikkel Christensen, Birgit Schiøtt. Revealing a Dual Role of Ganglioside Lipids in the Aggregation of Membrane-Associated Islet Amyloid Polypeptide. The Journal of membrane biology. 2019 10; 252(4-5):343-356. doi: 10.1007/s00232-019-00074-5. [PMID: 31222470]