beta-N-Acetylglucosamine (BioDeep_00000014378)
Secondary id: BioDeep_00001868506
human metabolite Endogenous blood metabolite Volatile Flavor Compounds
代谢物信息卡片
化学式: C8H15NO6 (221.089933)
中文名称: 甲壳素单体, N-乙酰葡萄糖胺
谱图信息:
最多检出来源 Homo sapiens(blood) 0.02%
Last reviewed on 2024-07-29.
Cite this Page
beta-N-Acetylglucosamine. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/beta-n-acetylglucosamine (retrieved
2024-11-21) (BioDeep RN: BioDeep_00000014378). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: CC(=O)NC1C(C(C(OC1O)CO)O)O
InChI: InChI=1S/C8H15NO6/c1-3(11)9-5-7(13)6(12)4(2-10)15-8(5)14/h4-8,10,12-14H,2H2,1H3,(H,9,11)/t4-,5-,6-,7-,8-/m1/s1
描述信息
beta-N-Acetylglucosamine is an acylaminosugar, which is an organic compound containing a sugar linked to a chain through an N-acyl group. This compound is water-soluble. Glycosylation with beta-N-acetylglucosamine is one of the most common post-translational modifications. All animals and plants dynamically attach and remove beta-N-acetylglucosamine at serine and threonine residues on myriad nuclear and cytoplasmic proteins. beta-N-Acetylglucosamine cycling, which is tightly regulated by the concerted actions of two highly-conserved enzymes, serves as a nutrient and stress sensor. Proteins glycosylated with beta-N-acetylglucosamine can be found in almost every intracellular compartment and almost every functional class (PMID: 17460662).
同义名列表
30 个代谢物同义名
N-[(2R,3R,4R,5S,6R)-2,4,5-trihydroxy-6-(hydroxymethyl)oxan-3-yl]acetamide; WURCS=2.0/1,1,0/[a2122h-1b_1-5_2*ncc/3=o]/1/; 2-Acetamido-2-deoxy-beta-delta-glucose; 2-Acetamido-2-deoxy-beta-D-glucose; beta-N-Acetyl-delta-glucosamine; 2-Acetamido-2-deoxy-b-D-glucose; 2-Acetylamino-2-deoxy-D-glucose; 2-Acetamido-2-deoxy-D-glucose; 2 Acetamido 2 deoxy D glucose; beta-N-Acetyl-D-glucosamine; N-Acetyl-beta-D-glucosamine; 2 Acetamido 2 deoxyglucose; 2-Acetamido-2-deoxyglucose; N-Acetyl-b-D-glucosamine; beta-N-Acetylglucosamine; N-Acetyl-β-D-glucosamine; b-N-Acetyl-D-glucosamine; N-Acetyl-D-glucosamine; N Acetyl D glucosamine; b-N-Acetylglucosamine; Β-N-acetylglucosamine; N-Acetyl glucosamine; N-Acetylglucosamine; Acetylglucosamine; GlcNAc-beta; BetaGlcNAc; GlcNAc-β; GlcNAc-b; chitin; Chitin
数据库引用编号
17 个数据库交叉引用编号
- ChEBI: CHEBI:28009
- ChEBI: CHEBI:17029
- KEGG: C03878
- PubChem: 24139
- HMDB: HMDB0000803
- Metlin: METLIN5767
- ChEMBL: CHEMBL447878
- MeSH: Acetylglucosamine
- KNApSAcK: C00053525
- foodb: FDB022253
- chemspider: 22563
- CAS: 1398-61-4
- PDB-CCD: NAG
- NIKKAJI: J419.924C
- KEGG: C00461
- PubChem: 3745
- KNApSAcK: 17029
分类词条
相关代谢途径
Reactome(5)
BioCyc(12)
- chitin biosynthesis
- chitin degradation II
- chitin degradation III (carnivorous plants)
- chitin degradation to ethanol
- anhydromuropeptides recycling II
- anhydromuropeptides recycling I
- chitin degradation III (Serratia)
- chitin degradation I (archaea)
- chitin degradation II (Vibrio)
- chitosan biosynthesis
- anhydromuropeptides recycling
- acidification and chitin degradation (in carnivorous plants)
PlantCyc(0)
代谢反应
146 个相关的代谢反应过程信息。
Reactome(33)
- Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Innate Immune System:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- Antimicrobial peptides:
Fe3+ + LCN2:2,5DHBA ⟶ LCN2:2,5DHBA:Fe3+
- Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Innate Immune System:
TLR4:TLR6 + oxLDL:CD36 ⟶ TLR4:TLR6:CD36:oxLDL
- Antimicrobial peptides:
Fe3+ + LCN2:2,5DHBA ⟶ LCN2:2,5DHBA:Fe3+
- Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Innate Immune System:
TLR4:TLR6 + oxLDL:CD36 ⟶ TLR4:TLR6:CD36:oxLDL
- Antimicrobial peptides:
Fe3+ + LCN2:2,5DHBA ⟶ LCN2:2,5DHBA:Fe3+
- Immune System:
cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Innate Immune System:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- Antimicrobial peptides:
H2O + LYZ:PGN ⟶ MurNAc:Peptide + betaGlcNAc
- Immune System:
Epac + cAMP ⟶ RAPGEF3:cAMP complex
- Innate Immune System:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- Antimicrobial peptides:
H2O + LYZ:PGN ⟶ MurNAc:Peptide + betaGlcNAc
- Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Innate Immune System:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- Antimicrobial peptides:
Fe3+ + LCN2:2,5DHBA ⟶ LCN2:2,5DHBA:Fe3+
- Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Innate Immune System:
TLR4:TLR6 + oxLDL:CD36 ⟶ TLR4:TLR6:CD36:oxLDL
- Antimicrobial peptides:
Fe3+ + LCN2:2,5DHBA ⟶ LCN2:2,5DHBA:Fe3+
- Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Innate Immune System:
TLR4:TLR6 + oxLDL:CD36 ⟶ TLR4:TLR6:CD36:oxLDL
- Antimicrobial peptides:
Fe3+ + LCN2:2,5DHBA ⟶ LCN2:2,5DHBA:Fe3+
- Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Innate Immune System:
TLR4:TLR6 + oxLDL:CD36 ⟶ TLR4:TLR6:CD36:oxLDL
- Antimicrobial peptides:
Fe3+ + LCN2:2,5DHBA ⟶ LCN2:2,5DHBA:Fe3+
- Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Innate Immune System:
TLR4:TLR6 + oxLDL:CD36 ⟶ TLR4:TLR6:CD36:oxLDL
- Antimicrobial peptides:
Fe3+ + LCN2:2,5DHBA ⟶ LCN2:2,5DHBA:Fe3+
- Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Innate Immune System:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- Antimicrobial peptides:
H2O + LYZ:PGN ⟶ MurNAc:Peptide + betaGlcNAc
BioCyc(46)
- chitin biosynthesis:
UDP-N-acetyl-α-D-glucosamine + chitin ⟶ UDP + chitin
- chitin biosynthesis:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- chitin degradation to ethanol:
H2O + chitin ⟶ acetate + chitosan
- anhydromuropeptides recycling II:
N-acetyl-β-D-glucosamine-1,6-anhydro-N-acetyl-β-D-muramate + H2O ⟶ 1,6-anhydro-N-acetyl-β-muramate + GlcNAc
- anhydromuropeptides recycling I:
N-acetyl-β-D-glucosamine-1,6-anhydro-N-acetyl-β-D-muramate + H2O ⟶ 1,6-anhydro-N-acetyl-β-muramate + GlcNAc
- chitin degradation III (Serratia):
N,N'-diacetylchitobiose + H2O ⟶ N-acetyl-D-glucosamine
- chitin degradation I (archaea):
β-D-glucosaminyl-(1→4)-N-acetyl-D-glucosamine + H2O ⟶ N-acetyl-D-glucosamine + D-glucosamine
- chitin degradation II (Vibrio):
N,N',N''-triacetylchitotriose + H2O ⟶ N,N'-diacetylchitobiose + N-acetyl-D-glucosamine
- anhydromuropeptides recycling I:
N-acetyl-D-glucosamine 6-phosphate + H2O ⟶ D-glucosamine 6-phosphate + acetate
- chitin degradation to ethanol:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- chitosan biosynthesis:
H2O + chitin ⟶ acetate + chitosan
- chitin degradation II (Vibrio):
N,N',N''-triacetylchitotriose + H2O ⟶ N,N'-diacetylchitobiose + N-acetyl-D-glucosamine
- chitin degradation II (Vibrio):
H2O + chitin ⟶ a chitodextrin
- N-acetylglucosamine degradation II:
N-acetyl-D-glucosamine 6-phosphate + H2O ⟶ D-glucosamine 6-phosphate + acetate
- anhydromuropeptides recycling:
N-acetyl-D-glucosamine 6-phosphate + H2O ⟶ D-glucosamine 6-phosphate + acetate
- chitin degradation II (Vibrio):
N,N'-diacetylchitobiose + H2O ⟶ N-acetyl-D-glucosamine
- anhydromuropeptides recycling:
N-acetyl-D-glucosamine 6-phosphate + H2O ⟶ D-glucosamine 6-phosphate + acetate
- anhydromuropeptides recycling:
N-acetyl-D-glucosamine 6-phosphate + H2O ⟶ D-glucosamine 6-phosphate + acetate
- anhydromuropeptides recycling:
N-acetyl-D-glucosamine 6-phosphate + H2O ⟶ D-glucosamine 6-phosphate + acetate
- N-acetylglucosamine degradation II:
N-acetyl-D-glucosamine 6-phosphate + H2O ⟶ D-glucosamine 6-phosphate + acetate
- N-acetylglucosamine degradation II:
N-acetyl-D-glucosamine 6-phosphate + H2O ⟶ D-glucosamine 6-phosphate + acetate
- anhydromuropeptides recycling:
N-acetyl-D-glucosamine 6-phosphate + H2O ⟶ D-glucosamine 6-phosphate + acetate
- chitin degradation II:
H2O + chitin ⟶ a chitodextrin
- N-acetylglucosamine degradation II:
D-glucosamine 6-phosphate + H2O ⟶ D-fructose-6-phosphate + H+ + ammonia
- anhydromuropeptides recycling:
N-acetyl-D-glucosamine 6-phosphate + H2O ⟶ D-glucosamine 6-phosphate + acetate
- anhydromuropeptides recycling:
N-acetyl-D-glucosamine 6-phosphate + H2O ⟶ D-glucosamine 6-phosphate + acetate
- anhydromuropeptides recycling:
N-acetyl-D-glucosamine 6-phosphate + H2O ⟶ D-glucosamine 6-phosphate + acetate
- N-acetylglucosamine degradation II:
D-glucosamine 6-phosphate + H2O ⟶ D-fructose-6-phosphate + H+ + ammonia
- N-acetylglucosamine degradation II:
D-glucosamine 6-phosphate + H2O ⟶ D-fructose 6-phosphate + H+ + ammonia
- chitin degradation III (carnivorous plants):
H2O + chitin ⟶ a chitodextrin
- chitin derivatives degradation:
D-glucosamine 6-phosphate + H2O ⟶ D-fructose-6-phosphate + H+ + ammonia
- acidification and chitin degradation (in carnivorous plants):
ATP + H2O + H+ ⟶ ADP + H+ + phosphate
- N-acetylglucosamine degradation II:
D-glucosamine 6-phosphate + H2O ⟶ D-fructose-6-phosphate + H+ + ammonia
- chitin degradation II:
H2O + chitin ⟶ a chitodextrin
- N-acetylglucosamine degradation II:
D-glucosamine 6-phosphate + H2O ⟶ D-fructose 6-phosphate + H+ + ammonia
- anhydromuropeptides recycling:
N-acetyl-D-glucosamine 6-phosphate + H2O ⟶ D-glucosamine 6-phosphate + acetate
- chitin degradation II (Vibrio):
H2O + chitin ⟶ a chitodextrin
- anhydromuropeptides recycling:
N-acetyl-D-glucosamine 6-phosphate + H2O ⟶ D-glucosamine 6-phosphate + acetate
- chitin degradation II:
H2O + chitin ⟶ a chitodextrin
- chitin degradation II:
H2O + chitin ⟶ a chitodextrin
- anhydromuropeptides recycling:
N-acetyl-D-glucosamine 6-phosphate + H2O ⟶ D-glucosamine 6-phosphate + acetate
- chitin degradation II:
H2O + chitin ⟶ a chitodextrin
- anhydromuropeptides recycling:
N-acetyl-D-glucosamine 6-phosphate + H2O ⟶ D-glucosamine 6-phosphate + acetate
- anhydromuropeptides recycling:
N-acetyl-D-glucosamine 6-phosphate + H2O ⟶ D-glucosamine 6-phosphate + acetate
- anhydromuropeptides recycling:
N-acetyl-D-glucosamine 6-phosphate + H2O ⟶ D-glucosamine 6-phosphate + acetate
- anhydromuropeptides recycling:
N-acetyl-D-glucosamine 6-phosphate + H2O ⟶ D-glucosamine 6-phosphate + acetate
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(66)
- chitin degradation III (carnivorous plants):
H2O + chitin ⟶ a chitodextrin
- chitin degradation II (Vibrio):
H2O + chitin ⟶ a chitodextrin
- chitin degradation II (Vibrio):
H2O + chitin ⟶ a chitodextrin
- chitin degradation II (Vibrio):
H2O + chitin ⟶ a chitodextrin
- chitin degradation II (Vibrio):
H2O + chitin ⟶ a chitodextrin
- chitin degradation III (carnivorous plants):
H2O + chitin ⟶ a chitodextrin
- chitin degradation III (carnivorous plants):
H2O + chitin ⟶ a chitodextrin
- chitin degradation III (carnivorous plants):
H2O + chitin ⟶ a chitodextrin
- chitin degradation III (carnivorous plants):
H2O + chitin ⟶ a chitodextrin
- chitin degradation III (carnivorous plants):
H2O + chitin ⟶ a chitodextrin
- chitin degradation III (carnivorous plants):
H2O + chitin ⟶ a chitodextrin
- chitin degradation III (carnivorous plants):
H2O + chitin ⟶ a chitodextrin
- chitin degradation III (carnivorous plants):
H2O + chitin ⟶ a chitodextrin
- chitin degradation III (carnivorous plants):
H2O + chitin ⟶ a chitodextrin
- chitin degradation III (carnivorous plants):
H2O + chitin ⟶ a chitodextrin
- chitin degradation III (carnivorous plants):
H2O + chitin ⟶ a chitodextrin
- chitin degradation III (carnivorous plants):
H2O + chitin ⟶ a chitodextrin
- chitin degradation III (carnivorous plants):
H2O + chitin ⟶ a chitodextrin
- chitin degradation III (carnivorous plants):
H2O + chitin ⟶ a chitodextrin
- chitin degradation III (carnivorous plants):
H2O + chitin ⟶ a chitodextrin
- chitin degradation III (carnivorous plants):
H2O + chitin ⟶ a chitodextrin
- chitin degradation III (carnivorous plants):
H2O + chitin ⟶ a chitodextrin
- chitin degradation III (carnivorous plants):
H2O + chitin ⟶ a chitodextrin
- chitin degradation III (carnivorous plants):
H2O + chitin ⟶ a chitodextrin
- chitin degradation III (carnivorous plants):
H2O + chitin ⟶ a chitodextrin
- chitin degradation III (carnivorous plants):
H2O + chitin ⟶ a chitodextrin
- chitin degradation III (carnivorous plants):
H2O + chitin ⟶ a chitodextrin
- chitin degradation III (carnivorous plants):
H2O + chitin ⟶ a chitodextrin
- chitin degradation III (carnivorous plants):
H2O + chitin ⟶ a chitodextrin
- chitin degradation III (carnivorous plants):
H2O + chitin ⟶ a chitodextrin
- chitin degradation III (carnivorous plants):
H2O + chitin ⟶ a chitodextrin
- chitin degradation III (carnivorous plants):
H2O + chitin ⟶ a chitodextrin
- chitin degradation III (carnivorous plants):
H2O + chitin ⟶ a chitodextrin
- chitin degradation III (carnivorous plants):
H2O + chitin ⟶ a chitodextrin
- chitin degradation III (carnivorous plants):
H2O + chitin ⟶ a chitodextrin
- chitin degradation III (carnivorous plants):
H2O + chitin ⟶ a chitodextrin
- chitin degradation III (carnivorous plants):
H2O + chitin ⟶ a chitodextrin
- chitin degradation III (carnivorous plants):
H2O + chitin ⟶ a chitodextrin
- chitin degradation III (carnivorous plants):
H2O + chitin ⟶ a chitodextrin
- chitin degradation III (carnivorous plants):
H2O + chitin ⟶ a chitodextrin
- chitin degradation III (carnivorous plants):
H2O + chitin ⟶ a chitodextrin
- chitin degradation III (carnivorous plants):
H2O + chitin ⟶ a chitodextrin
- chitin degradation III (carnivorous plants):
H2O + chitin ⟶ a chitodextrin
- chitin degradation III (carnivorous plants):
H2O + chitin ⟶ a chitodextrin
- chitin degradation III (carnivorous plants):
H2O + chitin ⟶ a chitodextrin
- chitin degradation III (carnivorous plants):
H2O + chitin ⟶ a chitodextrin
- chitin degradation III (carnivorous plants):
H2O + chitin ⟶ a chitodextrin
- chitin degradation III (carnivorous plants):
H2O + chitin ⟶ a chitodextrin
- chitin degradation III (carnivorous plants):
H2O + chitin ⟶ a chitodextrin
- chitin degradation III (carnivorous plants):
H2O + chitin ⟶ a chitodextrin
- chitin degradation III (carnivorous plants):
H2O + chitin ⟶ a chitodextrin
- chitin degradation III (carnivorous plants):
H2O + chitin ⟶ a chitodextrin
- chitin degradation III (carnivorous plants):
H2O + chitin ⟶ a chitodextrin
- chitin degradation III (carnivorous plants):
H2O + chitin ⟶ a chitodextrin
- chitin degradation III (carnivorous plants):
H2O + chitin ⟶ a chitodextrin
- chitin degradation III (carnivorous plants):
H2O + chitin ⟶ a chitodextrin
- chitin degradation III (carnivorous plants):
H2O + chitin ⟶ a chitodextrin
- chitin degradation III (carnivorous plants):
H2O + chitin ⟶ a chitodextrin
- chitin degradation III (carnivorous plants):
H2O + chitin ⟶ a chitodextrin
- chitin degradation III (carnivorous plants):
H2O + chitin ⟶ a chitodextrin
- chitin degradation III (carnivorous plants):
H2O + chitin ⟶ a chitodextrin
- chitin degradation III (carnivorous plants):
H2O + chitin ⟶ a chitodextrin
- chitin degradation III (carnivorous plants):
H2O + chitin ⟶ a chitodextrin
- chitin degradation III (carnivorous plants):
H2O + chitin ⟶ a chitodextrin
- chitin degradation III (carnivorous plants):
H2O + chitin ⟶ a chitodextrin
- chitin degradation III (carnivorous plants):
H2O + chitin ⟶ a chitodextrin
COVID-19 Disease Map(1)
- @COVID-19 Disease
Map["name"]:
2-Methyl-3-acetoacetyl-CoA + Coenzyme A ⟶ Acetyl-CoA + Propanoyl-CoA
PathBank(0)
PharmGKB(0)
4 个相关的物种来源信息
- 3702 - Arabidopsis thaliana: 10.3390/IJMS17091565
- 9606 - Homo sapiens:
- 9606 - Homo sapiens: -
- 569774 - 金线莲: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Meng Zhang, Wanhui Zhou, Yu Cao, Lele Kou, Chunwei Liu, Xiaoshuang Li, Boxi Zhang, Wenjin Guo, Bin Xu, Shize Li. O-GlcNAcylation regulates long-chain fatty acid metabolism by inhibiting ACOX1 ubiquitination-dependent degradation.
International journal of biological macromolecules.
2024 May; 266(Pt 2):131151. doi:
10.1016/j.ijbiomac.2024.131151
. [PMID: 38547945] - Lulu Chen, Mengxue Hu, Luojun Chen, Yihan Peng, Cai Zhang, Xin Wang, Xiangpan Li, Yi Yao, Qibin Song, Jing Li, Huadong Pei. Targeting O-GlcNAcylation in cancer therapeutic resistance: The sugar Saga continues.
Cancer letters.
2024 Apr; 588(?):216742. doi:
10.1016/j.canlet.2024.216742
. [PMID: 38401884] - Ruben Shrestha, Sumudu Karunadasa, TaraBryn S Grismer, Andres V Reyes, Shou-Ling Xu. SECRET AGENT O-GlcNAcylates Hundreds of Proteins Involved in Diverse Cellular Processes in Arabidopsis.
Molecular & cellular proteomics : MCP.
2024 Apr; 23(4):100732. doi:
10.1016/j.mcpro.2024.100732
. [PMID: 38336175] - Sang-Mo Kang, Arjun Adhikari, Eun-Hae Kwon, Ho-Jun Gam, Jin Ryeol Jeon, Ji-In Woo, In-Jung Lee. Influence of N-Acetylglucosamine and Melatonin Interaction in Modeling the Photosynthetic Component and Metabolomics of Cucumber under Salinity Stress.
International journal of molecular sciences.
2024 Feb; 25(5):. doi:
10.3390/ijms25052844
. [PMID: 38474090] - Zachary M Nelson, Garry D Leonard, Charlie Fehl. Tools for investigating O-GlcNAc in signaling and other fundamental biological pathways.
The Journal of biological chemistry.
2023 Dec; 300(2):105615. doi:
10.1016/j.jbc.2023.105615
. [PMID: 38159850] - Jia-Xuan Zhang, Xiao-le Liu, Li Wang, Zhen Fang. Two-stage process production of microbial lipid by co-fermentation of glucose and N-acetylglucosamine from food wastes with Cryptococcus curvatus.
Bioresource technology.
2023 Nov; 387(?):129685. doi:
10.1016/j.biortech.2023.129685
. [PMID: 37595808] - Xianfeng Hu, Jian Wang, Yubo Zhang, Rongyu Li, Ming Li. Molecular mechanism of Osthole against chitin synthesis of Ustilaginoidea virens based on combined transcriptome and metabolome analyses.
Pesticide biochemistry and physiology.
2023 Nov; 196(?):105612. doi:
10.1016/j.pestbp.2023.105612
. [PMID: 37945229] - Yihao Liu, Zhen Qin, Chunling Wang, Zhengqiang Jiang. N-acetyl-d-glucosamine-based oligosaccharides from chitin: Enzymatic production, characterization and biological activities.
Carbohydrate polymers.
2023 Sep; 315(?):121019. doi:
10.1016/j.carbpol.2023.121019
. [PMID: 37230627] - Yusen Zhou, Tian Zhang, Xiaocui Wang, Wenqiang Wu, Jingjing Xing, Zuliang Li, Xin Qiao, Chunrui Zhang, Xiaohang Wang, Guangshun Wang, Wenhui Li, Shenglong Bai, Zhi Li, Yuanzhen Suo, Jiajia Wang, Yanli Niu, Junli Zhang, Chen Lan, Zhubing Hu, Baozhu Li, Xuebin Zhang, Wei Wang, David W Galbraith, Yuhang Chen, Siyi Guo, Chun-Peng Song. A maize epimerase modulates cell wall synthesis and glycosylation during stomatal morphogenesis.
Nature communications.
2023 07; 14(1):4384. doi:
10.1038/s41467-023-40013-6
. [PMID: 37474494] - Zeqi Li, Bo Fu, Aili Wei, Yanchen Wu, Ming Huang, Enhao Zhang, Bo Cui, Bo Wang, Hui Peng. d-Glucosamine induces circadian phase delay by promoting BMAL1 degradation through AMPK/mTOR pathway.
Life sciences.
2023 Jul; 325(?):121765. doi:
10.1016/j.lfs.2023.121765
. [PMID: 37169147] - Maria J Gonzalez-Rellan, Tamara Parracho, Violeta Heras, Amaia Rodriguez, Marcos F Fondevila, Eva Novoa, Natalia Lima, Marta Varela-Rey, Ana Senra, Maria Dp Chantada-Vazquez, Cristina Ameneiro, Ganeko Bernardo, David Fernandez-Ramos, Fernando Lopitz-Otsoa, Jon Bilbao, Diana Guallar, Miguel Fidalgo, Susana Bravo, Carlos Dieguez, Maria L Martinez-Chantar, Oscar Millet, Jose M Mato, Markus Schwaninger, Vincent Prevot, Javier Crespo, Gema Frühbeck, Paula Iruzubieta, Ruben Nogueiras. Hepatocyte-specific O-GlcNAc transferase downregulation ameliorates nonalcoholic steatohepatitis by improving mitochondrial function.
Molecular metabolism.
2023 Jul; ?(?):101776. doi:
10.1016/j.molmet.2023.101776
. [PMID: 37453647] - Chao Wen, He-Chun Wu, Wen-Hong Ouyang, Jia-Xing Nie, Yi-Ping Guo, Feng Wang, Li-Li Hu, Jin-Hua Yang, Li-Juan Zheng, Jia-Lu Wang, Wei Huang, Guang-Ping Liang, Ren-Wang Jiang. Exploring the Catalytic Flexibility and Reversibility of Plant Glycosyltransferase HtUGT72AS1 for Glycodiversification of Phenolic Compounds.
Journal of agricultural and food chemistry.
2023 Jun; ?(?):. doi:
10.1021/acs.jafc.3c01459
. [PMID: 37260384] - Akiko Nakamoto, Natsuko Ohashi, Lucia Sugawara, Katsutaro Morino, Shogo Ida, Rachel J Perry, Ikki Sakuma, Tsuyoshi Yanagimachi, Yukihiro Fujita, Satoshi Ugi, Shinji Kume, Gerald I Shulman, Hiroshi Maegawa. O-GlcNAc modification is essential for physiological adipose expansion induced by high-fat feeding.
American journal of physiology. Endocrinology and metabolism.
2023 May; ?(?):. doi:
10.1152/ajpendo.00263.2022
. [PMID: 37224467] - Peibo Liang, Jingmin Li, Wei Chen, Jianyang Li, Qing Yang, Jianjun Zhang. Application of Natural Bioresources to Sustainable Agriculture: A C-Glycoside Insecticide Based on N-Acetyl-glucosamine for Regulating Insect Molting of Ostrinia furnacalis.
Journal of agricultural and food chemistry.
2023 Apr; ?(?):. doi:
10.1021/acs.jafc.2c08760
. [PMID: 37013678] - Keyan Zhang, Danqing Yao, Yue Chen, Haifan Wen, Jian Pan, Tingting Xiao, Duo Lv, Huanle He, Junsong Pan, Run Cai, Gang Wang. Mapping and identification of CsSF4, a gene encoding a UDP-N-acetyl glucosamine-peptide N-acetylglucosaminyltransferase required for fruit elongation in cucumber (Cucumis sativus L.).
TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik.
2023 Mar; 136(3):54. doi:
10.1007/s00122-023-04246-9
. [PMID: 36912991] - Xiaochen Jia, Hongyan Zhang, Hongqiang Qin, Kuikui Li, Xiaoyan Liu, Wenxia Wang, Mingliang Ye, Heng Yin. Protein O-GlcNAcylation impairment caused by N-acetylglucosamine phosphate mutase deficiency leads to growth variations in Arabidopsis thaliana.
The Plant journal : for cell and molecular biology.
2023 Feb; ?(?):. doi:
10.1111/tpj.16156
. [PMID: 36799458] - Rodolfo Zentella, Yan Wang, Emily Zahn, Jianhong Hu, Liang Jiang, Jeffrey Shabanowitz, Donald F Hunt, Tai-Ping Sun. SPINDLY O-fucosylates nuclear and cytoplasmic proteins involved in diverse cellular processes in plants.
Plant physiology.
2023 Feb; ?(?):. doi:
10.1093/plphys/kiad011
. [PMID: 36740243] - Maxence Noel, Daniel I Chasman, Samia Mora, James D Otvos, Christopher D Palmer, Patrick J Parsons, Jordan W Smoller, Richard D Cummings, Robert G Mealer. The Inflammation Biomarker GlycA Reflects Plasma N-Glycan Branching.
Clinical chemistry.
2023 01; 69(1):80-87. doi:
10.1093/clinchem/hvac160
. [PMID: 36254612] - Jin-Ichi Inokuchi, Shinji Go, Yoshio Hirabayashi. Synthesis of O-Linked Glycoconjugates in the Nervous System.
Advances in neurobiology.
2023; 29(?):95-116. doi:
10.1007/978-3-031-12390-0_4
. [PMID: 36255673] - Erhard Bieberich. Synthesis, Processing, and Function of N-Glycans in N-Glycoproteins.
Advances in neurobiology.
2023; 29(?):65-93. doi:
10.1007/978-3-031-12390-0_3
. [PMID: 36255672] - Naoko Okamoto, Megumi Maeda, Chiharu Yamamoto, Reo Kodama, Koichi Sugimoto, Yoshihito Shinozaki, Hiroshi Ezura, Yoshinobu Kimura. Construction of tomato plants with suppressed endo-β-N-acetylglucosaminidase activity using CRISPR-Cas9 mediated genome editing.
Plant physiology and biochemistry : PPB.
2022 Nov; 190(?):203-211. doi:
10.1016/j.plaphy.2022.08.009
. [PMID: 36130423] - Riccardo Zanni, Jesús Martínez-Cruz, María Gálvez-Llompart, Dolores Fernández-Ortuño, Diego Romero, Ramón García-Domènech, Alejandro Pérez-García, Jorge Gálvez. Rational Design of Chitin Deacetylase Inhibitors for Sustainable Agricultural Use Based on Molecular Topology.
Journal of agricultural and food chemistry.
2022 Oct; 70(41):13118-13131. doi:
10.1021/acs.jafc.2c02377
. [PMID: 36194443] - Lillian F Hyde, Yang Kong, Lihong Zhao, Sriganesh Ramachandra Rao, Jieping Wang, Lisa Stone, Andrew Njaa, Gayle B Collin, Mark P Krebs, Bo Chang, Steven J Fliesler, Patsy M Nishina, Jürgen K Naggert. A Dpagt1 Missense Variant Causes Degenerative Retinopathy without Myasthenic Syndrome in Mice.
International journal of molecular sciences.
2022 Oct; 23(19):. doi:
10.3390/ijms231912005
. [PMID: 36233305] - Jiqiang Chen, Xu Zou, Weixing Zhu, Yanwei Duan, Hans Merzendorfer, Zhangwu Zhao, Qing Yang. Fatty acid binding protein is required for chitin biosynthesis in the wing of Drosophila melanogaster.
Insect biochemistry and molecular biology.
2022 10; 149(?):103845. doi:
10.1016/j.ibmb.2022.103845
. [PMID: 36165873] - Wei Chen, Peng Cao, Yuansheng Liu, Ailing Yu, Dong Wang, Lei Chen, Rajamanikandan Sundarraj, Zhiguang Yuchi, Yong Gong, Hans Merzendorfer, Qing Yang. Structural basis for directional chitin biosynthesis.
Nature.
2022 10; 610(7931):402-408. doi:
10.1038/s41586-022-05244-5
. [PMID: 36131020] - Makoto Ogata, Mao Sakamoto, Noriko Yamauchi, Masato Nakazawa, Ami Koizumi, Remi Anazawa, Kenichi Kurumada, Kazuya I P J Hidari, Hiroyuki Kono. Optimization of the conditions for the immobilization of glycopolypeptides on hydrophobic silica particulates and simple purification of lectin using glycopolypeptide-immobilized particulates.
Carbohydrate research.
2022 Sep; 519(?):108624. doi:
10.1016/j.carres.2022.108624
. [PMID: 35749901] - Qiushi Chen, Yuanliang Zhang, Keren Zhang, Jie Liu, Huozhen Pan, Xinran Wang, Siqi Li, Dandan Hu, Zhilong Lin, Yun Zhao, Guixue Hou, Feng Guan, Hong Li, Siqi Liu, Yan Ren. Profiling the Bisecting N-acetylglucosamine Modification in Amniotic Membrane via Mass Spectrometry.
Genomics, proteomics & bioinformatics.
2022 Aug; 20(4):648-656. doi:
10.1016/j.gpb.2021.09.010
. [PMID: 35123071] - Joana Silva, Reynard Spiess, Andrea Marchesi, Sabine L Flitsch, Julie E Gough, Simon J Webb. Enzymatic elaboration of oxime-linked glycoconjugates in solution and on liposomes.
Journal of materials chemistry. B.
2022 07; 10(26):5016-5027. doi:
10.1039/d2tb00714b
. [PMID: 35723603] - Jiuyun Sun, Shuhua Li, Chunyang Fan, Kangjia Cui, Hongxiao Tan, Liping Qiao, Laifeng Lu. N-Acetylglucosamine Promotes Tomato Plant Growth by Shaping the Community Structure and Metabolism of the Rhizosphere Microbiome.
Microbiology spectrum.
2022 06; 10(3):e0035822. doi:
10.1128/spectrum.00358-22
. [PMID: 35665438] - Krishna Vasant Mutanwad, Doris Lucyshyn. Balancing O-GlcNAc and O-fucose in plants.
The FEBS journal.
2022 06; 289(11):3086-3092. doi:
10.1111/febs.16038
. [PMID: 34051053] - Sirilug Magerd, Thanyaporn Senarai, Orawan Thongsum, Chidchanok Chawiwithaya, Chihiro Sato, Ken Kitajima, Wattana Weerachatyanukul, Somluk Asuvapongpatana, Piyaporn Surinlert. Shrimp thrombospondin (TSP): presence of O-β1,4 N-acetylglucosamine polymers and its function in TSP chain association in egg extracellular matrix.
Scientific reports.
2022 05; 12(1):7925. doi:
10.1038/s41598-022-11873-7
. [PMID: 35562392] - Zhi-Kui Hao, Jian-Song Li, Dan-Hua Wang, Fei He, Jing-Shi Xue, Liang-Hong Yin, Hua-Bao Zheng. Efficient production of GlcNAc in an aqueous-organic system with a Chitinolyticbacter meiyuanensis SYBC-H1 mutant.
Biotechnology letters.
2022 Apr; 44(4):623-633. doi:
10.1007/s10529-022-03248-9
. [PMID: 35384608] - Peipei Han, Yingying Wei, Shu Jiang, Yi Chen, Feng Xu, Hongfei Wang, Xingfeng Shao. N-Acetyl-d-glucosamine Inhibition of Hexokinase Results in Downregulation of the Phenylpropanoid Metabolic Pathway and Decreased Resistance to Brown Rot in Peach Fruit.
Journal of agricultural and food chemistry.
2022 Mar; 70(12):3917-3928. doi:
10.1021/acs.jafc.1c06573
. [PMID: 35298175] - Victoria Jiménez-Castillo, Daniela Illescas-Barbosa, Edgar Zenteno, Beatriz Xóchitl Ávila-Curiel, Maria Cristina Castañeda-Patlán, Martha Robles-Flores, Daniel Montante-Montes De Oca, Eduardo Pérez-Campos, Anayetzin Torres-Rivera, Abdelouhab Bouaboud, Patrick Pagesy, Carlos Josué Solórzano-Mata, Tarik Issad. Increased O-GlcNAcylation promotes IGF-1 receptor/PhosphatidyI Inositol-3 kinase/Akt pathway in cervical cancer cells.
Scientific reports.
2022 03; 12(1):4464. doi:
10.1038/s41598-022-08445-0
. [PMID: 35296731] - Ankur Tripathi, Vipin Hallan, Rajan Katoch. Cloning, Characterization, Expression Analysis, and Agglutination Studies of Novel Gene Encoding β-D-Galactose, N-Acetyl-D-Glucosamine and Lactose-Binding Lectin from Rice Bean (Vigna umbellata).
Molecular biotechnology.
2022 Mar; 64(3):293-310. doi:
10.1007/s12033-021-00410-y
. [PMID: 34611825] - Aqib Rehman Magray, Joan Martorell Ribera, Lisa Isernhagen, Sebastian P Galuska, Juliane Günther, Marieke Verleih, Torsten Viergutz, Ronald M Brunner, Bashir Ahmad Ganai, Fayaz Ahmad, Kristina Zlatina, Alexander Rebl. Evaluation of blood cell viability rate, gene expression, and O-GlcNAcylation profiles as indicative signatures for fungal stimulation of salmonid cell models.
Molecular immunology.
2022 02; 142(?):120-129. doi:
10.1016/j.molimm.2021.12.019
. [PMID: 34979452] - Daria V Grigorieva, Irina V Gorudko, Natalia A Grudinina, Oleg M Panasenko, Igor V Semak, Alexey V Sokolov, Alexander V Timoshenko. Lactoferrin modified by hypohalous acids: Partial loss in activation of human neutrophils.
International journal of biological macromolecules.
2022 Jan; 195(?):30-40. doi:
10.1016/j.ijbiomac.2021.11.165
. [PMID: 34863835] - Zengdi Zhang, Oscar C Salgado, Bing Liu, Zahra Moazzami, Kristin A Hogquist, Michael A Farrar, Hai-Bin Ruan. An OGT-STAT5 Axis in Regulatory T Cells Controls Energy and Iron Metabolism.
Frontiers in immunology.
2022; 13(?):874863. doi:
10.3389/fimmu.2022.874863
. [PMID: 35874700] - Amber Lockridge, John A Hanover. A nexus of lipid and O-Glcnac metabolism in physiology and disease.
Frontiers in endocrinology.
2022; 13(?):943576. doi:
10.3389/fendo.2022.943576
. [PMID: 36111295] - Charlie Fehl, John A Hanover. Tools, tactics and objectives to interrogate cellular roles of O-GlcNAc in disease.
Nature chemical biology.
2022 01; 18(1):8-17. doi:
10.1038/s41589-021-00903-6
. [PMID: 34934185] - Jing-Jing Shi, Hao-Fei Liu, Tian Hu, Xin Gao, Yong-Bin Zhang, Wei-Rong Li, Qi Wang, Shi-Jie Zhang, Dan Tang, Yun-Bo Chen. Danggui-Shaoyao-San improves cognitive impairment through inhibiting O-GlcNAc-modification of estrogen α receptor in female db/db mice.
Journal of ethnopharmacology.
2021 Dec; 281(?):114562. doi:
10.1016/j.jep.2021.114562
. [PMID: 34438027] - Susanne K Kahn, Colette Cywes-Bentley, Glenn P Blodgett, Nathan M Canaday, Carly E Turner-Garcia, Patricia Flores-Ahlschwede, Laurie L Metcalfe, Mark Nevill, Mariana Vinacur, Patrick J Sutter, Sarah C Meyer, Angela I Bordin, Gerald B Pier, Noah D Cohen. Randomized, controlled trial comparing Rhodococcus equi and poly-N-acetyl glucosamine hyperimmune plasma to prevent R equi pneumonia in foals.
Journal of veterinary internal medicine.
2021 Nov; 35(6):2912-2919. doi:
10.1111/jvim.16294
. [PMID: 34738651] - Julie Agopian, Quentin Da Costa, Quang Vo Nguyen, Giulia Scorrano, Paraskevi Kousteridou, Min Yuan, Rabie Chelbi, Armelle Goubard, Remy Castellano, Julien Maurizio, Cristina Teodosio, Paulo De Sepulveda, John M Asara, Alberto Orfao, Olivier Hermine, Patrice Dubreuil, Fabienne Brenet. GlcNAc is a mast-cell chromatin-remodeling oncometabolite that promotes systemic mastocytosis aggressiveness.
Blood.
2021 10; 138(17):1590-1602. doi:
10.1182/blood.2020008948
. [PMID: 33974006] - Björn Andersson, Ee Phie Tan, Steven R McGreal, Udayan Apte, John A Hanover, Chad Slawson, Olof Lagerlöf. O-GlcNAc cycling mediates energy balance by regulating caloric memory.
Appetite.
2021 10; 165(?):105320. doi:
10.1016/j.appet.2021.105320
. [PMID: 34029673] - Noah D Cohen, Susanne K Kahn, Colette Cywes-Bentley, Sophia Ramirez-Cortez, Amanda E Schuckert, Mariana Vinacur, Angela I Bordin, Gerald B Pier. Serum Antibody Activity against Poly-N-Acetyl Glucosamine (PNAG), but Not PNAG Vaccination Status, Is Associated with Protecting Newborn Foals against Intrabronchial Infection with Rhodococcus equi.
Microbiology spectrum.
2021 09; 9(1):e0063821. doi:
10.1128/spectrum.00638-21
. [PMID: 34319137] - Yao-Yao Zhang, Mattia Ghirardello, Ting Wang, Ai-Min Lu, Li Liu, Josef Voglmeir, M Carmen Galan. Imidazolium labelling permits the sensitive mass-spectrometric detection of N-glycosides directly from serum.
Chemical communications (Cambridge, England).
2021 Jul; 57(57):7003-7006. doi:
10.1039/d1cc02100a
. [PMID: 34159978] - Alexander U Brandt, Michael Sy, Judith Bellmann-Strobl, Barbara L Newton, Judy Pawling, Hanna G Zimmermann, Zhaoxia Yu, Claudia Chien, Jan Dörr, Jens Th Wuerfel, James W Dennis, Friedemann Paul, Michael Demetriou. Association of a Marker of N-Acetylglucosamine With Progressive Multiple Sclerosis and Neurodegeneration.
JAMA neurology.
2021 07; 78(7):842-852. doi:
10.1001/jamaneurol.2021.1116
. [PMID: 33970182] - Yiwen Zhang, Jiawei Yang, Siqi Yang, Jieze Zhang, Jun Chen, Rongsheng Tao, Yu Jiang, Junjie Yang, Sheng Yang. Programming Cells by Multicopy Chromosomal Integration Using CRISPR-Associated Transposases.
The CRISPR journal.
2021 06; 4(3):350-359. doi:
10.1089/crispr.2021.0018
. [PMID: 34152213] - Tai-Ping Sun. Novel nucleocytoplasmic protein O-fucosylation by SPINDLY regulates diverse developmental processes in plants.
Current opinion in structural biology.
2021 06; 68(?):113-121. doi:
10.1016/j.sbi.2020.12.013
. [PMID: 33476897] - Joel Hernández-Rodríguez, Edith Arenas-Ríos, Irma Jiménez-Morales, Edith Cortés-Barberena, Sergio Montes, Rosa María Vigueras-Villaseñor, Marcela Arteaga-Silva. Postnatal cadmium administration affects the presence and distribution of carbohydrates in the sperm membrane during maturation in the epididymis in adult Wistar rats.
Reproduction, fertility, and development.
2021 Mar; 33(5):349-362. doi:
10.1071/rd20167
. [PMID: 33602388] - Jin Wang, Xinjian Lu, Kang Zheng, Liang Jing. Glutamine's protection against brain damage in septic rats via increased protein oxygen-N-acetylglucosamine modification.
Neuroreport.
2021 02; 32(3):214-222. doi:
10.1097/wnr.0000000000001582
. [PMID: 33470760] - Nichole J Pedowitz, Anna R Batt, Narek Darabedian, Matthew R Pratt. MYPT1 O-GlcNAc modification regulates sphingosine-1-phosphate mediated contraction.
Nature chemical biology.
2021 02; 17(2):169-177. doi:
10.1038/s41589-020-0640-8
. [PMID: 32929277] - Chris Verathamjamras, Tanin-Ek Sriwitool, Pukkavadee Netsirisawan, Parunya Chaiyawat, Daranee Chokchaichamnankit, Naiyarat Prasongsook, Chantragan Srisomsap, Jisnuson Svasti, Voraratt Champattanachai. Aberrant RL2 O-GlcNAc antibody reactivity against serum-IgA1 of patients with colorectal cancer.
Glycoconjugate journal.
2021 02; 38(1):55-65. doi:
10.1007/s10719-021-09978-8
. [PMID: 33608772] - Marina Vortmann, Anna K Stumpf, Elvira Sgobba, Mareike E Dirks-Hofmeister, Martin Krehenbrink, Volker F Wendisch, Bodo Philipp, Bruno M Moerschbacher. A bottom-up approach towards a bacterial consortium for the biotechnological conversion of chitin to L-lysine.
Applied microbiology and biotechnology.
2021 Feb; 105(4):1547-1561. doi:
10.1007/s00253-021-11112-5
. [PMID: 33521845] - Kristyn Hayashi, Kenton L Longenecker, Yi-Liang Liu, Bryan Faust, Aditi Prashar, Johannes Hampl, Vincent Stoll, Sandro Vivona. Complex of human Melanotransferrin and SC57.32 Fab fragment reveals novel interdomain arrangement with ferric N-lobe and open C-lobe.
Scientific reports.
2021 01; 11(1):566. doi:
10.1038/s41598-020-79090-8
. [PMID: 33436675] - You Zhuo, David A Keire, Kang Chen. Minor N-Glycan Mapping of Monoclonal Antibody Therapeutics Using Middle-Down NMR Spectroscopy.
Molecular pharmaceutics.
2021 01; 18(1):441-450. doi:
10.1021/acs.molpharmaceut.0c01083
. [PMID: 33305950] - Makoto Asahina, Reiko Fujinawa, Haruhiko Fujihira, Yuki Masahara-Negishi, Tomohiro Andou, Ryuichi Tozawa, Tadashi Suzuki. JF1/B6F1 Ngly1-/- mouse as an isogenic animal model of NGLY1 deficiency.
Proceedings of the Japan Academy. Series B, Physical and biological sciences.
2021; 97(2):89-102. doi:
10.2183/pjab.97.005
. [PMID: 33563880] - Y Duan, J Chen, Z Pang, X Ye, C Zhang, H Hu, J Xie. Antifungal mechanism of Streptomyces ma. FS-4 on fusarium wilt of banana.
Journal of applied microbiology.
2021 Jan; 130(1):196-207. doi:
10.1111/jam.14784
. [PMID: 32654413] - Susanne K Kahn, Colette Cywes-Bentley, Glenn P Blodgett, Nathan M Canaday, Carly E Turner-Garcia, Mariana Vinacur, Sophia C Cortez-Ramirez, Patrick J Sutter, Sarah C Meyer, Angela I Bordin, Daniel R Vlock, Gerald B Pier, Noah D Cohen. Antibody activities in hyperimmune plasma against the Rhodococcus equi virulence -associated protein A or poly-N-acetyl glucosamine are associated with protection of foals against rhodococcal pneumonia.
PloS one.
2021; 16(8):e0250133. doi:
10.1371/journal.pone.0250133
. [PMID: 34437551] - Murielle M Morales, Nichole J Pedowitz, Matthew R Pratt. O-GlcNAc modification of MYPT1 modulates lysophosphatidic acid-induced cell contraction in fibroblasts.
The Journal of biological chemistry.
2021 Jan; 296(?):100800. doi:
10.1016/j.jbc.2021.100800
. [PMID: 34019870] - Ömür Baysal, Naeem Abdul Ghafoor, Ragıp Soner Silme, Alexander N Ignatov, Volha Kniazeva. Molecular dynamics analysis of N-acetyl-D-glucosamine against specific SARS-CoV-2's pathogenicity factors.
PloS one.
2021; 16(5):e0252571. doi:
10.1371/journal.pone.0252571
. [PMID: 34043733] - Michael Sy, Alexander U Brandt, Sung-Uk Lee, Barbara L Newton, Judy Pawling, Autreen Golzar, Anas M A Rahman, Zhaoxia Yu, Graham Cooper, Michael Scheel, Friedemann Paul, James W Dennis, Michael Demetriou. N-acetylglucosamine drives myelination by triggering oligodendrocyte precursor cell differentiation.
The Journal of biological chemistry.
2020 12; 295(51):17413-17424. doi:
10.1074/jbc.ra120.015595
. [PMID: 33453988] - Saumashish Mukherjee, Prashanta Kumar Behera, Jogi Madhuprakash. Efficient conversion of crystalline chitin to N-acetylglucosamine and N,N'-diacetylchitobiose by the enzyme cocktail produced by Paenibacillus sp. LS1.
Carbohydrate polymers.
2020 Dec; 250(?):116889. doi:
10.1016/j.carbpol.2020.116889
. [PMID: 33049827] - Rianne A G Harmsen, Berit Bjugan Aam, Jogi Madhuprakash, Anne Grethe Hamre, Ethan D Goddard-Borger, Stephen G Withers, Vincent G H Eijsink, Morten Sørlie. Chemoenzymatic Synthesis of Chito-oligosaccharides with Alternating N-d-Acetylglucosamine and d-Glucosamine.
Biochemistry.
2020 12; 59(48):4581-4590. doi:
10.1021/acs.biochem.0c00839
. [PMID: 33213137] - Hitomi Otomo, Mitsuhiko Nara, Shunsuke Kato, Tatsunori Shimizu, Yumi Suganuma, Takehiro Sato, Tsukasa Morii, Yuichiro Yamada, Hiroki Fujita. Sodium-glucose cotransporter 2 inhibition attenuates protein overload in renal proximal tubule via suppression of megalin O-GlcNacylation in progressive diabetic nephropathy.
Metabolism: clinical and experimental.
2020 12; 113(?):154405. doi:
10.1016/j.metabol.2020.154405
. [PMID: 33069809] - Byeong Eun Lee, Hye Yun Kim, Hyun-Jin Kim, Hyeongsun Jeong, Byung-Gyu Kim, Ha-Eun Lee, Jieun Lee, Han Byeol Kim, Seung Eun Lee, Yong Ryoul Yang, Eugene C Yi, John A Hanover, Kyungjae Myung, Pann-Ghill Suh, Taejoon Kwon, Jae-Ick Kim. O-GlcNAcylation regulates dopamine neuron function, survival and degeneration in Parkinson disease.
Brain : a journal of neurology.
2020 12; 143(12):3699-3716. doi:
10.1093/brain/awaa320
. [PMID: 33300544] - Mou Tang, Yanan Wang, Wenting Zhou, Mian Yang, Yi Liu, Zhiwei Gong. Efficient conversion of chitin-derived carbon sources into microbial lipid by the oleaginous yeast Cutaneotrichosporon oleaginosum.
Bioresource technology.
2020 Nov; 315(?):123897. doi:
10.1016/j.biortech.2020.123897
. [PMID: 32736322] - Júlia Carmona-Maurici, Núria Amigó, Elena Cuello, Marcelino Bermúdez, Juan Antonio Baena-Fustegueras, Julia Peinado-Onsurbe, Eva Pardina. Bariatric surgery decreases oxidative stress and protein glycosylation in patients with morbid obesity.
European journal of clinical investigation.
2020 Nov; 50(11):e13320. doi:
10.1111/eci.13320
. [PMID: 32535887] - Yuebo Wu, Zhipeng Zhou, Lan Luo, Maixian Tao, Xiao Chang, Lian Yang, Xingyong Huang, Lin Hu, Mingyi Wu. A non-anticoagulant heparin-like snail glycosaminoglycan promotes healing of diabetic wound.
Carbohydrate polymers.
2020 Nov; 247(?):116682. doi:
10.1016/j.carbpol.2020.116682
. [PMID: 32829810] - Jiwon Park, Yunkyoung Lee, Eun-Hye Jung, Sang-Min Kim, Hyeongjin Cho, Inn-Oc Han. Glucosamine regulates hepatic lipid accumulation by sensing glucose levels or feeding states of normal and excess.
Biochimica et biophysica acta. Molecular and cell biology of lipids.
2020 10; 1865(10):158764. doi:
10.1016/j.bbalip.2020.158764
. [PMID: 32663610] - Wen Song, Nuo Zhang, Mo Yang, Yuling Zhou, Nisha He, Guimin Zhang. Multiple strategies to improve the yield of chitinase a from Bacillus licheniformis in Pichia pastoris to obtain plant growth enhancer and GlcNAc.
Microbial cell factories.
2020 Sep; 19(1):181. doi:
10.1186/s12934-020-01440-y
. [PMID: 32933546] - Xueqin Lv, Cheng Zhang, Shixiu Cui, Xianhao Xu, Lingling Wang, Jianghua Li, Guocheng Du, Jian Chen, Rodrigo Ledesma-Amaro, Long Liu. Assembly of pathway enzymes by engineering functional membrane microdomain components for improved N-acetylglucosamine synthesis in Bacillus subtilis.
Metabolic engineering.
2020 09; 61(?):96-105. doi:
10.1016/j.ymben.2020.05.011
. [PMID: 32502621] - Asif Shajahan, Nitin T Supekar, Digantkumar Chapla, Christian Heiss, Kelley W Moremen, Parastoo Azadi. Simplifying Glycan Profiling through a High-Throughput Micropermethylation Strategy.
SLAS technology.
2020 08; 25(4):367-379. doi:
10.1177/2472630320912929
. [PMID: 32364434] - Antonio Rubio-Del-Campo, Cristina Alcántara, María Carmen Collado, Jesús Rodríguez-Díaz, María J Yebra. Human milk and mucosa-associated disaccharides impact on cultured infant fecal microbiota.
Scientific reports.
2020 07; 10(1):11845. doi:
10.1038/s41598-020-68718-4
. [PMID: 32678209] - J Stewart New, Brian L P Dizon, Christopher F Fucile, Alexander F Rosenberg, John F Kearney, R Glenn King. Neonatal Exposure to Commensal-Bacteria-Derived Antigens Directs Polysaccharide-Specific B-1 B Cell Repertoire Development.
Immunity.
2020 07; 53(1):172-186.e6. doi:
10.1016/j.immuni.2020.06.006
. [PMID: 32610078] - Yunfan Yang, Xiruo Li, Harding H Luan, Bichen Zhang, Kaisi Zhang, Jin Hyun Nam, Zongyu Li, Minnie Fu, Alexander Munk, Dongyan Zhang, Simeng Wang, Yuyang Liu, João Paulo Albuquerque, Qunxiang Ong, Rui Li, Qi Wang, Marie E Robert, Rachel J Perry, Dongjun Chung, Gerald I Shulman, Xiaoyong Yang. OGT suppresses S6K1-mediated macrophage inflammation and metabolic disturbance.
Proceedings of the National Academy of Sciences of the United States of America.
2020 07; 117(28):16616-16625. doi:
10.1073/pnas.1916121117
. [PMID: 32601203] - Kati Mokkala, Noora Houttu, Ella Koivuniemi, Nikolaj Sørensen, Henrik Bjørn Nielsen, Kirsi Laitinen. GlycA, a novel marker for low grade inflammation, reflects gut microbiome diversity and is more accurate than high sensitive CRP in reflecting metabolomic profile.
Metabolomics : Official journal of the Metabolomic Society.
2020 06; 16(7):76. doi:
10.1007/s11306-020-01695-x
. [PMID: 32564244] - Kun Meng, Xiaohui Zhuang, Ting Peng, Shufan Hu, Jin Yang, Zhen Wang, Jiaqi Fu, Juan Xue, Xing Pan, Jun Lv, Xiaoyun Liu, Feng Shao, Shan Li. Arginine GlcNAcylation of Rab small GTPases by the pathogen Salmonella Typhimurium.
Communications biology.
2020 06; 3(1):287. doi:
10.1038/s42003-020-1005-2
. [PMID: 32504010] - Beomju Hwang, Hirohiko Ise. Multimeric conformation of type III intermediate filaments but not the filamentous conformation exhibits high affinity to lipid bilayers.
Genes to cells : devoted to molecular & cellular mechanisms.
2020 Jun; 25(6):413-426. doi:
10.1111/gtc.12768
. [PMID: 32243065] - Priya Rani, Gunjan Gautam, Tamanna Anwar, Samudrala Gourinath, Asis Datta. Crystal structure of Gig2 protein from Candida albicans provides a structural insight into DUF1479 family oxygenases.
International journal of biological macromolecules.
2020 May; 150(?):1272-1280. doi:
10.1016/j.ijbiomac.2019.10.138
. [PMID: 31743702] - Amy L Bottomley, Elizabeth Peterson, Gregory Iosifidis, Adeline Mei Hui Yong, Lauren E Hartley-Tassell, Shirin Ansari, Chris McKenzie, Catherine Burke, Iain G Duggin, Kimberly A Kline, Elizabeth J Harry. The novel E. coli cell division protein, YtfB, plays a role in eukaryotic cell adhesion.
Scientific reports.
2020 04; 10(1):6745. doi:
10.1038/s41598-020-63729-7
. [PMID: 32317661] - Du Feng, Li Sheng-Dong, Wu Tong, Du Zhen-Xian. O-GlcNAcylation of RAF1 increases its stabilization and induces the renal fibrosis.
Biochimica et biophysica acta. Molecular basis of disease.
2020 03; 1866(3):165556. doi:
10.1016/j.bbadis.2019.165556
. [PMID: 31521821] - Sven Basa, Malathi Nampally, Talita Honorato, Subha N Das, Appa R Podile, Nour E El Gueddari, Bruno M Moerschbacher. The Pattern of Acetylation Defines the Priming Activity of Chitosan Tetramers.
Journal of the American Chemical Society.
2020 01; 142(4):1975-1986. doi:
10.1021/jacs.9b11466
. [PMID: 31895979] - Yunfan Yang, Minnie Fu, Min-Dian Li, Kaisi Zhang, Bichen Zhang, Simeng Wang, Yuyang Liu, Weiming Ni, Qunxiang Ong, Jia Mi, Xiaoyong Yang. O-GlcNAc transferase inhibits visceral fat lipolysis and promotes diet-induced obesity.
Nature communications.
2020 01; 11(1):181. doi:
10.1038/s41467-019-13914-8
. [PMID: 31924761] - Ruth Addison, Lauren Hill, Lars Bode, Bianca Robertson, Biswa Choudhury, David Young, Charlotte Wright, Clare Relton, Ada L Garcia, David M Tappin. Development of a biochemical marker to detect current breast milk intake.
Maternal & child nutrition.
2020 01; 16(1):e12859. doi:
10.1111/mcn.12859
. [PMID: 31216094] - Tomonori Shinya, Naoto Shibuya, Hanae Kaku. Affinity Labeling and Purification of Plant Chitin-Binding LysM Receptor with Chitin Octasaccharide Derivatives.
Methods in molecular biology (Clifton, N.J.).
2020; 2132(?):401-412. doi:
10.1007/978-1-0716-0430-4_39
. [PMID: 32306347] - Tatsuki Sato, Hisashi Hoshida, Rinji Akada. Inhibition of Distinct Proline- or N-Acetylglucosamine-Induced Hyphal Formation Pathways by Proline Analogs in Candida albicans.
BioMed research international.
2020; 2020(?):7245782. doi:
10.1155/2020/7245782
. [PMID: 33274221] - Shun-Ichiro Kawabata, Toshio Shibata. Purification and Assays of Tachylectin-5.
Methods in molecular biology (Clifton, N.J.).
2020; 2132(?):277-283. doi:
10.1007/978-1-0716-0430-4_27
. [PMID: 32306335] - Peng Zhang, Long Zhou, Lei Wang, Qirong Dong. A Novel Nanofiber Hydrogel Loaded with Platelet-Rich Plasma Promotes Wound Healing Through Enhancing the Survival of Fibroblasts.
Medical science monitor : international medical journal of experimental and clinical research.
2019 Nov; 25(?):8712-8721. doi:
10.12659/msm.919812
. [PMID: 31739310] - S K Shebeko, I A Zupanets, O S Popov. N-Acetylglucosamine is the most effective glucosamine derivative for the treatment of membranous nephropathy in rats.
Die Pharmazie.
2019 11; 74(11):667-670. doi:
10.1691/ph.2019.9733
. [PMID: 31739834] - Yingying Huang, Yong Huang, Jian He, Huiling Wang, Yiqun Luo, Yanmei Li, Junjie Liu, Liping Zhong, Yongxiang Zhao. PEGylated immunoliposome-loaded endoglin single-chain antibody enhances anti-tumor capacity of porcine α1,3GT gene.
Biomaterials.
2019 10; 217(?):119231. doi:
10.1016/j.biomaterials.2019.119231
. [PMID: 31254933] - Zhicheng He, Lutan Zhou, Lisha Lin, Ronghua Yin, Jinhua Zhao. Structure and heparanase inhibitory activity of a new glycosaminoglycan from the slug Limacus flavus.
Carbohydrate polymers.
2019 Sep; 220(?):176-184. doi:
10.1016/j.carbpol.2019.05.066
. [PMID: 31196538] - Heedoo Lee, Chunhua Li, Yang Zhang, Duo Zhang, Leo E Otterbein, Yang Jin. Caveolin-1 selectively regulates microRNA sorting into microvesicles after noxious stimuli.
The Journal of experimental medicine.
2019 09; 216(9):2202-2220. doi:
10.1084/jem.20182313
. [PMID: 31235510] - Lara K Abramowitz, Christelle Harly, Arundhoti Das, Avinash Bhandoola, John A Hanover. Blocked O-GlcNAc cycling disrupts mouse hematopoeitic stem cell maintenance and early T cell development.
Scientific reports.
2019 08; 9(1):12569. doi:
10.1038/s41598-019-48991-8
. [PMID: 31467334] - Jiangsheng Zhou, Liqin Kang, Cuicui Liu, Xin Niu, Xiaojun Wang, Hailong Liu, Wenming Zhang, Zhonghua Liu, Jean-Paul Latgé, Sheng Yuan. Chitinases Play a Key Role in Stipe Cell Wall Extension in the Mushroom Coprinopsis cinerea.
Applied and environmental microbiology.
2019 08; 85(15):. doi:
10.1128/aem.00532-19
. [PMID: 31126941] - Fangmeng Chu, Di Wang, Tian Liu, Hongyu Han, Yike Yu, Qing Yang. An optimized cocktail of chitinolytic enzymes to produce N,N'-diacetylchitobiose and N-acetyl-d-glucosamine from defatted krill by-products.
International journal of biological macromolecules.
2019 Jul; 133(?):1029-1034. doi:
10.1016/j.ijbiomac.2019.04.114
. [PMID: 31004644] - Ahmad Massarweh, Michael Bosco, Isabelle Chantret, Thibaut Léger, Layla Jamal, David I Roper, Christopher G Dowson, Patricia Busca, Ahmed Bouhss, Christine Gravier-Pelletier, Stuart E H Moore. Bacterial Lipid II Analogs: Novel In Vitro Substrates for Mammalian Oligosaccharyl Diphosphodolichol Diphosphatase (DLODP) Activities.
Molecules (Basel, Switzerland).
2019 Jun; 24(11):. doi:
10.3390/molecules24112135
. [PMID: 31174247] - Kecheng Li, Andrew R Green, Meredith M Dinges, Cynthia K Larive. 1H NMR characterization of chitin tetrasaccharide in binary H2O:DMSO solution: Evidence for anomeric end-effect propagation.
International journal of biological macromolecules.
2019 May; 129(?):744-749. doi:
10.1016/j.ijbiomac.2019.02.062
. [PMID: 30771389] - Eleonora Bassino, Franco Gasparri, Luca Munaron. Serenoa repens and N-acetyl glucosamine/milk proteins complex differentially affect the paracrine communication between endothelial and follicle dermal papilla cells.
Journal of cellular physiology.
2019 05; 234(5):7320-7329. doi:
10.1002/jcp.27491
. [PMID: 30417926]