Hesperetin (BioDeep_00000000365)

 

Secondary id: BioDeep_00000017486, BioDeep_00000398535

natural product human metabolite PANOMIX_OTCML-2023 blood metabolite Chemicals and Drugs Antitumor activity BioNovoGene_Lab2019


代谢物信息卡片


(2S)-5,7-Dihydroxy-2-(3-hydroxy-4-methoxyphenyl)-2,3-dihydro-4H-1-benzopyran-4-one (Hesperetin)

化学式: C16H14O6 (302.079)
中文名称: 橙皮素, 橙皮甙
谱图信息: 最多检出来源 Homo sapiens(feces) 21.41%

分子结构信息

SMILES: C1(O)C=C2O[C@H](C3=CC=C(OC)C(O)=C3)CC(=O)C2=C(O)C=1
InChI: InChI=1/C16H14O6/c1-21-13-3-2-8(4-10(13)18)14-7-12(20)16-11(19)5-9(17)6-15(16)22-14/h2-6,14,17-19H,7H2,1H3/t14-/m0/s1

描述信息

Hesperetin, also known as prestwick_908 or YSO2, belongs to the class of organic compounds known as 4-o-methylated flavonoids. These are flavonoids with methoxy groups attached to the C4 atom of the flavonoid backbone. Thus, hesperetin is considered to be a flavonoid lipid molecule. Hesperetin also seems to upregulate the LDL receptor. Hesperetin, in the form of its glycoside , is the predominant flavonoid in lemons and oranges. Hesperetin is a drug which is used for lowering cholesterol and, possibly, otherwise favorably affecting lipids. In vitro research also suggests the possibility that hesperetin might have some anticancer effects and that it might have some anti-aromatase activity. Hesperetin is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Hesperetin is a bitter tasting compound. Hesperetin is found, on average, in the highest concentration within a few different foods, such as limes, persian limes, and sweet oranges and in a lower concentration in pummelo, welsh onions, and lemons. Hesperetin has also been detected, but not quantified, in several different foods, such as yellow bell peppers, carrots, rapinis, hazelnuts, and beers. Hesperetin is a biomarker for the consumption of citrus fruits. Hesperetin reduces or inhibits the activity of acyl-coenzyme A:cholesterol acyltransferase genes (ACAT1 and ACAT2) and it reduces microsomal triglyceride transfer protein (MTP) activity.
Hesperetin is a trihydroxyflavanone having the three hydroxy gropus located at the 3-, 5- and 7-positions and an additional methoxy substituent at the 4-position. It has a role as an antioxidant, an antineoplastic agent and a plant metabolite. It is a monomethoxyflavanone, a trihydroxyflavanone, a member of 3-hydroxyflavanones and a member of 4-methoxyflavanones. It is a conjugate acid of a hesperetin(1-).
Hesperetin belongs to the flavanone class of flavonoids. Hesperetin, in the form of its glycoside [hesperidin], is the predominant flavonoid in lemons and oranges.
Hesperetin is a natural product found in Brassica oleracea var. sabauda, Dalbergia parviflora, and other organisms with data available.
Isolated from Mentha (peppermint) and numerous Citrussubspecies, with lemons, tangerines and oranges being especially good sources. Nutriceutical with anti-cancer props. Glycosides also widely distributed
A trihydroxyflavanone having the three hydroxy gropus located at the 3-, 5- and 7-positions and an additional methoxy substituent at the 4-position.
Acquisition and generation of the data is financially supported in part by CREST/JST.
[Raw Data] CB046_Hesperetin_pos_40eV_CB000021.txt
[Raw Data] CB046_Hesperetin_pos_50eV_CB000021.txt
[Raw Data] CB046_Hesperetin_pos_30eV_CB000021.txt
[Raw Data] CB046_Hesperetin_pos_20eV_CB000021.txt
[Raw Data] CB046_Hesperetin_pos_10eV_CB000021.txt
[Raw Data] CB046_Hesperetin_neg_20eV_000014.txt
[Raw Data] CB046_Hesperetin_neg_10eV_000014.txt
[Raw Data] CB046_Hesperetin_neg_40eV_000014.txt
[Raw Data] CB046_Hesperetin_neg_50eV_000014.txt
[Raw Data] CB046_Hesperetin_neg_30eV_000014.txt
Hesperetin is a natural flavanone, and acts as a potent and broad-spectrum inhibitor against human UGT activity. Hesperetin regulates apoptosis.
Hesperetin is a natural flavanone, and acts as a potent and broad-spectrum inhibitor against human UGT activity. Hesperetin regulates apoptosis.

同义名列表

64 个代谢物同义名

(2S)-5,7-Dihydroxy-2-(3-hydroxy-4-methoxyphenyl)-2,3-dihydro-4H-1-benzopyran-4-one (Hesperetin); 4H-1-Benzopyran-4-one, 2,3-dihydro-5,7-dihydroxy-2-(3-hydroxy-4-methoxyphenyl)-, (2S)-; 4H-1-Benzopyran-4-one,2,3-dihydro-5,7-dihydroxy-2-(3-hydroxy-4-methoxyphenyl)-, (2S)-; 4H-1-Benzopyran-4-one, 2,3-dihydro-5,7-dihydroxy-2-(3-hydroxy-4-methoxyphenyl)-, (S)-; (2s)-5,7-Dihydroxy-2-(3-Hydroxy-4-Methoxyphenyl)-2,3-Dihydro-4h-1-Benzopyran-4-One; (2S)-5,7-dihydroxy-2-(3-hydroxy-4-methoxyphenyl)-3,4-dihydro-2H-1-benzopyran-4-one; (S)-2,3-dihydro-5,7-dihydroxy-2-(3-hydroxy-4-methoxyphenyl)-4H-1-benzopyran-4-one; 2,3-DIHYDRO-5,7-DIHYDROXY-2-(3-HYDROXY-4-METHOXYPHENYL)-4H-1-BENZOPYRAN-4-ONE; (2S)-5,7-dihydroxy-2-(3-hydroxy-4-methoxyphenyl)-2,3-dihydro-4H-chromen-4-one; (2S)-5,7-dihydroxy-2-(3-hydroxy-4-methoxyphenyl)-2,3-dihydrochromen-4-one; (S)-2,3-Dihydro-5,7-dihydroxy-2-(3-hydroxy-4-methoxyphenyl)-4-benzopyrone; (S)-5,7-Dihydroxy-2-(3-hydroxy-4-methoxyphenyl)chroman-4-one;Hesperetin; (2S)-5,7-dihydroxy-2-(3-hydroxy-4-methoxy-phenyl)chroman-4-one; (2S)-5,7-dihydroxy-2-(3-hydroxy-4-methoxyphenyl)chroman-4-one; (S)-5,7-dihydroxy-2-(3-hydroxy-4-methoxyphenyl)chroman-4-one; 5,7-Dihydroxy-2-(3-hydroxy-4-methoxyphenyl)-4-chromanone; Flavanone, 3,5,7-trihydroxy-4-methoxy- (VAN) (8CI); Flavanone, 3,5, 7-trihydroxy-4-methoxy- (VAN); Flavanone, 3,5,7-trihydroxy-4-methoxy- (VAN); Hesperitin; Hesperin; YSO2; Prestwick_908; Flavanone, 3,5,7-trihydroxy-4-methoxy-; 5,7, 3-Trihydroxy-4-methoxyflavanone; 3,5,7-trihydroxy-4-methoxyflavanone; 4-Methoxy-3,5,7-trihydroxyflavanone; 5,7,3-Trihydroxy-4-methoxyflavanone; Cyanidanon 4-methyl ether 1626; Eriodictyol 4-monomethyl ether; (-)-(S)-hesperetin; HESPERETIN [INCI]; Prestwick3_000124; Prestwick0_000124; Prestwick2_000124; HESPERETIN [FHFI]; Prestwick1_000124; Spectrum3_001104; Spectrum2_001793; Spectrum5_000683; Spectrum4_001935; BCBcMAP01_000087; HESPERETIN [MI]; UNII-Q9Q3D557F1; (+-)-Hesperetin; (2S)-hesperetin; (-)-hesperetin; DivK1c_001039; Oprea1_828704; BPBio1_000186; Prestwick_908; KBio2_005797; KBio2_000661; KBio2_003229; KBio3_002028; KBio1_001039; Hesperitine; IDI1_001039; SMP1_000148; Q9Q3D557F1; Hesperetin; hesperitin; Hesperin; NP-13; YSO2; 6JP; Hesperetin



数据库引用编号

47 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

207 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 11 AKT1, BCL2, MAPK14, MAPK8, NFE2L2, NOS2, PIK3CA, PTGS2, STAT3, TP53, XDH
Peripheral membrane protein 2 ACHE, PTGS2
Endoplasmic reticulum membrane 2 BCL2, PTGS2
Nucleus 9 ACHE, AKT1, BCL2, MAPK14, MAPK8, NFE2L2, NOS2, STAT3, TP53
cytosol 11 AKT1, BCL2, GSR, MAPK14, MAPK8, NFE2L2, NOS2, PIK3CA, STAT3, TP53, XDH
centrosome 2 NFE2L2, TP53
nucleoplasm 7 AKT1, MAPK14, MAPK8, NFE2L2, NOS2, STAT3, TP53
RNA polymerase II transcription regulator complex 2 NFE2L2, STAT3
Cell membrane 3 ACHE, AKT1, TNF
lamellipodium 2 AKT1, PIK3CA
Synapse 2 ACHE, MAPK8
cell cortex 1 AKT1
cell surface 2 ACHE, TNF
glutamatergic synapse 2 AKT1, MAPK14
Golgi apparatus 2 ACHE, NFE2L2
Golgi membrane 1 INS
neuromuscular junction 1 ACHE
neuronal cell body 1 TNF
postsynapse 1 AKT1
Cytoplasm, cytosol 2 NFE2L2, NOS2
plasma membrane 9 ACHE, AKT1, BCHE, NFE2L2, NOS2, PIK3CA, STAT3, TMPRSS11A, TNF
Membrane 5 ACHE, AKT1, BCL2, TMPRSS11A, TP53
axon 2 CCK, MAPK8
caveola 1 PTGS2
extracellular exosome 1 GSR
endoplasmic reticulum 3 BCL2, PTGS2, TP53
extracellular space 8 ACHE, BCHE, CCK, IL10, IL6, INS, TNF, XDH
perinuclear region of cytoplasm 3 ACHE, NOS2, PIK3CA
intercalated disc 1 PIK3CA
mitochondrion 4 BCL2, GSR, MAPK14, TP53
protein-containing complex 4 AKT1, BCL2, PTGS2, TP53
Microsome membrane 1 PTGS2
Secreted 6 ACHE, BCHE, CCK, IL10, IL6, INS
extracellular region 9 ACHE, BCHE, CCK, IL10, IL6, INS, MAPK14, TMPRSS11A, TNF
Mitochondrion outer membrane 1 BCL2
Single-pass membrane protein 1 BCL2
mitochondrial outer membrane 1 BCL2
Mitochondrion matrix 1 TP53
mitochondrial matrix 2 GSR, TP53
Extracellular side 1 ACHE
transcription regulator complex 2 STAT3, TP53
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 TP53
Nucleus membrane 1 BCL2
Bcl-2 family protein complex 1 BCL2
nuclear membrane 1 BCL2
external side of plasma membrane 2 GSR, TNF
microtubule cytoskeleton 1 AKT1
nucleolus 1 TP53
Cytoplasm, P-body 1 NOS2
P-body 1 NOS2
cell-cell junction 1 AKT1
recycling endosome 1 TNF
Single-pass type II membrane protein 2 TMPRSS11A, TNF
vesicle 1 AKT1
Cytoplasm, perinuclear region 1 NOS2
Membrane raft 1 TNF
pore complex 1 BCL2
Cytoplasm, cytoskeleton 1 TP53
spindle 1 AKT1
Peroxisome 2 NOS2, XDH
basement membrane 1 ACHE
sarcoplasmic reticulum 1 XDH
peroxisomal matrix 1 NOS2
Nucleus, PML body 1 TP53
PML body 1 TP53
Mitochondrion intermembrane space 1 AKT1
mitochondrial intermembrane space 1 AKT1
nuclear speck 1 MAPK14
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
neuron projection 1 PTGS2
ciliary basal body 1 AKT1
chromatin 3 NFE2L2, STAT3, TP53
mediator complex 1 NFE2L2
phagocytic cup 1 TNF
spindle pole 1 MAPK14
blood microparticle 1 BCHE
Lipid-anchor, GPI-anchor 1 ACHE
site of double-strand break 1 TP53
endosome lumen 1 INS
side of membrane 1 ACHE
germ cell nucleus 1 TP53
replication fork 1 TP53
myelin sheath 1 BCL2
ficolin-1-rich granule lumen 1 MAPK14
secretory granule lumen 2 INS, MAPK14
Golgi lumen 1 INS
endoplasmic reticulum lumen 4 BCHE, IL6, INS, PTGS2
nuclear matrix 1 TP53
transcription repressor complex 1 TP53
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
transport vesicle 1 INS
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
nuclear envelope lumen 1 BCHE
[Isoform 1]: Nucleus 1 TP53
synaptic cleft 1 ACHE
protein-DNA complex 1 NFE2L2
basal dendrite 1 MAPK8
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
cortical cytoskeleton 1 NOS2
interleukin-6 receptor complex 1 IL6
BAD-BCL-2 complex 1 BCL2
[Isoform H]: Cell membrane 1 ACHE
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Álvaro Pérez-Valero, Juan Serna-Diestro, Albert Tafur Rangel, Simona Barbuto Ferraiuolo, Chiara Schiraldi, Eduard J Kerkhoven, Claudio J Villar, Felipe Lombó. Biosynthesis of Hesperetin, Homoeriodictyol, and Homohesperetin in a Transcriptomics-Driven Engineered Strain of Streptomyces albidoflavus. International journal of molecular sciences. 2024 Apr; 25(7):. doi: 10.3390/ijms25074053. [PMID: 38612864]
  • Adeola Oluwatosin Adedara, Getúlio Nicola Bressan, Matheus Mulling Dos Santos, Roselei Fachinetto, Amos Olalekan Abolaji, Nilda Vargas Barbosa. Antioxidant responses driven by Hesperetin and Hesperidin counteract Parkinson's disease-like phenotypes in Drosophila melanogaster. Neurotoxicology. 2024 Mar; 101(?):117-127. doi: 10.1016/j.neuro.2024.02.006. [PMID: 38423185]
  • Xianbin Yu, Zhixuan Liu, Yitian Yu, Chengjie Qian, Yuzhe Lin, Shuqing Jin, Long Wu, Shi Li. Hesperetin promotes diabetic wound healing by inhibiting ferroptosis through the activation of SIRT3. Phytotherapy research : PTR. 2024 Jan; ?(?):. doi: 10.1002/ptr.8121. [PMID: 38234096]
  • Erik K R Hanko, João Correia, Caio S Souza, Alison Green, Jakub Chromy, Ruth Stoney, Cunyu Yan, Eriko Takano, Diana Lousa, Cláudio M Soares, Rainer Breitling. Microbial production of the plant flavanone hesperetin from caffeic acid. BMC research notes. 2023 Nov; 16(1):343. doi: 10.1186/s13104-023-06620-8. [PMID: 37978406]
  • Wenqian Wang, Lili Qu, Zhan Cui, Fuping Lu, Li Li, Fufeng Liu. Citrus Flavonoid Hesperetin Inhibits α-Synuclein Fibrillogenesis, Disrupts Mature Fibrils, and Reduces Their Cytotoxicity: In Vitro and In Vivo Studies. Journal of agricultural and food chemistry. 2023 Nov; 71(43):16174-16183. doi: 10.1021/acs.jafc.3c06816. [PMID: 37870747]
  • Juan Liu, Zhiqiang Xiao, Siqi Zhang, Zhen Wang, Yun Chen, Yang Shan. Restricting Promiscuity of Plant Flavonoid 3'-Hydroxylase and 4'-O-Methyltransferase Improves the Biosynthesis of (2S)-Hesperetin in E. coli. Journal of agricultural and food chemistry. 2023 Jun; ?(?):. doi: 10.1021/acs.jafc.3c02071. [PMID: 37310069]
  • Lukas Babylon, Julia Meißner, Gunter P Eckert. Combination of Secondary Plant Metabolites and Micronutrients Improves Mitochondrial Function in a Cell Model of Early Alzheimer's Disease. International journal of molecular sciences. 2023 Jun; 24(12):. doi: 10.3390/ijms241210029. [PMID: 37373177]
  • Yuri Doki, Yosuke Nakazawa, Naoki Morishita, Shin Endo, Noriaki Nagai, Naoki Yamamoto, Hiroomi Tamura, Megumi Funakoshi-Tago. Hesperetin treatment attenuates glycation of lens proteins and advanced‑glycation end products generation. Molecular medicine reports. 2023 05; 27(5):. doi: 10.3892/mmr.2023.12990. [PMID: 36999595]
  • Panpan Liu, Jian Chen, Jiaying Qi, Miaomiao Liu, Muqing Zhang, Yucong Xue, Li Li, Yanshuang Liu, Jing Shi, Yixin Zhang, Li Chu. Hesperetin ameliorates ischemia/hypoxia-induced myocardium injury via inhibition of oxidative stress, apoptosis, and regulation of Ca2+ homeostasis. Phytotherapy research : PTR. 2023 May; 37(5):1787-1805. doi: 10.1002/ptr.7693. [PMID: 36437582]
  • Ah Young Yang, Hye Jin Choi, Kiryeong Kim, Jaechan Leem. Antioxidant, Antiapoptotic, and Anti-Inflammatory Effects of Hesperetin in a Mouse Model of Lipopolysaccharide-Induced Acute Kidney Injury. Molecules (Basel, Switzerland). 2023 Mar; 28(6):. doi: 10.3390/molecules28062759. [PMID: 36985731]
  • Kamil Wdowiak, Andrzej Miklaszewski, Robert Pietrzak, Judyta Cielecka-Piontek. Amorphous System of Hesperetin and Piperine-Improvement of Apparent Solubility, Permeability, and Biological Activities. International journal of molecular sciences. 2023 Mar; 24(5):. doi: 10.3390/ijms24054859. [PMID: 36902286]
  • Lulu Shi, Mingzhe Zou, Xingxing Zhou, Songhua Wang, Wei Meng, Zhou Lan. Comparison of protective effects of hesperetin and pectolinarigenin on high-fat diet-induced hyperlipidemia and hepatic steatosis in Golden Syrian hamsters. Experimental animals. 2023 Feb; 72(1):123-131. doi: 10.1538/expanim.22-0115. [PMID: 36310057]
  • Yogesh Chand Yadav, Satyanarayan Pattnaik. Hesperetin-loaded polymeric nanofibers: assessment of bioavailability and neuroprotective effect. Drug development and industrial pharmacy. 2023 Feb; 49(2):240-247. doi: 10.1080/03639045.2023.2201625. [PMID: 37032647]
  • Parth Malik, Manju Bernela, Mahima Seth, Priya Kaushal, Tapan Kumar Mukherjee. Recent Progress in the Hesperetin Delivery Regimes: Significance of Pleiotropic Actions and Synergistic Anticancer Efficacy. Current pharmaceutical design. 2023; 29(37):2954-2976. doi: 10.2174/0113816128253609231030070414. [PMID: 38173051]
  • Sai Zhu, Xin Chen, Si-Yu Chen, Ao Wang, Sha Wu, Yuan-Yuan Wu, Miao Cheng, Jin-Jin Xu, Xiao-Feng Li, Cheng Huang, Jun Li. Hesperetin derivative decreases CCl4 -induced hepatic fibrosis by Ptch1-dependent mechanisms. Journal of biochemical and molecular toxicology. 2022 Oct; 36(10):e23149. doi: 10.1002/jbt.23149. [PMID: 35712856]
  • Fatemeh Omidfar, Fatemeh Gheybi, Javid Davoodi, Mostafa Amirinejad, Ali Badiee. Nanophytosomes of hesperidin and of hesperetin: Preparation, characterization, and in vivo evaluation. Biotechnology and applied biochemistry. 2022 Sep; ?(?):. doi: 10.1002/bab.2404. [PMID: 36112716]
  • Punnida Arjsri, Kamonwan Srisawad, Sariya Mapoung, Warathit Semmarath, Pilaiporn Thippraphan, Sonthaya Umsumarng, Supachai Yodkeeree, Pornngarm Dejkriengkraikul. Hesperetin from Root Extract of Clerodendrum petasites S. Moore Inhibits SARS-CoV-2 Spike Protein S1 Subunit-Induced NLRP3 Inflammasome in A549 Lung Cells via Modulation of the Akt/MAPK/AP-1 Pathway. International journal of molecular sciences. 2022 Sep; 23(18):. doi: 10.3390/ijms231810346. [PMID: 36142258]
  • Lizha Mary Lazer, Yasodha Kesavan, Ravi Gor, Ilangovan Ramachandran, Surajit Pathak, Shoba Narayan, Muralidharan Anbalagan, Satish Ramalingam. Targeting colon cancer stem cells using novel doublecortin like kinase 1 antibody functionalized folic acid conjugated hesperetin encapsulated chitosan nanoparticles. Colloids and surfaces. B, Biointerfaces. 2022 Sep; 217(?):112612. doi: 10.1016/j.colsurfb.2022.112612. [PMID: 35738074]
  • Alpa Shree, Johirul Islam, Vikas Yadav, Sarwat Sultana, Haider Ali Khan. Hesperetin alleviates DMH induced toxicity via suppressing oxidative stress and inflammation in the colon of Wistar rats. Environmental toxicology. 2022 Sep; 37(9):2153-2166. doi: 10.1002/tox.23558. [PMID: 35567572]
  • Lateefat T Olumegbon, Akeem O Lawal, Dare M Oluyede, Monsurat O Adebimpe, Olusola O Elekofehinti, Haruna I Umar. Hesperetin protects against diesel exhaust particles-induced cardiovascular oxidative stress and inflammation in Wistar rats. Environmental science and pollution research international. 2022 Jul; 29(35):52574-52589. doi: 10.1007/s11356-022-19494-3. [PMID: 35262885]
  • Tatianny de Araújo Andrade, Luana Heimfarth, Danillo Menezes Dos Santos, Márcio Roberto Viana Dos Santos, Ricardo Luiz Cavalcanti de Albuquerque-Júnior, Agenor Gomes Dos Santos-Neto, Guilherme Rodolfo Souza de Araujo, Ana Amélia Moreira Lira, Saulo Santos Matos, Luiza Abrahão Frank, Thallita Kelly Rabelo, Lucindo José Quintans-Júnior, Jullyana de Souza Siqueira Quintans, Adriano Antunes de Souza Araujo, Mairim Russo Serafini. Hesperetin-Based Hydrogels Protect the Skin against UV Radiation-Induced Damage. AAPS PharmSciTech. 2022 Jun; 23(6):170. doi: 10.1208/s12249-022-02323-8. [PMID: 35729366]
  • Yaseen Hussain, Haroon Khan, Thomas Efferth, Waqas Alam. Regulation of endoplasmic reticulum stress by hesperetin: Focus on antitumor and cytoprotective effects. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2022 Jun; 100(?):153985. doi: 10.1016/j.phymed.2022.153985. [PMID: 35358935]
  • Heba M Abdou, Fatma A Hamaad, Esraa Y Ali, Mamdooh H Ghoneum. Antidiabetic efficacy of Trifolium alexandrinum extracts hesperetin and quercetin in ameliorating carbohydrate metabolism and activating IR and AMPK signaling in the pancreatic tissues of diabetic rats. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2022 May; 149(?):112838. doi: 10.1016/j.biopha.2022.112838. [PMID: 35344738]
  • Juan-Juan Li, Xin-Yi Lu, Pengcheng Jia, Lin Zhu, Ao Wang, Fang-Tian Bu, Yi-Long Zhang, Cheng Huang, Jun Li. O-alkyl and o-benzyl hesperetin derivative-1L attenuates inflammation and protects against alcoholic liver injury via inhibition of BRD2-NF-κB signaling pathway. Toxicology. 2022 01; 466(?):153087. doi: 10.1016/j.tox.2021.153087. [PMID: 34974135]
  • Heba Mohamed Abdou, Heba-Tallah Abd Elrahim Abd Elkader. The potential therapeutic effects of Trifolium alexandrinum extract, hesperetin and quercetin against diabetic nephropathy via attenuation of oxidative stress, inflammation, GSK-3β and apoptosis in male rats. Chemico-biological interactions. 2022 Jan; 352(?):109781. doi: 10.1016/j.cbi.2021.109781. [PMID: 34922902]
  • Ahmet Tektemur, Nalan Kaya Tektemur, Elif Erdem Güzel. The therapeutic effect of hesperetin on doxorubicin-induced testicular toxicity: Potential roles of the mechanistic target of rapamycin kinase (mTOR) and dynamin-related protein 1 (DRP1). Toxicology and applied pharmacology. 2022 01; 435(?):115833. doi: 10.1016/j.taap.2021.115833. [PMID: 34933056]
  • Qian Lu, Yongwei Lai, Hong Zhang, Kuang Ren, Wei Liu, Ying An, Jiahong Yao, Hongyan Fan. Hesperetin Inhibits TGF-β1-Induced Migration and Invasion of Triple Negative Breast Cancer MDA-MB-231 Cells via Suppressing Fyn/Paxillin/RhoA Pathway. Integrative cancer therapies. 2022 Jan; 21(?):15347354221086900. doi: 10.1177/15347354221086900. [PMID: 35297710]
  • Bahare Salehi, Natália Cruz-Martins, Monica Butnariu, Ioan Sarac, Iulia-Cristina Bagiu, Shahira M Ezzat, Jinfan Wang, Aaron Koay, Helen Sheridan, Charles Oluwaseun Adetunji, Prabhakar Semwal, Mauricio Schoebitz, Miquel Martorell, Javad Sharifi-Rad. Hesperetin's health potential: moving from preclinical to clinical evidence and bioavailability issues, to upcoming strategies to overcome current limitations. Critical reviews in food science and nutrition. 2022; 62(16):4449-4464. doi: 10.1080/10408398.2021.1875979. [PMID: 33491467]
  • Yi-Shaun Sheen, Hsin-Yi Huang, Yi-Hua Liao. The efficacy and safety of an antiaging topical serum containing hesperetin and sodium cyclic lysophosphatidic acid: A single-center clinical trial. Journal of cosmetic dermatology. 2021 Dec; 20(12):3960-3967. doi: 10.1111/jocd.14063. [PMID: 33690913]
  • Zhen Wang, Xu Huang, Juan Liu, Feiyao Xiao, Miaomiao Tian, Shenghua Ding, Yang Shan. Screening and heterologous expression of flavone synthase and flavonol synthase to catalyze hesperetin to diosmetin. Biotechnology letters. 2021 Nov; 43(11):2161-2183. doi: 10.1007/s10529-021-03184-0. [PMID: 34514540]
  • Shun Katada, Sachiko Oishi, Kiyotaka Yanagawa, Shunsuke Ishii, Mamoru Oki, Yuji Matsui, Noriko Osaki, Kazuhiko Takano, Masanobu Hibi. Concomitant use of tea catechins affects absorption and serum triglyceride-lowering effects of monoglucosyl hesperidin. Food & function. 2021 Oct; 12(19):9339-9346. doi: 10.1039/d1fo01917a. [PMID: 34606551]
  • Fedora Grande, Maria Antonietta Occhiuzzi, Maria Rosaria Perri, Giuseppina Ioele, Bruno Rizzuti, Giancarlo Statti, Antonio Garofalo. Polyphenols from Citrus Tacle® Extract Endowed with HMGCR Inhibitory Activity: An Antihypercholesterolemia Natural Remedy. Molecules (Basel, Switzerland). 2021 Sep; 26(18):. doi: 10.3390/molecules26185718. [PMID: 34577189]
  • Shang-Ta Wang, Jou-An Chen, Chen Hsu, Nan-Wei Su. Microbial Phosphorylation Product of Hesperetin by Bacillus subtilis BCRC 80517 Improves Oral Bioavailability in Rats. Journal of agricultural and food chemistry. 2021 Sep; 69(35):10184-10193. doi: 10.1021/acs.jafc.1c04298. [PMID: 34449206]
  • Fang-Ju Cheng, Thanh-Kieu Huynh, Chia-Shin Yang, Dai-Wei Hu, Yi-Cheng Shen, Chih-Yen Tu, Yang-Chang Wu, Chih-Hsin Tang, Wei-Chien Huang, Yeh Chen, Chien-Yi Ho. Hesperidin Is a Potential Inhibitor against SARS-CoV-2 Infection. Nutrients. 2021 Aug; 13(8):. doi: 10.3390/nu13082800. [PMID: 34444960]
  • Halil Ibrahim Guler, Gizem Tatar, Oktay Yildiz, Ali Osman Belduz, Sevgi Kolayli. Investigation of potential inhibitor properties of ethanolic propolis extracts against ACE-II receptors for COVID-19 treatment by molecular docking study. Archives of microbiology. 2021 Aug; 203(6):3557-3564. doi: 10.1007/s00203-021-02351-1. [PMID: 33950349]
  • Naila Rabbani, Mingzhan Xue, Martin O Weickert, Paul J Thornalley. Reversal of Insulin Resistance in Overweight and Obese Subjects by trans-Resveratrol and Hesperetin Combination-Link to Dysglycemia, Blood Pressure, Dyslipidemia, and Low-Grade Inflammation. Nutrients. 2021 Jul; 13(7):. doi: 10.3390/nu13072374. [PMID: 34371884]
  • Panpan Liu, Jinghan Li, Miaomiao Liu, Muqing Zhang, Yucong Xue, Yuanyuan Zhang, Xue Han, Xuan Jing, Li Chu. Hesperetin modulates the Sirt1/Nrf2 signaling pathway in counteracting myocardial ischemia through suppression of oxidative stress, inflammation, and apoptosis. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2021 Jul; 139(?):111552. doi: 10.1016/j.biopha.2021.111552. [PMID: 33839495]
  • Jingda Li, Tianqi Wang, Panpan Liu, Fuyuan Yang, Xudong Wang, Weilong Zheng, Wenlong Sun. Hesperetin ameliorates hepatic oxidative stress and inflammation via the PI3K/AKT-Nrf2-ARE pathway in oleic acid-induced HepG2 cells and a rat model of high-fat diet-induced NAFLD. Food & function. 2021 May; 12(9):3898-3918. doi: 10.1039/d0fo02736g. [PMID: 33977953]
  • Mark J Henderson, Kathleen A Trychta, Shyh-Ming Yang, Susanne Bäck, Adam Yasgar, Emily S Wires, Carina Danchik, Xiaokang Yan, Hideaki Yano, Lei Shi, Kuo-Jen Wu, Amy Q Wang, Dingyin Tao, Gergely Zahoránszky-Kőhalmi, Xin Hu, Xin Xu, David Maloney, Alexey V Zakharov, Ganesha Rai, Fumihiko Urano, Mikko Airavaara, Oksana Gavrilova, Ajit Jadhav, Yun Wang, Anton Simeonov, Brandon K Harvey. A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome. Cell reports. 2021 04; 35(4):109040. doi: 10.1016/j.celrep.2021.109040. [PMID: 33910017]
  • Jun Gu Kim, Jin Woo Lee, Thi Phuong Linh Le, Jae Sang Han, Yong Beom Cho, Haeun Kwon, Dongho Lee, Mi Kyeong Lee, Bang Yeon Hwang. Sesquiterpenoids from Chrysanthemum indicum with Inhibitory Effects on NO Production. Journal of natural products. 2021 03; 84(3):562-569. doi: 10.1021/acs.jnatprod.0c01121. [PMID: 33667099]
  • Ling Liu, Jie Zheng, YaZhen Yang, Lingjuan Ni, Hongyu Chen, Dongrong Yu. Hesperetin alleviated glucocorticoid-induced inhibition of osteogenic differentiation of BMSCs through regulating the ERK signaling pathway. Medical molecular morphology. 2021 Mar; 54(1):1-7. doi: 10.1007/s00795-020-00251-9. [PMID: 32253606]
  • Fang Wu, Zunji Shi, Hehua Lei, Gui Chen, Peihong Yuan, Zheng Cao, Chuan Chen, Xuehang Zhu, Caixiang Liu, Manyuan Dong, Yuchen Song, Yangyang Guo, Jinlin Zhou, Yujing Lu, Limin Zhang. Short-Term Intake of Hesperetin-7-O-Glucoside Affects Fecal Microbiota and Host Metabolic Homeostasis in Mice. Journal of agricultural and food chemistry. 2021 Feb; 69(5):1478-1486. doi: 10.1021/acs.jafc.0c05921. [PMID: 33351610]
  • Raphael J Eberle, Danilo S Olivier, Carolina C Pacca, Clarita M S Avilla, Mauricio L Nogueira, Marcos S Amaral, Dieter Willbold, Raghuvir K Arni, Monika A Coronado. In vitro study of Hesperetin and Hesperidin as inhibitors of zika and chikungunya virus proteases. PloS one. 2021; 16(3):e0246319. doi: 10.1371/journal.pone.0246319. [PMID: 33661906]
  • Kexin Li, Li Wei, Zhigang Han, Huarong Xiong, Fengmei Zhang, Xuwei Liu, Dezhang Zhao, Yongquan Pan, Wenli Han. Comparative Pharmacokinetic Study of Hesperetin after Oral Administration in Normal and Hyperuricemia Rats by UPLC-MS/MS. Current reviews in clinical and experimental pharmacology. 2021; 16(2):155-161. doi: 10.2174/1574884715666200702120521. [PMID: 32614750]
  • Theresa Saenger, Florian Hübner, Viktoria Lindemann, Kristina Ganswind, Hans-Ulrich Humpf. Urinary Biomarkers for Orange Juice Consumption. Molecular nutrition & food research. 2021 01; 65(2):e2000781. doi: 10.1002/mnfr.202000781. [PMID: 33216459]
  • Namrta Choudhry, Xin Zhao, Dan Xu, Mark Zanin, Weisan Chen, Zifeng Yang, Jianxin Chen. Chinese Therapeutic Strategy for Fighting COVID-19 and Potential Small-Molecule Inhibitors against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Journal of medicinal chemistry. 2020 11; 63(22):13205-13227. doi: 10.1021/acs.jmedchem.0c00626. [PMID: 32845145]
  • Gopalsamy Rajiv Gandhi, Alan Bruno Silva Vasconcelos, Ding-Tao Wu, Hua-Bin Li, Poovathumkal James Antony, Hang Li, Fang Geng, Ricardo Queiroz Gurgel, Narendra Narain, Ren-You Gan. Citrus Flavonoids as Promising Phytochemicals Targeting Diabetes and Related Complications: A Systematic Review of In Vitro and In Vivo Studies. Nutrients. 2020 Sep; 12(10):. doi: 10.3390/nu12102907. [PMID: 32977511]
  • Egeria Scoditti. Neuroinflammation and Neurodegeneration: The Promising Protective Role of the Citrus Flavanone Hesperetin. Nutrients. 2020 Aug; 12(8):. doi: 10.3390/nu12082336. [PMID: 32764233]
  • Dabin Choi, Cho-Long Kim, Jae Eun Kim, Jung-Soon Mo, Han-Sol Jeong. Hesperetin inhibit EMT in TGF-β treated podocyte by regulation of mTOR pathway. Biochemical and biophysical research communications. 2020 07; 528(1):154-159. doi: 10.1016/j.bbrc.2020.05.087. [PMID: 32451085]
  • Marina Marques Bonomo, João Batista Fernandes, Rose Maria Carlos, Marisa Narciso Fernandes. Biochemical and genotoxic biomarkers and cell cycle assessment in the zebrafish liver (ZF-L) cell line exposed to the novel metal-insecticide magnesium-hespiridin complex. Chemosphere. 2020 Jul; 250(?):126416. doi: 10.1016/j.chemosphere.2020.126416. [PMID: 32380589]
  • Jingyuan Wan, Ge Kuang, Li Zhang, Rong Jiang, Yongtao Chen, Zhen He, Duyun Ye. Hesperetin attenuated acetaminophen-induced hepatotoxicity by inhibiting hepatocyte necrosis and apoptosis, oxidative stress and inflammatory response via upregulation of heme oxygenase-1 expression. International immunopharmacology. 2020 Jun; 83(?):106435. doi: 10.1016/j.intimp.2020.106435. [PMID: 32222641]
  • Yasin Duran, İhsan Karaboğa. Effect of hesperetin on systemic inflammation and hepatic injury after blunt chest trauma in rats. Biotechnic & histochemistry : official publication of the Biological Stain Commission. 2020 May; 95(4):297-304. doi: 10.1080/10520295.2019.1691265. [PMID: 31850807]
  • Wencui Kong, Xiaoming Ling, Ying Chen, Xiaoli Wu, Zhongquan Zhao, Wenwu Wang, Shuiliang Wang, Guoxiang Lai, Zongyang Yu. Hesperetin reverses P‑glycoprotein‑mediated cisplatin resistance in DDP‑resistant human lung cancer cells via modulation of the nuclear factor‑κB signaling pathway. International journal of molecular medicine. 2020 Apr; 45(4):1213-1224. doi: 10.3892/ijmm.2020.4485. [PMID: 32124932]
  • Iasim Tahiri, Yaiza Garro-Aguilar, Valerie Cayssials, David Achaintre, Francesca Romana Mancini, Yahya Mahamat-Saleh, Marie-Christine Boutron-Ruault, Tilman Kühn, Verena Katzke, Heiner Boeing, Antonia Trichopoulou, Anna Karakatsani, Elisavet Valanou, Domenico Palli, Sabina Sieri, Maria Santucci de Magistris, Rosario Tumino, Alessandra Macciotta, Inge Huybrechts, Antonio Agudo, Augustin Scalbert, Raul Zamora-Ros. Urinary flavanone concentrations as biomarkers of dietary flavanone intakes in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. The British journal of nutrition. 2020 03; 123(6):691-698. doi: 10.1017/s0007114519003131. [PMID: 31791423]
  • Amal A El Daibani, Yuecheng Xi, Lijun Luo, Xue Mei, Chunyang Zhou, Shin Yasuda, Ming-Cheh Liu. Sulfation of hesperetin, naringenin and apigenin by the human cytosolic sulfotransferases: a comprehensive analysis. Natural product research. 2020 Mar; 34(6):797-803. doi: 10.1080/14786419.2018.1503264. [PMID: 30398375]
  • Mohamed Gaber, Mark Hany, Sarah Mokhtar, Maged W Helmy, Kadria A Elkodairy, Ahmed O Elzoghby. Boronic-targeted albumin-shell oily-core nanocapsules for synergistic aromatase inhibitor/herbal breast cancer therapy. Materials science & engineering. C, Materials for biological applications. 2019 Dec; 105(?):110099. doi: 10.1016/j.msec.2019.110099. [PMID: 31546395]
  • Melike Ersoz, Aysegul Erdemir, Dilek Duranoglu, Deniz Uzunoglu, Tulin Arasoglu, Serap Derman, Banu Mansuroglu. Comparative evaluation of hesperetin loaded nanoparticles for anticancer activity against C6 glioma cancer cells. Artificial cells, nanomedicine, and biotechnology. 2019 Dec; 47(1):319-329. doi: 10.1080/21691401.2018.1556213. [PMID: 30688095]
  • Chunxia Guo, Hua Zhang, Xin Guan, Zhiqin Zhou. The Anti-Aging Potential of Neohesperidin and Its Synergistic Effects with Other Citrus Flavonoids in Extending Chronological Lifespan of Saccharomyces Cerevisiae BY4742. Molecules (Basel, Switzerland). 2019 Nov; 24(22):. doi: 10.3390/molecules24224093. [PMID: 31766122]
  • Tobie D Lee, Olivia W Lee, Kyle R Brimacombe, Lu Chen, Rajarshi Guha, Sabrina Lusvarghi, Bethilehem G Tebase, Carleen Klumpp-Thomas, Robert W Robey, Suresh V Ambudkar, Min Shen, Michael M Gottesman, Matthew D Hall. A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein. Molecular pharmacology. 2019 11; 96(5):629-640. doi: 10.1124/mol.119.115964. [PMID: 31515284]
  • Xin Chen, Xiao-Feng Li, Yu Chen, Sai Zhu, Hai-Di Li, Si-Yu Chen, Jia-Nan Wang, Xue-Yin Pan, Fang-Tian Bu, Cheng Huang, Jun Li. Hesperetin derivative attenuates CCl4-induced hepatic fibrosis and inflammation by Gli-1-dependent mechanisms. International immunopharmacology. 2019 Nov; 76(?):105838. doi: 10.1016/j.intimp.2019.105838. [PMID: 31473406]
  • Yuya Fujitaka, Hiroki Hamada, Daisuke Uesugi, Atsuhito Kuboki, Kei Shimoda, Takafumi Iwaki, Yuya Kiriake, Tomohiro Saikawa. Synthesis of Daidzein Glycosides, α-Tocopherol Glycosides, Hesperetin Glycosides by Bioconversion and Their Potential for Anti-Allergic Functional-Foods and Cosmetics. Molecules (Basel, Switzerland). 2019 Aug; 24(16):. doi: 10.3390/molecules24162975. [PMID: 31426346]
  • Atefeh Bahmanzadegan, Vahid Rowshan, Faraneh Zareiyan, Ahmad Hatami. Lagoecia cuminoides L., its antioxidant activity and polyphenolic constituents from Iran. Natural product research. 2019 Aug; 33(16):2376-2378. doi: 10.1080/14786419.2018.1440232. [PMID: 29513037]
  • Xinliang Chen, Wei Wei, Yazhen Li, Jingbo Huang, Xinxin Ci. Hesperetin relieves cisplatin-induced acute kidney injury by mitigating oxidative stress, inflammation and apoptosis. Chemico-biological interactions. 2019 Aug; 308(?):269-278. doi: 10.1016/j.cbi.2019.05.040. [PMID: 31153982]
  • Xi Huang, Jianjun Xu, Juan He, Shaoqi Shi, Hongbin Yan, Jian Wang, Ping Ren. Pharmacokinetic study of the prokinetic ABCs liquiritigenin, naringenin and hesperitin following the oral administration of Si-Ni-San decoction to functional dyspepsia patients. Xenobiotica; the fate of foreign compounds in biological systems. 2019 Jun; 49(6):708-717. doi: 10.1080/00498254.2018.1493756. [PMID: 30286676]
  • Tahir Muhammad, Muhammad Ikram, Rahat Ullah, Shafiq Ur Rehman, Myeong Ok Kim. Hesperetin, a Citrus Flavonoid, Attenuates LPS-Induced Neuroinflammation, Apoptosis and Memory Impairments by Modulating TLR4/NF-κB Signaling. Nutrients. 2019 Mar; 11(3):. doi: 10.3390/nu11030648. [PMID: 30884890]
  • Ya-Jing Chen, Li Kong, Zhuang-Zhuang Tang, Yu-Meng Zhang, Yue Liu, Tao-Yun Wang, Yao-Wu Liu. Hesperetin ameliorates diabetic nephropathy in rats by activating Nrf2/ARE/glyoxalase 1 pathway. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2019 Mar; 111(?):1166-1175. doi: 10.1016/j.biopha.2019.01.030. [PMID: 30841430]
  • Su-Fang Gu, Li-Ying Wang, Ying-Jie Tian, Zhu-Xian Zhou, Jian-Bin Tang, Xiang-Rui Liu, Hai-Ping Jiang, You-Qing Shen. Enhanced water solubility, antioxidant activity, and oral absorption of hesperetin by D-α-tocopheryl polyethylene glycol 1000 succinate and phosphatidylcholine. Journal of Zhejiang University. Science. B. 2019 Mar; 20(3):273-281. doi: 10.1631/jzus.b1800346. [PMID: 30829014]
  • Ling-Na Kong, Xiang Lin, Cheng Huang, Tao-Tao Ma, Xiao-Ming Meng, Chao-Jie Hu, Qian-Qian Wang, Yan-Hui Liu, Qing-Ping Shi, Jun Li. Hesperetin derivative-12 (HDND-12) regulates macrophage polarization by modulating JAK2/STAT3 signaling pathway. Chinese journal of natural medicines. 2019 Feb; 17(2):122-130. doi: 10.1016/s1875-5364(19)30014-7. [PMID: 30797418]
  • Noriko Sugasawa, Ayako Katagi, Hirotsugu Kurobe, Taisuke Nakayama, Chika Nishio, Hiroko Takumi, Fumiharu Higashiguchi, Ken-Ichi Aihara, Michio Shimabukuro, Masataka Sata, Tetsuya Kitagawa. Inhibition of Atherosclerotic Plaque Development by Oral Administration of α-Glucosyl Hesperidin and Water-Dispersible Hesperetin in Apolipoprotein E Knockout Mice. Journal of the American College of Nutrition. 2019 01; 38(1):15-22. doi: 10.1080/07315724.2018.1468831. [PMID: 30321103]
  • Dinesh Dhingra, Shikha Goswami, Nidhi Gahalain. Protective effect of hesperetin against haloperidol-induced orofacial dyskinesia and catalepsy in rats. Nutritional neuroscience. 2018 Nov; 21(9):667-675. doi: 10.1080/1028415x.2017.1338549. [PMID: 28641484]
  • Alireza Samie, Reza Sedaghat, Tourandokht Baluchnejadmojarad, Mehrdad Roghani. Hesperetin, a citrus flavonoid, attenuates testicular damage in diabetic rats via inhibition of oxidative stress, inflammation, and apoptosis. Life sciences. 2018 Oct; 210(?):132-139. doi: 10.1016/j.lfs.2018.08.074. [PMID: 30179627]
  • Rashin Khalaj, Akbar Hajizadeh Moghaddam, Mahboobeh Zare. Hesperetin and it nanocrystals ameliorate social behavior deficits and oxido-inflammatory stress in rat model of autism. International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience. 2018 Oct; 69(?):80-87. doi: 10.1016/j.ijdevneu.2018.06.009. [PMID: 29966739]
  • Yannan Li, Jing Ning, Yan Wang, Chao Wang, Chengpeng Sun, Xiaokui Huo, Zhenlong Yu, Lei Feng, Baojing Zhang, Xiangge Tian, Xiaochi Ma. Drug interaction study of flavonoids toward CYP3A4 and their quantitative structure activity relationship (QSAR) analysis for predicting potential effects. Toxicology letters. 2018 Sep; 294(?):27-36. doi: 10.1016/j.toxlet.2018.05.008. [PMID: 29753067]
  • Souad Lahcene, Faiza Taibi, Nadjet Mestar, Samira Ali Ahmed, Mahieddine Boumendjel, Saida Ouafi, Karim Houali. Insecticidal effects of the Olea europaea subsp. laperrinei extracts on the flour Pyralid Ephestia kuehniella. Cellular and molecular biology (Noisy-le-Grand, France). 2018 Aug; 64(11):6-12. doi: 10.14715/cmb/2018.64.11.2. [PMID: 30213282]
  • Fatin Rustu Polat, Ihsan Karaboga, Muhammed Semih Polat, Zeynep Erboga, Ahsen Yilmaz, Savas Güzel. Effect of hesperetin on inflammatory and oxidative status in trinitrobenzene sulfonic acid-induced experimental colitis model. Cellular and molecular biology (Noisy-le-Grand, France). 2018 Aug; 64(11):58-65. doi: 10.14715/cmb/2018.64.11.11. [PMID: 30213290]
  • Yosuke Nakazawa, Martin Pauze, Kazuya Fukuyama, Noriaki Nagai, Megumi Funakoshi-Tago, Takeshi Sugai, Hiroomi Tamura. Effect of hesperetin derivatives on the development of selenite‑induced cataracts in rats. Molecular medicine reports. 2018 Jul; 18(1):1043-1050. doi: 10.3892/mmr.2018.9045. [PMID: 29845214]
  • Evelien Van Rymenant, Bouke Salden, Stefan Voorspoels, Griet Jacobs, Bart Noten, Judit Pitart, Sam Possemiers, Guy Smagghe, Charlotte Grootaert, John Van Camp. A Critical Evaluation of In Vitro Hesperidin 2S Bioavailability in a Model Combining Luminal (Microbial) Digestion and Caco-2 Cell Absorption in Comparison to a Randomized Controlled Human Trial. Molecular nutrition & food research. 2018 04; 62(8):e1700881. doi: 10.1002/mnfr.201700881. [PMID: 29451355]
  • M R Loizzo, T Falco, M Bonesi, V Sicari, R Tundis, M Bruno. Ruta chalepensis L. (Rutaceae) leaf extract: chemical composition, antioxidant and hypoglicaemic activities. Natural product research. 2018 Mar; 32(5):521-528. doi: 10.1080/14786419.2017.1326491. [PMID: 28486828]
  • R Kong, N Wang, H Luo, J Lu. Hesperetin Mitigates Bile Duct Ligation-Induced Liver Fibrosis by Inhibiting Extracellular Matrix and Cell Apoptosis via the TGF-β1/Smad Pathway. Current molecular medicine. 2018; 18(1):15-24. doi: 10.2174/1566524018666180608084947. [PMID: 29879887]
  • Sukumar Babukumar, Veerasamy Vinothkumar, Periyannan Velu, Duraisamy Ramachandhiran, Madhavan Ramados Nirmal. Molecular effects of hesperetin, a citrus flavanone on7,12-dimethylbenz(a)anthracene induced buccal pouch squamous cell carcinoma in golden Syrian hamsters. Archives of physiology and biochemistry. 2017 Oct; 123(4):265-278. doi: 10.1080/13813455.2017.1317815. [PMID: 28457144]
  • Gema Pereira-Caro, Thelma Polyviou, Iziar A Ludwig, Ana-Maria Nastase, José Manuel Moreno-Rojas, Ada L Garcia, Dalia Malkova, Alan Crozier. Bioavailability of orange juice (poly)phenols: the impact of short-term cessation of training by male endurance athletes. The American journal of clinical nutrition. 2017 Sep; 106(3):791-800. doi: 10.3945/ajcn.116.149898. [PMID: 28747329]
  • Xuan Zeng, Weiwei Su, Yang Bai, Taobin Chen, Zenghao Yan, Jiawei Wang, Minmin Su, Yuying Zheng, Wei Peng, Hongliang Yao. Urinary metabolite profiling of flavonoids in Chinese volunteers after consumption of orange juice by UFLC-Q-TOF-MS/MS. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2017 Sep; 1061-1062(?):79-88. doi: 10.1016/j.jchromb.2017.07.015. [PMID: 28711784]
  • Rungnapa Boonpawa, Albertus Spenkelink, Ans Punt, Ivonne M C M Rietjens. Physiologically based kinetic modeling of hesperidin metabolism and its use to predict in vivo effective doses in humans. Molecular nutrition & food research. 2017 08; 61(8):. doi: 10.1002/mnfr.201600894. [PMID: 28218440]
  • Ruonan Chen, Lan Li, Chenlin Shen, Cheng Huang, Taotao Ma, Xiaoming Meng, Zhengyue Qian, Yangyang Li, Jun Li. Intestinal transport of HDND-7, a novel hesperetin derivative, in in vitro MDCK cell and in situ single-pass intestinal perfusion models. Xenobiotica; the fate of foreign compounds in biological systems. 2017 Aug; 47(8):719-730. doi: 10.1080/00498254.2016.1214987. [PMID: 27535101]
  • Francesco Pini, Alison K East, Corinne Appia-Ayme, Jakub Tomek, Ramakrishnan Karunakaran, Marcela Mendoza-Suárez, Anne Edwards, Jason J Terpolilli, Joshua Roworth, J Allan Downie, Philip S Poole. Bacterial Biosensors for in Vivo Spatiotemporal Mapping of Root Secretion. Plant physiology. 2017 Jul; 174(3):1289-1306. doi: 10.1104/pp.16.01302. [PMID: 28495892]
  • Kalist Shagirtha, Nazima Bashir, Selvaraj MiltonPrabu. Neuroprotective efficacy of hesperetin against cadmium induced oxidative stress in the brain of rats. Toxicology and industrial health. 2017 May; 33(5):454-468. doi: 10.1177/0748233716665301. [PMID: 27803291]
  • Mukesh Kumar, Vicky Dahiya, Eshvendar Reddy Kasala, Lakshmi Narendra Bodduluru, Mangala Lahkar. The renoprotective activity of hesperetin in cisplatin induced nephrotoxicity in rats: Molecular and biochemical evidence. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2017 May; 89(?):1207-1215. doi: 10.1016/j.biopha.2017.03.008. [PMID: 28320087]
  • Deting Xue, Erman Chen, Wei Zhang, Xiang Gao, Shengdong Wang, Qiang Zheng, Zhijun Pan, Hang Li, Ling Liu. The role of hesperetin on osteogenesis of human mesenchymal stem cells and its function in bone regeneration. Oncotarget. 2017 Mar; 8(13):21031-21043. doi: 10.18632/oncotarget.15473. [PMID: 28423500]
  • Chaoyun Li, Hermann Schluesener. Health-promoting effects of the citrus flavanone hesperidin. Critical reviews in food science and nutrition. 2017 Feb; 57(3):613-631. doi: 10.1080/10408398.2014.906382. [PMID: 25675136]
  • Paula Dos Passos Menezes, Luiza Abrahão Frank, Bruno Dos Santos Lima, Yasmim Maria Barbosa Gomes de Carvalho, Mairim Russo Serafini, Lucindo José Quintans-Júnior, Adriana Raffin Pohlmann, Sílvia Stanisçuaski Guterres, Adriano Antunes de Souza Araújo. Hesperetin-loaded lipid-core nanocapsules in polyamide: a new textile formulation for topical drug delivery. International journal of nanomedicine. 2017; 12(?):2069-2079. doi: 10.2147/ijn.s124564. [PMID: 28352176]
  • Xueting Bai, Peixuan Yang, Qiaoling Zhou, Bozhi Cai, Manon Buist-Homan, He Cheng, Jiyang Jiang, Daifei Shen, Lijun Li, Xiajiong Luo, Klaas Nico Faber, Han Moshage, Ganggang Shi. The protective effect of the natural compound hesperetin against fulminant hepatitis in vivo and in vitro. British journal of pharmacology. 2017 01; 174(1):41-56. doi: 10.1111/bph.13645. [PMID: 27714757]
  • Chenlin Shen, Zhengyue Qian, Ruonan Chen, Xiaoming Meng, Tingting Hu, Zhaolin Chen, Yangyang Li, Cheng Huang, Chaojie Hu, Jun Li. Single Dose Oral and Intravenous Pharmacokinetics and Tissue Distribution of a Novel Hesperetin Derivative MTBH in Rats. European journal of drug metabolism and pharmacokinetics. 2016 Dec; 41(6):675-688. doi: 10.1007/s13318-015-0293-2. [PMID: 26254910]
  • Huan Wang, Hong-Fei Wang, Hao Zhang, Chen Wang, Yu-Fang Chen, Rong Ma, Ji-Zhou Xiang, Xin-Ling Du, Qiang Tang. Inhibitory effects of hesperetin on Nav1.5 channels stably expressed in HEK 293 cells and on the voltage-gated cardiac sodium current in human atrial myocytes. Acta pharmacologica Sinica. 2016 Dec; 37(12):1563-1573. doi: 10.1038/aps.2016.97. [PMID: 27694909]
  • Julian K Aschoff, Ken M Riedl, Jessica L Cooperstone, Josef Högel, Anja Bosy-Westphal, Steven J Schwartz, Reinhold Carle, Ralf M Schweiggert. Urinary excretion of Citrus flavanones and their major catabolites after consumption of fresh oranges and pasteurized orange juice: A randomized cross-over study. Molecular nutrition & food research. 2016 12; 60(12):2602-2610. doi: 10.1002/mnfr.201600315. [PMID: 27488098]
  • Marko Miler, Jasmina Živanović, Vladimir Ajdžanović, Zorana Oreščanin-Dušić, Dragan Milenković, Aleksandra Konić-Ristić, Duško Blagojević, Verica Milošević, Branka Šošić-Jurjević. Citrus flavanones naringenin and hesperetin improve antioxidant status and membrane lipid compositions in the liver of old-aged Wistar rats. Experimental gerontology. 2016 11; 84(?):49-60. doi: 10.1016/j.exger.2016.08.014. [PMID: 27587005]
  • Tomonori Asai, Tetsuya Matsukawa, Atsushi Ishihara, Shin'ichiro Kajiyama. Isolation and characterization of wound-induced compounds from the leaves of Citrus hassaku. Journal of bioscience and bioengineering. 2016 Aug; 122(2):208-12. doi: 10.1016/j.jbiosc.2016.01.006. [PMID: 26852089]
  • Mingzhan Xue, Martin O Weickert, Sheharyar Qureshi, Ngianga-Bakwin Kandala, Attia Anwar, Molly Waldron, Alaa Shafie, David Messenger, Mark Fowler, Gail Jenkins, Naila Rabbani, Paul J Thornalley. Improved Glycemic Control and Vascular Function in Overweight and Obese Subjects by Glyoxalase 1 Inducer Formulation. Diabetes. 2016 08; 65(8):2282-94. doi: 10.2337/db16-0153. [PMID: 27207552]
  • Nora A Bawazeer, Hani Choudhry, Mazin A Zamzami, Wesam H Abdulaal, Bruce Middleton, Said S Moselhy. Role of hesperetin in LDL-receptor expression in hepatoma HepG2 cells. BMC complementary and alternative medicine. 2016 Jun; 16(?):182. doi: 10.1186/s12906-016-1165-2. [PMID: 27349523]
  • Se-Yong Kim, Eun-Ju Yang, Youn Kyoung Son, Joo-Hong Yeo, Kyung-Sik Song. Enhanced anti-oxidative effect of fermented Korean mistletoe is originated from an increase in the contents of caffeic acid and lyoniresinol. Food & function. 2016 May; 7(5):2270-7. doi: 10.1039/c6fo00138f. [PMID: 27072079]