5,6-Dihydrothymine (BioDeep_00000001332)
Secondary id: BioDeep_00000228910, BioDeep_00000405196
human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite Volatile Flavor Compounds
代谢物信息卡片
化学式: C5H8N2O2 (128.0585748)
中文名称: 二氢朐腺嘧啶, 5,6-二氢胸腺嘧啶, 二氢胸腺嘧啶
谱图信息:
最多检出来源 Homo sapiens(blood) 0.2%
Last reviewed on 2024-09-13.
Cite this Page
5,6-Dihydrothymine. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/5,6-dihydrothymine (retrieved
2024-11-22) (BioDeep RN: BioDeep_00000001332). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: CC1CN=C(O)NC1=O
InChI: InChI=1S/C5H8N2O2/c1-3-2-6-5(9)7-4(3)8/h3H,2H2,1H3,(H2,6,7,8,9)
描述信息
Dihydrothymine (CAS: 696-04-8) is an intermediate breakdown product of thymine. Dihydropyrimidine dehydrogenase catalyzes the reduction of thymine into 5,6-dihydrothymine; then dihydropyrimidinase hydrolyzes 5,6-dihydrothymine into N-carbamyl-beta-alanine. Finally, beta-ureidopropionase catalyzes the conversion of N-carbamyl-beta-alanine into beta-alanine. When present at abnormally high levels, dihydrothymine can be toxic, although the mechanism of toxicity is not clear. In particular, patients with dihydropyrimidinase deficiency exhibit highly increased concentrations of 5,6-dihydrouracil and 5,6-dihydrothymine; and moderately increased concentrations of uracil and thymine can be detected in urine. Dihydropyrimidinase deficiency is a disorder that can cause neurological and gastrointestinal problems in some affected individuals. The most common neurological abnormalities that occur are intellectual disability, seizures, weak muscle tone (hypotonia), abnormally small head size (microcephaly), and autistic behaviours that affect communication and social interaction. Gastrointestinal problems that occur in dihydropyrimidinase deficiency include the backflow of acidic stomach contents into the esophagus (gastroesophageal reflux) and recurrent episodes of vomiting.
COVID info from COVID-19 Disease Map
Corona-virus
Coronavirus
SARS-CoV-2
COVID-19
SARS-CoV
COVID19
SARS2
SARS
5,6-Dihydro-5-methyluracil (Dihydrothymine), an intermediate breakdown product of thymine, comes from animal or plants. 5,6-Dihydro-5-methyluracil (Dihydrothymine) can be toxic when present at abnormally high levels[1].
同义名列表
12 个代谢物同义名
Dihydro-5-methyl-2,4(1H,3H)-pyrimidinedione; 5-Methyldihydropyrimidine-2,4(1H,3H)-dione; (5S)-5-Methyl-1,3-diazinane-2,4-dione; Hydrouracil (Dihydrothymine); 5,6-Dihydro-5-methyluracil; (-)-(S)-5,6-Dihydrothymine; 5-Methyl-5,6-dihydrouracil; Dihydrothymine, (5S)-; 5,6-Dihydrothymine; Dihydrothymine; 5,6-Dihydrothymine; Dihydrothymine
数据库引用编号
18 个数据库交叉引用编号
- ChEBI: CHEBI:27468
- KEGG: C00906
- PubChem: 676414
- PubChem: 93556
- HMDB: HMDB0000079
- Metlin: METLIN291
- Wikipedia: Dihydrothymine
- MetaCyc: DIHYDRO-THYMINE
- foodb: FDB021892
- chemspider: 589127
- CAS: 696-04-8
- PMhub: MS000000344
- PubChem: 4161
- 3DMET: B04750
- NIKKAJI: J79.791J
- RefMet: Dihydrothymine
- medchemexpress: HY-N6787
- KNApSAcK: 27468
分类词条
相关代谢途径
BioCyc(0)
PlantCyc(0)
代谢反应
101 个相关的代谢反应过程信息。
Reactome(61)
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Nucleotide metabolism:
H2O + XTP ⟶ PPi + XMP
- Nucleobase catabolism:
H2O + XTP ⟶ PPi + XMP
- Pyrimidine catabolism:
Dihydrothymine + H2O ⟶ UIBA
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide catabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Pyrimidine catabolism:
H2O + Hydrouracil ⟶ H+ + UPROP
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide catabolism:
H+ + TPNH + Ura ⟶ Hydrouracil + TPN
- Pyrimidine catabolism:
H+ + TPNH + Ura ⟶ Hydrouracil + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide catabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Pyrimidine catabolism:
H+ + TPNH + Ura ⟶ Hydrouracil + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide catabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Pyrimidine catabolism:
H+ + TPNH + Ura ⟶ Hydrouracil + TPN
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Nucleotide metabolism:
ATP + Thy-dRib ⟶ ADP + TMP
- Nucleotide catabolism:
H+ + TPNH + Ura ⟶ Hydrouracil + TPN
- Pyrimidine catabolism:
H+ + TPNH + Ura ⟶ Hydrouracil + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide catabolism:
H+ + TPNH + Ura ⟶ Hydrouracil + TPN
- Pyrimidine catabolism:
H+ + TPNH + Ura ⟶ Hydrouracil + TPN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide catabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Pyrimidine catabolism:
H+ + TPNH + Ura ⟶ Hydrouracil + TPN
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide catabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Pyrimidine catabolism:
H+ + TPNH + Ura ⟶ Hydrouracil + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide catabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Pyrimidine catabolism:
H+ + TPNH + Ura ⟶ Hydrouracil + TPN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Nucleotide metabolism:
H2O + XTP ⟶ PPi + XMP
- Nucleobase catabolism:
H2O + XTP ⟶ PPi + XMP
- Pyrimidine catabolism:
Dihydrothymine + H2O ⟶ UIBA
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide catabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Pyrimidine catabolism:
H+ + TPNH + Ura ⟶ Hydrouracil + TPN
- Pyrimidine catabolism:
Dihydrothymine + H2O ⟶ UIBA
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide catabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Pyrimidine catabolism:
H+ + TPNH + Ura ⟶ Hydrouracil + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Nucleotide metabolism:
H2O + XTP ⟶ PPi + XMP
- Nucleobase catabolism:
H2O + XTP ⟶ PPi + XMP
- Pyrimidine catabolism:
Dihydrothymine + H2O ⟶ UIBA
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Nucleotide metabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Nucleotide catabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Pyrimidine catabolism:
H2O + Hydrouracil ⟶ H+ + UPROP
BioCyc(12)
- thymine degradation:
5,6-dihydrothymine + H2O ⟶ 3-(carbamoylamino)-2-methylpropanoate + H+
- thymine degradation:
3-(carbamoylamino)-2-methylpropanoate + H+ + H2O ⟶ (R)-3-amino-2-methylpropanoate + CO2 + ammonium
- thymine degradation:
(R)-3-ureido-isobutanoate + H+ + H2O ⟶ (R)-3-amino-2-methylpropanoate + CO2 + ammonium
- thymine degradation:
3-(carbamoylamino)-2-methylpropanoate + H+ + H2O ⟶ (R)-3-amino-2-methylpropanoate + CO2 + ammonium
- thymine degradation:
5,6-dihydrothymine + NADP+ ⟶ H+ + NADPH + thymine
- thymine degradation:
5,6-dihydrothymine + NADP+ ⟶ H+ + NADPH + thymine
- thymine degradation:
3-ureido-isobutyrate + H2O + H+ ⟶ (R)-3-amino-2-methylpropanoate + CO2 + ammonia
- thymine degradation:
5,6-dihydrothymine + NADP+ ⟶ H+ + NADPH + thymine
- thymine degradation:
5,6-dihydrothymine + NADP+ ⟶ H+ + NADPH + thymine
- thymine degradation:
5,6-dihydrothymine + NADP+ ⟶ H+ + NADPH + thymine
- thymine degradation:
5,6-dihydrothymine + NADP+ ⟶ H+ + NADPH + thymine
- thymine degradation:
5,6-dihydrothymine + NADP+ ⟶ H+ + NADPH + thymine
Plant Reactome(0)
INOH(3)
- Pyrimidine Nucleotides and Nucleosides metabolism ( Pyrimidine Nucleotides and Nucleosides metabolism ):
Deoxy-cytidine + H2O ⟶ Deoxy-uridine + NH3
- 5,6-Dihydro-thymine + H2O = 3-Ureido-2-methyl-propanoic acid ( Pyrimidine Nucleotides and Nucleosides metabolism ):
3-Ureido-2-methyl-propanoic acid ⟶ 5,6-Dihydro-thymine + H2O
- NADP+ + 5,6-Dihydro-thymine = NADPH + Thymine ( Pyrimidine Nucleotides and Nucleosides metabolism ):
5,6-Dihydro-thymine + NADP+ ⟶ NADPH + Thymine
PlantCyc(5)
- thymine degradation:
5,6-dihydrothymine + H2O ⟶ 3-(carbamoylamino)-2-methylpropanoate + H+
- thymine degradation:
5,6-dihydrothymine + NADP+ ⟶ H+ + NADPH + thymine
- thymine degradation:
5,6-dihydrothymine + H2O ⟶ 3-(carbamoylamino)-2-methylpropanoate + H+
- thymine degradation:
3-(carbamoylamino)-2-methylpropanoate + H+ + H2O ⟶ (R)-3-amino-2-methylpropanoate + CO2 + ammonium
- thymine degradation:
5,6-dihydrothymine + NADP+ ⟶ H+ + NADPH + thymine
COVID-19 Disease Map(1)
- @COVID-19 Disease
Map["name"]:
2-Methyl-3-acetoacetyl-CoA + Coenzyme A ⟶ Acetyl-CoA + Propanoyl-CoA
PathBank(18)
- Pyrimidine Metabolism:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- beta-Ureidopropionase Deficiency:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- UMP Synthase Deficiency (Orotic Aciduria):
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- Dihydropyrimidinase Deficiency:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- MNGIE (Mitochondrial Neurogastrointestinal Encephalopathy):
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- Pyrimidine Metabolism:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- beta-Ureidopropionase Deficiency:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- Dihydropyrimidinase Deficiency:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- UMP Synthase Deficiency (Orotic Aciduria):
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- MNGIE (Mitochondrial Neurogastrointestinal Encephalopathy):
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- Pyrimidine Metabolism:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- Pyrimidine Metabolism:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- Pyrimidine Metabolism:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- Pyrimidine Metabolism:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- beta-Ureidopropionase Deficiency:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- Dihydropyrimidinase Deficiency:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- UMP Synthase Deficiency (Orotic Aciduria):
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- MNGIE (Mitochondrial Neurogastrointestinal Encephalopathy):
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
PharmGKB(0)
4 个相关的物种来源信息
- 6669 - Daphnia pulex: 10.1038/SREP25125
- 3039 - Euglena gracilis: 10.3389/FBIOE.2021.662655
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S11306-016-1051-4
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Ayshamgul Hasim, Hong Ma, Batur Mamtimin, Abulizi Abudula, Madiniyet Niyaz, Li-Wei Zhang, Juret Anwer, Ilyar Sheyhidin. Revealing the metabonomic variation of EC using ¹H-NMR spectroscopy and its association with the clinicopathological characteristics.
Molecular biology reports.
2012 Sep; 39(9):8955-64. doi:
10.1007/s11033-012-1764-z
. [PMID: 22736106] - Maurice C van Staveren, Barbara Theeuwes-Oonk, Henk Jan Guchelaar, André B P van Kuilenburg, Jan Gerard Maring. Pharmacokinetics of orally administered uracil in healthy volunteers and in DPD-deficient patients, a possible tool for screening of DPD deficiency.
Cancer chemotherapy and pharmacology.
2011 Dec; 68(6):1611-7. doi:
10.1007/s00280-011-1661-5
. [PMID: 21590448] - Le-Le Hu, Chen Chen, Tao Huang, Yu-Dong Cai, Kuo-Chen Chou. Predicting biological functions of compounds based on chemical-chemical interactions.
PloS one.
2011; 6(12):e29491. doi:
10.1371/journal.pone.0029491
. [PMID: 22220213] - André B P van Kuilenburg, Doreen Dobritzsch, Judith Meijer, Rutger Meinsma, Jean-François Benoist, Birgit Assmann, Susanne Schubert, Georg F Hoffmann, Marinus Duran, Maaike C de Vries, Gerd Kurlemann, François J M Eyskens, Lawrence Greed, Jörn Oliver Sass, K Otfried Schwab, Adrian C Sewell, John Walter, Andreas Hahn, Lida Zoetekouw, Antonia Ribes, Suzanne Lind, Raoul C M Hennekam. Dihydropyrimidinase deficiency: Phenotype, genotype and structural consequences in 17 patients.
Biochimica et biophysica acta.
2010 Jul; 1802(7-8):639-48. doi:
10.1016/j.bbadis.2010.03.013
. [PMID: 20362666] - Rita Zrenner, Heike Riegler, Cathleen R Marquard, Peter R Lange, Claudia Geserick, Caren E Bartosz, Celine T Chen, Robert D Slocum. A functional analysis of the pyrimidine catabolic pathway in Arabidopsis.
The New phytologist.
2009; 183(1):117-132. doi:
10.1111/j.1469-8137.2009.02843.x
. [PMID: 19413687] - André B P van Kuilenburg, Judith Meijer, Doreen Dobritzsch, Rutger Meinsma, Marinus Duran, Bernhard Lohkamp, Lida Zoetekouw, Nico G G M Abeling, Herman L G van Tinteren, Annet M Bosch. Clinical, biochemical and genetic findings in two siblings with a dihydropyrimidinase deficiency.
Molecular genetics and metabolism.
2007 Jun; 91(2):157-64. doi:
10.1016/j.ymgme.2007.02.008
. [PMID: 17383919] - Tomiko Kuhara, Chie Ohdoi, Morimasa Ohse, André B P van Kuilenburg, Albert H van Gennip, Satoshi Sumi, Tetsuya Ito, Yoshiro Wada, Isamu Matsumoto. Rapid gas chromatographic-mass spectrometric diagnosis of dihydropyrimidine dehydrogenase deficiency and dihydropyrimidinase deficiency.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2003 Jul; 792(1):107-15. doi:
10.1016/s1570-0232(03)00044-8
. [PMID: 12829003] - Ute Hofmann, Matthias Schwab, Sonja Seefried, Claudia Marx, Ulrich M Zanger, Michel Eichelbaum, Thomas E Mürdter. Sensitive method for the quantification of urinary pyrimidine metabolites in healthy adults by gas chromatography-tandem mass spectrometry.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2003 Jul; 791(1-2):371-80. doi:
10.1016/s1570-0232(03)00251-4
. [PMID: 12798197] - Morimasa Ohse, Masafumi Matsuo, Akihito Ishida, Tomiko Kuhara. Screening and diagnosis of beta-ureidopropionase deficiency by gas chromatographic/mass spectrometric analysis of urine.
Journal of mass spectrometry : JMS.
2002 Sep; 37(9):954-62. doi:
10.1002/jms.354
. [PMID: 12271438] - Teruko Honda, Hiroyuki Inagawa, Masakazu Fukushima, Akira Moriyama, Gen-Ichiro Soma. Development and characterization of a monoclonal antibody with cross-reactivity towards uracil and thymine, and its potential use in screening patients treated with 5-fluorouracil for possible risks.
Clinica chimica acta; international journal of clinical chemistry.
2002 Aug; 322(1-2):59-66. doi:
10.1016/s0009-8981(02)00132-8
. [PMID: 12104082] - T Kuhara, C Ohdoi, M Ohse. Simple gas chromatographic-mass spectrometric procedure for diagnosing pyrimidine degradation defects for prevention of severe anticancer side effects.
Journal of chromatography. B, Biomedical sciences and applications.
2001 Jul; 758(1):61-74. doi:
10.1016/s0378-4347(01)00143-8
. [PMID: 11482736] - A H Van Gennip, R A De Abreu, P Vreken, A B Van Kuilenburg. Clinical and biochemical aspects of dihydropyrimidinase deficiency.
Advances in experimental medicine and biology.
1998; 431(?):125-8. doi:
10.1007/978-1-4615-5381-6_24
. [PMID: 9598044] - S Ohba, K Kidouchi, S Sumi, M Imaeda, N Takeda, H Yoshizumi, A Tatematsu, K Kodama, K Yamanaka, M Kobayashi. Dihydropyrimidinuria: the first case in Japan.
Advances in experimental medicine and biology.
1994; 370(?):383-6. doi:
10.1007/978-1-4615-2584-4_83
. [PMID: 7660934] - A H van Gennip, S Busch, E G Scholten, L E Stroomer, N G Abeling. Simple method for the quantitative analysis of dihydropyrimidines and N-carbamyl-beta-amino acids in urine.
Advances in experimental medicine and biology.
1991; 309B(?):15-9. doi:
10.1007/978-1-4615-7703-4_4
. [PMID: 1781359] - R W Pero, D Johnson, A Olsson. Catabolism of exogenously supplied thymidine to thymine and dihydrothymine by platelets in human peripheral blood.
Cancer research.
1984 Nov; 44(11):4955-61. doi:
. [PMID: 6488159]