Oxidized glutathione (BioDeep_00000002830)
Secondary id: BioDeep_00000400236, BioDeep_00000400408, BioDeep_00000409364, BioDeep_00001867946
natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite Toxin BioNovoGene_Lab2019 Volatile Flavor Compounds
代谢物信息卡片
化学式: C20H32N6O12S2 (612.1519552)
中文名称: L-谷胱甘肽(氧化型), L-谷胱甘肽 (氧化型), 谷胱甘肽(氧化型), 氧化谷胱甘肽
谱图信息:
最多检出来源 Homo sapiens(blood) 0.08%
分子结构信息
SMILES: C(CC(=O)NC(CSSCC(C(=O)NCC(=O)O)NC(=O)CCC(C(=O)O)N)C(=O)NCC(=O)O)C(C(=O)O)N
InChI: InChI=1S/C20H32N6O12S2/c21-9(19(35)36)1-3-13(27)25-11(17(33)23-5-15(29)30)7-39-40-8-12(18(34)24-6-16(31)32)26-14(28)4-2-10(22)20(37)38/h9-12H,1-8,21-22H2,(H,23,33)(H,24,34)(H,25,27)(H,26,28)(H,29,30)(H,31,32)(H,35,36)(H,37,38)
描述信息
Oxidized glutathione, also known as glutathione disulfide or GSSG, belongs to the class of organic compounds known as peptides. Peptides are compounds containing an amide derived from two or more amino carboxylic acid molecules (the same or different) by the formation of a covalent bond from the carbonyl carbon of one to the nitrogen atom of another. In humans, oxidized glutathione is involved in the metabolic disorder called leukotriene C4 synthesis deficiency pathway. Outside of the human body, oxidized glutathione has been detected, but not quantified in several different foods, such as leeks, star anises, mamey sapotes, climbing beans, and common persimmons. Oxidized glutathione is a glutathione dimer formed by a disulfide bond between the cysteine sulfhydryl side chains during the course of being oxidized. Glutathione participates in leukotriene synthesis and is a cofactor for the enzyme glutathione peroxidase. It is also important as a hydrophilic molecule that is added to lipophilic toxins and waste in the liver during biotransformation before they can become part of the bile. Glutathione is also needed for the detoxification of methylglyoxal, a toxin produced as a by-product of metabolism. This detoxification reaction is carried out by the glyoxalase system. Glyoxalase I (EC 4.4.1.5) catalyzes the conversion of methylglyoxal and reduced glutathione into S-D-lactoyl-glutathione. Glyoxalase II (EC 3.1.2.6) catalyzes the hydrolysis of S-D-lactoyl-glutathione into glutathione and D-lactate.
Glutathione disulfide (GSSG) - oxidized glutathione - is a disulfide derived from two glutathione molecules. In living cells, glutathione disulfide is reduced into two molecules of glutathione with reducing equivalents from the coenzyme NADPH. This reaction is catalyzed by the enzyme glutathione reductase. [Wikipedia]. Glutathione disulfide is found in many foods, some of which are jute, millet, malabar plum, and acorn.
[Spectral] Glutathione disulfide (exact mass = 612.15196) and 3,4-Dihydroxy-L-phenylalanine (exact mass = 197.06881) and AMP (exact mass = 347.06308) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions.
[Spectral] Glutathione disulfide (exact mass = 612.15196) and AMP (exact mass = 347.06308) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions.
Acquisition and generation of the data is financially supported in part by CREST/JST.
KEIO_ID G008; [MS2] KO008986
C26170 - Protective Agent
KEIO_ID G008
Glutathione oxidized (L-Glutathione oxidized) is produced by the oxidation of glutathione. Detoxification of reactive oxygen species is accompanied by production of glutathione oxidized. Glutathione oxidized can be used for the research of sickle cells and erythrocytes[1][2].
Glutathione oxidized (GSSG) is produced by the oxidation of glutathione. Detoxification of reactive oxygen species is accompanied by production of glutathione oxidized. Glutathione oxidized can be used for the research of sickle cells and erythrocytes[1].
同义名列表
26 个代谢物同义名
(2S)-2-amino-4-{[(1R)-2-{[(2R)-2-[(4S)-4-amino-4-carboxybutanamido]-2-[(carboxymethyl)carbamoyl]ethyl]disulfanyl}-1-[(carboxymethyl)carbamoyl]ethyl]carbamoyl}butanoic acid; L-Glutathione Oxidized Hexhydrate; OXIDIZED glutathione disulphide; OXIDIZED glutathione disulfide; Glutathione disulfide, ion(1-); L-Glutathione (oxidized form); Glutathione (oxidized form); L-Glutathione oxidized;GSSG; Glutathione-S-S-glutathione; Disulfide, glutathione; Glutathione disulphide; Oxidized L-glutathione; Glutathione, oxidized; Glutathione disulfide; Oxidized glutathione; Oxidised glutathione; Selenoglutathione; L(-)-Glutathione; Glutathione-SSG; Oxiglutatione; Glutathione; GSSG; Oxidized glutathione; L-Glutathione oxidized; Glutathione oxidized; Glutathione disulfide
数据库引用编号
52 个数据库交叉引用编号
- ChEBI: CHEBI:167606
- ChEBI: CHEBI:17858
- KEGG: C00127
- KEGGdrug: D00031
- PubChem: 65359
- PubChem: 3427
- PubChem: 975
- HMDB: HMDB0003337
- Metlin: METLIN45
- DrugBank: DB03310
- ChEMBL: CHEMBL1372
- Wikipedia: Glutathione disulfide
- MeSH: Glutathione Disulfide
- MetaCyc: OXIDIZED-GLUTATHIONE
- foodb: FDB023147
- chemspider: 58835
- CAS: 27025-41-8
- CAS: 121-24-4
- MoNA: PR100557
- MoNA: KO002930
- MoNA: KNA00184
- MoNA: KO008988
- MoNA: PR100134
- MoNA: KO002931
- MoNA: PS023505
- MoNA: PS023503
- MoNA: KO008987
- MoNA: KO002933
- MoNA: KNA00584
- MoNA: PS023510
- MoNA: PS023502
- MoNA: KNA00585
- MoNA: PS023501
- MoNA: PR100135
- MoNA: KNA00182
- MoNA: PS023508
- MoNA: PS023507
- MoNA: PS023512
- MoNA: KNA00181
- MoNA: KO002929
- MoNA: PS023509
- MoNA: KNA00587
- MoNA: KO008986
- MoNA: KO002932
- PMhub: MS000006322
- PDB-CCD: GDS
- 3DMET: B01166
- NIKKAJI: J415.688I
- RefMet: Oxidized glutathione
- medchemexpress: HY-D0844
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-971
- KNApSAcK: 167606
分类词条
相关代谢途径
Reactome(0)
PlantCyc(0)
代谢反应
534 个相关的代谢反应过程信息。
Reactome(52)
- Synthesis of 12-eicosatetraenoic acid derivatives:
12R-HpETE + GSH ⟶ 12R-HETE + GSSG + H2O
- Synthesis of 12-eicosatetraenoic acid derivatives:
12R-HpETE + GSH ⟶ 12R-HETE + GSSG + H2O
- Synthesis of 12-eicosatetraenoic acid derivatives:
12R-HpETE + GSH ⟶ 12R-HETE + GSSG + H2O
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Arachidonic acid metabolism:
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Synthesis of 12-eicosatetraenoic acid derivatives:
12R-HpETE + GSH ⟶ 12R-HETE + GSSG + H2O
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Vitamin C (ascorbate) metabolism:
CYB5A:heme + SHAS ⟶ CYB5A:ferriheme + VitC
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Nucleotide metabolism:
H2O + XTP ⟶ PPi + XMP
- Interconversion of nucleotide di- and triphosphates:
AMP + ATP ⟶ ADP
- Gene expression (Transcription):
ATP + pol II transcription complex containing 3 Nucleotide long transcript ⟶ AMP + PPi + pol II transcription complex containing 3 Nucleotide long transcript
- RNA Polymerase II Transcription:
ATP + pol II transcription complex containing 3 Nucleotide long transcript ⟶ AMP + PPi + pol II transcription complex containing 3 Nucleotide long transcript
- Generic Transcription Pathway:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Transcriptional Regulation by TP53:
GSSG + H+ + TPNH ⟶ GSH + TPN
- TP53 Regulates Metabolic Genes:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Cellular responses to external stimuli:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Cellular responses to stress:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Detoxification of Reactive Oxygen Species:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Cellular responses to external stimuli:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Cellular responses to stress:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Detoxification of Reactive Oxygen Species:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Nucleotide metabolism:
H2O + XTP ⟶ PPi + XMP
- Interconversion of nucleotide di- and triphosphates:
AMP + ATP ⟶ ADP
- Gene expression (Transcription):
ATP + pol II transcription complex containing 3 Nucleotide long transcript ⟶ AMP + PPi + pol II transcription complex containing 3 Nucleotide long transcript
- RNA Polymerase II Transcription:
ATP + pol II transcription complex containing 3 Nucleotide long transcript ⟶ AMP + PPi + pol II transcription complex containing 3 Nucleotide long transcript
- Generic Transcription Pathway:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Transcriptional Regulation by TP53:
GSSG + H+ + TPNH ⟶ GSH + TPN
- TP53 Regulates Metabolic Genes:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Synthesis of 15-eicosatetraenoic acid derivatives:
15S-HpETE + GSH ⟶ 15S-HETE + GSSG + H2O
- Synthesis of 15-eicosatetraenoic acid derivatives:
15S-HpETE + GSH ⟶ 15S-HETE + GSSG + H2O
- Synthesis of 15-eicosatetraenoic acid derivatives:
15S-HpETE + GSH ⟶ 15S-HETE + GSSG + H2O
- Sulfide oxidation to sulfate:
GSH + H+ + S2O3(2-) ⟶ GSSG + H2S + sulfite
- Cellular responses to external stimuli:
HSP90:ATP:PTGES3:FKBP52:SHR:SH ⟶ ADP + H0ZSE5 + H0ZZA2 + HSP90-beta dimer + Pi + SHR:SH
- Cellular responses to stress:
HSP90:ATP:PTGES3:FKBP52:SHR:SH ⟶ ADP + H0ZSE5 + H0ZZA2 + HSP90-beta dimer + Pi + SHR:SH
- Detoxification of Reactive Oxygen Species:
GSH + H2O2 ⟶ GSSG + H2O
- Gene expression (Transcription):
p-AMPK heterotrimer:AMP ⟶ SESN1,2,3:p-AMPK heterotrimer:AMP
- RNA Polymerase II Transcription:
p-AMPK heterotrimer:AMP ⟶ SESN1,2,3:p-AMPK heterotrimer:AMP
- Generic Transcription Pathway:
p-AMPK heterotrimer:AMP ⟶ SESN1,2,3:p-AMPK heterotrimer:AMP
- Transcriptional Regulation by TP53:
p-AMPK heterotrimer:AMP ⟶ SESN1,2,3:p-AMPK heterotrimer:AMP
- TP53 Regulates Metabolic Genes:
p-AMPK heterotrimer:AMP ⟶ SESN1,2,3:p-AMPK heterotrimer:AMP
- Nucleotide metabolism:
H2O + XTP ⟶ PPi + XMP
- Interconversion of nucleotide di- and triphosphates:
AMP + ATP ⟶ ADP
- Nucleobase catabolism:
H2O + XTP ⟶ PPi + XMP
- Purine catabolism:
H2O + XTP ⟶ PPi + XMP
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Methylation:
H2O + SAH ⟶ Ade-Rib + HCYS
BioCyc(3)
- ascorbate biosynthesis:
L-gulonate ⟶ H2O + L-gulono-1,4-lactone
- glutathione redox reactions I:
NADP+ + glutathione ⟶ H+ + NADPH + glutathione disulfide
- glutathione redox reactions I:
NADP+ + glutathione ⟶ H+ + NADPH + glutathione disulfide
WikiPathways(3)
- Cadmium and glutathione:
MDHA ⟶ AsA
- One-carbon metabolism and related pathways:
5-oxoproline ⟶ Glutamate
- Ferroptosis:
GSH ⟶ GSSG
Plant Reactome(475)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Glutathione redox reactions I:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
9-mercaptodethiobiotin ⟶ Btn
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Glutathione redox reactions I:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Glutathione redox reactions I:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Glutathione redox reactions I:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
INOH(1)
- Glutamic acid and Glutamine metabolism ( Glutamic acid and Glutamine metabolism ):
ATP + L-Glutamine + tRNA(Gln) ⟶ AMP + L-Glutaminyl-tRNA(Gln) + Pyrophosphate
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
1 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Lara Vogelsang, Jürgen Eirich, Iris Finkemeier, Karl-Josef Dietz. Specificity and dynamics of H2O2 detoxification by the cytosolic redox regulatory network as revealed by in vitro reconstitution.
Redox biology.
2024 Jun; 72(?):103141. doi:
10.1016/j.redox.2024.103141
. [PMID: 38599017] - Wenwen Li, Yu Wang, Yun Zhang, Yuwen Fan, Jinsong Liu, Ke Zhu, Shu Jiang, Jinao Duan. Lizhong decoction ameliorates ulcerative colitis by inhibiting ferroptosis of enterocytes via the Nrf2/SLC7A11/GPX4 pathway.
Journal of ethnopharmacology.
2024 May; 326(?):117966. doi:
10.1016/j.jep.2024.117966
. [PMID: 38401661] - Tianqi Wang, Xiaoju Li, Honglei Liu, Huaiwei Liu, Yongzhen Xia, Luying Xun. Microorganisms uptake zero-valent sulfur via membrane lipid dissolution of octasulfur and intracellular solubilization as persulfide.
The Science of the total environment.
2024 Apr; 922(?):170504. doi:
10.1016/j.scitotenv.2024.170504
. [PMID: 38307292] - Gang He, Yiyuan Zhang, Yanjiao Feng, Tangcong Chen, Mei Liu, Yue Zeng, Xiaojing Yin, Shaokui Qu, Lifen Huang, Youqiang Ke, Li Liang, Jun Yan, Wei Liu. SBFI26 induces triple-negative breast cancer cells ferroptosis via lipid peroxidation.
Journal of cellular and molecular medicine.
2024 Apr; 28(7):e18212. doi:
10.1111/jcmm.18212
. [PMID: 38516826] - Angela Mungala Lengo, Ibrahim Mohamed, Jean-Claude Lavoie. Glutathione Supplementation Prevents Neonatal Parenteral Nutrition-Induced Short- and Long-Term Epigenetic and Transcriptional Disruptions of Hepatic H2O2 Metabolism in Guinea Pigs.
Nutrients.
2024 Mar; 16(6):. doi:
10.3390/nu16060849
. [PMID: 38542762] - Teng Zhang, Meng-Yan Wang, Guo-Dong Wang, Qiu-Yue Lv, Yu-Qian Huang, Peng Zhang, Wen Wang, Yan Zhang, Ya-Ping Bai, Li-Qun Guo. Metformin improves nonalcoholic fatty liver disease in db/db mice by inhibiting ferroptosis.
European journal of pharmacology.
2024 Mar; 966(?):176341. doi:
10.1016/j.ejphar.2024.176341
. [PMID: 38244761] - Diem-Kieu Nguyen, Tri-Phuong Nguyen, Yi-Rong Li, Masaru Ohme-Takagi, Zin-Huang Liu, Thach-Thao Ly, Van-Anh Nguyen, Ngoc-Nam Trinh, Hao-Jen Huang. Comparative study of two indoor microbial volatile pollutants, 2-Methyl-1-butanol and 3-Methyl-1-butanol, on growth and antioxidant system of rice (Oryza sativa) seedlings.
Ecotoxicology and environmental safety.
2024 Mar; 272(?):116055. doi:
10.1016/j.ecoenv.2024.116055
. [PMID: 38340597] - Ariane Coelho Ferraz, Marília Bueno da Silva Menegatto, Rafaela Lameira Souza Lima, Oluwashola Samuel Ola-Olub, Daniela Caldeira Costa, José Carlos de Magalhães, Izabela Maurício Rezende, Angelle Desiree LaBeaud, Thomas P Monath, Pedro Augusto Alves, Andréa Teixeira de Carvalho, Olindo Assis Martins-Filho, Betânia P Drumond, Cintia Lopes de Brito Magalhães. Yellow fever virus infection in human hepatocyte cells triggers an imbalance in redox homeostasis with increased reactive oxygen species production, oxidative stress, and decreased antioxidant enzymes.
Free radical biology & medicine.
2024 03; 213(?):266-273. doi:
10.1016/j.freeradbiomed.2024.01.042
. [PMID: 38278309] - Hongye Fu, Qiong Zhao. CircSCUBE3 promoted ferroptosis to inhibit lung adenocarcinoma progression.
Cellular and molecular biology (Noisy-le-Grand, France).
2024 Feb; 70(2):161-168. doi:
10.14715/cmb/2024.70.2.23
. [PMID: 38430026] - Chen Yan, Fei Xuan. Paris saponin VII promotes ferroptosis to inhibit breast cancer via Nrf2/GPX4 axis.
Biochemical and biophysical research communications.
2024 Feb; 697(?):149524. doi:
10.1016/j.bbrc.2024.149524
. [PMID: 38252991] - Tian Niu, Xin Shi, Xijian Liu, Haiyan Wang, Kun Liu, Yupeng Xu. Porous Se@SiO2 nanospheres alleviate diabetic retinopathy by inhibiting excess lipid peroxidation and inflammation.
Molecular medicine (Cambridge, Mass.).
2024 Feb; 30(1):24. doi:
10.1186/s10020-024-00785-z
. [PMID: 38321393] - Yan-Guang Li, Jiang-Hong Li, Hai-Qin Wang, Junhua Liao, Xiao-Ya Du. Cinnamaldehyde protects cardiomyocytes from oxygen-glucose deprivation/reoxygenation-induced lipid peroxidation and DNA damage via activating the Nrf2 pathway.
Chemical biology & drug design.
2024 02; 103(2):e14489. doi:
10.1111/cbdd.14489
. [PMID: 38404216] - John C Berude, Paul Kennouche, Michelle L Reniere, Daniel A Portnoy. Listeria monocytogenes utilizes glutathione and limited inorganic sulfur compounds as sources of essential cysteine.
Infection and immunity.
2024 Jan; ?(?):e0042223. doi:
10.1128/iai.00422-23
. [PMID: 38289071] - Jianxiong Gui, Lingman Wang, Jie Liu, Hanyu Luo, Dishu Huang, Xiaoyue Yang, Honghong Song, Ziyao Han, Linxue Meng, Ran Ding, Jiaxin Yang, Li Jiang. Ambient particulate matter exposure induces ferroptosis in hippocampal cells through the GSK3B/Nrf2/GPX4 pathway.
Free radical biology & medicine.
2024 Jan; 213(?):359-370. doi:
10.1016/j.freeradbiomed.2024.01.045
. [PMID: 38290604] - Wenliang He, Erin A Posey, Chandler C Steele, Jeffrey W Savell, Fuller W Bazer, Guoyao Wu. Dietary glycine supplementation enhances glutathione availability in tissues of pigs with intrauterine growth restriction.
Journal of animal science.
2024 Jan; ?(?):. doi:
10.1093/jas/skae025
. [PMID: 38271555] - Jesus H Beltran-Ornelas, Diana L Silva-Velasco, Jorge Tapia-Martínez, Araceli Sánchez-López, Edgar Cano-Europa, Saúl Huerta de la Cruz, David Centurión. NaHS reverts chronic stress-induced cardiovascular alterations by reducing oxidative stress.
Journal of cardiovascular pharmacology.
2024 Jan; ?(?):. doi:
10.1097/fjc.0000000000001538
. [PMID: 38207007] - Jiejie Cai, Jingye Pan. Beta vulgaris-derived exosome-like nanovesicles alleviate chronic doxorubicin-induced cardiotoxicity by inhibiting ferroptosis.
Journal of biochemical and molecular toxicology.
2024 Jan; 38(1):e23540. doi:
10.1002/jbt.23540
. [PMID: 37728183] - Xueguang Dong, Xiumei Chen, Yuanhao Zhao, Qunyan Wu, Yuguo Ren. CircTMEM87A promotes the tumorigenesis of gastric cancer by regulating the miR-1276/SLC7A11 axis.
Journal of gastroenterology and hepatology.
2024 Jan; 39(1):121-132. doi:
10.1111/jgh.16402
. [PMID: 38037531] - Wenjie Huang, Fang Wen, Peipei Yang, Ye Li, Qiurong Li, Peng Shu. Yi-qi-hua-yu-jie-du decoction induces ferroptosis in cisplatin-resistant gastric cancer via the AKT/GSK3β/NRF2/GPX4 axis.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2024 Jan; 123(?):155220. doi:
10.1016/j.phymed.2023.155220
. [PMID: 38056149] - Yue Shi, Xiujie Shi, Mingming Zhao, Yifan Zhang, Qi Zhang, Jing Liu, Hangyu Duan, Bin Yang, Yu Zhang. Ferroptosis is involved in focal segmental glomerulosclerosis in rats.
Scientific reports.
2023 12; 13(1):22250. doi:
10.1038/s41598-023-49697-8
. [PMID: 38097813] - Zalán Czékus, Dávid Milodanovic, Péter Koprivanacz, Krisztina Bela, María F López-Climent, Aurelio Gómez-Cadenas, Péter Poór. The role of salicylic acid on glutathione metabolism under endoplasmic reticulum stress in tomato.
Plant physiology and biochemistry : PPB.
2023 Dec; 205(?):108192. doi:
10.1016/j.plaphy.2023.108192
. [PMID: 37995576] - Gao-Bo Yu, Jin Tian, Ru-Nan Chen, Han-Lin Liu, Bo-Wen Wen, Jin-Peng Wei, Qiu-Sen Chen, Feng-Qiong Chen, Yun-Yan Sheng, Feng-Jun Yang, Chun-Yuan Ren, Yu-Xian Zhang, Golam Jalal Ahammed. Glutathione-dependent redox homeostasis is critical for chlorothalonil detoxification in tomato leaves.
Ecotoxicology and environmental safety.
2023 Dec; 268(?):115732. doi:
10.1016/j.ecoenv.2023.115732
. [PMID: 38000301] - Zexin Qi, Fenglou Ling, Dongsheng Jia, Jingjing Cui, Zhian Zhang, Chen Xu, Lintian Yu, Chenglong Guan, Ye Wang, Mengru Zhang, Jiaqi Dou. Effects of low nitrogen on seedling growth, photosynthetic characteristics and antioxidant system of rice varieties with different nitrogen efficiencies.
Scientific reports.
2023 Nov; 13(1):19780. doi:
10.1038/s41598-023-47260-z
. [PMID: 37957233] - Tie Hu, Hua-Xi Zou, Shu-Yu Le, Ya-Ru Wang, Ya-Mei Qiao, Yong Yuan, Ji-Chun Liu, Song-Qing Lai, Huang Huang. Tanshinone IIA confers protection against myocardial ischemia/reperfusion injury by inhibiting ferroptosis and apoptosis via VDAC1.
International journal of molecular medicine.
2023 Nov; 52(5):. doi:
10.3892/ijmm.2023.5312
. [PMID: 37800609] - Yu Xiao, Changsong Duan, Pushuang Gong, Qi Zhao, Xin Hui Wang, Fang Geng, Jin Zeng, Tianfeng Luo, Yisha Xu, Junning Zhao. Kinsenoside from Anoectochilus roxburghii (Wall.) Lindl. suppressed oxidative stress to attenuate aging-related learning and memory impairment via ERK/Nrf2 pathway.
Journal of ethnopharmacology.
2023 Sep; 319(Pt 1):117152. doi:
10.1016/j.jep.2023.117152
. [PMID: 37689328] - Yang Liu, Aimin Wu, Ruixia Mo, Qiang Zhou, Lianghui Song, Zheng Li, Hua Zhao, Zhengfeng Fang, Yan Lin, Shengyu Xu, Bin Feng, Yong Zhuo, De Wu, Lianqiang Che. Dietary lysolecithin supplementation improves growth performance of weaned piglets via improving nutrients absorption, lipid metabolism and redox status.
Journal of animal science.
2023 Sep; ?(?):. doi:
10.1093/jas/skad293
. [PMID: 37668533] - Germán Muñoz-Sánchez, Lucila A Godínez-Méndez, Mary Fafutis-Morris, Vidal Delgado-Rizo. Effect of Antioxidant Supplementation on NET Formation Induced by LPS In Vitro; the Roles of Vitamins E and C, Glutathione, and N-acetyl Cysteine.
International journal of molecular sciences.
2023 Aug; 24(17):. doi:
10.3390/ijms241713162
. [PMID: 37685966] - Carlos Espírito-Santo, Carmen Alburquerque, Francisco A Guardiola, Rodrigo O A Ozório, Leonardo J Magnoni. Induced swimming modified the antioxidant status of gilthead seabream (Sparus aurata).
Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.
2023 Aug; 269(?):110893. doi:
10.1016/j.cbpb.2023.110893
. [PMID: 37604407] - Na Huang, Yu Wei, Meng Liu, Zhen Yang, Kang Yuan, Jingli Chen, Zhixin Wu, Fanghao Zheng, Kaijun Lei, Mingfeng He. Dachaihu decoction ameliorates septic intestinal injury via modulating the gut microbiota and glutathione metabolism as revealed by multi-omics.
Journal of ethnopharmacology.
2023 Aug; 312(?):116505. doi:
10.1016/j.jep.2023.116505
. [PMID: 37080366] - Francisco Javier Romera, María José García, Carlos Lucena, Macarena Angulo, Rafael Pérez-Vicente. NO Is Not the Same as GSNO in the Regulation of Fe Deficiency Responses by Dicot Plants.
International journal of molecular sciences.
2023 Aug; 24(16):. doi:
10.3390/ijms241612617
. [PMID: 37628796] - Zeyu Wang, Weijian Li, Xue Wang, Qin Zhu, Liguo Liu, Shimei Qiu, Lu Zou, Ke Liu, Guoqiang Li, Huijie Miao, Yang Yang, Chengkai Jiang, Yong Liu, Rong Shao, Xu'an Wang, Yingbin Liu. Isoliquiritigenin induces HMOX1 and GPX4-mediated ferroptosis in gallbladder cancer cells.
Chinese medical journal.
2023 Jul; ?(?):. doi:
10.1097/cm9.0000000000002675
. [PMID: 37488674] - Yingzhi Wang, Menglu Xing, Xinru Gao, Min Wu, Fei Liu, Liangliang Sun, Ping Zhang, Ming Duan, Weixin Fan, Jin Xu. Physiological and transcriptomic analyses reveal that phytohormone pathways and glutathione metabolism are involved in the arsenite toxicity response in tomatoes.
The Science of the total environment.
2023 Jul; 899(?):165676. doi:
10.1016/j.scitotenv.2023.165676
. [PMID: 37481082] - Shuyan Li, Shiheng Lu, Lei Wang, Shasha Liu, Lei Zhang, Jialun Du, Ziwen Wu, Xiaojing Huang. Effects of amygdalin on ferroptosis and oxidative stress in diabetic retinopathy progression via the NRF2/ARE signaling pathway.
Experimental eye research.
2023 Jul; ?(?):109569. doi:
10.1016/j.exer.2023.109569
. [PMID: 37422064] - Shi-Hao Ni, Xiao-Jiao Zhang, Xiao-Lu OuYang, Tao-Chun Ye, Jin Li, Yue Li, Shu-Ning Sun, Xiao-Wei Han, Wen-Jie Long, Ling-Jun Wang, Zhong-Qi Yang, Lu Lu. Lobetyolin Alleviates Ferroptosis of Skeletal Muscle in 5/6 Nephrectomized Mice via Activation of Hedgehog-GLI1 Signaling.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2023 Jul; 115(?):154807. doi:
10.1016/j.phymed.2023.154807
. [PMID: 37121057] - Rizwan Alam, Rizwan Rasheed, Muhammad Arslan Ashraf, Iqbal Hussain, Shafaqat Ali. Allantoin alleviates chromium phytotoxic effects on wheat by regulating osmolyte accumulation, secondary metabolism, ROS homeostasis and nutrient acquisition.
Journal of hazardous materials.
2023 Jun; 458(?):131920. doi:
10.1016/j.jhazmat.2023.131920
. [PMID: 37413799] - F Impellitteri, K Yunko, V Martyniuk, T Matskiv, S Lechachenko, V Khoma, A Mudra, G Piccione, O Stoliar, C Faggio. Physiological and biochemical responses to caffeine and microplastics in Mytilus galloprovincialis.
The Science of the total environment.
2023 May; ?(?):164075. doi:
10.1016/j.scitotenv.2023.164075
. [PMID: 37230349] - Tuo Ji, Lihua Zheng, Jiale Wu, Mei Duan, Qianwen Liu, Peng Liu, Chen Shen, Jinling Liu, Qinyi Ye, Jiangqi Wen, Jiangli Dong, Tao Wang. The thioesterase APT1 is a bidirectional-adjustment redox sensor.
Nature communications.
2023 May; 14(1):2807. doi:
10.1038/s41467-023-38464-y
. [PMID: 37198152] - Rui-Jia Wen, Xin Dong, Hao-Wen Zhuang, Feng-Xiang Pang, Shou-Chang Ding, Nan Li, Yong-Xin Mai, Shu-Ting Zhou, Jun-Yan Wang, Jin-Fang Zhang. Baicalin induces ferroptosis in osteosarcomas through a novel Nrf2/xCT/GPX4 regulatory axis.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2023 May; 116(?):154881. doi:
10.1016/j.phymed.2023.154881
. [PMID: 37209607] - Andrea Da Porto, Debora Donnini, Fabio Vanin, Arianna Romanin, Martina Antonello, Paolo Toritto, Eleonora Varisco, Gabriele Brosolo, Cristiana Catena, Leonardo A Sechi, Giorgio Soardo. Effects of Monacolin K in Nondiabetic Patients with NAFLD: A Pilot Study.
Nutrients.
2023 Apr; 15(8):. doi:
10.3390/nu15081887
. [PMID: 37111106] - Lixia Zhao, Ju Cheng, Di Liu, Hongxia Gong, Decheng Bai, Wei Sun. Potentilla anserina polysaccharide alleviates cadmium-induced oxidative stress and apoptosis of H9c2 cells by regulating the MG53-mediated RISK pathway.
Chinese journal of natural medicines.
2023 Apr; 21(4):279-291. doi:
10.1016/s1875-5364(23)60436-4
. [PMID: 37120246] - Paloma Bermejo-Bescós, Karim L Jiménez-Aliaga, Juana Benedí, Sagrario Martín-Aragón. A Diet Containing Rutin Ameliorates Brain Intracellular Redox Homeostasis in a Mouse Model of Alzheimer's Disease.
International journal of molecular sciences.
2023 Mar; 24(5):. doi:
10.3390/ijms24054863
. [PMID: 36902309] - Magdalena Kusiak, Małgorzata Sierocka, Michał Świeca, Sylwia Pasieczna-Patkowska, Mohamed Sheteiwy, Izabela Jośko. Unveiling of interactions between foliar-applied Cu nanoparticles and barley suffering from Cu deficiency.
Environmental pollution (Barking, Essex : 1987).
2023 Mar; 320(?):121044. doi:
10.1016/j.envpol.2023.121044
. [PMID: 36639040] - Eun-Joo Shin, Ji Hoon Jeong, Bao-Trong Nguyen, Naveen Sharma, Cuong Ngoc Kim Tran, Seung-Yeol Nah, Yi Lee, Jae Kyung Byun, Sung Kwon Ko, Hyoung-Chun Kim. Ginsenoside Re attenuates 8-OH-DPAT-induced serotonergic behaviors in mice via interactive modulation between PKCδ gene and Nrf2.
Drug and chemical toxicology.
2023 Mar; 46(2):281-296. doi:
10.1080/01480545.2021.2022689
. [PMID: 35707918] - Lalita Thanwisai, Anon Janket, Hong Thi Kim Tran, Wilailak Siripornadulsil, Surasak Siripornadulsil. Low Cd-accumulating rice grain production through inoculation of germinating rice seeds with a plant growth-promoting endophytic bacterium.
Ecotoxicology and environmental safety.
2023 Feb; 251(?):114535. doi:
10.1016/j.ecoenv.2023.114535
. [PMID: 36640569] - Weifeng Tang, Jingjing Qin, Yaolong Zhou, Wenqian Wang, Fangzhou Teng, Jiaqi Liu, La Yi, Jie Cui, Xueyi Zhu, Shiyuan Wang, Jingcheng Dong, Ying Wei. Regulation of ferroptosis and ACSL4-15LO1 pathway contributed to the anti-asthma effect of acupuncture.
International immunopharmacology.
2023 Feb; 115(?):109670. doi:
10.1016/j.intimp.2022.109670
. [PMID: 36603356] - Daniela Velasquez de Oliveira, Jacqueline Godinho, Anacharis Babeto de Sa-Nakanishi, Jurandir Fernando Comar, Rúbia Maria Weffort de Oliveira, Jéssica Mendes Bonato, Luana Yukari Chinen, Mariana Nascimento de Paula, João Carlos Palazzo de Mello, Isolde Santos Previdelli, Omar Cléo Neves Pereira, Humberto Milani. Delayed administration of Trichilia catigua A. Juss. Ethyl-acetate fraction after cerebral ischemia prevents spatial memory deficits, decreases oxidative stress, and impacts neural plasticity in rats.
Journal of ethnopharmacology.
2023 Jan; 306(?):116176. doi:
10.1016/j.jep.2023.116176
. [PMID: 36682600] - Ana Beatriz Farias de Souza, Erika Tiemi Kozima, Thalles de Freitas Castro, Natália Alves de Matos, Michel Oliveira, Débora Maria Soares de Souza, André Talvani, Rodrigo Cunha Alvim de Menezes, Sílvia Dantas Cangussú, Frank Silva Bezerra. Chronic Oral Administration of Aluminum Hydroxide Stimulates Systemic Inflammation and Redox Imbalance in BALB/c Mice.
BioMed research international.
2023; 2023(?):4499407. doi:
10.1155/2023/4499407
. [PMID: 37854793] - N V Semenova, I M Madaeva, N A Gavrilova, T V Zhambalova, R M Zhambalova, A S Lesnaya, Z Yu Darzhaev, N V Protopopova, L I Kolesnikova. [Glutathione unit of the antioxidant system activity in pregnant women depending on the sleep quality].
Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova.
2023; 123(10):101-105. doi:
10.17116/jnevro2023123101101
. [PMID: 37966447] - AiNing Wu, YanHui Zhao, RongXin Yu, JianXing Zhou, Ya Tuo. Untargeted metabolomics analysis reveals the metabolic disturbances and exacerbation of oxidative stress in recurrent spontaneous abortion.
PloS one.
2023; 18(12):e0296122. doi:
10.1371/journal.pone.0296122
. [PMID: 38127925] - Diana A Averill-Bates. The antioxidant glutathione.
Vitamins and hormones.
2023; 121(?):109-141. doi:
10.1016/bs.vh.2022.09.002
. [PMID: 36707132] - Abdollah Arjmand, Saba Shiranirad, Fateme Ameritorzani, Farzaneh Kamranfar, Enayatollah Seydi, Jalal Pourahmad. Mitochondrial transplantation against gentamicin-induced toxicity on rat renal proximal tubular cells: the higher activity of female rat mitochondria.
In vitro cellular & developmental biology. Animal.
2023 Jan; 59(1):31-40. doi:
10.1007/s11626-022-00743-1
. [PMID: 36630058] - Ruina Kong, Lianmei Ji, Yafei Pang, Dongbao Zhao, Jie Gao. Exosomes from osteoarthritic fibroblast-like synoviocytes promote cartilage ferroptosis and damage via delivering microRNA-19b-3p to target SLC7A11 in osteoarthritis.
Frontiers in immunology.
2023; 14(?):1181156. doi:
10.3389/fimmu.2023.1181156
. [PMID: 37691947] - Amylly Sanuelly da Paz Martins, Kívia Queiroz de Andrade, Orlando Roberto Pimentel de Araújo, Glenn Côsallin Melquiades da Conceição, Amanda da Silva Gomes, Marília Oliveira Fonseca Goulart, Fabiana Andréa Moura. Extraintestinal Manifestations in Induced Colitis: Controversial Effects of N-Acetylcysteine on Colon, Liver, and Kidney.
Oxidative medicine and cellular longevity.
2023; 2023(?):8811463. doi:
10.1155/2023/8811463
. [PMID: 37577725] - Xue Cheng, Tianyi Xie, Ling Yang, Hailong Shen. Effects of Ascorbic Acid on Physiological Characteristics during Somatic Embryogenesis of Fraxinus mandshurica.
International journal of molecular sciences.
2022 Dec; 24(1):. doi:
10.3390/ijms24010289
. [PMID: 36613732] - Evgenios Agathokleous, Boya Zhou, Caiyu Geng, Jianing Xu, Costas J Saitanis, Zhaozhong Feng, Filip M G Tack, Jörg Rinklebe. Mechanisms of cerium-induced stress in plants: A meta-analysis.
The Science of the total environment.
2022 Dec; 852(?):158352. doi:
10.1016/j.scitotenv.2022.158352
. [PMID: 36063950] - Kaja Rola, Ewa Latkowska, Wiktoria Ogar, Piotr Osyczka. Towards understanding the effect of heavy metals on mycobiont physiological condition in a widespread metal-tolerant lichen Cladonia rei.
Chemosphere.
2022 Dec; 308(Pt 2):136365. doi:
10.1016/j.chemosphere.2022.136365
. [PMID: 36087724] - Qiuli Wang, Xueying Peng, Duoyong Lang, Xin Ma, Xinhui Zhang. Physio-biochemical and transcriptomic analysis reveals that the mechanism of Bacillus cereus G2 alleviated oxidative stress of salt-stressed Glycyrrhiza uralensis Fisch. seedlings.
Ecotoxicology and environmental safety.
2022 Dec; 247(?):114264. doi:
10.1016/j.ecoenv.2022.114264
. [PMID: 36334340] - Ahmad Salimi, Farzad Khodaparast, Shahab Bohlooli, Niloufar Hashemidanesh, Elahe Baghal, Lotfollah Rezagholizadeh. Linalool reverses benzene-induced cytotoxicity, oxidative stress and lysosomal/mitochondrial damages in human lymphocytes.
Drug and chemical toxicology.
2022 Nov; 45(6):2454-2462. doi:
10.1080/01480545.2021.1957563
. [PMID: 34304650] - Weijian Li, Zeyu Wang, Ruirong Lin, Shuai Huang, Huijie Miao, Lu Zou, Ke Liu, Xuya Cui, Ziyi Wang, Yijian Zhang, Chengkai Jiang, Shimei Qiu, Jiyao Ma, Wenguang Wu, Yingbin Liu. Lithocholic acid inhibits gallbladder cancer proliferation through interfering glutaminase-mediated glutamine metabolism.
Biochemical pharmacology.
2022 11; 205(?):115253. doi:
10.1016/j.bcp.2022.115253
. [PMID: 36176239] - Si Long, Bowen Liu, Jiongjiong Gong, Ruijia Wang, Shuanghong Gao, Tianqi Zhu, Huan Guo, Tieyuan Liu, Yuefei Xu. 5-Aminolevulinic acid promotes low-light tolerance by regulating chloroplast ultrastructure, photosynthesis, and antioxidant capacity in tall fescue.
Plant physiology and biochemistry : PPB.
2022 Nov; 190(?):248-261. doi:
10.1016/j.plaphy.2022.09.010
. [PMID: 36152510] - Xinrun Li, Haitong Wu, Haihua Huo, Feiyang Ma, Menglong Zhao, Qingyue Han, Lianmei Hu, Ying Li, Hui Zhang, Jiaqiang Pan, Zhaoxin Tang, Jianying Guo. N-acetylcysteine combined with insulin alleviates the oxidative damage of cerebrum via regulating redox homeostasis in type 1 diabetic mellitus canine.
Life sciences.
2022 Nov; 308(?):120958. doi:
10.1016/j.lfs.2022.120958
. [PMID: 36108767] - Udayakumar Karunakaran, Suma Elumalai, Jun Sung Moon, Kyu Chang Won. c-Abl tyrosine kinase inhibition attenuate oxidative stress-induced pancreatic β-Cell dysfunction via glutathione antioxidant system.
Translational research : the journal of laboratory and clinical medicine.
2022 11; 249(?):74-87. doi:
10.1016/j.trsl.2022.06.007
. [PMID: 35697276] - Vincenzo Nobile, Marta Pisati, Enza Cestone, Violetta Insolia, Vincenzo Zaccaria, Giuseppe Antonio Malfa. Antioxidant Efficacy of a Standardized Red Orange (Citrus sinensis (L.) Osbeck) Extract in Elderly Subjects: A Randomized, Double Blind, Controlled Study.
Nutrients.
2022 Oct; 14(20):. doi:
10.3390/nu14204235
. [PMID: 36296919] - C U Becker, C L Sartório, C Campos-Carraro, R Siqueira, R Colombo, A Zimmer, A Belló-Klein. Exercise training decreases oxidative stress in skeletal muscle of rats with pulmonary arterial hypertension.
Archives of physiology and biochemistry.
2022 Oct; 128(5):1330-1338. doi:
10.1080/13813455.2020.1769679
. [PMID: 32449880] - Katarzyna Otulak-Kozieł, Edmund Kozieł, Edit Horváth, Jolán Csiszár. AtGSTU19 and AtGSTU24 as Moderators of the Response of Arabidopsis thaliana to Turnip mosaic virus.
International journal of molecular sciences.
2022 Sep; 23(19):. doi:
10.3390/ijms231911531
. [PMID: 36232831] - Cong Wu, Zhiming Shen, Yi Lu, Fei Sun, Hongcan Shi. p53 Promotes Ferroptosis in Macrophages Treated with Fe3O4 Nanoparticles.
ACS applied materials & interfaces.
2022 Sep; 14(38):42791-42803. doi:
10.1021/acsami.2c00707
. [PMID: 36112832] - Rongquan Sun, Zhifei Lin, Xiangyu Wang, Lu Liu, Meisi Huo, Rui Zhang, Jing Lin, Chao Xiao, Yitong Li, Wenwei Zhu, Lu Lu, Jubo Zhang, Jinhong Chen. AADAC protects colorectal cancer liver colonization from ferroptosis through SLC7A11-dependent inhibition of lipid peroxidation.
Journal of experimental & clinical cancer research : CR.
2022 Sep; 41(1):284. doi:
10.1186/s13046-022-02493-0
. [PMID: 36163032] - Duanyang Wang, Maki Nagata, Masako Matsumoto, Yhiya Amen, Dongmei Wang, Kuniyoshi Shimizu. Potential of Hibiscus sabdariffa L. and Hibiscus Acid to Reverse Skin Aging.
Molecules (Basel, Switzerland).
2022 Sep; 27(18):. doi:
10.3390/molecules27186076
. [PMID: 36144809] - Zhen Luo, Qingying Gao, Yuanfei Li, Yifei Bai, Jing Zhang, Weina Xu, Jianxiong Xu. Flammulina velutipes Mycorrhizae Attenuate High Fat Diet-Induced Lipid Disorder, Oxidative Stress and Inflammation in the Liver and Perirenal Adipose Tissue of Mice.
Nutrients.
2022 Sep; 14(18):. doi:
10.3390/nu14183830
. [PMID: 36145203] - Cristina Hidalgo-Moyano, Oriol Alberto Rangel-Zuñiga, Francisco Gomez-Delgado, Juan F Alcala-Diaz, Fernando Rodriguez-Cantalejo, Elena M Yubero-Serrano, Jose D Torres-Peña, Antonio P Arenas-de Larriva, Antonio Camargo, Pablo Perez-Martinez, Jose Lopez-Miranda, Javier Delgado-Lista. Diet and SIRT1 Genotype Interact to Modulate Aging-Related Processes in Patients with Coronary Heart Disease: From the CORDIOPREV Study.
Nutrients.
2022 Sep; 14(18):. doi:
10.3390/nu14183789
. [PMID: 36145164] - Takehiro Ito, Taisuke Kitaiwa, Kosuke Nishizono, Minori Umahashi, Shunsuke Miyaji, Shin-Ichiro Agake, Kana Kuwahara, Tadashi Yokoyama, Shinya Fushinobu, Akiko Maruyama-Nakashita, Ryosuke Sugiyama, Muneo Sato, Jun Inaba, Masami Yokota Hirai, Naoko Ohkama-Ohtsu. Glutathione degradation activity of γ-glutamyl peptidase 1 manifests its dual roles in primary and secondary sulfur metabolism in Arabidopsis.
The Plant journal : for cell and molecular biology.
2022 09; 111(6):1626-1642. doi:
10.1111/tpj.15912
. [PMID: 35932489] - Alessia Remigante, Sara Spinelli, Nancy Basile, Daniele Caruso, Giuseppe Falliti, Silvia Dossena, Angela Marino, Rossana Morabito. Oxidation Stress as a Mechanism of Aging in Human Erythrocytes: Protective Effect of Quercetin.
International journal of molecular sciences.
2022 Jul; 23(14):. doi:
10.3390/ijms23147781
. [PMID: 35887126] - Zhipeng Chen, Heqian Liu, Xiaoqi Zhao, Subinur Mamateli, Cheng Liu, Lei Wang, Jing Yu, Yutong Liu, Jing Cai, Tong Qiao. Oridonin attenuates low shear stress-induced endothelial cell dysfunction and oxidative stress by activating the nuclear factor erythroid 2-related factor 2 pathway.
BMC complementary medicine and therapies.
2022 Jul; 22(1):180. doi:
10.1186/s12906-022-03658-2
. [PMID: 35799227] - Roya Ahangari, Saleh Khezri, Asal Jahedsani, Saba Bakhshii, Ahmad Salimi. Ellagic acid alleviates clozapine‑induced oxidative stress and mitochondrial dysfunction in cardiomyocytes.
Drug and chemical toxicology.
2022 Jul; 45(4):1625-1633. doi:
10.1080/01480545.2020.1850758
. [PMID: 33222529] - K Ciacka, M Tyminski, A Gniazdowska, U Krasuska. Cold stratification-induced dormancy removal in apple (Malus domestica Borkh.) seeds is accompanied by an increased glutathione pool in embryonic axes.
Journal of plant physiology.
2022 Jul; 274(?):153736. doi:
10.1016/j.jplph.2022.153736
. [PMID: 35661472] - Dhaneshree Bestinee Naidoo, Alisa Phulukdaree, Anand Krishnan, Anil Amichund Chuturgoon, Vikash Sewram. Centella asiatica Modulates Nrf-2 Antioxidant Mechanisms and Enhances Reactive Oxygen Species-Mediated Apoptotic Cell Death in Leukemic (THP-1) Cells.
Journal of medicinal food.
2022 Jul; 25(7):760-769. doi:
10.1089/jmf.2021.0173
. [PMID: 35675643] - Julia I. Leu, Maureen E Murphy, Donna L George. Targeting ErbB3 and Cellular NADPH/NADP+ Abundance Sensitizes Cutaneous Melanomas to Ferroptosis Inducers.
ACS chemical biology.
2022 05; 17(5):1038-1044. doi:
10.1021/acschembio.2c00113
. [PMID: 35420772] - Adela Čorejová, Tomáš Fazekaš, Daniela Jánošíková, Juraj Repiský, Veronika Pospíšilová, Maria Miková, Drahomíra Rauová, Daniela Ostatníková, Ján Kyselovič, Anna Hrabovská. Improvement of the Clinical and Psychological Profile of Patients with Autism after Methylcobalamin Syrup Administration.
Nutrients.
2022 May; 14(10):. doi:
10.3390/nu14102035
. [PMID: 35631176] - Rodrigo Rocco, Adrián E Cambindo Botto, Manuel J Muñoz, Hernán Reingruber, Rosa Wainstok, Adriana Cochón, Silvina Gazzaniga. Early redox homeostasis disruption contributes to the differential cytotoxicity of imiquimod on transformed and normal endothelial cells.
Experimental dermatology.
2022 04; 31(4):608-614. doi:
10.1111/exd.14499
. [PMID: 34758172] - Asghar Ghahri, Mohammad Hossien Dehghan, Pouria Seydi, Sara Mashayekhi, Yasaman Naderi, Enayatollah Seydi. The perchloroethylene-induced toxicity in dry cleaning workers lymphocytes through induction of oxidative stress.
Journal of biochemical and molecular toxicology.
2022 Apr; 36(4):e23000. doi:
10.1002/jbt.23000
. [PMID: 35156261] - Chengcheng Fan, Douglas C Rees. Glutathione binding to the plant AtAtm3 transporter and implications for the conformational coupling of ABC transporters.
eLife.
2022 03; 11(?):. doi:
10.7554/elife.76140
. [PMID: 35333177] - Alessandra Villani, Maria Chiara Zonno, Silvana de Leonardis, Maurizio Vurro, Costantino Paciolla. Inuloxin A Inhibits Seedling Growth and Affects Redox System of Lycopersicon esculentum Mill. and Lepidium sativum L.
Biomolecules.
2022 02; 12(2):. doi:
10.3390/biom12020302
. [PMID: 35204800] - Thomas Goralski, Jeffrey L Ram. Extracellular Calcium Receptor as a Target for Glutathione and Its Derivatives.
International journal of molecular sciences.
2022 Jan; 23(2):. doi:
10.3390/ijms23020717
. [PMID: 35054903] - Yasumasa Okazaki, Kanako Sasaki, Nanami Ito, Hiromasa Tanaka, Ken-Ichiro Matsumoto, Masaru Hori, Shinya Toyokuni. Tetrachloroaurate (III)-induced oxidation increases non-thermal plasma-induced oxidative stress.
Free radical research.
2022 Jan; 56(1):17-27. doi:
10.1080/10715762.2022.2026348
. [PMID: 35077248] - Jingjing Liu, Lingling Yang, Yang Niu, Chao Su, Yingli Wang, Ruru Ren, Jianyu Chen, Xueqin Ma. Potential Therapeutic Effects of Mi-Jian-Chang-Pu Decoction on Neurochemical and Metabolic Changes of Cerebral Ischemia-Reperfusion Injury in Rats.
Oxidative medicine and cellular longevity.
2022; 2022(?):7319563. doi:
10.1155/2022/7319563
. [PMID: 35578728] - Yung-Fang Hsiao, Shao-Bin Cheng, Chia-Yu Lai, Hsiao-Tien Liu, Shih-Chien Huang, Yi-Chia Huang. The Prognostic Role of Glutathione and Its Related Antioxidant Enzymes in the Recurrence of Hepatocellular Carcinoma.
Nutrients.
2021 Nov; 13(11):. doi:
10.3390/nu13114071
. [PMID: 34836325] - Hayley N Brawley, Paul A Lindahl. Direct Detection of the Labile Nickel Pool in Escherichia coli: New Perspectives on Labile Metal Pools.
Journal of the American Chemical Society.
2021 11; 143(44):18571-18580. doi:
10.1021/jacs.1c08213
. [PMID: 34723500] - Jing-Yao Zhang, Hui-Chen Lo, Feili Lo Yang, Yi-Fang Liu, Wen-Mein Wu, Chi-Chun Chou. Plant-Based, Antioxidant-Rich Snacks Elevate Plasma Antioxidant Ability and Alter Gut Bacterial Composition in Older Adults.
Nutrients.
2021 Oct; 13(11):. doi:
10.3390/nu13113872
. [PMID: 34836127] - Rebecca L Gould, Steven W Craig, Susan McClatchy, Gary A Churchill, Robert Pazdro. Genetic mapping of renal glutathione suggests a novel regulatory locus on the murine X chromosome and overlap with hepatic glutathione regulation.
Free radical biology & medicine.
2021 10; 174(?):28-39. doi:
10.1016/j.freeradbiomed.2021.07.035
. [PMID: 34324982] - Barsha Deka, Sagar Ramrao Barge, Simanta Bharadwaj, Bhaswati Kashyap, Prasenjit Manna, Jagat Chandra Borah, Narayan Chandra Talukdar. Beneficial effect of the methanolic leaf extract of Allium hookeri on stimulating glutathione biosynthesis and preventing impaired glucose metabolism in type 2 diabetes.
Archives of biochemistry and biophysics.
2021 09; 708(?):108961. doi:
10.1016/j.abb.2021.108961
. [PMID: 34118216] - Wen-Bin Cai, Yin-Jiao Zhao, Le Liu, Qian Cheng, Jin Wang, Xue-Lian Shi, Liu Yao, Xin-Hua Qiao, Yi Zhu, Chang Chen, Xu Zhang. Redox environment metabolomic evaluation (REME) of the heart after myocardial ischemia/reperfusion injury.
Free radical biology & medicine.
2021 09; 173(?):7-18. doi:
10.1016/j.freeradbiomed.2021.06.033
. [PMID: 34252540] - Desirée Bartolini, Anna Maria Stabile, Sabrina Bastianelli, Daniela Giustarini, Sara Pierucci, Chiara Busti, Carmine Vacca, Anna Gidari, Daniela Francisci, Roberto Castronari, Antonella Mencacci, Manlio Di Cristina, Riccardo Focaia, Samuele Sabbatini, Mario Rende, Antimo Gioiello, Gabriele Cruciani, Ranieri Rossi, Francesco Galli. SARS-CoV2 infection impairs the metabolism and redox function of cellular glutathione.
Redox biology.
2021 09; 45(?):102041. doi:
10.1016/j.redox.2021.102041
. [PMID: 34146958] - Kaïs H Al-Gubory, Ismail Laher, Catherine Garrel. Pomegranate peel attenuates dextran sulfate sodium-induced lipid peroxidation in rat small intestine by enhancing the glutathione/glutathione disulfide redox potential.
Journal of the science of food and agriculture.
2021 Aug; 101(10):4278-4287. doi:
10.1002/jsfa.11067
. [PMID: 33417238] - Murat Alisik, Tugba Alisik, Baris Nacir, Salim Neselioglu, Irem Genc-Isik, Pinar Koyuncu, Ozcan Erel. Erythrocyte reduced/oxidized glutathione and serum thiol/disulfide homeostasis in patients with rheumatoid arthritis.
Clinical biochemistry.
2021 Aug; 94(?):56-61. doi:
10.1016/j.clinbiochem.2021.04.023
. [PMID: 33933432] - Kourosh Hooshmand, Enoch Narh Kudjordjie, Mogens Nicolaisen, Oliver Fiehn, Inge S Fomsgaard. Mass Spectrometry-Based Metabolomics Reveals a Concurrent Action of Several Chemical Mechanisms in Arabidopsis-Fusarium oxysporum Compatible and Incompatible Interactions.
Journal of agricultural and food chemistry.
2020 Dec; 68(51):15335-15344. doi:
10.1021/acs.jafc.0c05144
. [PMID: 33305951] - Thainara Viana, Nicole Ferreira, Bruno Henriques, Carla Leite, Lucia De Marchi, Joana Amaral, Rosa Freitas, Eduarda Pereira. How safe are the new green energy resources for marine wildlife? The case of lithium.
Environmental pollution (Barking, Essex : 1987).
2020 Dec; 267(?):115458. doi:
10.1016/j.envpol.2020.115458
. [PMID: 33254618] - Luke Carroll, Shuwen Jiang, Johanna Irnstorfer, Sergi Beneyto, Marta T Ignasiak, Lars M Rasmussen, Adelina Rogowska-Wrzesinska, Michael J Davies. Oxidant-induced glutathionylation at protein disulfide bonds.
Free radical biology & medicine.
2020 11; 160(?):513-525. doi:
10.1016/j.freeradbiomed.2020.08.018
. [PMID: 32877736] - Geir Bjørklund, Alexey A Tinkov, Božena Hosnedlová, Rene Kizek, Olga P Ajsuvakova, Salvatore Chirumbolo, Margarita G Skalnaya, Massimiliano Peana, Maryam Dadar, Afaf El-Ansary, Hanan Qasem, James B Adams, Jan Aaseth, Anatoly V Skalny. The role of glutathione redox imbalance in autism spectrum disorder: A review.
Free radical biology & medicine.
2020 11; 160(?):149-162. doi:
10.1016/j.freeradbiomed.2020.07.017
. [PMID: 32745763] - Fang Cheng, Muhammad Ali, Ce Liu, Rui Deng, Zhihui Cheng. Garlic Allelochemical Diallyl Disulfide Alleviates Autotoxicity in the Root Exudates Caused by Long-Term Continuous Cropping of Tomato.
Journal of agricultural and food chemistry.
2020 Oct; 68(42):11684-11693. doi:
10.1021/acs.jafc.0c03894
. [PMID: 32991155]