5,6-dihydrouracil (BioDeep_00000003090)
Secondary id: BioDeep_00000267406, BioDeep_00000863416
natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite BioNovoGene_Lab2019
代谢物信息卡片
化学式: C4H6N2O2 (114.0429)
中文名称: 二氢尿嘧啶
谱图信息:
最多检出来源 Homo sapiens(blood) 25.84%
Last reviewed on 2024-09-13.
Cite this Page
5,6-dihydrouracil. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/5,6-dihydrouracil (retrieved
2024-12-22) (BioDeep RN: BioDeep_00000003090). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C1CNC(=O)NC1=O
InChI: InChI=1S/C4H6N2O2/c7-3-1-2-5-4(8)6-3/h1-2H2,(H2,5,6,7,8)
描述信息
Dihydrouracil belongs to the class of organic compounds known as pyrimidones. Pyrimidones are compounds that contain a pyrimidine ring, which bears a ketone. Pyrimidine is a 6-membered ring consisting of four carbon atoms and two nitrogen centers at the 1- and 3- ring positions. Dihydrouracil is an intermediate breakdown product of uracil. Dihydrouracil exists in all living organisms, ranging from bacteria to plants to humans. Within humans, dihydrouracil participates in a number of enzymatic reactions. In particular, dihydrouracil can be biosynthesized from uracil; which is mediated by the enzyme dihydropyrimidine dehydrogenase [NADP(+)]. The breakdown of uracil is a multistep reaction that leads to the production of beta-alanine. The reaction process begins with the enzyme known as dihydropyrimidine dehydrogenase (DHP), which catalyzes the reduction of uracil into dihydrouracil. Then the enzyme known as dihydropyrimidinase hydrolyzes dihydrouracil into N-carbamyl-beta-alanine. Finally, beta-ureidopropionase catalyzes the conversion of N-carbamyl-beta-alanine into beta-alanine. There is at least one metabolic disorder that is associated with altered levels of dihydrouracil. In particular, dihydropyrimidinase deficiency is an inborn metabolic disorder that leads to highly increased concentrations of dihydrouracil and 5,6-dihydrothymine, and moderately increased concentrations of uracil and thymine in urine. Dihydropyrimidinase deficiency can cause neurological and gastrointestinal problems in some affected individuals (OMIM: 222748). In particular, patients with dihydropyrimidinase deficiency exhibit a number of neurological abnormalities including intellectual disability, seizures, weak muscle tone (hypotonia), an abnormally small head size (microcephaly), and autistic behaviours that affect communication and social interaction. Gastrointestinal problems that occur in dihydropyrimidinase deficiency include backflow of acidic stomach contents into the esophagus (gastroesophageal reflux) and recurrent episodes of vomiting.
3,4-dihydrouracil, also known as 2,4-dioxotetrahydropyrimidine or 5,6-dihydro-2,4-dihydroxypyrimidine, is a member of the class of compounds known as pyrimidones. Pyrimidones are compounds that contain a pyrimidine ring, which bears a ketone. Pyrimidine is a 6-membered ring consisting of four carbon atoms and two nitrogen centers at the 1- and 3- ring positions. 3,4-dihydrouracil is soluble (in water) and a very weakly acidic compound (based on its pKa). 3,4-dihydrouracil can be found in a number of food items such as colorado pinyon, rocket salad (sspecies), wax gourd, and boysenberry, which makes 3,4-dihydrouracil a potential biomarker for the consumption of these food products. 3,4-dihydrouracil can be found primarily in blood, cerebrospinal fluid (CSF), saliva, and urine, as well as throughout most human tissues. 3,4-dihydrouracil exists in all living organisms, ranging from bacteria to humans. In humans, 3,4-dihydrouracil is involved in a couple of metabolic pathways, which include beta-alanine metabolism and pyrimidine metabolism. 3,4-dihydrouracil is also involved in several metabolic disorders, some of which include UMP synthase deficiency (orotic aciduria), dihydropyrimidinase deficiency, ureidopropionase deficiency, and carnosinuria, carnosinemia. Moreover, 3,4-dihydrouracil is found to be associated with dihydropyrimidine dehydrogenase deficiency and hypertension.
Acquisition and generation of the data is financially supported in part by CREST/JST.
COVID info from COVID-19 Disease Map
Corona-virus
Coronavirus
SARS-CoV-2
COVID-19
SARS-CoV
COVID19
SARS2
SARS
Dihydrouracil (5,6-Dihydrouracil), a metabolite of Uracil, can be used as a marker for identification of dihydropyrimidine dehydrogenase (DPD)-deficient[1][2].
Dihydrouracil (5,6-Dihydrouracil), a metabolite of Uracil, can be used as a marker for identification of dihydropyrimidine dehydrogenase (DPD)-deficient[1][2].
同义名列表
12 个代谢物同义名
5,6-Dihydro-2,4(1H,3H)-pyrimidinedione; 5,6-Dihydro-2,4-dihydroxypyrimidine; DIHYDROPYRIMIDINE-2,4(1H,3H)-dione; Dihydro-2,4(1H,3H)-pyrimidinedione; 2,4-Dioxotetrahydropyrimidine; Dihydro-pyrimidine-2,4-dione; 1,3-diazinane-2,4-dione; 5,6-Dihydrouracil; Dihydrouracile; dihydrouracil; Hydrouracil; 5,6-Dihydrouracil
数据库引用编号
27 个数据库交叉引用编号
- ChEBI: CHEBI:15901
- KEGG: C00429
- PubChem: 649
- HMDB: HMDB0000076
- Metlin: METLIN285
- DrugBank: DB01849
- Wikipedia: Dihydrouracil
- MetaCyc: DI-H-URACIL
- foodb: FDB030556
- chemspider: 629
- CAS: 504-07-4
- MoNA: PR100394
- MoNA: PS021102
- MoNA: PS099302
- MoNA: PS099301
- MoNA: PS021101
- PMhub: MS000008024
- PubChem: 3718
- PDB-CCD: DUC
- 3DMET: B00109
- NIKKAJI: J11.667J
- RefMet: Dihydrouracil
- medchemexpress: HY-W012926
- LOTUS: LTS0013122
- wikidata: Q409340
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-71
- KNApSAcK: 15901
分类词条
相关代谢途径
BioCyc(3)
PlantCyc(0)
代谢反应
628 个相关的代谢反应过程信息。
Reactome(146)
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Nucleotide metabolism:
H2O + XTP ⟶ PPi + XMP
- Nucleobase catabolism:
H2O + XTP ⟶ PPi + XMP
- Pyrimidine catabolism:
Dihydrothymine + H2O ⟶ UIBA
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide catabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Pyrimidine catabolism:
H2O + Hydrouracil ⟶ H+ + UPROP
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide catabolism:
H+ + TPNH + Ura ⟶ Hydrouracil + TPN
- Pyrimidine catabolism:
H+ + TPNH + Ura ⟶ Hydrouracil + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide catabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Pyrimidine catabolism:
H+ + TPNH + Ura ⟶ Hydrouracil + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide catabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Pyrimidine catabolism:
H+ + TPNH + Ura ⟶ Hydrouracil + TPN
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Nucleotide metabolism:
ATP + Thy-dRib ⟶ ADP + TMP
- Nucleotide catabolism:
H+ + TPNH + Ura ⟶ Hydrouracil + TPN
- Pyrimidine catabolism:
H+ + TPNH + Ura ⟶ Hydrouracil + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide catabolism:
H+ + TPNH + Ura ⟶ Hydrouracil + TPN
- Pyrimidine catabolism:
H+ + TPNH + Ura ⟶ Hydrouracil + TPN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide catabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Pyrimidine catabolism:
H+ + TPNH + Ura ⟶ Hydrouracil + TPN
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide catabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Pyrimidine catabolism:
H+ + TPNH + Ura ⟶ Hydrouracil + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide catabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Pyrimidine catabolism:
H+ + TPNH + Ura ⟶ Hydrouracil + TPN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Nucleotide metabolism:
H2O + XTP ⟶ PPi + XMP
- Nucleobase catabolism:
H2O + XTP ⟶ PPi + XMP
- Pyrimidine catabolism:
Dihydrothymine + H2O ⟶ UIBA
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide catabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Pyrimidine catabolism:
H+ + TPNH + Ura ⟶ Hydrouracil + TPN
- Pyrimidine catabolism:
Dihydrothymine + H2O ⟶ UIBA
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide catabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Pyrimidine catabolism:
H+ + TPNH + Ura ⟶ Hydrouracil + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Nucleotide metabolism:
H2O + XTP ⟶ PPi + XMP
- Nucleobase catabolism:
H2O + XTP ⟶ PPi + XMP
- Pyrimidine catabolism:
Dihydrothymine + H2O ⟶ UIBA
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Nucleotide metabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Nucleotide catabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Pyrimidine catabolism:
H2O + Hydrouracil ⟶ H+ + UPROP
- DNA Repair:
MUTYH:(OGUA:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base Excision Repair:
MUTYH:(OGUA:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base-Excision Repair, AP Site Formation:
MUTYH:(OGUA:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Depyrimidination:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- Cleavage of the damaged pyrimidine:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- DNA Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base Excision Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base-Excision Repair, AP Site Formation:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Depyrimidination:
TDG:(T:G)-dsDNA ⟶ TDG:AP-dsDNA + Thy
- Cleavage of the damaged pyrimidine:
TDG:(T:G)-dsDNA ⟶ TDG:AP-dsDNA + Thy
- DNA Repair:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- Base Excision Repair:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- Base-Excision Repair, AP Site Formation:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- Depyrimidination:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- Cleavage of the damaged pyrimidine:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- DNA Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base Excision Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base-Excision Repair, AP Site Formation:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Depyrimidination:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- Cleavage of the damaged pyrimidine:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- DNA Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base Excision Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base-Excision Repair, AP Site Formation:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Depyrimidination:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- Cleavage of the damaged pyrimidine:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- DNA Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base Excision Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base-Excision Repair, AP Site Formation:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Depyrimidination:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- Cleavage of the damaged pyrimidine:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- DNA Repair:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- Base Excision Repair:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- Base-Excision Repair, AP Site Formation:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- Depyrimidination:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- Cleavage of the damaged pyrimidine:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- DNA Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base Excision Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base-Excision Repair, AP Site Formation:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Depyrimidination:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- Cleavage of the damaged pyrimidine:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- DNA Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base Excision Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base-Excision Repair, AP Site Formation:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Depyrimidination:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- Cleavage of the damaged pyrimidine:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- DNA Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base Excision Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base-Excision Repair, AP Site Formation:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Depyrimidination:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- Cleavage of the damaged pyrimidine:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- DNA Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base Excision Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base-Excision Repair, AP Site Formation:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Depyrimidination:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- Cleavage of the damaged pyrimidine:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- DNA Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base Excision Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base-Excision Repair, AP Site Formation:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Depyrimidination:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- Cleavage of the damaged pyrimidine:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- DNA Repair:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- Base Excision Repair:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- Base-Excision Repair, AP Site Formation:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- Depyrimidination:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- Cleavage of the damaged pyrimidine:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- DNA Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base Excision Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base-Excision Repair, AP Site Formation:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Depyrimidination:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- Cleavage of the damaged pyrimidine:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- DNA Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base Excision Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base-Excision Repair, AP Site Formation:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Depyrimidination:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- Cleavage of the damaged pyrimidine:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- DNA Repair:
MUTYH:(OGUA:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base Excision Repair:
MUTYH:(OGUA:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base-Excision Repair, AP Site Formation:
MUTYH:(OGUA:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Depyrimidination:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- Cleavage of the damaged pyrimidine:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- DNA Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base Excision Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base-Excision Repair, AP Site Formation:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Depyrimidination:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- Cleavage of the damaged pyrimidine:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
BioCyc(21)
- superpathway of pyrimidine ribonucleosides degradation:
5,6-dihydrouracil + H2O ⟶ 3-ureidopropanoate + H+
- pyrimidine ribonucleosides degradation:
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- uracil degradation:
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- uracil degradation I (reductive):
3-ureidopropanoate + H+ + H2O ⟶ β-alanine + CO2 + ammonium
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- uracil degradation I (reductive):
5,6-dihydrouracil + H2O ⟶ 3-ureidopropionate + H+
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- uracil degradation I (reductive):
5,6-dihydrouracil + H2O ⟶ 3-ureidopropanoate + H+
- uracil degradation II (reductive):
3-ureidopropionate + H2O + H+ ⟶ β-alanine + CO2 + ammonia
- uracil degradation I (reductive):
5,6-dihydrouracil + H2O ⟶ 3-ureidopropanoate + H+
- uracil degradation I (reductive):
5,6-dihydrouracil + H2O ⟶ 3-ureidopropanoate + H+
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- superpathway of pyrimidine ribonucleosides degradation:
H2O + cytidine ⟶ ammonia + uridine
- uracil degradation I (reductive):
3-ureidopropionate + H2O + H+ ⟶ β-alanine + CO2 + ammonia
- superpathway of pyrimidine ribonucleosides degradation:
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- superpathway of pyrimidine ribonucleosides degradation:
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- uracil degradation I (reductive):
5,6-dihydrouracil + H2O ⟶ 3-ureidopropanoate + H+
WikiPathways(2)
- Pyrimidine metabolism and related diseases:
2-Deoxyuridine ⟶ Uracil
- Biomarkers for pyrimidine metabolism disorders:
dUMP ⟶ 2-Deoxyuridine
Plant Reactome(296)
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Amino acid metabolism:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Amino acid biosynthesis:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + UPROP ⟶ ammonia + b-Ala + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Beta-alanine biosynthesis III:
H2O + Hydrouracil ⟶ UPROP
INOH(3)
- Pyrimidine Nucleotides and Nucleosides metabolism ( Pyrimidine Nucleotides and Nucleosides metabolism ):
Deoxy-cytidine + H2O ⟶ Deoxy-uridine + NH3
- NADP+ + 5,6-Dihydro-uracil = NADPH + Uracil ( Pyrimidine Nucleotides and Nucleosides metabolism ):
NADPH + Uracil ⟶ 5,6-Dihydro-uracil + NADP+
- 5,6-Dihydro-uracil + H2O = Ureido-propanoic acid ( Pyrimidine Nucleotides and Nucleosides metabolism ):
5,6-Dihydro-uracil + H2O ⟶ Ureido-propanoic acid
PlantCyc(127)
- uracil degradation I (reductive):
5,6-dihydrouracil + H2O ⟶ 3-ureidopropanoate + H+
- uracil degradation I (reductive):
5,6-dihydrouracil + H2O ⟶ 3-ureidopropanoate + H+
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- uracil degradation I (reductive):
5,6-dihydrouracil + H2O ⟶ 3-ureidopropanoate + H+
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- uracil degradation I (reductive):
5,6-dihydrouracil + H2O ⟶ 3-ureidopropanoate + H+
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- uracil degradation I (reductive):
5,6-dihydrouracil + H2O ⟶ 3-ureidopropanoate + H+
- uracil degradation I (reductive):
5,6-dihydrouracil + H2O ⟶ 3-ureidopropanoate + H+
- uracil degradation I (reductive):
5,6-dihydrouracil + H2O ⟶ 3-ureidopropanoate + H+
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- uracil degradation I (reductive):
5,6-dihydrouracil + H2O ⟶ 3-ureidopropanoate + H+
- uracil degradation I (reductive):
5,6-dihydrouracil + H2O ⟶ 3-ureidopropanoate + H+
- uracil degradation I (reductive):
5,6-dihydrouracil + H2O ⟶ 3-ureidopropanoate + H+
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- uracil degradation I (reductive):
5,6-dihydrouracil + H2O ⟶ 3-ureidopropanoate + H+
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- uracil degradation I (reductive):
5,6-dihydrouracil + H2O ⟶ 3-ureidopropanoate + H+
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- uracil degradation I (reductive):
5,6-dihydrouracil + H2O ⟶ 3-ureidopropanoate + H+
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- uracil degradation I (reductive):
5,6-dihydrouracil + H2O ⟶ 3-ureidopropanoate + H+
- uracil degradation I (reductive):
5,6-dihydrouracil + H2O ⟶ 3-ureidopropanoate + H+
- uracil degradation I (reductive):
5,6-dihydrouracil + H2O ⟶ 3-ureidopropanoate + H+
- uracil degradation I (reductive):
5,6-dihydrouracil + H2O ⟶ 3-ureidopropanoate + H+
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- uracil degradation I (reductive):
5,6-dihydrouracil + H2O ⟶ 3-ureidopropanoate + H+
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- uracil degradation I (reductive):
5,6-dihydrouracil + H2O ⟶ 3-ureidopropanoate + H+
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- uracil degradation I (reductive):
5,6-dihydrouracil + H2O ⟶ 3-ureidopropanoate + H+
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- uracil degradation I (reductive):
5,6-dihydrouracil + H2O ⟶ 3-ureidopropanoate + H+
- uracil degradation I (reductive):
5,6-dihydrouracil + H2O ⟶ 3-ureidopropanoate + H+
- uracil degradation I (reductive):
5,6-dihydrouracil + H2O ⟶ 3-ureidopropanoate + H+
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- uracil degradation I (reductive):
5,6-dihydrouracil + H2O ⟶ 3-ureidopropanoate + H+
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- uracil degradation I (reductive):
5,6-dihydrouracil + H2O ⟶ 3-ureidopropanoate + H+
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- uracil degradation I (reductive):
5,6-dihydrouracil + H2O ⟶ 3-ureidopropanoate + H+
- uracil degradation I (reductive):
5,6-dihydrouracil + H2O ⟶ 3-ureidopropanoate + H+
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- uracil degradation I (reductive):
5,6-dihydrouracil + H2O ⟶ 3-ureidopropanoate + H+
- uracil degradation I (reductive):
5,6-dihydrouracil + H2O ⟶ 3-ureidopropanoate + H+
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- uracil degradation I (reductive):
5,6-dihydrouracil + H2O ⟶ 3-ureidopropanoate + H+
- uracil degradation I (reductive):
5,6-dihydrouracil + H2O ⟶ 3-ureidopropanoate + H+
- uracil degradation I (reductive):
3-ureidopropanoate + H+ + H2O ⟶ β-alanine + CO2 + ammonium
- uracil degradation I (reductive):
5,6-dihydrouracil + H2O ⟶ 3-ureidopropanoate + H+
- uracil degradation I (reductive):
5,6-dihydrouracil + H2O ⟶ 3-ureidopropanoate + H+
- uracil degradation I (reductive):
5,6-dihydrouracil + H2O ⟶ 3-ureidopropanoate + H+
- uracil degradation I (reductive):
5,6-dihydrouracil + H2O ⟶ 3-ureidopropanoate + H+
- uracil degradation I (reductive):
5,6-dihydrouracil + H2O ⟶ 3-ureidopropanoate + H+
- uracil degradation I (reductive):
5,6-dihydrouracil + H2O ⟶ 3-ureidopropanoate + H+
- uracil degradation I (reductive):
5,6-dihydrouracil + H2O ⟶ 3-ureidopropanoate + H+
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- uracil degradation I (reductive):
5,6-dihydrouracil + H2O ⟶ 3-ureidopropanoate + H+
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- uracil degradation I (reductive):
5,6-dihydrouracil + H2O ⟶ 3-ureidopropanoate + H+
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- uracil degradation I (reductive):
5,6-dihydrouracil + H2O ⟶ 3-ureidopropanoate + H+
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- uracil degradation I (reductive):
5,6-dihydrouracil + H2O ⟶ 3-ureidopropanoate + H+
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- uracil degradation I (reductive):
5,6-dihydrouracil + H2O ⟶ 3-ureidopropanoate + H+
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- uracil degradation I (reductive):
5,6-dihydrouracil + H2O ⟶ 3-ureidopropanoate + H+
- uracil degradation I (reductive):
5,6-dihydrouracil + H2O ⟶ 3-ureidopropanoate + H+
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- uracil degradation I (reductive):
5,6-dihydrouracil + H2O ⟶ 3-ureidopropanoate + H+
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- uracil degradation I (reductive):
5,6-dihydrouracil + H2O ⟶ 3-ureidopropanoate + H+
- uracil degradation I (reductive):
5,6-dihydrouracil + H2O ⟶ 3-ureidopropanoate + H+
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- uracil degradation I (reductive):
5,6-dihydrouracil + H2O ⟶ 3-ureidopropanoate + H+
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- uracil degradation I (reductive):
5,6-dihydrouracil + H2O ⟶ 3-ureidopropanoate + H+
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- uracil degradation I (reductive):
5,6-dihydrouracil + H2O ⟶ 3-ureidopropanoate + H+
- uracil degradation I (reductive):
5,6-dihydrouracil + H2O ⟶ 3-ureidopropanoate + H+
- uracil degradation I (reductive):
5,6-dihydrouracil + H2O ⟶ 3-ureidopropanoate + H+
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- uracil degradation I (reductive):
5,6-dihydrouracil + H2O ⟶ 3-ureidopropanoate + H+
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- uracil degradation I (reductive):
5,6-dihydrouracil + H2O ⟶ 3-ureidopropanoate + H+
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- uracil degradation I (reductive):
5,6-dihydrouracil + H2O ⟶ 3-ureidopropanoate + H+
- uracil degradation I (reductive):
5,6-dihydrouracil + H2O ⟶ 3-ureidopropanoate + H+
- uracil degradation I (reductive):
5,6-dihydrouracil + H2O ⟶ 3-ureidopropanoate + H+
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
COVID-19 Disease Map(1)
- @COVID-19 Disease
Map["name"]:
2-Methyl-3-acetoacetyl-CoA + Coenzyme A ⟶ Acetyl-CoA + Propanoyl-CoA
PathBank(32)
- Pyrimidine Metabolism:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- beta-Alanine Metabolism:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- GABA-Transaminase Deficiency:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- beta-Ureidopropionase Deficiency:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- UMP Synthase Deficiency (Orotic Aciduria):
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- Dihydropyrimidinase Deficiency:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- MNGIE (Mitochondrial Neurogastrointestinal Encephalopathy):
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- Ureidopropionase Deficiency:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- Carnosinuria, Carnosinemia:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- beta-Alanine Metabolism:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- Pyrimidine Metabolism:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- beta-Ureidopropionase Deficiency:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- Dihydropyrimidinase Deficiency:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- GABA-Transaminase Deficiency:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- UMP Synthase Deficiency (Orotic Aciduria):
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- MNGIE (Mitochondrial Neurogastrointestinal Encephalopathy):
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- Ureidopropionase Deficiency:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- Carnosinuria, Carnosinemia:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- beta-Alanine Metabolism:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- Pyrimidine Metabolism:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- beta-Alanine Metabolism:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- Pyrimidine Metabolism:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- beta-Alanine Metabolism:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- Pyrimidine Metabolism:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- beta-Alanine Metabolism:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- Pyrimidine Metabolism:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- beta-Ureidopropionase Deficiency:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- Dihydropyrimidinase Deficiency:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- GABA-Transaminase Deficiency:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
- UMP Synthase Deficiency (Orotic Aciduria):
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- MNGIE (Mitochondrial Neurogastrointestinal Encephalopathy):
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- Carnosinuria, Carnosinemia:
1,3-Diaminopropane + Oxygen + Water ⟶ 3-Aminopropionaldehyde + Ammonia + Hydrogen peroxide
PharmGKB(0)
9 个相关的物种来源信息
- 3702 - Arabidopsis thaliana:
- 7091 - Bombyx Mori L.: -
- 6669 - Daphnia pulex: 10.1038/SREP25125
- 3039 - Euglena gracilis: 10.3389/FBIOE.2021.662655
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S11306-016-1051-4
- 72228 - Ophiocordyceps sinensis: 10.1016/J.JEP.2013.10.064
- 382 - Sinorhizobium meliloti: 10.1021/ACSSYNBIO.8B00158
- 29760 - Vitis vinifera: 10.3389/FMICB.2017.00457
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Beatrice Campanella, Tommaso Lomonaco, Edoardo Benedetti, Massimo Onor, Riccardo Nieri, Federica Marmorino, Chiara Cremolini, Emilia Bramanti. Fast, Direct Dihydrouracil Quantitation in Human Saliva: Method Development, Validation, and Application.
International journal of environmental research and public health.
2022 05; 19(10):. doi:
10.3390/ijerph19106033
. [PMID: 35627569] - Sara Capiau, Anniek Van Landschoot, Tim Reyns, Hedwig Stepman. Pre-analytical considerations for the analysis of uracil and 5,6-dihydrouracil in heparin plasma.
Clinical chemistry and laboratory medicine.
2022 04; 60(5):e112-e115. doi:
10.1515/cclm-2021-0921
. [PMID: 35073467] - Kathryn E Burns, Ottiniel Chavani, Soo Hee Jeong, John A Duley, David Porter, Michael Findlay, R Matthew Strother, Nuala A Helsby. Comparison of a thymine challenge test and endogenous uracil-dihydrouracil levels for assessment of fluoropyrimidine toxicity risk.
Cancer chemotherapy and pharmacology.
2021 05; 87(5):711-716. doi:
10.1007/s00280-021-04240-2
. [PMID: 33687515] - Nicolas Pallet, Salma Hamdane, Simon Garinet, Hélène Blons, Aziz Zaanan, Elena Paillaud, Julien Taieb, Olivier Laprevote, Marie-Anne Loriot, Céline Narjoz. A comprehensive population-based study comparing the phenotype and genotype in a pretherapeutic screen of dihydropyrimidine dehydrogenase deficiency.
British journal of cancer.
2020 09; 123(5):811-818. doi:
10.1038/s41416-020-0962-z
. [PMID: 32595208] - Clémence Marin, Anis Krache, Chloé Palmaro, Mathilde Lucas, Valentin Hilaire, Renée Ugdonne, Bénédicte De Victor, Sylvie Quaranta, Caroline Solas, Bruno Lacarelle, Joseph Ciccolini. A Simple and Rapid UPLC-UV Method for Detecting DPD Deficiency in Patients With Cancer.
Clinical and translational science.
2020 07; 13(4):761-768. doi:
10.1111/cts.12762
. [PMID: 32058656] - Xandra García-González, Bartosz Kaczmarczyk, Judith Abarca-Zabalía, Fabienne Thomas, Pilar García-Alfonso, Luis Robles, Vanessa Pachón, Ángeles Vaz, Sara Salvador-Martín, María Sanjurjo-Sáez, Luis A López-Fernández. New DPYD variants causing DPD deficiency in patients treated with fluoropyrimidine.
Cancer chemotherapy and pharmacology.
2020 07; 86(1):45-54. doi:
10.1007/s00280-020-04093-1
. [PMID: 32529295] - Tiphaine Robin, Franck Saint-Marcoux, Doriane Toinon, Naïma Tafzi, Pierre Marquet, Souleiman El Balkhi. Automatic quantification of uracil and dihydrouracil in plasma.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2020 Apr; 1142(?):122038. doi:
10.1016/j.jchromb.2020.122038
. [PMID: 32169798] - Jihane Basbous, Antoine Aze, Laurent Chaloin, Rana Lebdy, Dana Hodroj, Cyril Ribeyre, Marion Larroque, Caitlin Shepard, Baek Kim, Alain Pruvost, Jérôme Moreaux, Domenico Maiorano, Marcel Mechali, Angelos Constantinou. Dihydropyrimidinase protects from DNA replication stress caused by cytotoxic metabolites.
Nucleic acids research.
2020 02; 48(4):1886-1904. doi:
10.1093/nar/gkz1162
. [PMID: 31853544] - Shinji Kobuchi, Mako Akutagawa, Yukako Ito, Toshiyuki Sakaeda. Association between the pharmacokinetics of capecitabine and the plasma dihydrouracil to uracil ratio in rat: A surrogate biomarker for dihydropyrimidine dehydrogenase activity.
Biopharmaceutics & drug disposition.
2019 Jan; 40(1):44-48. doi:
10.1002/bdd.2168
. [PMID: 30592773] - Linda M Henricks, Bart A W Jacobs, Didier Meulendijks, Dick Pluim, Daan van den Broek, Niels de Vries, Hilde Rosing, Jos H Beijnen, Alwin D R Huitema, Henk-Jan Guchelaar, Annemieke Cats, Jan H M Schellens. Food-effect study on uracil and dihydrouracil plasma levels as marker for dihydropyrimidine dehydrogenase activity in human volunteers.
British journal of clinical pharmacology.
2018 12; 84(12):2761-2769. doi:
10.1111/bcp.13719
. [PMID: 30047584] - Olavo Vicente Neto, Suziane Raymundo, Maria Alice Franzoi, Andiara do Carmo Artmann, Mariane Tegner, Victoria Vendramini Müller, Roberta Zilles Hahn, Gustavo Vasconcelos Alves, Gilberto Schwartsmann, Rafael Linden, Marina Venzon Antunes. DPD functional tests in plasma, fresh saliva and dried saliva samples as predictors of 5-fluorouracil exposure and occurrence of drug-related severe toxicity.
Clinical biochemistry.
2018 Jun; 56(?):18-25. doi:
10.1016/j.clinbiochem.2018.04.001
. [PMID: 29625079] - Bart A W Jacobs, Nikol Snoeren, Morsal Samim, Hilde Rosing, Niels de Vries, Maarten J Deenen, Jos H Beijnen, Jan H M Schellens, Miriam Koopman, Richard van Hillegersberg. The impact of liver resection on the dihydrouracil:uracil plasma ratio in patients with colorectal liver metastases.
European journal of clinical pharmacology.
2018 Jun; 74(6):737-744. doi:
10.1007/s00228-018-2426-4
. [PMID: 29430582] - Yoko Nakajima, Judith Meijer, Doreen Dobritzsch, Tetsuya Ito, Chunhua Zhang, Xu Wang, Yoriko Watanabe, Kyoko Tashiro, Rutger Meinsma, Jeroen Roelofsen, Lida Zoetekouw, André B P van Kuilenburg. Dihydropyrimidinase deficiency in four East Asian patients due to novel and rare DPYS mutations affecting protein structural integrity and catalytic activity.
Molecular genetics and metabolism.
2017 12; 122(4):216-222. doi:
10.1016/j.ymgme.2017.10.003
. [PMID: 29054612] - Wen Pan, Yuandong Li, Yan Feng, Fan Yang, Haizhou Liu. A new sample preparation and separation combination for the precise, accurate, and simultaneous determination of uracil and dihydrouracil in human plasma by reversed-phase HPLC.
Journal of separation science.
2017 Oct; 40(19):3763-3770. doi:
10.1002/jssc.201700279
. [PMID: 28726286] - Didier Meulendijks, Linda M Henricks, Bart A W Jacobs, Abidin Aliev, Maarten J Deenen, Niels de Vries, Hilde Rosing, Erik van Werkhoven, Anthonius de Boer, Jos H Beijnen, Caroline M P W Mandigers, Marcel Soesan, Annemieke Cats, Jan H M Schellens. Pretreatment serum uracil concentration as a predictor of severe and fatal fluoropyrimidine-associated toxicity.
British journal of cancer.
2017 May; 116(11):1415-1424. doi:
10.1038/bjc.2017.94
. [PMID: 28427087] - Andrés Fernando Andrade Galarza, Rafael Linden, Marina Venzon Antunes, Roberta Zilles Hahn, Suziane Raymundo, Anne Caroline Cezimbra da Silva, Rodrigo Staggemeier, Fernando Rosado Spilki, Gilberto Schwartsmann. Endogenous plasma and salivary uracil to dihydrouracil ratios and DPYD genotyping as predictors of severe fluoropyrimidine toxicity in patients with gastrointestinal malignancies.
Clinical biochemistry.
2016 Nov; 49(16-17):1221-1226. doi:
10.1016/j.clinbiochem.2016.07.004
. [PMID: 27399164] - Bart A W Jacobs, Maarten J Deenen, Dick Pluim, J G Coen van Hasselt, Martin D Krähenbühl, Robin M J M van Geel, Niels de Vries, Hilde Rosing, Didier Meulendijks, Artur M Burylo, Annemieke Cats, Jos H Beijnen, Alwin D R Huitema, Jan H M Schellens. Pronounced between-subject and circadian variability in thymidylate synthase and dihydropyrimidine dehydrogenase enzyme activity in human volunteers.
British journal of clinical pharmacology.
2016 09; 82(3):706-16. doi:
10.1111/bcp.13007
. [PMID: 27161955] - Bart A W Jacobs, Hilde Rosing, Niels de Vries, Didier Meulendijks, Linda M Henricks, Jan H M Schellens, Jos H Beijnen. Development and validation of a rapid and sensitive UPLC-MS/MS method for determination of uracil and dihydrouracil in human plasma.
Journal of pharmaceutical and biomedical analysis.
2016 Jul; 126(?):75-82. doi:
10.1016/j.jpba.2016.04.039
. [PMID: 27179185] - Maurice C van Staveren, Andre B P van Kuilenburg, Henk-Jan Guchelaar, Judith Meijer, Cornelis J A Punt, Robert S de Jong, Hans Gelderblom, Jan Gerard Maring. Evaluation of an oral uracil loading test to identify DPD-deficient patients using a limited sampling strategy.
British journal of clinical pharmacology.
2016 Mar; 81(3):553-61. doi:
10.1111/bcp.12821
. [PMID: 26551538] - F Thomas, I Hennebelle, C Delmas, I Lochon, C Dhelens, C Garnier Tixidre, A Bonadona, N Penel, A Goncalves, J P Delord, C Toulas, E Chatelut. Genotyping of a family with a novel deleterious DPYD mutation supports the pretherapeutic screening of DPD deficiency with dihydrouracil/uracil ratio.
Clinical pharmacology and therapeutics.
2016 Feb; 99(2):235-42. doi:
10.1002/cpt.210
. [PMID: 26265035] - Roberta Zilles Hahn, Andrés Fernando Andrade Galarza, Anelise Schneider, Marina Venzon Antunes, Gilberto Schwartsmann, Rafael Linden. Improved determination of uracil and dihydrouracil in plasma after a loading oral dose of uracil using high-performance liquid chromatography with photodiode array detection and porous graphitic carbon stationary phase.
Clinical biochemistry.
2015 Sep; 48(13-14):915-8. doi:
10.1016/j.clinbiochem.2015.04.019
. [PMID: 25940841] - Drupad K Trivedi, Ray K Iles. Shotgun metabolomic profiles in maternal urine identify potential mass spectral markers of abnormal fetal biochemistry - dihydrouracil and progesterone in the metabolism of Down syndrome.
Biomedical chromatography : BMC.
2015 Aug; 29(8):1173-83. doi:
10.1002/bmc.3404
. [PMID: 25545476] - Maurice C van Staveren, Frans Opdam, Henk-Jan Guchelaar, André B P van Kuilenburg, Jan Gerard Maring, Hans Gelderblom. Influence of metastatic disease on the usefulness of uracil pharmacokinetics as a screening tool for DPD activity in colorectal cancer patients.
Cancer chemotherapy and pharmacology.
2015 Jul; 76(1):47-52. doi:
10.1007/s00280-015-2746-3
. [PMID: 25957957] - Johanna Sistonen, Barbara Büchel, Tanja K Froehlich, Dominic Kummer, Stefano Fontana, Markus Joerger, André B P van Kuilenburg, Carlo R Largiadèr. Predicting 5-fluorouracil toxicity: DPD genotype and 5,6-dihydrouracil:uracil ratio.
Pharmacogenomics.
2014 Sep; 15(13):1653-66. doi:
10.2217/pgs.14.126
. [PMID: 25410891] - C F Saba, C W Schmiedt, K G Freeman, G L Edwards. Indirect assessment of dihydropyrimidine dehydrogenase activity in cats.
Veterinary and comparative oncology.
2013 Dec; 11(4):265-71. doi:
10.1111/vco.12064
. [PMID: 24007333] - Shinji Kobuchi, Shota Kuwano, Kazuki Imoto, Kae Okada, Asako Nishimura, Yukako Ito, Nobuhito Shibata, Kanji Takada. A predictive biomarker for altered 5-fluorouracil pharmacokinetics following repeated administration in a rat model of colorectal cancer.
Biopharmaceutics & drug disposition.
2013 Oct; 34(7):365-76. doi:
10.1002/bdd.1851
. [PMID: 23836081] - C W Yeung, M M Yau, C K Ma, T S Siu, Sidney Tam, C W Lam. Diagnosis of dihydropyrimidinase deficiency in a Chinese boy with dihydropyrimidinuria.
Hong Kong medical journal = Xianggang yi xue za zhi.
2013 Jun; 19(3):272-5. doi:
10.12809/hkmj133598
. [PMID: 23732435] - Shinji Kobuchi, Yukako Ito, Kae Okada, Kazuki Imoto, Shota Kuwano, Kanji Takada. Pharmacokinetic/pharmacodynamic modeling of 5-fluorouracil by using a biomarker to predict tumor growth in a rat model of colorectal cancer.
Journal of pharmaceutical sciences.
2013 Jun; 102(6):2056-2067. doi:
10.1002/jps.23547
. [PMID: 23592368] - Shinji Kobuchi, Yukako Ito, Kae Okada, Kazuki Imoto, Shota Kuwano, Kanji Takada. Pre-therapeutic assessment of plasma dihydrouracil/uracil ratio for predicting the pharmacokinetic parameters of 5-fluorouracil and tumor growth in a rat model of colorectal cancer.
Biological & pharmaceutical bulletin.
2013; 36(6):907-16. doi:
10.1248/bpb.b12-00819
. [PMID: 23575271] - François Coudoré, Denis Roche, Sandrine Lefeuvre, Delphine Faussot, Eliane M Billaud, Marie-Anne Loriot, Philippe Beaune. Validation of an ultra-high performance liquid chromatography tandem mass spectrometric method for quantifying uracil and 5,6-dihydrouracil in human plasma.
Journal of chromatographic science.
2012 Nov; 50(10):877-84. doi:
10.1093/chromsci/bms085
. [PMID: 22689904] - M B Garg, L F Lincz, K Adler, F E Scorgie, S P Ackland, J A Sakoff. Predicting 5-fluorouracil toxicity in colorectal cancer patients from peripheral blood cell telomere length: a multivariate analysis.
British journal of cancer.
2012 Oct; 107(9):1525-33. doi:
10.1038/bjc.2012.421
. [PMID: 22990653] - Yvonne Wettergren, Göran Carlsson, Elisabeth Odin, Bengt Gustavsson. Pretherapeutic uracil and dihydrouracil levels of colorectal cancer patients are associated with sex and toxic side effects during adjuvant 5-fluorouracil-based chemotherapy.
Cancer.
2012 Jun; 118(11):2935-43. doi:
10.1002/cncr.26595
. [PMID: 22020693] - André B P van Kuilenburg, Peter Häusler, Andreas Schalhorn, Michael W T Tanck, Johannes H Proost, Christoph Terborg, Detlev Behnke, Wolfgang Schwabe, Kati Jabschinsky, Jan Gerard Maring. Evaluation of 5-fluorouracil pharmacokinetics in cancer patients with a c.1905+1G>A mutation in DPYD by means of a Bayesian limited sampling strategy.
Clinical pharmacokinetics.
2012 Mar; 51(3):163-74. doi:
10.1007/bf03257473
. [PMID: 22339448] - Isabela Costa César, Geraldo F Cunha-Júnior, Ricardo M Duarte Byrro, Luiz Gonzaga Vaz Coelho, Gerson A Pianetti. A rapid HPLC-ESI-MS/MS method for determination of dihydrouracil/uracil ratio in plasma: evaluation of toxicity to 5-flurouracil in patients with gastrointestinal cancer.
Therapeutic drug monitoring.
2012 Feb; 34(1):59-66. doi:
10.1097/ftd.0b013e318240405f
. [PMID: 22210098] - Barna Budai, Viktor Komlósi, Vilmos Adleff, Éva Pap, Andrea Réti, Tünde Nagy, Judit Kralovánszky, István Láng, Erika Hitre. Impact of SHMT1 polymorphism on the clinical outcome of patients with metastatic colorectal cancer treated with first-line FOLFIRI+bevacizumab.
Pharmacogenetics and genomics.
2012 Jan; 22(1):69-72. doi:
10.1097/fpc.0b013e32834d8376
. [PMID: 22044939] - Chad W Schmiedt, Corey F Saba, Kimberly G Freeman, Gaylen L Edwards. Assessment of plasma uracil-to-dihydrouracil concentration ratio as an indicator of dihydropyrimidine dehydrogenase activity in clinically normal dogs and dogs with neoplasia or renal insufficiency.
American journal of veterinary research.
2012 Jan; 73(1):119-24. doi:
10.2460/ajvr.73.1.119
. [PMID: 22204297] - Maurice C van Staveren, Barbara Theeuwes-Oonk, Henk Jan Guchelaar, André B P van Kuilenburg, Jan Gerard Maring. Pharmacokinetics of orally administered uracil in healthy volunteers and in DPD-deficient patients, a possible tool for screening of DPD deficiency.
Cancer chemotherapy and pharmacology.
2011 Dec; 68(6):1611-7. doi:
10.1007/s00280-011-1661-5
. [PMID: 21590448] - Johannes Gerlach, Monika Löffler, Martin K-H Schäfer. Gene expression of enzymes required for the de novo synthesis and degradation of pyrimidines in rat peripheral tissues and brain.
Nucleosides, nucleotides & nucleic acids.
2011 Dec; 30(12):1147-54. doi:
10.1080/15257770.2011.603712
. [PMID: 22132969] - E Giorgio, C Caroti, F Mattioli, V Uliana, M I Parodi, Mauro D'Amico, C Fucile, V Marini, F Forzano, G Cassola, A Martelli, F Faravelli, E Di Maria. Severe fluoropyrimidine-related toxicity: clinical implications of DPYD analysis and UH2/U ratio evaluation.
Cancer chemotherapy and pharmacology.
2011 Nov; 68(5):1355-61. doi:
10.1007/s00280-011-1709-6
. [PMID: 21833589] - Stefanie Cornelius, Sandra Witz, Hardy Rolletschek, Torsten Möhlmann. Pyrimidine degradation influences germination seedling growth and production of Arabidopsis seeds.
Journal of experimental botany.
2011 Nov; 62(15):5623-32. doi:
10.1093/jxb/err251
. [PMID: 21865177] - Pierre-Yves Cordier, André Nau, Joseph Ciccolini, Manuela Oliver, Cédric Mercier, Bruno Lacarelle, Eric Peytel. 5-FU-induced neurotoxicity in cancer patients with profound DPD deficiency syndrome: a report of two cases.
Cancer chemotherapy and pharmacology.
2011 Sep; 68(3):823-6. doi:
10.1007/s00280-011-1666-0
. [PMID: 21553285] - Sabine Weidensee, Peter Goettig, Marko Bertone, Dorothea Haas, Viktor Magdolen, Marion Kiechle, Alfons Meindl, André B P van Kuilenburg, Eva Gross. A mild phenotype of dihydropyrimidine dehydrogenase deficiency and developmental retardation associated with a missense mutation affecting cofactor binding.
Clinical biochemistry.
2011 Jun; 44(8-9):722-4. doi:
10.1016/j.clinbiochem.2011.03.033
. [PMID: 21420945] - Masashi Nagata, Yumi Hidaka, Kinta Hatakeyama, Yohei Kawano, Tomomi Iwakiri, Manabu Okumura, Kazuhiko Arimori. Hepatic fibrosis does not affect the pharmacokinetics of 5-fluorouracil in rats.
Biopharmaceutics & drug disposition.
2011 Mar; 32(2):126-30. doi:
10.1002/bdd.744
. [PMID: 21341281] - M W Saif, L S Rosen, K Saito, C Zergebel, L Ravage-Mass, D S Mendelson. A phase I study evaluating the effect of CDHP as a component of S-1 on the pharmacokinetics of 5-fluorouracil.
Anticancer research.
2011 Feb; 31(2):625-32. doi:
. [PMID: 21378348]
- Chen Guang Yang, Joseph Ciccolini, Aurore Blesius, Laetitia Dahan, Danielle Bagarry-Liegey, Caroline Brunet, Arthur Varoquaux, Nicolas Frances, Hafedh Marouani, Antoine Giovanni, Rose-Marie Ferri-Dessens, Mohamed Chefrour, Roger Favre, Florence Duffaud, Jean-François Seitz, Michel Zanaret, Bruno Lacarelle, Cédric Mercier. DPD-based adaptive dosing of 5-FU in patients with head and neck cancer: impact on treatment efficacy and toxicity.
Cancer chemotherapy and pharmacology.
2011 Jan; 67(1):49-56. doi:
10.1007/s00280-010-1282-4
. [PMID: 20204365] - Le-Le Hu, Chen Chen, Tao Huang, Yu-Dong Cai, Kuo-Chen Chou. Predicting biological functions of compounds based on chemical-chemical interactions.
PloS one.
2011; 6(12):e29491. doi:
10.1371/journal.pone.0029491
. [PMID: 22220213] - Makoto Takei, Yosuke Ando, Wataru Saitoh, Tomoe Tanimoto, Naoki Kiyosawa, Sunao Manabe, Atsushi Sanbuissho, Osamu Okazaki, Haruo Iwabuchi, Takashi Yamoto, Klaus-Peter Adam, James E Weiel, John A Ryals, Michael V Milburn, Lining Guo. Ethylene glycol monomethyl ether-induced toxicity is mediated through the inhibition of flavoprotein dehydrogenase enzyme family.
Toxicological sciences : an official journal of the Society of Toxicology.
2010 Dec; 118(2):643-52. doi:
10.1093/toxsci/kfq211
. [PMID: 20616209] - Seiji Naito, Masatoshi Eto, Nobuo Shinohara, Yoshihiko Tomita, Masato Fujisawa, Mikio Namiki, Masaharu Nishikido, Michiyuki Usami, Taiji Tsukamoto, Hideyuki Akaza. Multicenter phase II trial of S-1 in patients with cytokine-refractory metastatic renal cell carcinoma.
Journal of clinical oncology : official journal of the American Society of Clinical Oncology.
2010 Dec; 28(34):5022-9. doi:
10.1200/jco.2010.29.1203
. [PMID: 20975067] - Antonella Perotti, Alberta Locatelli, Cristiana Sessa, Dagmar Hess, Lucia Viganò, Giuseppe Capri, Michela Maur, Thomas Cerny, Sara Cresta, Federico Rojo, Joan Albanell, Silvia Marsoni, Irene Corradino, Lori Berk, Victor M Rivera, Frank Haluska, Luca Gianni. Phase IB study of the mTOR inhibitor ridaforolimus with capecitabine.
Journal of clinical oncology : official journal of the American Society of Clinical Oncology.
2010 Oct; 28(30):4554-61. doi:
10.1200/jco.2009.27.5867
. [PMID: 20855840] - André B P van Kuilenburg, Doreen Dobritzsch, Judith Meijer, Rutger Meinsma, Jean-François Benoist, Birgit Assmann, Susanne Schubert, Georg F Hoffmann, Marinus Duran, Maaike C de Vries, Gerd Kurlemann, François J M Eyskens, Lawrence Greed, Jörn Oliver Sass, K Otfried Schwab, Adrian C Sewell, John Walter, Andreas Hahn, Lida Zoetekouw, Antonia Ribes, Suzanne Lind, Raoul C M Hennekam. Dihydropyrimidinase deficiency: Phenotype, genotype and structural consequences in 17 patients.
Biochimica et biophysica acta.
2010 Jul; 1802(7-8):639-48. doi:
10.1016/j.bbadis.2010.03.013
. [PMID: 20362666] - M H Kristensen, P Pedersen, J Mejer. The value of dihydrouracil/uracil plasma ratios in predicting 5-fluorouracil-related toxicity in colorectal cancer patients.
The Journal of international medical research.
2010 Jul; 38(4):1313-23. doi:
10.1177/147323001003800413
. [PMID: 20926004] - A B P van Kuilenburg, J Meijer, G Gökcay, T Baykal, M E Rubio-Gozalbo, A N P M Mul, C E M de Die-Smulders, P Weber, A Capone Mori, J Bierau, B Fowler, K Macke, J O Sass, R Meinsma, J B Hennermann, P Miny, L Zoetekouw, J Roelofsen, R Vijzelaar, J Nicolai, R C M Hennekam. Dihydropyrimidine dehydrogenase deficiency caused by a novel genomic deletion c.505_513del of DPYD.
Nucleosides, nucleotides & nucleic acids.
2010 Jun; 29(4-6):509-14. doi:
10.1080/15257771003730227
. [PMID: 20544545] - Kunihiro Yoshisue, Shohei Kanie, Takako Nishimura, Junko Chikamoto, Sekio Nagayama. Effect of dimethylnitrosamine-induced liver dysfunction on the pharmacokinetics of 5-fluorouracil after administration of S-1, an antitumour drug, to rats.
The Journal of pharmacy and pharmacology.
2009 Dec; 61(12):1643-51. doi:
10.1211/jpp/61.12.0009
. [PMID: 19958587] - M Wasif Saif, Adrienne Choma, Salvatore J Salamone, Edward Chu. Pharmacokinetically guided dose adjustment of 5-fluorouracil: a rational approach to improving therapeutic outcomes.
Journal of the National Cancer Institute.
2009 Nov; 101(22):1543-52. doi:
10.1093/jnci/djp328
. [PMID: 19841331] - R Ben Fredj, E Gross, S Ben Ahmed, H Hassine, S Saguem. The dihydrouracil/uracil ratio in plasma, clinical and genetic analysis for screening of dihydropyrimidine dehydrogenase deficiency in colorectal cancer patients treated with 5-fluorouracil.
Pathologie-biologie.
2009 Sep; 57(6):470-6. doi:
10.1016/j.patbio.2008.05.001
. [PMID: 18619742] - K Fujita, H Nakayama, W Ichikawa, W Yamamoto, H Endo, F Nagashima, R Tanaka, T Miya, Y Sunakawa, K Yamashita, K Mizuno, H Ishida, K Araki, M Narabayashi, K Miwa, Y Ando, Y Akiyama, K Kawara, T Hirose, Y Sasaki. Pharmacokinetics of 5-fluorouracil in elderly Japanese patients with cancer treated with S-1 (a combination of tegafur and dihydropyrimidine dehydrogenase inhibitor 5-chloro-2,4-dihydroxypyridine).
Drug metabolism and disposition: the biological fate of chemicals.
2009 Jul; 37(7):1375-7. doi:
10.1124/dmd.109.027052
. [PMID: 19389859] - Tetsuya Horiuchi, Yoshiharu Shono, Takashi Miyabe, Yumi Nakajima, Isao Akiyama, Kagehiro Uchida, Yoshikazu Fujita, Kenji Hasegawa, Katsuyoshi Tabuse. [Significance of urinary uracil measurement following administration of DPD inhibitory fluoropyrimidine(DIF)products].
Gan to kagaku ryoho. Cancer & chemotherapy.
2009 Apr; 36(4):683-6. doi:
. [PMID: 19381049]
- Rita Zrenner, Heike Riegler, Cathleen R Marquard, Peter R Lange, Claudia Geserick, Caren E Bartosz, Celine T Chen, Robert D Slocum. A functional analysis of the pyrimidine catabolic pathway in Arabidopsis.
The New phytologist.
2009; 183(1):117-132. doi:
10.1111/j.1469-8137.2009.02843.x
. [PMID: 19413687] - Rūta Svobaite, Isabelle Solassol, Frederic Pinguet, Liudas Ivanauskas, Janine Brès, Françoise M M Bressolle. HPLC with UV or mass spectrometric detection for quantifying endogenous uracil and dihydrouracil in human plasma.
Clinical chemistry.
2008 Sep; 54(9):1463-72. doi:
10.1373/clinchem.2007.102251
. [PMID: 18635751] - Floyd F Snyder, Robert J Carter, Ernest Fung, Stephen D Hodges, Kevin B Mantik. Application of metabolomic principles to disorders of nucleotide metabolism reveals new metabolic perturbations.
Nucleosides, nucleotides & nucleic acids.
2008 Jun; 27(6):641-7. doi:
10.1080/15257770802143848
. [PMID: 18600520] - Y-F He, W Wei, X Zhang, Y-H Li, S Li, F-H Wang, X-B Lin, Z-M Li, D-S Zhang, H-Q Huang, B Hu, W-Q Jiang. Analysis of the DPYD gene implicated in 5-fluorouracil catabolism in Chinese cancer patients.
Journal of clinical pharmacy and therapeutics.
2008 Jun; 33(3):307-14. doi:
10.1111/j.1365-2710.2008.00898.x
. [PMID: 18452418] - Miyako Kusano, Atsushi Fukushima, Masanori Arita, Pär Jonsson, Thomas Moritz, Makoto Kobayashi, Naomi Hayashi, Takayuki Tohge, Kazuki Saito. Unbiased characterization of genotype-dependent metabolic regulations by metabolomic approach in Arabidopsis thaliana.
BMC systems biology.
2007 Nov; 1(?):53. doi:
10.1186/1752-0509-1-53
. [PMID: 18028551] - Woo Young Kim, Bunzo Nakata, Kosei Hirakawa. Alternative pharmacokinetics of S-1 components, 5-fluorouracil, dihydrofluorouracil and alpha-fluoro-beta-alanine after oral administration of S-1 following total gastrectomy.
Cancer science.
2007 Oct; 98(10):1604-8. doi:
10.1111/j.1349-7006.2007.00573.x
. [PMID: 17683513] - André B P van Kuilenburg, Judith Meijer, Doreen Dobritzsch, Rutger Meinsma, Marinus Duran, Bernhard Lohkamp, Lida Zoetekouw, Nico G G M Abeling, Herman L G van Tinteren, Annet M Bosch. Clinical, biochemical and genetic findings in two siblings with a dihydropyrimidinase deficiency.
Molecular genetics and metabolism.
2007 Jun; 91(2):157-64. doi:
10.1016/j.ymgme.2007.02.008
. [PMID: 17383919] - Minoru Toyoda, Kazuaki Chikamatsu, Koichi Sakakura, Yoichiro Fukuda, Katsumasa Takahashi, Motoaki Miyashita, Kazuo Shimamura, Nobuhiko Furuya. A case of squamous cell carcinoma of the head and neck producing granulocyte-colony stimulating factor with marked leukocytosis.
Auris, nasus, larynx.
2007 Jun; 34(2):267-71. doi:
10.1016/j.anl.2006.07.014
. [PMID: 17097253] - M Boisdron-Celle, G Remaud, S Traore, A L Poirier, L Gamelin, A Morel, E Gamelin. 5-Fluorouracil-related severe toxicity: a comparison of different methods for the pretherapeutic detection of dihydropyrimidine dehydrogenase deficiency.
Cancer letters.
2007 May; 249(2):271-82. doi:
10.1016/j.canlet.2006.09.006
. [PMID: 17064846] - Erick Gamelin, Michèle Boisdron-Celle, Alain Morel. [Detection of dihydropyrimidine dehydrogenase deficiency before treatment by fluoropyrimidines].
Therapie.
2007 Mar; 62(2):99-103. doi:
10.2515/therapie:2007023
. [PMID: 17582309] - Hong Zhang, You-ming Li, Chao-hui Yu, Sheng-qi Wang, Feng Ji, Chun-xiao Chen. [The association between DPYD gene polymorphism and chemotherapeutic toxicity of 5-FU in gastric carcinoma and colonic carcinoma].
Zhonghua nei ke za zhi.
2007 Feb; 46(2):103-6. doi:
NULL
. [PMID: 17445431] - Zhi Wei Zhou, Guo Qiang Wang, De Sen Wan, Zhen Hai Lu, Ying Bo Chen, Su Li, Gong Chen, Zhi Zhong Pan. The dihydrouracil/uracil ratios in plasma and toxicities of 5-fluorouracil-based adjuvant chemotherapy in colorectal cancer patients.
Chemotherapy.
2007; 53(2):127-31. doi:
10.1159/000099984
. [PMID: 17308379] - Guido Bocci, Cecilia Barbara, Francesca Vannozzi, Antonello Di Paolo, Alessandro Melosi, Gemma Barsanti, Giacomo Allegrini, Alfredo Falcone, Mario Del Tacca, Romano Danesi. A pharmacokinetic-based test to prevent severe 5-fluorouracil toxicity.
Clinical pharmacology and therapeutics.
2006 Oct; 80(4):384-95. doi:
10.1016/j.clpt.2006.06.007
. [PMID: 17015056] - Jan H Beumer, Erin Joseph, Merrill J Egorin, Robert S Parker, David Z D'argenio, Joseph M Covey, Julie L Eiseman. A mass balance and disposition study of the DNA methyltransferase inhibitor zebularine (NSC 309132) and three of its metabolites in mice.
Clinical cancer research : an official journal of the American Association for Cancer Research.
2006 Oct; 12(19):5826-33. doi:
10.1158/1078-0432.ccr-06-1234
. [PMID: 17020990] - Joseph Ciccolini, Cédric Mercier, Alexandre Evrard, Laetitia Dahan, Jean-Christophe Boyer, Florence Duffaud, Karine Richard, Carmelo Blanquicett, Gérard Milano, Aurore Blesius, Alain Durand, Jean-François Seitz, Roger Favre, Bruno Lacarelle. A rapid and inexpensive method for anticipating severe toxicity to fluorouracil and fluorouracil-based chemotherapy.
Therapeutic drug monitoring.
2006 Oct; 28(5):678-85. doi:
10.1097/01.ftd.0000245771.82720.c7
. [PMID: 17038885] - Yoshifumi Nakayama, Kentaro Matsumoto, Yuzuru Inoue, Takefumi Katsuki, Koji Kadowaki, Kazunori Shibao, Yosuke Tsurudome, Keiji Hirata, Tatsuhiko Sako, Naoki Nagata, Hideaki Itoh. Correlation between the urinary dihydrouracil-uracil ratio and the 5-FU plasma concentration in patients treated with oral 5-FU analogs.
Anticancer research.
2006 Sep; 26(5B):3983-8. doi:
. [PMID: 17094430]
- Joseph Ciccolini, Cedric Mercier, Laetitia Dahan, Alexandre Evrard, Jean-Christophe Boyer, Karine Richard, Jean-Philippe Dales, Alain Durand, Gerard Milano, Jean-François Seitz, Bruno Lacarelle. Toxic death-case after capecitabine + oxaliplatin (XELOX) administration: probable implication of dihydropyrimidine deshydrogenase deficiency.
Cancer chemotherapy and pharmacology.
2006 Aug; 58(2):272-5. doi:
10.1007/s00280-005-0139-8
. [PMID: 16292536] - Rou-Jun Peng, Qiu-Mei Dong, Yan-Xia Shi, Ye Cao, Zhong-Mei Zhou, Zhong-Yu Yuan, Su Li, Hai Li, Wen-Qi Jiang. [Correlative analysis between serum dihydropyrimidine dehydrogenase, activity, concentration of 5-fluorouracil and adverse events in the treatment of advanced gastric cancer patients].
Ai zheng = Aizheng = Chinese journal of cancer.
2006 Aug; 25(8):1039-43. doi:
NULL
. [PMID: 16965690] - Lisa K Gilliam, Aimee D Kohn, Tasneem Lalani, Paul E Swanson, Vasyl Vasko, Aneeta Patel, Robert B Livingston, Cheryl A Pickett. Capecitabine therapy for refractory metastatic thyroid carcinoma: a case series.
Thyroid : official journal of the American Thyroid Association.
2006 Aug; 16(8):801-10. doi:
10.1089/thy.2006.16.801
. [PMID: 16910885] - Rolf W Sparidans, T M Bosch, M Jörger, Jan H M Schellens, Jos H Beijnen. Liquid chromatography-tandem mass spectrometric assay for the analysis of uracil, 5,6-dihydrouracil and beta-ureidopropionic acid in urine for the measurement of the activities of the pyrimidine catabolic enzymes.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2006 Jul; 839(1-2):45-53. doi:
10.1016/j.jchromb.2006.02.016
. [PMID: 16513432] - Yasuhide Yamada. [Plasma concentrations of 5-fluorouracil and F-beta-alanine following oral administration of S-1, a dihydropyrimidine dehydrogenase inhibitory fluoropyrimidine, as compared with protracted venous infusion of 5-fluorouracil].
Gan to kagaku ryoho. Cancer & chemotherapy.
2006 Jun; 33 Suppl 1(?):37-41. doi:
. [PMID: 16897970]
- Koichi Hirata, Noboru Horikoshi, Kazusaku Tominaga, Keisuke Sohma, Koji Yamaguchi, Minoru Okazaki, Tomohisa Furuhata, Kazuaki Sasaki, Yasuyuki Nakano, Hikaru Ishizuka, Yasuhide Yamada, Shinji Uno, Tetsuo Taguchi, Susumu Yamamitsu, Tetsuhiko Shirasaka. [Pharmacokinetics of S-1].
Gan to kagaku ryoho. Cancer & chemotherapy.
2006 Jun; 33 Suppl 1(?):27-35. doi:
NULL
. [PMID: 16897969] - R Déporte, M Amiand, A Moreau, C Charbonnel, L Campion. High-performance liquid chromatographic assay with UV detection for measurement of dihydrouracil/uracil ratio in plasma.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2006 Apr; 834(1-2):170-7. doi:
10.1016/j.jchromb.2006.02.046
. [PMID: 16545990] - T Furuhata, M Kawakami, K Okita, Y Kimura, C Kihara, T Tsuruma, T Ohmura, K Yamaguchi, F Hata, T Katsuramaki, K Sasaki, K Hirata. Plasma level of a 5-fluorouracil metabolite, fluoro-beta-alanine correlates with dihydropyrimidine dehydrogenase activity of peripheral blood mononuclear cells in 5-fluorouracil treated patients.
Journal of experimental & clinical cancer research : CR.
2006 Mar; 25(1):79-82. doi:
. [PMID: 16761622]
- Jan H Beumer, Erin Joseph, Merrill J Egorin, Joseph M Covey, Julie L Eiseman. Quantitative determination of zebularine (NSC 309132), a DNA methyltransferase inhibitor, and three metabolites in murine plasma by high-performance liquid chromatography coupled with on-line radioactivity detection.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2006 Feb; 831(1-2):147-55. doi:
10.1016/j.jchromb.2005.11.048
. [PMID: 16364698] - Kenji Moriyama, Yasuhide Kouchi, Hidenobu Morinaga, Kenji Irimura, Taiji Hayashi, Akinobu Ohuchida, Tetsuhiro Goto, Yasuo Yoshizawa. Diamine oxidase, a plasma biomarker in rats to GI tract toxicity of oral fluorouracil anti-cancer drugs.
Toxicology.
2006 Jan; 217(2-3):233-9. doi:
10.1016/j.tox.2005.09.017
. [PMID: 16278042] - Lori K Mattison, Jeanne Fourie, Yukihiro Hirao, Toshihisa Koga, Renee A Desmond, Jennifer R King, Takefumi Shimizu, Robert B Diasio. The uracil breath test in the assessment of dihydropyrimidine dehydrogenase activity: pharmacokinetic relationship between expired 13CO2 and plasma [2-13C]dihydrouracil.
Clinical cancer research : an official journal of the American Association for Cancer Research.
2006 Jan; 12(2):549-55. doi:
10.1158/1078-0432.ccr-05-2020
. [PMID: 16428499] - A B P van Kuilenburg, H van Lenthe, A H van Gennip. Activity of pyrimidine degradation enzymes in normal tissues.
Nucleosides, nucleotides & nucleic acids.
2006; 25(9-11):1211-4. doi:
10.1080/15257770600894576
. [PMID: 17065093] - A B P van Kuilenburg, H van Lenthe, J G Maring, A H van Gennip. Determination of 5-fluorouracil in plasma with HPLC-tandem mass spectrometry.
Nucleosides, nucleotides & nucleic acids.
2006; 25(9-11):1257-60. doi:
10.1080/15257770600894741
. [PMID: 17065102] - Su-arpa Ploylearmsaeng, Uwe Fuhr, Alexander Jetter. How may anticancer chemotherapy with fluorouracil be individualised?.
Clinical pharmacokinetics.
2006; 45(6):567-92. doi:
10.2165/00003088-200645060-00002
. [PMID: 16719540] - M Inada, Y Hirao, T Koga, M Itose, J Kunizaki, T Shimizu, H Sato. Pharmacokinetic modelling of [2-13C]uracil metabolism in normal and DPD-deficient dogs.
Nucleosides, nucleotides & nucleic acids.
2006; 25(9-11):1205-9. doi:
10.1080/15257770600894550
. [PMID: 17065092] - A B P van Kuilenburg, A E M Stroomer, N G G M Abeling, A H van Gennip. A pivotal role for beta-aminoisobutyric acid and oxidative stress in dihydropyrimidine dehydrogenase deficiency?.
Nucleosides, nucleotides & nucleic acids.
2006; 25(9-11):1103-6. doi:
10.1080/15257770600894097
. [PMID: 17065072] - W Brussel, A B P van Kuilenburg, P M W Janssens. A neonate with recurrent vomiting and generalized hypotonia diagnosed with a deficiency of dihydropyrimidine dehydrogenase.
Nucleosides, nucleotides & nucleic acids.
2006; 25(9-11):1099-102. doi:
10.1080/15257770600894063
. [PMID: 17065071] - Suminobu Ito, Takeshi Kawamura, Makoto Inada, Yoshiharu Inoue, Yukihiro Hirao, Toshihisa Koga, Jun-ichi Kunizaki, Takefumi Shimizu, Hitoshi Sato. Physiologically based pharmacokinetic modelling of the three-step metabolism of pyrimidine using C-uracil as an in vivo probe.
British journal of clinical pharmacology.
2005 Dec; 60(6):584-93. doi:
10.1111/j.1365-2125.2005.02472.x
. [PMID: 16305582] - Mark W Embrey, John S Wai, Timothy W Funk, Carl F Homnick, Debbie S Perlow, Steven D Young, Joseph P Vacca, Daria J Hazuda, Peter J Felock, Kara A Stillmock, Marc V Witmer, Gregory Moyer, William A Schleif, Lori J Gabryelski, Lixia Jin, I-Wu Chen, Joan D Ellis, Bradley K Wong, Jiunn H Lin, Yvonne M Leonard, Nancy N Tsou, Linghang Zhuang. A series of 5-(5,6)-dihydrouracil substituted 8-hydroxy-[1,6]naphthyridine-7-carboxylic acid 4-fluorobenzylamide inhibitors of HIV-1 integrase and viral replication in cells.
Bioorganic & medicinal chemistry letters.
2005 Oct; 15(20):4550-4. doi:
10.1016/j.bmcl.2005.06.105
. [PMID: 16102965] - Gaëlle Remaud, Michèle Boisdron-Celle, Catherine Hameline, Alain Morel, Erick Gamelin. An accurate dihydrouracil/uracil determination using improved high performance liquid chromatography method for preventing fluoropyrimidines-related toxicity in clinical practice.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2005 Sep; 823(2):98-107. doi:
10.1016/j.jchromb.2005.05.044
. [PMID: 16027050] - Antonello Di Paolo, Romano Danesi, Laura Ciofi, Francesca Vannozzi, Guido Bocci, Marianna Lastella, Federica Amatori, Bianca Maria Martelloni, Toni Ibrahim, Dino Amadori, Alfredo Falcone, Mario Del Tacca. Improved analysis of 5-Fluorouracil and 5,6-dihydro-5-Fluorouracil by HPLC with diode array detection for determination of cellular dihydropyrimidine dehydrogenase activity and pharmacokinetic profiling.
Therapeutic drug monitoring.
2005 Jun; 27(3):362-8. doi:
10.1097/01.ftd.0000162016.11148.1b
. [PMID: 15905808] - Qiu-Mei Dong, You-Jian He, Su Li, Zhong-Mei Zhou, Li Zhang, Zhi-Wei Zhou, Zhong-Jun Xia, Yu-Yan Li. [Relationship of serum level of dihydropyrimidine dehydrogenase and serum concentration of 5-fluorouracil to treatment response and adverse events in colorectal cancer patients].
Ai zheng = Aizheng = Chinese journal of cancer.
2005 Apr; 24(4):483-7. doi:
NULL
. [PMID: 15820075] - Makoto Inada, Yukihiro Hirao, Toshihisa Koga, Minoru Itose, Jun-Ichi Kunizaki, Takefumi Shimizu, Hitoshi Sato. Relationships among plasma [2-(13)C]uracil concentrations, breath (13)CO(2) expiration, and dihydropyrimidine dehydrogenase (DPD) activity in the liver in normal and dpd-deficient dogs.
Drug metabolism and disposition: the biological fate of chemicals.
2005 Mar; 33(3):381-7. doi:
10.1124/dmd.104.001032
. [PMID: 15616154] - Jan Gerard Maring, Leonie Schouten, Ben Greijdanus, Elisabeth G E de Vries, Donald R A Uges. A simple and sensitive fully validated HPLC-UV method for the determination of 5-fluorouracil and its metabolite 5,6-dihydrofluorouracil in plasma.
Therapeutic drug monitoring.
2005 Feb; 27(1):25-30. doi:
10.1097/00007691-200502000-00006
. [PMID: 15665742] - Kei Ukon, Keiji Tanimoto, Tatsushi Shimokuni, Takuya Noguchi, Keiko Hiyama, Hiroaki Tsujimoto, Masakazu Fukushima, Tetsuya Toge, Masahiko Nishiyama. Activator protein accelerates dihydropyrimidine dehydrogenase gene transcription in cancer cells.
Cancer research.
2005 Feb; 65(3):1055-62. doi:
NULL
. [PMID: 15705907] - C Schmidt, U Hofmann, D Kohlmüller, T Mürdter, U M Zanger, M Schwab, G F Hoffmann. Comprehensive analysis of pyrimidine metabolism in 450 children with unspecific neurological symptoms using high-pressure liquid chromatography-electrospray ionization tandem mass spectrometry.
Journal of inherited metabolic disease.
2005; 28(6):1109-22. doi:
10.1007/s10545-005-0133-7
. [PMID: 16435204]