Naringenin (BioDeep_00000000072)
Secondary id: BioDeep_00000017700, BioDeep_00000270572, BioDeep_00000606443
natural product human metabolite PANOMIX_OTCML-2023 blood metabolite PANOMIX-Anthocyanidin BioNovoGene_Lab2019 Volatile Flavor Compounds
代谢物信息卡片
化学式: C15H12O5 (272.0684702)
中文名称: 柚皮素
谱图信息:
最多检出来源 Homo sapiens(feces) 0.01%
Last reviewed on 2024-07-09.
Cite this Page
Naringenin. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/naringenin (retrieved
2024-11-21) (BioDeep RN: BioDeep_00000000072). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C1(O)C=C2O[C@H](C3=CC=C(O)C=C3)CC(=O)C2=C(O)C=1
InChI: InChI=1S/C15H12O5/c16-9-3-1-8(2-4-9)13-7-12(19)15-11(18)5-10(17)6-14(15)20-13/h1-6,13,16-18H,7H2
描述信息
Naringenin is a flavorless, colorless flavanone, a type of flavonoid. It is the predominant flavanone in grapefruit, and is found in a variety of fruits and herbs. Naringenin has the skeleton structure of a flavanone with three hydroxy groups at the 4, 5, and 7 carbons. It may be found both in the aglycol form, naringenin, or in its glycosidic form, naringin, which has the addition of the disaccharide neohesperidose attached via a glycosidic linkage at carbon 7. Naringenin (not to be confused with naringin) is a flavanone that is considered to have a bioactive effect on human health as antioxidant, free radical scavenger, antiinflammatory, carbohydrate metabolism promoter, immunity system modulater. This substance has also been shown to repair DNA. Scientists exposed cells to 80 micomoles of naringenin per liter, for 24 hours, and found that the amount of hydroxyl damage to the DNA was reduced by 24 percent in that very short period of time. Unfortunately, this bioflavonoid is difficult to absorb on oral ingestion. Only 15\\\\\\\% of ingested naringenin will get absorbed, in the human gastrointestinal tract, in the best case scenario. A full glass of orange juice will supply about enough naringenin to achieve a concentration of about 0.5 micromoles per liter. Naringenin is a biomarker for the consumption of citrus fruits.
(S)-naringenin is the (S)-enantiomer of naringenin. It has a role as an expectorant and a plant metabolite. It is a naringenin and a (2S)-flavan-4-one. It is a conjugate acid of a (S)-naringenin(1-). It is an enantiomer of a (R)-naringenin.
Naringenin is a natural product found in Elaeodendron croceum, Garcinia multiflora, and other organisms with data available.
See also: Naringin (related).
Most widely distributed flavanone. Citrus fruits (grapefruit, oranges and pummelos) are especially good sources. Glycosides also widely distributed
The (S)-enantiomer of naringenin.
[Raw Data] CB070_Naringenin_pos_20eV_CB000030.txt
[Raw Data] CB070_Naringenin_pos_10eV_CB000030.txt
[Raw Data] CB070_Naringenin_pos_40eV_CB000030.txt
[Raw Data] CB070_Naringenin_pos_30eV_CB000030.txt
[Raw Data] CB070_Naringenin_pos_50eV_CB000030.txt
[Raw Data] CB070_Naringenin_neg_10eV_000021.txt
[Raw Data] CB070_Naringenin_neg_30eV_000021.txt
[Raw Data] CB070_Naringenin_neg_50eV_000021.txt
[Raw Data] CB070_Naringenin_neg_20eV_000021.txt
[Raw Data] CB070_Naringenin_neg_40eV_000021.txt
(±)-Naringenin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=67604-48-2 (retrieved 2024-07-09) (CAS RN: 67604-48-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
(±)-Naringenin is a naturally-occurring flavonoid. (±)-Naringenin displays vasorelaxant effect on endothelium-denuded vessels via the activation of BKCa channels in myocytes[1].
(±)-Naringenin is a naturally-occurring flavonoid. (±)-Naringenin displays vasorelaxant effect on endothelium-denuded vessels via the activation of BKCa channels in myocytes[1].
Naringenin is the predominant flavanone in Citrus reticulata Blanco; displays strong anti-inflammatory and antioxidant activities. Naringenin has anti-dengue virus (DENV) activity.
Naringenin is the predominant flavanone in Citrus reticulata Blanco; displays strong anti-inflammatory and antioxidant activities. Naringenin has anti-dengue virus (DENV) activity.
同义名列表
72 个代谢物同义名
4H-1-Benzopyran-4-one, 2,3-dihydro-5,7-dihydroxy-2-(4-hydroxyphenyl)-, (2S)-; 4H-1-Benzopyran-4-one, 2,3-dihydro-5,7-dihydroxy-2-(4-hydroxyphenyl)-, (S)-; 4H-1-Benzopyran-4-one,2,3-dihydro-5,7-dihydroxy-2-(4-hydroxyphenyl)-, (2S)-; (2S)-5,7-dihydroxy-2-(4-hydroxyphenyl)-3,4-dihydro-2H-1-benzopyran-4-one; (2S)-2,3-Dihydro-5,7-dihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one; (S)-2,3-Dihydro-5,7-dihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one; (S)-2,3-dihydo-5,7-dihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one; 2,3-Dihydro-5,6-dihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one; (2R)-5,7-dihydroxy-2-(4-hydroxyphenyl)-2,3-dihydro-4H-chromen-4-one; 2,3-Dihydro-5,7-dihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one; (2S)-5,7-dihydroxy-2-(4-hydroxyphenyl)-2,3-dihydro-4H-chromen-4-one; (2S)-5,7-dihydroxy-2-(4-hydroxyphenyl)-2,3-dihydrochromen-4-one; (S)-2,3-Dihydro-5,7-dihydroxy-2-(4-hydroxyphenyl)-4-benzopyrone; 5,7-Dihydroxy-2-(4-hydroxyphenyl)-2,3-dihydro-4H-chromen-4-one; (-)-(2S)-5,7-dihydroxy-2-(4-hydroxyphenyl)chroman-4-one; (2S)-5,7-dihydroxy-2-(4-hydroxyphenyl)chroman-4-one; 5,7-dihydroxy-2-(4-hydroxyphenyl)-4h-chroman-4-one; (S)-5,7-Dihydroxy-2-(4-hydroxyphenyl)chroman-4-one; Flavanone, 4,5,7-trihydroxy- (8CI); (2S)-4,5,7-trihydroxyflavan-4-one; (2S)-4’,5,7-Trihydroxyflavanone; (2S)-4,5,7-trihydroxyflavanone; Flavanone, 4,5,7-trihydroxy-; 4,5,7-trihydroxyflavan-4-one; (2S)-5,7,4-trihydroxyflavone; Phytochemistry 8: 127 (1969); FTVWIRXFELQLPI-ZDUSSCGKSA-N; 4,5, 7-Trihydroxyflavanone; 5,7,4’-Trihydroxyflavanone; 4,5,7-trihydroxyflavanone; 5,7,4-Trihydroxyflavanone; 4,5,7-Trihydroxyflavanon; naringenin-7-sulfate; 4,5,7-triOH-Flavone; (-)-(2S)-Naringenin; S-Dihydrogenistein; NARINGENIN [INCI]; Spectrum3_000567; NARINGENIN, (-)-; Spectrum5_001423; (R,S)-Naringenin; Spectrum2_000325; Spectrum4_000124; (2S)-naringenin; NARINGENIN [MI]; (-)-Naringenin; (S)-Naringenin; DivK1c_000118; KBio2_003295; KBio2_000727; pelargidanon; KBio2_005863; KBio3_001454; KBio1_000118; Naringenine; IDI1_000118; Naringenin; salipurpol; naringetol; NARIGENIN; Salipurol; AI3-23355; C15H12O5; Asahina; Nari; 2uxu; YSO1; 4eh3; 4deu; 4 5 7-trihydroxyflavanone; (±)-Naringenin; Naringenin
数据库引用编号
77 个数据库交叉引用编号
- ChEBI: CHEBI:17846
- KEGG: C00509
- PubChem: 439246
- PubChem: 932
- HMDB: HMDB0002670
- Metlin: METLIN3401
- DrugBank: DB03467
- ChEMBL: CHEMBL9352
- Wikipedia: Naringenin
- LipidMAPS: LMPK12140001
- MeSH: naringenin
- ChemIDplus: 0000480411
- MetaCyc: NARINGENIN-CMPD
- KNApSAcK: C00000982
- foodb: FDB000678
- chemspider: 388383
- CAS: 13308-00-4
- CAS: 480-41-1
- MoNA: FIO00205
- MoNA: PS040705
- MoNA: PS040709
- MoNA: PS040707
- MoNA: PR040041
- MoNA: PB002404
- MoNA: PS085705
- MoNA: FIO00206
- MoNA: FIO00211
- MoNA: PS040710
- MoNA: PS040708
- MoNA: PB002402
- MoNA: PB000125
- MoNA: PS040704
- MoNA: PS085701
- MoNA: PR040042
- MoNA: PS085702
- MoNA: PS040703
- MoNA: PS085710
- MoNA: FIO00213
- MoNA: PS040701
- MoNA: PB002401
- MoNA: PB000123
- MoNA: PS085707
- MoNA: PB000122
- MoNA: PR020017
- MoNA: PB000124
- MoNA: PS085709
- MoNA: PS085704
- MoNA: FIO00212
- MoNA: PS085708
- MoNA: PB002403
- MoNA: PR040044
- MoNA: FIO00209
- MoNA: PS085703
- MoNA: FIO00214
- MoNA: FIO00207
- MoNA: FIO00208
- MoNA: PR040043
- MoNA: PS040711
- MoNA: FIO00210
- MoNA: PS085711
- MoNA: PR020070
- MoNA: PS040702
- PMhub: MS000000016
- MetaboLights: MTBLC17846
- PDB-CCD: NAR
- 3DMET: B01275
- NIKKAJI: J325.849A
- RefMet: Naringenin
- CAS: 67604-48-2
- medchemexpress: HY-W011641
- medchemexpress: HY-N0100
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-679
- PubChem: 3792
- KNApSAcK: 17846
- LOTUS: LTS0031098
- LOTUS: LTS0072900
- wikidata: Q27121979
分类词条
相关代谢途径
Reactome(0)
BioCyc(5)
PlantCyc(0)
代谢反应
896 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(15)
- naringenin glycoside biosynthesis:
UDP-β-L-rhamnose + prunin ⟶ H+ + UDP + narirutin
- sakuranetin biosynthesis:
(2S)-naringenin + SAM ⟶ (2S)-sakuranetin + H+ + SAH
- isoflavonoid biosynthesis II:
SAM + genistein ⟶ SAH + prunetin
- superpathway of isoflavonoids (via naringenin):
SAM + genistein ⟶ SAH + prunetin
- flavonoid biosynthesis:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ (+)-dihydrokaempferol + CO2 + succinate
- flavonoid biosynthesis (in equisetum):
(+)-dihydrokaempferol + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + kaempferol + succinate
- tricin biosynthesis:
(2S)-naringenin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H+ + H2O + an oxidized [NADPH-hemoprotein reductase] + apigenin
- sophoraflavanone G biosynthesis:
(2S)-naringenin + DMAPP ⟶ diphosphate + sophoraflavanone B
- ponciretin biosynthesis:
(2S)-naringenin + SAM ⟶ H+ + SAH + ponciretin
- naringenin C-glucosylation:
(2S)-naringenin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 2-hydroxynaringenin + H+ + H2O + an oxidized [NADPH-hemoprotein reductase]
- luteolin biosynthesis:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + apigenin + succinate
- salvigenin biosynthesis:
SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- flavonoid di-C-glucosylation:
UDP-α-D-glucose + nothofagin ⟶ 3',5'-di-C-glucosylphloretin + H+ + UDP
- naringenin biosynthesis (engineered):
naringenin chalcone ⟶ (2S)-naringenin
WikiPathways(0)
Plant Reactome(237)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Tricin biosynthesis:
2OG + Oxygen + naringenin ⟶ H2O + SUCCA + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Tricin biosynthesis:
2OG + Oxygen + naringenin ⟶ H2O + SUCCA + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Tricin biosynthesis:
2OG + Oxygen + naringenin ⟶ H2O + SUCCA + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
apigenin ⟶ naringenin
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Secondary metabolism:
GPP + H2O ⟶ PPi + geraniol
- Flavonoid biosynthesis:
4-coumarate + ATP + CoA-SH ⟶ 4-coumaroyl-CoA + AMP + PPi
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
2OG + Oxygen + naringenin ⟶ SUCCA + carbon dioxide + dihydrokaempferol
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
INOH(0)
PlantCyc(641)
- naringenin glycoside biosynthesis:
(2S)-naringenin + UDP-α-D-glucose ⟶ H+ + UDP + prunin
- naringenin glycoside biosynthesis:
(2S)-naringenin + UDP-α-D-glucose ⟶ H+ + UDP + prunin
- naringenin glycoside biosynthesis:
(2S)-naringenin + UDP-α-D-glucose ⟶ H+ + UDP + prunin
- naringenin glycoside biosynthesis:
(2S)-naringenin + UDP-α-D-glucose ⟶ H+ + UDP + prunin
- naringenin glycoside biosynthesis:
(2S)-naringenin + UDP-α-D-glucose ⟶ H+ + UDP + prunin
- naringenin glycoside biosynthesis:
(2S)-naringenin + UDP-α-D-glucose ⟶ H+ + UDP + prunin
- naringenin glycoside biosynthesis:
(2S)-naringenin + UDP-α-D-glucose ⟶ H+ + UDP + prunin
- naringenin glycoside biosynthesis:
(2S)-naringenin + UDP-α-D-glucose ⟶ H+ + UDP + prunin
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- luteolin biosynthesis:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + apigenin + succinate
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- luteolin biosynthesis:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + apigenin + succinate
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- luteolin biosynthesis:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + apigenin + succinate
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- luteolin biosynthesis:
(2S)-naringenin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (2S)-eriodictyol + H+ + H2O + an oxidized [NADPH-hemoprotein reductase]
- luteolin biosynthesis:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + apigenin + succinate
- luteolin biosynthesis:
(2S)-eriodictyol + 2-oxoglutarate + O2 ⟶ CO2 + H2O + luteolin + succinate
- flavonoid biosynthesis (in equisetum):
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- luteolin biosynthesis:
(2S)-eriodictyol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + luteolin
- sakuranetin biosynthesis:
(2S)-naringenin + SAM ⟶ (2S)-sakuranetin + H+ + SAH
- sakuranetin biosynthesis:
(2S)-naringenin + SAM ⟶ (2S)-sakuranetin + H+ + SAH
- sakuranetin biosynthesis:
(2S)-naringenin + SAM ⟶ (2S)-sakuranetin + H+ + SAH
- sakuranetin biosynthesis:
(2S)-naringenin + SAM ⟶ (2S)-sakuranetin + H+ + SAH
- sakuranetin biosynthesis:
(2S)-naringenin + SAM ⟶ (2S)-sakuranetin + H+ + SAH
- sakuranetin biosynthesis:
(2S)-naringenin + SAM ⟶ (2S)-sakuranetin + H+ + SAH
- sakuranetin biosynthesis:
(2S)-naringenin + SAM ⟶ (2S)-sakuranetin + H+ + SAH
- sakuranetin biosynthesis:
(2S)-naringenin + SAM ⟶ (2S)-sakuranetin + H+ + SAH
- sakuranetin biosynthesis:
(2S)-naringenin + SAM ⟶ (2S)-sakuranetin + H+ + SAH
- sakuranetin biosynthesis:
(2S)-naringenin + SAM ⟶ (2S)-sakuranetin + H+ + SAH
- sakuranetin biosynthesis:
(2S)-naringenin + SAM ⟶ (2S)-sakuranetin + H+ + SAH
- sakuranetin biosynthesis:
(2S)-naringenin + SAM ⟶ (2S)-sakuranetin + H+ + SAH
- isoflavonoid biosynthesis II:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + apigenin + succinate
- isoflavonoid biosynthesis II:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + apigenin + succinate
- isoflavonoid biosynthesis II:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + apigenin + succinate
- isoflavonoid biosynthesis II:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + apigenin + succinate
- superpathway of isoflavonoids (via naringenin):
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + apigenin + succinate
- isoflavonoid biosynthesis II:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + apigenin + succinate
- isoflavonoid biosynthesis II:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + apigenin + succinate
- isoflavonoid biosynthesis II:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + apigenin + succinate
- isoflavonoid biosynthesis II:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + apigenin + succinate
- isoflavonoid biosynthesis II:
(2S)-naringenin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H+ + H2O + an oxidized [NADPH-hemoprotein reductase] + apigenin
- isoflavonoid biosynthesis II:
(2S)-naringenin + H+ + NADPH + O2 ⟶ 2,4',5,7-tetrahydroxyisoflavanone + H2O + NADP+
- isoflavonoid biosynthesis II:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + apigenin + succinate
- isoflavonoid biosynthesis II:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + apigenin + succinate
- isoflavonoid biosynthesis II:
(2S)-naringenin + NADPH + O2 ⟶ H2O + NADP+ + apigenin
- isoflavonoid biosynthesis II:
(2S)-naringenin + H+ + NADPH + O2 ⟶ 2,4',5,7-tetrahydroxyisoflavanone + H2O + NADP+
- isoflavonoid biosynthesis II:
(2S)-naringenin + H+ + NADPH + O2 ⟶ 2,4',5,7-tetrahydroxyisoflavanone + H2O + NADP+
- isoflavonoid biosynthesis II:
(2S)-naringenin + H+ + NADPH + O2 ⟶ 2,4',5,7-tetrahydroxyisoflavanone + H2O + NADP+
- isoflavonoid biosynthesis II:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + apigenin + succinate
- isoflavonoid biosynthesis II:
(2S)-naringenin + H+ + NADPH + O2 ⟶ 2,4',5,7-tetrahydroxyisoflavanone + H2O + NADP+
- isoflavonoid biosynthesis II:
(2S)-naringenin + H+ + NADPH + O2 ⟶ 2,4',5,7-tetrahydroxyisoflavanone + H2O + NADP+
- isoflavonoid biosynthesis II:
(2S)-naringenin + NADPH + O2 ⟶ H2O + NADP+ + apigenin
- isoflavonoid biosynthesis II:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + apigenin + succinate
- isoflavonoid biosynthesis II:
(2S)-naringenin + H+ + NADPH + O2 ⟶ 2,4',5,7-tetrahydroxyisoflavanone + H2O + NADP+
- isoflavonoid biosynthesis II:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + apigenin + succinate
- superpathway of isoflavonoids (via naringenin):
(2S)-naringenin + NADPH + O2 ⟶ H2O + NADP+ + apigenin
- isoflavonoid biosynthesis II:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + apigenin + succinate
- isoflavonoid biosynthesis II:
(2S)-naringenin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 2,4',5,7-tetrahydroxyisoflavanone + H2O + an oxidized [NADPH-hemoprotein reductase]
- isoflavonoid biosynthesis II:
(2S)-naringenin + H+ + NADPH + O2 ⟶ 2,4',5,7-tetrahydroxyisoflavanone + H2O + NADP+
- isoflavonoid biosynthesis II:
(2S)-naringenin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H+ + H2O + an oxidized [NADPH-hemoprotein reductase] + apigenin
- isoflavonoid biosynthesis II:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + apigenin + succinate
- isoflavonoid biosynthesis II:
(2S)-naringenin + NADPH + O2 ⟶ H2O + NADP+ + apigenin
- isoflavonoid biosynthesis II:
(2S)-naringenin + NADPH + O2 ⟶ H2O + NADP+ + apigenin
- isoflavonoid biosynthesis II:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + apigenin + succinate
- isoflavonoid biosynthesis II:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + apigenin + succinate
- isoflavonoid biosynthesis II:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + apigenin + succinate
- isoflavonoid biosynthesis II:
(2S)-naringenin + H+ + NADPH + O2 ⟶ 2,4',5,7-tetrahydroxyisoflavanone + H2O + NADP+
- isoflavonoid biosynthesis II:
(2S)-naringenin + NADPH + O2 ⟶ H2O + NADP+ + apigenin
- isoflavonoid biosynthesis II:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + apigenin + succinate
- isoflavonoid biosynthesis II:
(2S)-naringenin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H+ + H2O + an oxidized [NADPH-hemoprotein reductase] + apigenin
- superpathway of isoflavonoids (via naringenin):
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + apigenin + succinate
- isoflavonoid biosynthesis II:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + apigenin + succinate
- isoflavonoid biosynthesis II:
(2S)-naringenin + H+ + NADPH + O2 ⟶ 2,4',5,7-tetrahydroxyisoflavanone + H2O + NADP+
- isoflavonoid biosynthesis II:
(2S)-naringenin + H+ + NADPH + O2 ⟶ 2,4',5,7-tetrahydroxyisoflavanone + H2O + NADP+
- isoflavonoid biosynthesis II:
(2S)-naringenin + H+ + NADPH + O2 ⟶ 2,4',5,7-tetrahydroxyisoflavanone + H2O + NADP+
- isoflavonoid biosynthesis II:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + apigenin + succinate
- isoflavonoid biosynthesis II:
(2S)-naringenin + NADPH + O2 ⟶ H2O + NADP+ + apigenin
- isoflavonoid biosynthesis II:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + apigenin + succinate
- isoflavonoid biosynthesis II:
(2S)-naringenin + NADPH + O2 ⟶ H2O + NADP+ + apigenin
- isoflavonoid biosynthesis II:
(2S)-naringenin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 2,4',5,7-tetrahydroxyisoflavanone + H2O + an oxidized [NADPH-hemoprotein reductase]
- isoflavonoid biosynthesis II:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + apigenin + succinate
- isoflavonoid biosynthesis II:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + apigenin + succinate
- isoflavonoid biosynthesis II:
2,4',5,7-tetrahydroxyisoflavanone + SAM ⟶ 2,5,7-trihydroxy-4'-methoxyisoflavanone + H+ + SAH
- isoflavonoid biosynthesis II:
SAM + genistein ⟶ SAH + prunetin
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis (in equisetum):
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ (+)-dihydrokaempferol + CO2 + succinate
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + NADPH + malonyl-CoA ⟶ CO2 + H2O + NADP+ + coenzyme A + isoliquiritigenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + NADPH + malonyl-CoA ⟶ CO2 + H2O + NADP+ + coenzyme A + isoliquiritigenin
- luteolin biosynthesis:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + apigenin + succinate
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- salvigenin biosynthesis:
SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
- luteolin biosynthesis:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + apigenin + succinate
- salvigenin biosynthesis:
SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- luteolin biosynthesis:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + apigenin + succinate
- salvigenin biosynthesis:
SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
- luteolin biosynthesis:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + apigenin + succinate
- salvigenin biosynthesis:
SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
- salvigenin biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
- luteolin biosynthesis:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + apigenin + succinate
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- luteolin biosynthesis:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + apigenin + succinate
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- luteolin biosynthesis:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + apigenin + succinate
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- naringenin C-glucosylation:
(2S)-naringenin + NADPH + O2 ⟶ 2-hydroxynaringenin + H2O + NADP+
- luteolin biosynthesis:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + apigenin + succinate
- luteolin biosynthesis:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + apigenin + succinate
- salvigenin biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- luteolin biosynthesis:
(2S)-eriodictyol + 2-oxoglutarate + O2 ⟶ CO2 + H2O + luteolin + succinate
- naringenin C-glucosylation:
(2S)-naringenin + NADPH + O2 ⟶ 2-hydroxynaringenin + H2O + NADP+
- luteolin biosynthesis:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + apigenin + succinate
- salvigenin biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
- apigeninidin 5-O-glucoside biosynthesis:
2-oxoglutarate + O2 + apiforol ⟶ CO2 + H2O + apigeninidin + succinate
- naringenin C-glucosylation:
(2S)-naringenin + NADPH + O2 ⟶ 2-hydroxynaringenin + H2O + NADP+
- luteolin biosynthesis:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + apigenin + succinate
- salvigenin biosynthesis:
SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
- luteolin biosynthesis:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + apigenin + succinate
- luteolin biosynthesis:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + apigenin + succinate
- salvigenin biosynthesis:
SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
- naringenin C-glucosylation:
(2S)-naringenin + NADPH + O2 ⟶ 2-hydroxynaringenin + H2O + NADP+
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- luteolin biosynthesis:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + apigenin + succinate
- salvigenin biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
- salvigenin biosynthesis:
SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
- luteolin biosynthesis:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + apigenin + succinate
- salvigenin biosynthesis:
SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
- luteolin biosynthesis:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + apigenin + succinate
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- salvigenin biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
- luteolin biosynthesis:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + apigenin + succinate
- apigeninidin 5-O-glucoside biosynthesis:
2-oxoglutarate + O2 + apiforol ⟶ CO2 + H2O + apigeninidin + succinate
- salvigenin biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
- luteolin biosynthesis:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + apigenin + succinate
- salvigenin biosynthesis:
SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
- luteolin biosynthesis:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + apigenin + succinate
- luteolin biosynthesis:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + apigenin + succinate
- salvigenin biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- salvigenin biosynthesis:
SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
- salvigenin biosynthesis:
SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
- luteolin biosynthesis:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + apigenin + succinate
- luteolin biosynthesis:
(2S)-naringenin + NADPH + O2 ⟶ (2S)-eriodictyol + H2O + NADP+
- luteolin biosynthesis:
(2S)-naringenin + NADPH + O2 ⟶ (2S)-eriodictyol + H2O + NADP+
- luteolin biosynthesis:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + apigenin + succinate
- salvigenin biosynthesis:
SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- salvigenin biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
- luteolin biosynthesis:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + apigenin + succinate
- luteolin biosynthesis:
(2S)-naringenin + NADPH + O2 ⟶ (2S)-eriodictyol + H2O + NADP+
- salvigenin biosynthesis:
SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- salvigenin biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
- luteolin biosynthesis:
(2S)-naringenin + NADPH + O2 ⟶ H2O + NADP+ + apigenin
- luteolin biosynthesis:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + apigenin + succinate
- luteolin biosynthesis:
(2S)-naringenin + NADPH + O2 ⟶ (2S)-eriodictyol + H2O + NADP+
- salvigenin biosynthesis:
SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- salvigenin biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
- luteolin biosynthesis:
(2S)-naringenin + NADPH + O2 ⟶ (2S)-eriodictyol + H2O + NADP+
- salvigenin biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
- luteolin biosynthesis:
(2S)-naringenin + NADPH + O2 ⟶ H2O + NADP+ + apigenin
- luteolin biosynthesis:
(2S)-naringenin + NADPH + O2 ⟶ H2O + NADP+ + apigenin
- salvigenin biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- luteolin biosynthesis:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + apigenin + succinate
- salvigenin biosynthesis:
SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
- luteolin biosynthesis:
(2S)-naringenin + NADPH + O2 ⟶ (2S)-eriodictyol + H2O + NADP+
- salvigenin biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
- luteolin biosynthesis:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + apigenin + succinate
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- salvigenin biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
- luteolin biosynthesis:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + apigenin + succinate
- salvigenin biosynthesis:
SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- luteolin biosynthesis:
(2S)-naringenin + NADPH + O2 ⟶ (2S)-eriodictyol + H2O + NADP+
- naringenin C-glucosylation:
(2S)-naringenin + NADPH + O2 ⟶ 2-hydroxynaringenin + H2O + NADP+
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- salvigenin biosynthesis:
SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
- luteolin biosynthesis:
(2S)-naringenin + NADPH + O2 ⟶ H2O + NADP+ + apigenin
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- salvigenin biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
- luteolin biosynthesis:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + apigenin + succinate
- salvigenin biosynthesis:
SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- salvigenin biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
- salvigenin biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
- luteolin biosynthesis:
(2S)-naringenin + NADPH + O2 ⟶ H2O + NADP+ + apigenin
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- luteolin biosynthesis:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + apigenin + succinate
- naringenin C-glucosylation:
(2S)-naringenin + NADPH + O2 ⟶ 2-hydroxynaringenin + H2O + NADP+
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- luteolin biosynthesis:
(2S)-naringenin + NADPH + O2 ⟶ (2S)-eriodictyol + H2O + NADP+
- salvigenin biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
- luteolin biosynthesis:
(2S)-naringenin + NADPH + O2 ⟶ (2S)-eriodictyol + H2O + NADP+
- salvigenin biosynthesis:
SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- luteolin biosynthesis:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + apigenin + succinate
- naringenin C-glucosylation:
(2S)-naringenin + NADPH + O2 ⟶ 2-hydroxynaringenin + H2O + NADP+
- apigeninidin 5-O-glucoside biosynthesis:
2-oxoglutarate + O2 + apiforol ⟶ CO2 + H2O + apigeninidin + succinate
- salvigenin biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- salvigenin biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
- luteolin biosynthesis:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + apigenin + succinate
- luteolin biosynthesis:
(2S)-naringenin + NADPH + O2 ⟶ (2S)-eriodictyol + H2O + NADP+
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- naringenin C-glucosylation:
(2S)-naringenin + NADPH + O2 ⟶ 2-hydroxynaringenin + H2O + NADP+
- luteolin biosynthesis:
(2S)-naringenin + NADPH + O2 ⟶ H2O + NADP+ + apigenin
- salvigenin biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- luteolin biosynthesis:
(2S)-naringenin + NADPH + O2 ⟶ (2S)-eriodictyol + H2O + NADP+
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- naringenin C-glucosylation:
(2S)-naringenin + NADPH + O2 ⟶ 2-hydroxynaringenin + H2O + NADP+
- salvigenin biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
- luteolin biosynthesis:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + apigenin + succinate
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- naringenin C-glucosylation:
(2S)-naringenin + NADPH + O2 ⟶ 2-hydroxynaringenin + H2O + NADP+
- luteolin biosynthesis:
(2S)-naringenin + NADPH + O2 ⟶ (2S)-eriodictyol + H2O + NADP+
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- luteolin biosynthesis:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + apigenin + succinate
- naringenin C-glucosylation:
(2S)-naringenin + NADPH + O2 ⟶ 2-hydroxynaringenin + H2O + NADP+
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- luteolin biosynthesis:
(2S)-naringenin + NADPH + O2 ⟶ H2O + NADP+ + apigenin
- salvigenin biosynthesis:
H+ + NADPH + O2 + apigenin-7,4'-dimethyl ether ⟶ H2O + NADP+ + ladanein
- luteolin biosynthesis:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + apigenin + succinate
- salvigenin biosynthesis:
SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- luteolin biosynthesis:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + apigenin + succinate
- naringenin C-glucosylation:
(2S)-naringenin + NADPH + O2 ⟶ 2-hydroxynaringenin + H2O + NADP+
- salvigenin biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
- naringenin C-glucosylation:
(2S)-naringenin + NADPH + O2 ⟶ 2-hydroxynaringenin + H2O + NADP+
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- apigeninidin 5-O-glucoside biosynthesis:
2-oxoglutarate + O2 + apiforol ⟶ CO2 + H2O + apigeninidin + succinate
- salvigenin biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
- luteolin biosynthesis:
(2S)-naringenin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H+ + H2O + an oxidized [NADPH-hemoprotein reductase] + apigenin
- salvigenin biosynthesis:
SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
- luteolin biosynthesis:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + apigenin + succinate
- apigeninidin 5-O-glucoside biosynthesis:
2-oxoglutarate + O2 + apiforol ⟶ CO2 + H2O + apigeninidin + succinate
- salvigenin biosynthesis:
SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
- luteolin biosynthesis:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + apigenin + succinate
- apigeninidin 5-O-glucoside biosynthesis:
2-oxoglutarate + O2 + apiforol ⟶ CO2 + H2O + apigeninidin + succinate
- luteolin biosynthesis:
(2S)-naringenin + NADPH + O2 ⟶ H2O + NADP+ + apigenin
- salvigenin biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
- salvigenin biosynthesis:
SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
- apigeninidin 5-O-glucoside biosynthesis:
2-oxoglutarate + O2 + apiforol ⟶ CO2 + H2O + apigeninidin + succinate
- luteolin biosynthesis:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + apigenin + succinate
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- luteolin biosynthesis:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + apigenin + succinate
- salvigenin biosynthesis:
SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
- salvigenin biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- apigeninidin 5-O-glucoside biosynthesis:
2-oxoglutarate + O2 + apiforol ⟶ CO2 + H2O + apigeninidin + succinate
- luteolin biosynthesis:
(2S)-naringenin + NADPH + O2 ⟶ H2O + NADP+ + apigenin
- salvigenin biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
- salvigenin biosynthesis:
H+ + NADPH + O2 + apigenin-7,4'-dimethyl ether ⟶ H2O + NADP+ + ladanein
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- luteolin biosynthesis:
(2S)-naringenin + NADPH + O2 ⟶ (2S)-eriodictyol + H2O + NADP+
- naringenin C-glucosylation:
(2S)-naringenin + NADPH + O2 ⟶ 2-hydroxynaringenin + H2O + NADP+
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- salvigenin biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
- luteolin biosynthesis:
(2S)-naringenin + NADPH + O2 ⟶ (2S)-eriodictyol + H2O + NADP+
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- luteolin biosynthesis:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + apigenin + succinate
- naringenin C-glucosylation:
(2S)-naringenin + NADPH + O2 ⟶ 2-hydroxynaringenin + H2O + NADP+
- luteolin biosynthesis:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + apigenin + succinate
- salvigenin biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- salvigenin biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
- luteolin biosynthesis:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + apigenin + succinate
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- luteolin biosynthesis:
(2S)-naringenin + NADPH + O2 ⟶ H2O + NADP+ + apigenin
- salvigenin biosynthesis:
SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
- luteolin biosynthesis:
(2S)-naringenin + NADPH + O2 ⟶ (2S)-eriodictyol + H2O + NADP+
- naringenin C-glucosylation:
(2S)-naringenin + NADPH + O2 ⟶ 2-hydroxynaringenin + H2O + NADP+
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- luteolin biosynthesis:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + apigenin + succinate
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- salvigenin biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- naringenin C-glucosylation:
(2S)-naringenin + NADPH + O2 ⟶ 2-hydroxynaringenin + H2O + NADP+
- luteolin biosynthesis:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + apigenin + succinate
- luteolin biosynthesis:
(2S)-naringenin + NADPH + O2 ⟶ H2O + NADP+ + apigenin
- salvigenin biosynthesis:
SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
- salvigenin biosynthesis:
SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
- luteolin biosynthesis:
(2S)-naringenin + NADPH + O2 ⟶ H2O + NADP+ + apigenin
- naringenin C-glucosylation:
(2S)-naringenin + NADPH + O2 ⟶ 2-hydroxynaringenin + H2O + NADP+
- luteolin biosynthesis:
(2S)-naringenin + NADPH + O2 ⟶ H2O + NADP+ + apigenin
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- luteolin biosynthesis:
(2S)-naringenin + NADPH + O2 ⟶ (2S)-eriodictyol + H2O + NADP+
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- naringenin C-glucosylation:
(2S)-naringenin + NADPH + O2 ⟶ 2-hydroxynaringenin + H2O + NADP+
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- luteolin biosynthesis:
(2S)-naringenin + NADPH + O2 ⟶ H2O + NADP+ + apigenin
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- salvigenin biosynthesis:
SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- tricin biosynthesis:
(2S)-naringenin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H+ + H2O + an oxidized [NADPH-hemoprotein reductase] + apigenin
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- tricin biosynthesis:
(2S)-naringenin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H+ + H2O + an oxidized [NADPH-hemoprotein reductase] + apigenin
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- salvigenin biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- tricin biosynthesis:
(2S)-naringenin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H+ + H2O + an oxidized [NADPH-hemoprotein reductase] + apigenin
- salvigenin biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- tricin biosynthesis:
(2S)-naringenin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H+ + H2O + an oxidized [NADPH-hemoprotein reductase] + apigenin
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- salvigenin biosynthesis:
SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- salvigenin biosynthesis:
SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- tricin biosynthesis:
(2S)-naringenin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H+ + H2O + an oxidized [NADPH-hemoprotein reductase] + apigenin
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- tricin biosynthesis:
(2S)-naringenin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H+ + H2O + an oxidized [NADPH-hemoprotein reductase] + apigenin
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- salvigenin biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- apigeninidin 5-O-glucoside biosynthesis:
2-oxoglutarate + O2 + apiforol ⟶ CO2 + H2O + apigeninidin + succinate
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- tricin biosynthesis:
(2S)-naringenin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H+ + H2O + an oxidized [NADPH-hemoprotein reductase] + apigenin
- tricin biosynthesis:
(2S)-naringenin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H+ + H2O + an oxidized [NADPH-hemoprotein reductase] + apigenin
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- tricin biosynthesis:
(2S)-naringenin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H+ + H2O + an oxidized [NADPH-hemoprotein reductase] + apigenin
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- apigeninidin 5-O-glucoside biosynthesis:
2-oxoglutarate + O2 + apiforol ⟶ CO2 + H2O + apigeninidin + succinate
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- tricin biosynthesis:
(2S)-naringenin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H+ + H2O + an oxidized [NADPH-hemoprotein reductase] + apigenin
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- tricin biosynthesis:
(2S)-naringenin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H+ + H2O + an oxidized [NADPH-hemoprotein reductase] + apigenin
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- naringenin C-glucosylation:
(2S)-naringenin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 2-hydroxynaringenin + H+ + H2O + an oxidized [NADPH-hemoprotein reductase]
- tricin biosynthesis:
(2S)-naringenin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H+ + H2O + an oxidized [NADPH-hemoprotein reductase] + apigenin
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- tricin biosynthesis:
(2S)-naringenin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H+ + H2O + an oxidized [NADPH-hemoprotein reductase] + apigenin
- tricin biosynthesis:
(2S)-naringenin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H+ + H2O + an oxidized [NADPH-hemoprotein reductase] + apigenin
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- tricin biosynthesis:
(2S)-naringenin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H+ + H2O + an oxidized [NADPH-hemoprotein reductase] + apigenin
- salvigenin biosynthesis:
SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- tricin biosynthesis:
(2S)-naringenin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H+ + H2O + an oxidized [NADPH-hemoprotein reductase] + apigenin
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- salvigenin biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- salvigenin biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- tricin biosynthesis:
(2S)-naringenin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H+ + H2O + an oxidized [NADPH-hemoprotein reductase] + apigenin
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- salvigenin biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- salvigenin biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- salvigenin biosynthesis:
SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
- salvigenin biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- tricin biosynthesis:
(2S)-naringenin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H+ + H2O + an oxidized [NADPH-hemoprotein reductase] + apigenin
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- tricin biosynthesis:
(2S)-naringenin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H+ + H2O + an oxidized [NADPH-hemoprotein reductase] + apigenin
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- tricin biosynthesis:
(2S)-naringenin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H+ + H2O + an oxidized [NADPH-hemoprotein reductase] + apigenin
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- tricin biosynthesis:
(2S)-naringenin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H+ + H2O + an oxidized [NADPH-hemoprotein reductase] + apigenin
- tricin biosynthesis:
(2S)-naringenin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H+ + H2O + an oxidized [NADPH-hemoprotein reductase] + apigenin
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- tricin biosynthesis:
(2S)-naringenin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H+ + H2O + an oxidized [NADPH-hemoprotein reductase] + apigenin
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- tricin biosynthesis:
(2S)-naringenin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H+ + H2O + an oxidized [NADPH-hemoprotein reductase] + apigenin
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- salvigenin biosynthesis:
SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- tricin biosynthesis:
(2S)-naringenin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H+ + H2O + an oxidized [NADPH-hemoprotein reductase] + apigenin
- tricin biosynthesis:
(2S)-naringenin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H+ + H2O + an oxidized [NADPH-hemoprotein reductase] + apigenin
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
- tricin biosynthesis:
(2S)-naringenin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H+ + H2O + an oxidized [NADPH-hemoprotein reductase] + apigenin
- salvigenin biosynthesis:
SAM + scutellarein 7-methyl ether ⟶ H+ + SAH + cirsimaritin
- flavonoid di-C-glucosylation:
NADP+ + dihydro-4-coumaroyl-CoA ⟶ (E)-4-coumaroyl-CoA + H+ + NADPH
- apigeninidin 5-O-glucoside biosynthesis:
NADP+ + apiforol ⟶ (2S)-naringenin + H+ + NADPH
COVID-19 Disease Map(0)
PathBank(3)
- Flavonoid Biosynthesis:
Hydrogen Ion + NADPH + Naringenin ⟶ Apiforol + NADP
- Leucopelargonidin and Leucocyanidin Biosynthesis:
Eriodictyol + Oxoglutaric acid + Oxygen ⟶ Carbon dioxide + Succinic acid + taxifolin
- Flavanone Biosynthesis:
4-Hydroxycinnamic acid + Adenosine triphosphate + Coenzyme A ⟶ 4-Coumaroyl-CoA + Adenosine monophosphate + Pyrophosphate
PharmGKB(0)
541 个相关的物种来源信息
- 3808 - Acacia: 10.5539/JPS.V1N2P61
- 3808 - Acacia: LTS0031098
- 1378414 - Acacia speckii: 10.5539/JPS.V1N2P61
- 4022 - Acer: LTS0031098
- 290845 - Acer pictum: 10.1021/NP0497907
- 290845 - Acer pictum: LTS0031098
- 47963 - Acer pictum subsp. mono: 10.1021/NP0497907
- 47963 - Acer pictum subsp. mono: LTS0031098
- 3624 - Actinidia: LTS0031098
- 3625 - Actinidia chinensis: LTS0031098
- 3623 - Actinidiaceae: LTS0031098
- 22994 - Aeonium: LTS0031098
- 111153 - Aeonium lindleyi: 10.1055/S-0030-1250144
- 111153 - Aeonium lindleyi: LTS0031098
- 175969 - Aeschynanthus bracteatus: 10.1016/J.PHYTOCHEM.2008.05.012
- 1475121 - Aglaia rubiginosa: 10.1021/NP0304417.S001
- 872542 - Aglaomorpha fortunei: 10.1080/14786410902991860
- 4678 - Allium: LTS0031098
- 4679 - Allium cepa:
- 4679 - Allium cepa: LTS0031098
- 94326 - Alpinia: LTS0031098
- 97723 - Alpinia zerumbet: 10.1016/J.BMC.2009.07.041
- 97723 - Alpinia zerumbet: LTS0031098
- 4668 - Amaryllidaceae: LTS0031098
- 663964 - Anastatica: LTS0031098
- 663965 - Anastatica hierochuntica:
- 663965 - Anastatica hierochuntica: 10.1016/J.BMC.2010.01.046
- 663965 - Anastatica hierochuntica: 10.1016/S0960-894X(03)00088-X
- 663965 - Anastatica hierochuntica: LTS0031098
- 40921 - Anethum: LTS0031098
- 40922 - Anethum graveolens: 10.1021/JF040083T
- 40922 - Anethum graveolens: LTS0031098
- 4037 - Apiaceae: LTS0031098
- 7460 - Apis mellifera ligustica: -
- 4044 - Apium: LTS0031098
- 4045 - Apium graveolens: 10.1016/S0021-9673(97)01061-3
- 4045 - Apium graveolens: LTS0031098
- 4056 - Apocynaceae: LTS0031098
- 3701 - Arabidopsis: LTS0031098
- 3702 - Arabidopsis thaliana: 10.1046/J.1365-313X.2003.01834.X
- 3702 - Arabidopsis thaliana: 10.1111/TPJ.14594
- 3702 - Arabidopsis thaliana: LTS0031098
- 4219 - Artemisia: LTS0031098
- 72332 - Artemisia absinthium:
- 259893 - Artemisia argyi Lévl.et Vant.: -
- 72337 - Artemisia campestris: 10.1016/S0031-9422(98)00180-0
- 72337 - Artemisia campestris: LTS0031098
- 2607876 - Artemisia campestris subsp. maritima: 10.1016/S0031-9422(98)00180-0
- 2607876 - Artemisia campestris subsp. maritima: LTS0031098
- 72340 - Artemisia crithmifolia: 10.1016/S0031-9422(98)00180-0
- 72341 - Artemisia dracunculus: 10.1016/S0031-9422(00)80546-4
- 72341 - Artemisia dracunculus: LTS0031098
- 6656 - Arthropoda: LTS0031098
- 76098 - Asarum sieboldii: 10.3390/MOLECULES19010122
- 4686 - Asparagus officinalis: 10.1371/JOURNAL.PONE.0219973
- 41479 - Aster: LTS0031098
- 947972 - Aster koraiensis: 10.5012/BKCS.2010.31.01.227
- 947972 - Aster koraiensis: LTS0031098
- 4210 - Asteraceae: LTS0031098
- 146531 - Avena byzantina: 10.1016/0003-9861(86)90738-1
- 41487 - Baccharis: LTS0031098
- 72900 - Baccharis dracunculifolia: 10.1248/CPB.54.1465
- 72900 - Baccharis dracunculifolia: LTS0031098
- 2321251 - Baccharis linearifolia: 10.1016/0031-9422(81)85107-2
- 2321251 - Baccharis linearifolia: LTS0031098
- 2707522 - Baccharis retusa: 10.1016/0031-9422(81)85107-2
- 2707522 - Baccharis retusa: LTS0031098
- 3805 - Bauhinia: LTS0031098
- 72167 - Berchemia: LTS0031098
- 1812989 - Berchemia formosana: 10.1002/JCCS.199500018
- 1812989 - Berchemia formosana: LTS0031098
- 3504 - Betula: LTS0031098
- 211500 - Betula maximowicziana: 10.1248/CPB.44.1748
- 211500 - Betula maximowicziana: LTS0031098
- 3514 - Betulaceae: LTS0031098
- 66670 - Bixaceae: LTS0031098
- 3705 - Brassica: 10.1016/S0021-9673(97)01061-3
- 3705 - Brassica: LTS0031098
- 3708 - Brassica napus: 10.3389/FNUT.2022.822033
- 3712 - Brassica oleracea: LTS0031098
- 3716 - Brassica oleracea var. capitata: 10.1016/S0021-9673(97)01061-3
- 3716 - Brassica oleracea var. capitata: LTS0031098
- 36774 - Brassica oleracea var. italica:
- 36774 - Brassica oleracea var. italica: 10.1016/S0021-9673(97)01061-3
- 36774 - Brassica oleracea var. italica: LTS0031098
- 1216010 - Brassica oleracea var. sabauda: 10.1016/S0021-9673(97)01061-3
- 1216010 - Brassica oleracea var. sabauda: LTS0031098
- 3713 - Brassica oleracea var. viridis: 10.1016/S0021-9673(97)01061-3
- 3713 - Brassica oleracea var. viridis: LTS0031098
- 3700 - Brassicaceae: LTS0031098
- 194252 - Brosimum: LTS0031098
- 1835378 - Brosimum acutifolium: 10.1021/NP010389J
- 1835378 - Brosimum acutifolium: 10.1021/NP020241F
- 1835378 - Brosimum acutifolium: LTS0031098
- 66379 - Broussonetia: 10.1021/NP010288L
- 66379 - Broussonetia: LTS0031098
- 172644 - Broussonetia papyrifera: 10.1021/NP010288L
- 172644 - Broussonetia papyrifera: LTS0031098
- 51156 - Cadophora gregata: 10.1271/BBB1961.51.349
- 53622 - Callerya: LTS0031098
- 4441 - Camellia: LTS0031098
- 4442 - Camellia sinensis:
- 4442 - Camellia sinensis: 10.1007/BF00580092
- 4442 - Camellia sinensis: LTS0031098
- 4071 - Capsicum: LTS0031098
- 4072 - Capsicum annuum: 10.1016/S0021-9673(97)01061-3
- 4072 - Capsicum annuum: LTS0031098
- 201011 - Carapa: LTS0031098
- 201012 - Carapa guianensis: 10.1002/CHIN.200441208
- 201012 - Carapa guianensis: LTS0031098
- 4305 - Celastraceae: LTS0031098
- 41503 - Centaurea: 10.1002/CBER.19731060707
- 41511 - Centaurea calcitrapa: 10.1016/S0031-9422(00)85282-6
- 363441 - Centaurea pallescens: 10.1016/S0031-9422(00)85282-6
- 13422 - Chrysanthemum: LTS0031098
- 41568 - Chrysanthemum × morifolium: 10.1021/NP50103A006
- 71038 - Chrysothamnus: LTS0031098
- 217578 - Chrysothamnus humilis: 10.1016/S0031-9422(99)00110-7
- 217578 - Chrysothamnus humilis: LTS0031098
- 72914 - Chrysothamnus viscidiflorus: 10.1016/S0031-9422(99)00110-7
- 72914 - Chrysothamnus viscidiflorus: LTS0031098
- 2706 - Citrus:
- 2706 - Citrus: 10.1016/S0031-9422(00)85805-7
- 2706 - Citrus: LTS0031098
- 159033 - Citrus aurantiifolia: 10.1016/S0021-9673(97)01061-3
- 43166 - Citrus aurantium: 10.1016/S0021-9673(97)01061-3
- 558547 - Citrus deliciosa:
- 2708 - Citrus limon: 10.1016/S0021-9673(97)01061-3
- 171249 - Citrus limonia: LTS0031098
- 37334 - Citrus maxima:
- 171251 - Citrus medica: 10.1021/NP060217S
- 171251 - Citrus medica: LTS0031098
- 481549 - Citrus nobilis: 10.1201/B19644-31
- 85571 - Citrus reticulata:
- 85571 - Citrus reticulata Blanco: -
- 2711 - Citrus sinensis: 10.1016/S0021-9673(97)01061-3
- 2711 - Citrus sinensis: LTS0031098
- 2711 - Citrus sinensis Osbeck: -
- 558546 - Citrus sudachi: 10.1021/NP060217S
- 558546 - Citrus sudachi: LTS0031098
- 37690 - Citrus trifoliata:
- 37690 - Citrus trifoliata: 10.1248/CPB.58.971
- 37690 - Citrus trifoliata: LTS0031098
- 55188 - Citrus unshiu:
- 37656 - Citrus × paradisi: 10.1016/S0021-9673(97)01061-3
- 55961 - Clusiaceae: LTS0031098
- 66674 - Cochlospermum: LTS0031098
- 1382064 - Cochlospermum gillivraei: 10.1016/0031-9422(75)80380-3
- 1382064 - Cochlospermum gillivraei: LTS0031098
- 3954 - Combretaceae: LTS0031098
- 4046 - Coriandrum: LTS0031098
- 4047 - Coriandrum sativum: 10.1021/JF040083T
- 4047 - Coriandrum sativum: LTS0031098
- 282214 - Cota: LTS0031098
- 589831 - Cota palaestina: 10.1021/NP9004129
- 589831 - Cota palaestina: LTS0031098
- 36607 - Cotoneaster: LTS0031098
- 1851000 - Cotoneaster orbicularis: 10.1016/S0031-9422(99)00598-1
- 1851000 - Cotoneaster orbicularis: LTS0031098
- 3781 - Crassulaceae: LTS0031098
- 3828 - Crotalaria: LTS0031098
- 671522 - Crotalaria assamica: 10.1016/J.BMCL.2003.11.074
- 671522 - Crotalaria assamica: LTS0031098
- 517187 - Crotalaria spectabilis: 10.1016/J.BMCL.2003.11.074
- 3394 - Cycadaceae: LTS0031098
- 3296 - Cycadopsida: LTS0031098
- 3395 - Cycas: LTS0031098
- 3397 - Cycas circinalis: 10.1055/S-0029-1240743
- 3397 - Cycas circinalis: LTS0031098
- 3396 - Cycas revoluta: 10.1055/S-0029-1240743
- 3396 - Cycas revoluta: LTS0031098
- 53862 - Dalbergia: LTS0031098
- 499988 - Dalbergia odorifera: 10.1039/P19730001737
- 1353466 - Dalbergia parviflora: 10.1021/NP900676Y
- 1353466 - Dalbergia parviflora: 10.1039/P19730001737
- 1353466 - Dalbergia parviflora: LTS0031098
- 1966414 - Dalbergia stevensonii: 10.1039/P19730001737
- 1966414 - Dalbergia stevensonii: LTS0031098
- 2918710 - Daphne aurantiaca: 10.1248/CPB.59.653
- 37818 - Dendrobium: LTS0031098
- 431188 - Dendrobium candidum: 10.1016/S0031-9422(01)00168-6
- 154291 - Dendrobium chrysanthum: 10.1016/S0031-9422(01)00168-6
- 161865 - Dendrobium chrysotoxum: 10.1016/S0031-9422(01)00168-6
- 161866 - Dendrobium densiflorum: 10.1016/S0031-9422(01)00168-6
- 161866 - Dendrobium densiflorum: LTS0031098
- 117953 - Dendrobium fimbriatum: 10.1016/S0031-9422(01)00168-6
- 117954 - Dendrobium loddigesii: 10.1016/S0031-9422(01)00168-6
- 257357 - Dendrobium longicornu: 10.1055/S-2008-1074492
- 142614 - Dendrobium moniliforme: 10.1016/S0031-9422(01)00168-6
- 94219 - Dendrobium nobile: 10.1016/S0031-9422(01)00168-6
- 39166 - Dracocephalum: LTS0031098
- 1699510 - Dracocephalum tanguticum: 10.1016/J.BMCL.2010.09.086
- 1699510 - Dracocephalum tanguticum: LTS0031098
- 123414 - Elaeodendron: LTS0031098
- 1004000 - Elaeodendron croceum: 10.1080/14786410903052399
- 1004000 - Elaeodendron croceum: LTS0031098
- 148695 - Entada: LTS0031098
- 489316 - Entada phaseoloides: 10.1002/CBDV.201100002
- 489316 - Entada phaseoloides: LTS0031098
- 3256 - Equisetaceae: LTS0031098
- 3257 - Equisetum: LTS0031098
- 3258 - Equisetum arvense: 10.1007/BF00571226
- 3258 - Equisetum arvense: LTS0031098
- 38413 - Eragrostis: LTS0031098
- 110835 - Eragrostis tef: 10.1080/14786419.2010.538924
- 110835 - Eragrostis tef: LTS0031098
- 4345 - Ericaceae: LTS0031098
- 244311 - Erigeron Breviscapus: -
- 2759 - Eukaryota: LTS0031098
- 107755 - Eulophidae: LTS0031098
- 38843 - Euphorbia amygdaloides: 10.1248/CPB.54.1037
- 318062 - Euphorbia hirta: 10.1248/CPB.54.1037
- 3977 - Euphorbiaceae: LTS0031098
- 3803 - Fabaceae: LTS0031098
- 3493 - Ficus: LTS0031098
- 463862 - Ficus nervosa: 10.1002/CBDV.200900227
- 463862 - Ficus nervosa: LTS0031098
- 520842 - Flemingia: LTS0031098
- 520843 - Flemingia macrophylla: 10.1016/J.PHYTOCHEM.2003.09.003
- 520843 - Flemingia macrophylla: LTS0031098
- 634991 - Flemingia philippinensis: 10.1016/J.PHYTOCHEM.2003.09.003
- 634991 - Flemingia philippinensis: LTS0031098
- 1603725 - Flemingia prostrata: 10.1016/J.PHYTOCHEM.2003.09.003
- 1603725 - Flemingia prostrata: LTS0031098
- 3746 - Fragaria: 10.1016/S0021-9673(97)01061-3
- 3746 - Fragaria: LTS0031098
- 58227 - Garcinia: LTS0031098
- 1009474 - Garcinia multiflora: 10.1021/NP030065Q
- 1009474 - Garcinia multiflora: LTS0031098
- 38851 - Gentiana lutea: 10.1371/JOURNAL.PONE.0212062
- 46347 - Glycyrrhiza: LTS0031098
- 49827 - Glycyrrhiza glabra:
- 49827 - Glycyrrhiza glabra: 10.1007/BF00574601
- 49827 - Glycyrrhiza glabra: 10.1021/NP050034Q
- 49827 - Glycyrrhiza glabra: LTS0031098
- 74614 - Glycyrrhiza inflata:
- 74613 - Glycyrrhiza uralensis:
- 23066 - Grossulariaceae: LTS0031098
- 42052 - Gynerium: LTS0031098
- 42053 - Gynerium sagittatum: 10.1016/J.PHYTOCHEM.2007.03.007
- 42053 - Gynerium sagittatum: LTS0031098
- 59430 - Helichrysum: LTS0031098
- 261776 - Helichrysum arenarium:
- 261776 - Helichrysum arenarium: 10.1007/S10600-010-9462-3
- 261776 - Helichrysum arenarium: LTS0031098
- 112358 - Helichrysum cephaloideum:
- 630307 - Helichrysum graveolens:
- 1561072 - Heliotropiaceae: LTS0031098
- 21621 - Heliotropium: LTS0031098
- 454094 - Heliotropium chenopodiaceum: 10.3390/MOLECULES14114625
- 454106 - Heliotropium sclerocarpum: 10.3390/MOLECULES14114625
- 454106 - Heliotropium sclerocarpum: LTS0031098
- 248303 - Heliotropium taltalense: 10.3390/MOLECULES14061980
- 248303 - Heliotropium taltalense: LTS0031098
- 9606 - Homo sapiens: -
- 39168 - Hyssopus: LTS0031098
- 39324 - Hyssopus officinalis: 10.1021/JF040083T
- 50557 - Insecta: LTS0031098
- 162811 - Intsia: 10.1016/0031-9422(73)80461-3
- 162811 - Intsia: LTS0031098
- 162812 - Intsia bijuga: 10.1016/0031-9422(73)80461-3
- 162812 - Intsia bijuga: LTS0031098
- 4235 - Lactuca: LTS0031098
- 4236 - Lactuca sativa: 10.1016/S0021-9673(97)01061-3
- 4236 - Lactuca sativa: LTS0031098
- 190523 - Laguncularia: LTS0031098
- 190524 - Laguncularia racemosa: 10.1016/J.PHYTOCHEM.2009.11.008
- 190524 - Laguncularia racemosa: LTS0031098
- 4136 - Lamiaceae: LTS0031098
- 53892 - Lespedeza: LTS0031098
- 701533 - Lespedeza cyrtobotrya: 10.1021/NP800395J
- 701533 - Lespedeza cyrtobotrya: 10.1021/NP800535G
- 701533 - Lespedeza cyrtobotrya: LTS0031098
- 4447 - Liliopsida: LTS0031098
- 320344 - Lippia: LTS0031098
- 1986359 - Lippia graveolens: 10.1016/J.JFCA.2006.09.005
- 1986359 - Lippia graveolens: LTS0031098
- 542673 - Lippia origanoides: 10.1016/J.JFCA.2006.09.005
- 542673 - Lippia origanoides: LTS0031098
- 3869 - Lupinus: LTS0031098
- 3090167 - Lupinus subcarnosus: LTS0031098
- 28959 - Lupinus texensis: 10.1016/0305-1978(87)90107-4
- 28959 - Lupinus texensis: LTS0031098
- 37500 - Maackia: LTS0031098
- 37501 - Maackia amurensis: 10.1007/S10600-009-9195-3
- 37501 - Maackia amurensis: LTS0031098
- 316845 - Mabea: LTS0031098
- 3495 - Maclura: LTS0031098
- 194324 - Maclura cochinchinensis:
- 194324 - Maclura cochinchinensis: 10.1021/NP000406P
- 194324 - Maclura cochinchinensis: 10.1021/NP030127C
- 194324 - Maclura cochinchinensis: LTS0031098
- 3496 - Maclura pomifera: 10.1016/0031-9422(94)00971-U
- 3496 - Maclura pomifera: LTS0031098
- 681456 - Maclura tinctoria: 10.1021/NP030127C
- 681456 - Maclura tinctoria: LTS0031098
- 210328 - Maclura tricuspidata:
- 210328 - Maclura tricuspidata: 10.1016/J.BMCL.2015.07.017
- 210328 - Maclura tricuspidata: LTS0031098
- 85856 - Magnolia denudata: 10.3390/MOLECULES23071558
- 3403 - Magnolia liliiflora: 10.3390/MOLECULES23071558
- 3398 - Magnoliopsida: LTS0031098
- 3749 - Malus: LTS0031098
- 3750 - Malus domestica:
- 3750 - Malus domestica: 10.1016/S0021-9673(97)01061-3
- 3750 - Malus domestica: LTS0031098
- 283210 - Malus pumila:
- 283210 - Malus pumila: 10.1016/S0021-9673(97)01061-3
- 283210 - Malus pumila: LTS0031098
- 3629 - Malvaceae: LTS0031098
- 52836 - Mandevilla: LTS0031098
- 387703 - Mandevilla hirsuta: 10.1002/JPS.2600680236
- 387703 - Mandevilla hirsuta: LTS0031098
- 56016 - Matricaria: LTS0031098
- 98504 - Matricaria chamomilla: 10.1021/JF040083T
- 98504 - Matricaria chamomilla: LTS0031098
- 3880 - Medicago truncatula: 10.1016/J.PHYTOCHEM.2006.10.023
- 43707 - Meliaceae: LTS0031098
- 39170 - Melissa: LTS0031098
- 39338 - Melissa officinalis: 10.1021/JF040083T
- 39338 - Melissa officinalis: LTS0031098
- 21819 - Mentha: LTS0031098
- 29719 - Mentha spicata: 10.1021/JF040083T
- 29719 - Mentha spicata: LTS0031098
- 53625 - Millettia: LTS0031098
- 1993599 - Millettia brandisiana: 10.1021/NP0703904
- 1993599 - Millettia brandisiana: LTS0031098
- 21013 - Mimosa: LTS0031098
- 138060 - Mimosa tenuiflora: 10.1248/CPB.54.1728
- 138060 - Mimosa tenuiflora: LTS0031098
- 3673 - Momordica charantia: 10.3390/MOLECULES23020469
- 553494 - Monopteryx: LTS0031098
- 997823 - Monopteryx inpae: 10.1016/0031-9422(81)85097-2
- 997823 - Monopteryx inpae: LTS0031098
- 3487 - Moraceae: LTS0031098
- 524508 - Myrrha: -
- 4418 - Nymphaea: LTS0031098
- 49506 - Nymphaea caerulea: 10.1016/J.PHYTOCHEM.2008.04.009
- 49506 - Nymphaea caerulea: LTS0031098
- 1616377 - Nymphaea nouchali var. caerulea: 10.1016/J.PHYTOCHEM.2008.04.009
- 4410 - Nymphaeaceae: LTS0031098
- 39173 - Ocimum: LTS0031098
- 39350 - Ocimum basilicum: 10.1021/JF040083T
- 39350 - Ocimum basilicum: LTS0031098
- 106975 - Opuntia: 10.1021/ACS.JNATPROD.9B01120.S001
- 4747 - Orchidaceae: LTS0031098
- 39174 - Origanum: LTS0031098
- 497761 - Origanum dictamnus: 10.1021/JF904596M
- 497761 - Origanum dictamnus: LTS0031098
- 53907 - Ormosia: LTS0031098
- 705300 - Ormosia henryi: 10.1016/J.FITOTE.2011.10.007
- 705300 - Ormosia henryi: LTS0031098
- 39251 - Paulownia: LTS0031098
- 1238142 - Paulownia coreana: 10.1248/BPB.34.160
- 1238142 - Paulownia coreana: LTS0031098
- 39353 - Paulownia tomentosa:
- 39353 - Paulownia tomentosa: 10.1016/J.BMC.2012.02.044
- 39353 - Paulownia tomentosa: 10.1248/BPB.34.160
- 39353 - Paulownia tomentosa: LTS0031098
- 155891 - Paulowniaceae: LTS0031098
- 4042 - Petroselinum: LTS0031098
- 4043 - Petroselinum crispum:
- 4043 - Petroselinum crispum: LTS0031098
- 663597 - Petroselinum crispum: 10.1016/S0021-9673(97)01061-3
- 663597 - Petroselinum crispum: 10.1021/JF040083T
- 3883 - Phaseolus: LTS0031098
- 3885 - Phaseolus vulgaris: 10.1016/S0021-9673(97)01061-3
- 3885 - Phaseolus vulgaris: LTS0031098
- 316257 - Phlomis: LTS0031098
- 997702 - Phlomis aurea: 10.1016/0031-9422(86)88052-9
- 997702 - Phlomis aurea: LTS0031098
- 40958 - Pimpinella: LTS0031098
- 271192 - Pimpinella anisum: 10.1021/JF040083T
- 271192 - Pimpinella anisum: LTS0031098
- 3318 - Pinaceae: LTS0031098
- 58019 - Pinopsida: LTS0031098
- 13215 - Piper: LTS0031098
- 538253 - Piper crassinervium: 10.1002/CHIN.200402241
- 538253 - Piper crassinervium: 10.1016/S0031-9422(03)00299-1
- 538253 - Piper crassinervium: LTS0031098
- 16739 - Piperaceae: LTS0031098
- 98711 - Pittocaulon: LTS0031098
- 98712 - Pittocaulon praecox: 10.3987/COM-08-11625
- 98712 - Pittocaulon praecox: LTS0031098
- 1707444 - Pittocaulon velatum: 10.1021/NP200188W
- 1707444 - Pittocaulon velatum: LTS0031098
- 33090 - Plants: -
- 4479 - Poaceae: LTS0031098
- 3362 - Podocarpaceae: LTS0031098
- 3363 - Podocarpus: LTS0031098
- 120615 - Podocarpus fasciculus: 10.1248/CPB.56.585
- 120615 - Podocarpus fasciculus: LTS0031098
- 241806 - Polypodiopsida: LTS0031098
- 37881 - Poncirus: LTS0031098
- 3689 - Populus: LTS0031098
- 266767 - Populus davidiana: 10.1007/S10600-009-9444-5
- 266767 - Populus davidiana: LTS0031098
- 41393 - Premna: LTS0031098
- 1548303 - Premna fulva: 10.3998/ARK.5550190.0011.213
- 1548303 - Premna fulva: LTS0031098
- 3754 - Prunus: LTS0031098
- 122119 - Prunus angustifolia: 10.1016/0031-9422(92)80399-Y
- 36596 - Prunus armeniaca: 10.1016/S0021-9673(97)01061-3
- 36596 - Prunus armeniaca: LTS0031098
- 42229 - Prunus avium:
- 42229 - Prunus avium: 10.1016/S0021-9673(97)01061-3
- 42229 - Prunus avium: 10.1021/JF980936F
- 42229 - Prunus avium: LTS0031098
- 136465 - Prunus campanulata: 10.1021/JA01650A088
- 140311 - Prunus cerasus: 10.1021/JF980936F
- 140311 - Prunus cerasus: LTS0031098
- 151430 - Prunus davidiana: 10.1021/JF980936F
- 3758 - Prunus domestica: 10.1016/S0021-9673(97)01061-3
- 3758 - Prunus domestica: LTS0031098
- 1284230 - Prunus lycioides: 10.3390/MOLECULES17021665
- 102107 - Prunus mume: 10.1021/JF980936F
- 102107 - Prunus mume (Sieb.)Sieb.et Zucc.: -
- 3760 - Prunus persica: 10.1021/JF980936F
- 3356 - Pseudotsuga: LTS0031098
- 71407 - Pseudotsuga sinensis: LTS0031098
- 100169 - Pterocarpus: LTS0031098
- 1071187 - Pterocarpus marsupium: 10.1055/S-2006-962469
- 1071187 - Pterocarpus marsupium: LTS0031098
- 22663 - Punica granatum: 10.1371/JOURNAL.PONE.0142777
- 144561 - Pyracantha: LTS0031098
- 193309 - Pyracantha coccinea: 10.1016/0031-9422(93)85108-4
- 193309 - Pyracantha coccinea: LTS0031098
- 3726 - Raphanus sativus: 10.3390/NU11020402
- 3608 - Rhamnaceae: LTS0031098
- 132460 - Rhynchosia: LTS0031098
- 1378005 - Rhynchosia beddomei: 10.1007/BF02002621
- 1378005 - Rhynchosia beddomei: 10.1016/0031-9422(80)83211-0
- 1378005 - Rhynchosia beddomei: LTS0031098
- 3801 - Ribes: LTS0031098
- 78511 - Ribes nigrum: 10.1016/S0021-9673(97)01061-3
- 78511 - Ribes nigrum: LTS0031098
- 175228 - Ribes rubrum: 10.1016/S0021-9673(97)01061-3
- 175228 - Ribes rubrum: LTS0031098
- 3745 - Rosaceae: LTS0031098
- 23216 - Rubus: LTS0031098
- 32247 - Rubus idaeus: 10.1016/S0021-9673(97)01061-3
- 32247 - Rubus idaeus: LTS0031098
- 23513 - Rutaceae: LTS0031098
- 3688 - Salicaceae: LTS0031098
- 1004002 - Salix atrocinerea: 10.1021/NP50040A007
- 21880 - Salvia: LTS0031098
- 38868 - Salvia officinalis:
- 38868 - Salvia officinalis: 10.1002/CBDV.201100219
- 38868 - Salvia officinalis: 10.1021/JF040083T
- 38868 - Salvia officinalis: LTS0031098
- 39367 - Salvia rosmarinus:
- 39367 - Salvia rosmarinus: 10.1002/CBDV.201100219
- 39367 - Salvia rosmarinus: 10.1021/JF040083T
- 39367 - Salvia rosmarinus: 10.1111/J.1745-4557.2006.00096.X
- 39367 - Salvia rosmarinus: LTS0031098
- 2039553 - Salvia xalapensis: 10.1021/NP050041E.S001
- 3958 - Santalaceae: LTS0031098
- 23672 - Sapindaceae: LTS0031098
- 481597 - Scalesia: LTS0031098
- 2708561 - Scalesia baurii: 10.1016/S0031-9422(97)00464-0
- 2708561 - Scalesia baurii: LTS0031098
- 508984 - Schnella guianensis: 10.1016/0031-9422(88)80455-2
- 4149 - Scrophulariaceae: LTS0031098
- 2841764 - Senecio adenophyllus: 10.1016/0031-9422(77)83033-1
- 346985 - Senna obtusifolia: 10.1248/CPB.42.2588
- 948718 - Senna sophera: 10.1248/CPB.42.2588
- 63803 - Siparuna: 10.1016/0031-9422(93)85293-Z
- 176612 - Smallanthus: LTS0031098
- 185193 - Smallanthus fruticosus: 10.1016/S0031-9422(00)94338-3
- 185193 - Smallanthus fruticosus: LTS0031098
- 4703 - Smilacaceae: LTS0031098
- 49656 - Smilax: LTS0031098
- 49657 - Smilax china: 10.1016/J.PHYTOCHEM.2008.01.002
- 1045139 - Smilax corbularia: 10.1016/J.PHYTOCHEM.2010.12.018
- 1045139 - Smilax corbularia: LTS0031098
- 754786 - Smilax excelsa: 10.1007/S10600-010-9594-5
- 754786 - Smilax excelsa: LTS0031098
- 703614 - Smilax glabra: 10.1016/J.PHYTOCHEM.2008.01.002
- 4070 - Solanaceae: LTS0031098
- 4107 - Solanum: LTS0031098
- 4081 - Solanum lycopersicum:
- 4081 - Solanum lycopersicum: LTS0031098
- 195583 - Solanum lycopersicum var. cerasiforme: 10.1016/J.JFCA.2005.02.003
- 195583 - Solanum lycopersicum var. cerasiforme: LTS0031098
- 53171 - Stachys: LTS0031098
- 1391947 - Stachys aegyptiaca: 10.1016/0031-9422(95)00395-N
- 1391947 - Stachys aegyptiaca: LTS0031098
- 183082 - Steiractinia: LTS0031098
- 183083 - Steiractinia sodiroi: 10.1016/0031-9422(80)85153-3
- 183083 - Steiractinia sodiroi: LTS0031098
- 35493 - Streptophyta: LTS0031098
- 53925 - Swartzia: LTS0031098
- 450104 - Swartzia polyphylla:
- 450104 - Swartzia polyphylla: 10.1021/NP50118A028
- 450104 - Swartzia polyphylla: 10.1248/CPB.40.2970
- 450104 - Swartzia polyphylla: LTS0031098
- 27065 - Theaceae: LTS0031098
- 49990 - Thymus: 10.1021/JF040083T
- 49990 - Thymus: LTS0031098
- 64580 - Tilia: LTS0031098
- 210368 - Tilia mandshurica: 10.1021/JF040083T
- 121718 - Tilia tomentosa: 10.1021/JF040083T
- 121718 - Tilia tomentosa: LTS0031098
- 58023 - Tracheophyta: LTS0031098
- 29875 - Trichoderma virens: 10.1094/MPMI-04-20-0081-R
- 78534 - Trigonella foenum-graecum L.: -
- 13749 - Vaccinium: LTS0031098
- 180772 - Vaccinium vitis-idaea:
- 180772 - Vaccinium vitis-idaea: 10.1016/S0021-9673(97)01061-3
- 180772 - Vaccinium vitis-idaea: LTS0031098
- 468162 - Vachellia: LTS0031098
- 72368 - Vachellia farnesiana: LTS0031098
- 138033 - Vachellia nilotica: LTS0031098
- 299826 - Vachellia nilotica subsp. tomentosa: 10.1055/S-2006-962094
- 299826 - Vachellia nilotica subsp. tomentosa: LTS0031098
- 21910 - Verbenaceae: LTS0031098
- 446156 - Viburnum cotinifolium: 10.1002/CHIN.200315207
- 3914 - Vigna angularis: 10.1080/00021369.1987.10868021
- 33090 - Viridiplantae: LTS0031098
- 1003255 - Viscaceae: LTS0031098
- 3971 - Viscum: LTS0031098
- 159976 - Viscum coloratum: 10.1248/CPB.54.1063
- 159976 - Viscum coloratum: LTS0031098
- 3602 - Vitaceae: LTS0031098
- 3603 - Vitis: LTS0031098
- 29760 - Vitis vinifera:
- 29760 - Vitis vinifera: 10.1002/JSSC.200500003
- 29760 - Vitis vinifera: 10.1016/S0021-9673(97)01061-3
- 29760 - Vitis vinifera: LTS0031098
- 54882 - Wisteriopsis reticulata: 10.1021/JF903216R
- 53739 - Wyethia: LTS0031098
- 230214 - Wyethia angustifolia: 10.1016/S0031-9422(00)81244-3
- 230214 - Wyethia angustifolia: LTS0031098
- 99657 - Xanthoceras: LTS0031098
- 99658 - Xanthoceras sorbifolium: 10.1021/NP9902441
- 99658 - Xanthoceras sorbifolium: LTS0031098
- 152196 - Xerochrysum bracteatum: 10.1002/CBER.19731060432
- 4642 - Zingiberaceae: LTS0031098
- 33090 - 枳实: -
- 33090 - 橘红: -
- 569774 - 金线莲: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Mohsen Akbari, Salar Moardi, Homeyra Piri, Roonak Amiri, Farzaneh Aliaqabozorg, Elham Sadat Afraz. The identification of active compounds and therapeutic properties of fermented and non-fermented red sorghum for the treatment of Alzheimer's dementia.
Experimental gerontology.
2024 Jul; 192(?):112459. doi:
10.1016/j.exger.2024.112459
. [PMID: 38740315] - Liyao Liu, Lifei Lv, Wenjie Dai, Jinju Nie. The effect of naringenin-phospholipid complex on thermal oxidative stability of soybean oil under heating condition.
Food chemistry.
2024 Jun; 444(?):138631. doi:
10.1016/j.foodchem.2024.138631
. [PMID: 38325079] - Ying-Ting Yu, Hong-Ru Lin, Xin-Yan Chen, Meng-Lu Sun, Cong-Min Wei, Meng-Fan Xue, Yi-Huai Gao, Wen-Bo Tang, Chun-Yuan Zheng, Shan Li, Hong-Bing Wang. Dendrobium officinale phenolic extract maintains proteostasis by regulating autophagy in a Caenorhabditis elegans model of Alzheimer's disease.
Fitoterapia.
2024 Jun; 175(?):105924. doi:
10.1016/j.fitote.2024.105924
. [PMID: 38537886] - Olga Wesołowska, Anna Duda-Madej, Maria Błaszczyk, Kamila Środa-Pomianek, Joanna Kozłowska, Mirosław Anioł. Interaction of selected alkoxy naringenin oximes with model and bacterial membranes.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2024 May; 174(?):116581. doi:
10.1016/j.biopha.2024.116581
. [PMID: 38636394] - Meng Ding, Yuan Zhu, Xiaoting Xu, Hui He, Tianyu Jiang, Xiaochuan Mo, Zhuting Wang, Wenfeng Yu, Hailong Ou. Naringenin Inhibits Acid Sphingomyelinase-Mediated Membrane Raft Clustering to Reduce NADPH Oxidase Activation and Vascular Inflammation.
Journal of agricultural and food chemistry.
2024 Apr; 72(13):7130-7139. doi:
10.1021/acs.jafc.3c07874
. [PMID: 38516841] - Jiashuo Zhang, Weiyang Fan, Hao Wu, Yue Yao, Linlin Jin, Ruiqi Chen, Ziyan Xu, Weiwei Su, Yonggang Wang, Peibo Li. Naringenin attenuated airway cilia structural and functional injury induced by cigarette smoke extract via IL-17 and cAMP pathways.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2024 Apr; 126(?):155053. doi:
10.1016/j.phymed.2023.155053
. [PMID: 38359483] - Wenbo Li, Xin Yan, Wenli Xia, Linguo Zhao, Jianjun Pei. Enzymatic properties and immobilization of a thermostable prenyltransferase from Aspergillus fumigatiaffinis for the production of prenylated naringenin.
Bioorganic chemistry.
2024 Apr; 145(?):107183. doi:
10.1016/j.bioorg.2024.107183
. [PMID: 38340474] - Luana Heimfarth, Katielen Silvana Dos Santos, Brenda Souza Monteiro, Anne Karoline de Souza Oliveira, Henrique Douglas M Coutinho, Irwin R A Menezes, Marcio Roberto Viana Dos Santos, Adriano Antunes de Souza Araújo, Laurent Picot, Raimundo Gonçalves de Oliveira Júnior, Raphaël Grougnet, Jullyana de Souza Siqueira Quintans, Lucindo José Quintans-Júnior. The protective effects of naringenin, a citrus flavonoid, non-complexed or complexed with hydroxypropyl-β-cyclodextrin against multiorgan damage caused by neonatal endotoxemia.
International journal of biological macromolecules.
2024 Apr; 264(Pt 1):130500. doi:
10.1016/j.ijbiomac.2024.130500
. [PMID: 38428770] - Yuying Zhao, Hanxu Tan, Juping Zhang, Dandan Zhan, Bowen Yang, Shicui Hong, Bo Pan, Neng Wang, Tongkai Chen, Yafei Shi, Zhiyu Wang. Developing liver-targeted naringenin nanoparticles for breast cancer endocrine therapy by promoting estrogen metabolism.
Journal of nanobiotechnology.
2024 Mar; 22(1):122. doi:
10.1186/s12951-024-02356-0
. [PMID: 38504208] - Ashutosh Pareek, Rupal Kothari, Aaushi Pareek, Yashumati Ratan, Pushpa Kashania, Vivek Jain, Philippe Jeandet, Parveen Kumar, Azmat Ali Khan, Amer M Alanazi, Madan Mohan Gupta. Development of a new inhaled swellable microsphere system for the dual delivery of naringenin-loaded solid lipid nanoparticles and doxofylline for the treatment of asthma.
European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.
2024 Feb; 193(?):106642. doi:
10.1016/j.ejps.2023.106642
. [PMID: 37977235] - Weiyang Fan, Ziyan Xu, Jiashuo Zhang, Minyi Guan, Yuying Zheng, Yonggang Wang, Hao Wu, Weiwei Su, Peibo Li. Naringenin regulates cigarette smoke extract-induced extracellular vesicles from alveolar macrophage to attenuate the mouse lung epithelial ferroptosis through activating EV miR-23a-3p/ACSL4 axis.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2024 Feb; 124(?):155256. doi:
10.1016/j.phymed.2023.155256
. [PMID: 38181527] - Tong Pan, Yen-Mei Lee, Eiki Takimoto, Kazutaka Ueda, Pang-Yen Liu, Hsin-Hsueh Shen. Inhibitory effects of naringenin on estrogen deficiency-induced obesity via regulation of mitochondrial dynamics and AMPK activation associated with white adipose tissue browning.
Life sciences.
2024 Jan; 340(?):122453. doi:
10.1016/j.lfs.2024.122453
. [PMID: 38272439] - Malgorzata Latos-Brozio, Anna Masek, Leszek Czechowski, Aleksandra Jastrzębska, Sebastian Miszczak. Effect of the Addition of Naringenin Derived from Citrus on the Properties of Epoxy Resin Compositions.
Molecules (Basel, Switzerland).
2024 Jan; 29(2):. doi:
10.3390/molecules29020512
. [PMID: 38276590] - Manuel Adrian Picos-Salas, Nayely Leyva-López, Pedro de Jesús Bastidas-Bastidas, Marilena Antunes-Ricardo, Luis Angel Cabanillas-Bojórquez, Miguel Angel Angulo-Escalante, J Basilio Heredia, Erick Paul Gutiérrez-Grijalva. Supercritical CO2 extraction of naringenin from Mexican oregano (Lippia graveolens): its antioxidant capacity under simulated gastrointestinal digestion.
Scientific reports.
2024 01; 14(1):1146. doi:
10.1038/s41598-023-50997-2
. [PMID: 38212400] - Luis Alberto Mejía-Manzano, César Iván Ortiz-Alcaráz, Laura E Parra Daza, Lina Suarez Medina, Teresa Vargas-Cortez, Miguel Fernández-Niño, Andrés Fernando González Barrios, José González-Valdez. Saccharomyces cerevisiae biofactory to produce naringenin using a systems biology approach and a bicistronic vector expression strategy in flavonoid production.
Microbiology spectrum.
2024 Jan; 12(1):e0337423. doi:
10.1128/spectrum.03374-23
. [PMID: 38088543] - Tsung-Ming Chang, Miao-Ching Chi, Yao-Chang Chiang, Chieh-Mo Lin, Mei-Ling Fang, Chiang-Wen Lee, Ju-Fang Liu, Yu Ru Kou. Promotion of ROS-mediated apoptosis, G2/M arrest, and autophagy by naringenin in non-small cell lung cancer.
International journal of biological sciences.
2024; 20(3):1093-1109. doi:
10.7150/ijbs.85443
. [PMID: 38322119] - Xiao Jin, Ling Jin, Bingxin Wu, Danping Xu. Naringenin protects myocardial ischemia/reperfusion injury by regulating miR-24-3p to inhibit cell death-inducing p53 target 1 expression.
General physiology and biophysics.
2024 Jan; 43(1):13-23. doi:
10.4149/gpb_2023035
. [PMID: 38312031] - Bo Peng, Lin Dai, Riccardo Iacovelli, Arnold J M Driessen, Kristina Haslinger. Heterologous Naringenin Production in the Filamentous Fungus Penicillium rubens.
Journal of agricultural and food chemistry.
2023 Dec; 71(51):20782-20792. doi:
10.1021/acs.jafc.3c06755
. [PMID: 38103029] - Pradeepti Ganesh, Vanishree Suresh, Manoj Kumar Narasimhan, Sarvesh Sabarathinam. A narrative review on Naringin and Naringenin as a possible bioenhancer in various drug-delivery formulations.
Therapeutic delivery.
2023 Dec; 14(12):763-774. doi:
10.4155/tde-2023-0086
. [PMID: 38088094] - Yungai Xiang, Meng Wang, Guo Yu, Lijing Wan, Yuxia Song, Yan Li, Xujing Geng, Li Tan. Naringenin alleviates the excessive lipid deposition of polycystic ovary syndrome rats and insulin-resistant adipocytes by promoting PKGIα.
American journal of reproductive immunology (New York, N.Y. : 1989).
2023 12; 90(6):e13795. doi:
10.1111/aji.13795
. [PMID: 38009056] - Hajar Salehi, Leilei Zhang, Fatma Nur Alp-Turgut, Busra Arikan, Fevzi Elbasan, Ceyda Ozfidan-Konakci, Melike Balcı, Gökhan Zengin, Evren Yildiztugay, Luigi Lucini. The exogenous application of naringenin and rosmarinic acid modulates functional traits in Lepidium sativum.
Journal of the science of food and agriculture.
2023 Nov; ?(?):. doi:
10.1002/jsfa.13160
. [PMID: 37994181] - H A Al-Amer, N S Al-Sowayan, H A Alfheeaid, S A Althwab, S A Alrobaish, E M Hamad, K H Musa, H M Mousa. Oral administration of naringenin and a mixture of coconut water and Arabic gum attenuate oxidative stress and lipid peroxidation in gentamicin-induced nephrotoxicity in rats.
European review for medical and pharmacological sciences.
2023 Nov; 27(21):10427-10437. doi:
10.26355/eurrev_202311_34317
. [PMID: 37975366] - A I Savko, T V Ilyich, A G Veiko, T A Kovalenia, E A Lapshina, I B Zavodnik. The flavonoids fisetin, apigenin, kaempferol, naringenin, naringin regulate respiratory activity and membrane potential of rat liver mitochondria and inhibit oxidative processes in erythrocytes.
Biomeditsinskaia khimiia.
2023 Nov; 69(5):281-289. doi:
10.18097/pbmc20236905281
. [PMID: 37937430] - Lei Zhang, Zhihui Yang, Xinyi Li, Yunqing Hua, Guanwei Fan, Feng He. Anti-atherosclerotic effects of naringenin and quercetin from Folium Artemisiae argyi by attenuating Interleukin-1 beta (IL-1β)/ matrix metalloproteinase 9 (MMP9): network pharmacology-based analysis and validation.
BMC complementary medicine and therapies.
2023 Oct; 23(1):378. doi:
10.1186/s12906-023-04223-1
. [PMID: 37880698] - Chenyang Yu, Duan Han, Jingfang Yu, Ran Zhu, Cuiyan Zhu, Fule Wang, Tiefeng Zhang. Exploration of potential targets and mechanisms of naringenin in the treatment of nonalcoholic fatty liver disease through network pharmacology.
Medicine.
2023 Oct; 102(42):e35460. doi:
10.1097/md.0000000000035460
. [PMID: 37861538] - Syeda Madiha, Zehra Batool, Sidrah Shahzad, Saiqa Tabassum, Laraib Liaquat, Asia Afzal, Sadia Sadir, Irfan Sajid, Bushra Jabeen Mehdi, Saara Ahmad, Saida Haider. Naringenin, a Functional Food Component, Improves Motor and Non-Motor Symptoms in Animal Model of Parkinsonism Induced by Rotenone.
Plant foods for human nutrition (Dordrecht, Netherlands).
2023 Oct; ?(?):. doi:
10.1007/s11130-023-01103-4
. [PMID: 37796415] - Haruna Nagayoshi, Norie Murayama, Vitchan Kim, Donghak Kim, Shigeo Takenaka, Hiroshi Yamazaki, F Peter Guengerich, Tsutomu Shimada. Oxidation of Naringenin, Apigenin, and Genistein by Human Family 1 Cytochrome P450 Enzymes and Comparison of Interaction of Apigenin with Human P450 1B1.1 and Scutellaria P450 82D.1.
Chemical research in toxicology.
2023 Oct; ?(?):. doi:
10.1021/acs.chemrestox.3c00229
. [PMID: 37783573] - Longkun Liu, Yoann Birling, Yan Zhao, Wenxin Ma, Yang Tang, Yuxin Sun, Xuehui Wang, Mingkun Yu, Hongsheng Bi, Jian-Ping Liu, Li Li, Zhaolan Liu. Mechanism of Chinese botanical drug Dizhi pill for myopia: An integrated study based on bioinformatics and network analysis.
Medicine.
2023 Sep; 102(38):e34753. doi:
10.1097/md.0000000000034753
. [PMID: 37747014] - Kübra Uçar, Zeynep Göktaş. Biological activities of naringenin: A narrative review based on in vitro and in vivo studies.
Nutrition research (New York, N.Y.).
2023 Aug; 119(?):43-55. doi:
10.1016/j.nutres.2023.08.006
. [PMID: 37738874] - Jiwei Mao, Marta Tous Mohedano, Jing Fu, Xiaowei Li, Quanli Liu, Jens Nielsen, Verena Siewers, Yun Chen. Fine-tuning of p-coumaric acid synthesis to increase (2S)-naringenin production in yeast.
Metabolic engineering.
2023 Aug; 79(?):192-202. doi:
10.1016/j.ymben.2023.08.003
. [PMID: 37611820] - Xu Lian, Kaidi Fan, Xuemei Qin, Yuetao Liu. Amalgamated Pharmacoinformatics Study to Investigate the Mechanism of Xiao Jianzhong Tang against Chronic Atrophic Gastritis.
Current computer-aided drug design.
2023 Jul; ?(?):. doi:
10.2174/1573409919666230720141115
. [PMID: 37475552] - Shimaa S Khaled, Hanan A Soliman, Mohammed Abdel-Gabbar, Noha A Ahmed, El-Shaymaa El-Nahass, Osama M Ahmed. Naringin and naringenin counteract taxol-induced liver injury in Wistar rats via suppression of oxidative stress, apoptosis and inflammation.
Environmental science and pollution research international.
2023 Jul; ?(?):. doi:
10.1007/s11356-023-28454-4
. [PMID: 37466839] - Gokul Sudhakaran, Abhirami Chandran, A R Sreekutty, S Madesh, Raman Pachaiappan, Bader O Almutairi, Selvaraj Arokiyaraj, Zulhisyam Abdul Kari, Guillermo Tellez-Isaias, Ajay Guru, Jesu Arockiaraj. Ophthalmic Intervention of Naringenin Decreases Vascular Endothelial Growth Factor by Counteracting Oxidative Stress and Cellular Damage in In Vivo Zebrafish.
Molecules (Basel, Switzerland).
2023 Jul; 28(14):. doi:
10.3390/molecules28145350
. [PMID: 37513223] - Seema Zargar, Nojood Altwaijry, Tanveer A Wani, Hamad M Alkahtani. Evaluation of the Possible Pathways Involved in the Protective Effects of Quercetin, Naringenin, and Rutin at the Gene, Protein and miRNA Levels Using In-Silico Multidimensional Data Analysis.
Molecules (Basel, Switzerland).
2023 Jun; 28(13):. doi:
10.3390/molecules28134904
. [PMID: 37446564] - Jie Wang, Ruoman Wu, Yiqiao Hua, Shijia Ling, Xiaole Xu. Naringenin ameliorates vascular senescence and atherosclerosis involving SIRT1 activation.
The Journal of pharmacy and pharmacology.
2023 Jun; ?(?):. doi:
10.1093/jpp/rgad053
. [PMID: 37343148] - Ravina Rai, Deepali Jat, Siddhartha Kumar Mishra. Naringenin ameliorates aluminum toxicity-induced testicular dysfunctions in mice by suppressing oxidative stress and histopathological alterations.
Systems biology in reproductive medicine.
2023 May; ?(?):1-7. doi:
10.1080/19396368.2023.2203794
. [PMID: 37204407] - Tiago Macedo, Fátima Paiva-Martins, Federico Ferreres, Nelson G M Gomes, Andreia P Oliveira, Ángel Gil-Izquierdo, Luísa Araújo, Patrícia Valentão, David M Pereira. Anti-inflammatory effects of naringenin 8-sulphonate from Parinari excelsa Sabine stem bark and its semi-synthetic derivatives.
Bioorganic chemistry.
2023 May; 138(?):106614. doi:
10.1016/j.bioorg.2023.106614
. [PMID: 37216893] - Emma R Wolf-Saxon, Chad C Moorman, Anthony Castro, Alfredo Ruiz, Jeremy P Mallari, Jason R Burke. Regulatory ligand binding in plant chalcone isomerase-like (CHIL) proteins.
The Journal of biological chemistry.
2023 May; ?(?):104804. doi:
10.1016/j.jbc.2023.104804
. [PMID: 37172720] - Anupam Maity, Animesh Mondal, Shubham Kundu, Gourav Shome, Rajdip Misra, Aakriti Singh, Uttam Pal, Atin Kumar Mandal, Kaushik Bera, Nakul C Maiti. Naringenin-Functionalized Gold Nanoparticles and Their Role in α-Synuclein Stabilization.
Langmuir : the ACS journal of surfaces and colloids.
2023 Apr; ?(?):. doi:
10.1021/acs.langmuir.2c03259
. [PMID: 37094111] - Guanlin Xiao, Zixuan Hu, Canchao Jia, Minjuan Yang, Dongmei Li, Aili Xu, Jieyi Jiang, Zhao Chen, Yangxue Li, Sumei Li, Weitao Chen, Jingnian Zhang, Xiaoli Bi. Deciphering the mechanisms of Yinlan Tiaozhi capsule in treating hyperlipidemia by combining network pharmacology, molecular docking and experimental verification.
Scientific reports.
2023 04; 13(1):6424. doi:
10.1038/s41598-023-33673-3
. [PMID: 37076581] - Laura E Parra Daza, Lina Suarez Medina, Albert E Tafur Rangel, Miguel Fernández-Niño, Luis Alberto Mejía-Manzano, José González-Valdez, Luis H Reyes, Andrés Fernando González Barrios. Design and Assembly of a Biofactory for (2S)-Naringenin Production in Escherichia coli: Effects of Oxygen Transfer on Yield and Gene Expression.
Biomolecules.
2023 03; 13(3):. doi:
10.3390/biom13030565
. [PMID: 36979500] - Łukasz Pecio, Mostafa Alilou, Solomiia Kozachok, Ilkay Erdogan Orhan, Gökçen Eren, Fatma Sezer Şenol Deniz, Hermann Stuppner, Wiesław Oleszek. Absolute configuration of spiro-flavostilbenoids from Yucca schidigera Roezl ex Ortgies: First indication of (2R)-naringenin as the key building block.
Phytochemistry.
2023 Mar; 207(?):113584. doi:
10.1016/j.phytochem.2022.113584
. [PMID: 36603655] - Honghao Zhang, Rui Liu, Jilite Wang, Steve W Cui, Shaoyu Wang, Biao Wang, Nan Zhang, Xu Yang, Jing Li, Hao Wang. Fabrication, characterization, and lipid-lowering effects of naringenin-zein-sodium caseinate-galactosylated chitosan nanoparticles.
International journal of biological macromolecules.
2023 Mar; 230(?):123150. doi:
10.1016/j.ijbiomac.2023.123150
. [PMID: 36621730] - Mengying Wang, Biying Dong, Zhihua Song, Meng Qi, Ting Chen, Tingting Du, Hongyan Cao, Ni Liu, Dong Meng, Qing Yang, Yujie Fu. Molecular mechanism of naringenin regulation on flavonoid biosynthesis to improve the salt tolerance in pigeon pea (Cajanus cajan (Linn.) Millsp.).
Plant physiology and biochemistry : PPB.
2023 Feb; 196(?):381-392. doi:
10.1016/j.plaphy.2023.02.002
. [PMID: 36746009] - Pigi Glykofridi, Vassiliki-Eleni Tziouri, Konstantinos Xanthopoulos, Maria-Eirini Vlachou, Susana Correia, Anna-Lisa Fischer, Katrin Thüne, Antonios Hatzidimitriou, Inga Zerr, Matthias Schmitz, Theodoros Sklaviadis, Dimitra Hadjipavlou-Litina, Dionysia Papagiannopoulou. Synthesis, structural characterization and study of antioxidant and anti-PrPSc properties of flavonoids and their rhenium(I)-tricarbonyl complexes.
Journal of biological inorganic chemistry : JBIC : a publication of the Society of Biological Inorganic Chemistry.
2023 Jan; ?(?):. doi:
10.1007/s00775-022-01986-9
. [PMID: 36695886] - Rui Sun, Chunyan Liu, Jian Liu, Siyuan Yin, Ru Song, Jiaxu Ma, Guoqi Cao, Yongpan Lu, Guang Zhang, Zhenjie Wu, Aoyu Chen, Yibing Wang. Integrated network pharmacology and experimental validation to explore the mechanisms underlying naringenin treatment of chronic wounds.
Scientific reports.
2023 01; 13(1):132. doi:
10.1038/s41598-022-26043-y
. [PMID: 36599852] - Shahab Hatamipoor, Leila Shabani, Sadegh Farhadian. Supportive effect of naringenin on NaCl-induced toxicity in Carthamus tinctorius seedlings.
International journal of phytoremediation.
2023; 25(7):889-899. doi:
10.1080/15226514.2022.2117790
. [PMID: 36062912] - Velia Minicozzi, Tianwen Qi, Antonella Gradogna, Marina Pozzolini, Stefan Milenkovic, Antonio Filippini, Matteo Ceccarelli, Armando Carpaneto. A commentary on the inhibition of human TPC2 channel by the natural flavonoid naringenin: Methods, experiments, and ideas.
Biomolecular concepts.
2023 Jan; 14(1):. doi:
10.1515/bmc-2022-0036
. [PMID: 37677148] - Wui Zhuan Lim, Siow Wee Chang, Teow Chong Teoh. Pathway analysis of host responses to dengue virus serotype 2 infection and inhibition of viral envelope protein by naringenin from Ganoderma lucidum.
Journal of biosciences.
2023; 48(?):. doi:
"
. [PMID: 38018543] - Yue-Peng Jiang, Jun-Jun Wen, Xiao-Xuan Zhao, Yuan-Cheng Gao, Xiao Ma, Si-Yue Song, Yan Jin, Tie-Juan Shao, Jie Yu, Cheng-Ping Wen. The Flavonoid Naringenin Alleviates Collagen-Induced Arthritis through Curbing the Migration and Polarization of CD4+ T Lymphocyte Driven by Regulating Mitochondrial Fission.
International journal of molecular sciences.
2022 Dec; 24(1):. doi:
10.3390/ijms24010279
. [PMID: 36613721] - Xinxu Zhang, Min Li, Hao Wu, Weiyang Fan, Jiashuo Zhang, Weiwei Su, Yonggang Wang, Peibo Li. Naringenin attenuates inflammation, apoptosis, and ferroptosis in silver nanoparticle-induced lung injury through a mechanism associated with Nrf2/HO-1 axis: In vitro and in vivo studies.
Life sciences.
2022 Dec; 311(Pt A):121127. doi:
10.1016/j.lfs.2022.121127
. [PMID: 36306867] - Valentina Pallottini, Marco Segatto, Filippo Acconcia, Marco Fiocchetti, Maria Marino. Mechanism Underlying Naringenin Hypocholesterolemic Effects: Involvement of Estrogen Receptor α Subtype.
International journal of molecular sciences.
2022 Dec; 23(24):. doi:
10.3390/ijms232415809
. [PMID: 36555447] - Jing Yang, Yi Zhou, Yujuan Ban, Jing Mi, Ying He, Xinjuan Li, Zhengwei Liu, Keren Wang, Gaofeng Zhu, Wenmin Liu, Zhenghuai Tan, Zhipei Sang. Development of naringenin-O-alkylamine derivatives as multifunctional agents for the treatment of Alzheimer's disease.
Journal of enzyme inhibition and medicinal chemistry.
2022 Dec; 37(1):792-816. doi:
10.1080/14756366.2022.2041627
. [PMID: 35193434] - Mingming Sun, Lei Li, Chengdong Wang, Luanming Wang, Di Lu, Danyu Shen, Jie Wang, Caihong Jiang, Lirui Cheng, Xuhao Pan, Aiguo Yang, Yuanying Wang, Xiaowei Zhu, Bin Li, Yiting Li, Feng Zhang. Naringenin confers defence against Phytophthora nicotianae through antimicrobial activity and induction of pathogen resistance in tobacco.
Molecular plant pathology.
2022 12; 23(12):1737-1750. doi:
10.1111/mpp.13255
. [PMID: 36094814] - Zeinab Nouri, Soraya Sajadimajd, Leila Hoseinzadeh, Gholamreza Bahrami, Elham Arkan, Sajad Moradi, Fereshteh Abdi, Mohammad Hosein Farzaei. Neuroprotective effect of naringenin-loaded solid lipid nanoparticles against streptozocin-induced neurotoxicity through autophagy blockage.
Journal of food biochemistry.
2022 12; 46(12):e14408. doi:
10.1111/jfbc.14408
. [PMID: 36129161] - Jialin Gai, Jinxiao Xing, Yangyang Wang, Junfang Lei, Chengdong Zhang, Jinfei Zhang, Jiqin Tang. Exploration of potential targets and mechanisms of Naringenin in treating autism spectrum disorder via network pharmacology and molecular docking.
Medicine.
2022 Nov; 101(46):e31787. doi:
10.1097/md.0000000000031787
. [PMID: 36401485] - Yi-Fang Cui, Wen-Wen Zhang, Ya-Nan Li, Jing Xu, Xian-Ming Lan, Shu-Yi Song, Yong-Qiang Lin, Long Dai, Jia-Yu Zhang. The Analytical Strategy of 'Ion Induction and Deduction Based on Net-Hubs' for the Comprehensive Characterization of Naringenin Metabolites In Vivo and In Vitro Using a UHPLC-Q-Exactive Orbitrap Mass Spectrometer.
Molecules (Basel, Switzerland).
2022 Oct; 27(21):. doi:
10.3390/molecules27217282
. [PMID: 36364106] - Shiqin Yu, Mingjia Li, Song Gao, Jingwen Zhou. Engineering Saccharomyces cerevisiae for the production of dihydroquercetin from naringenin.
Microbial cell factories.
2022 Oct; 21(1):213. doi:
10.1186/s12934-022-01937-8
. [PMID: 36243863] - Zhaofeng Pan, Qi He, Jiaxu Zeng, Shaocong Li, Miao Li, Baihao Chen, Junzheng Yang, Jiacong Xiao, Chuning Zeng, Haoran Luo, Haibin Wang. Naringenin protects against iron overload-induced osteoarthritis by suppressing oxidative stress.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2022 Oct; 105(?):154330. doi:
10.1016/j.phymed.2022.154330
. [PMID: 35905566] - Yan-Xiang Wu, Xiu-Yan Yang, Bao-Sheng Han, Yuan-Yuan Hu, Tian An, Bo-Han Lv, Juan Lian, Ting-Ye Wang, Xue-Li Bao, Lin Gao, Guang-Jian Jiang. Naringenin regulates gut microbiota and SIRT1/ PGC-1ɑ signaling pathway in rats with letrozole-induced polycystic ovary syndrome.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2022 Sep; 153(?):113286. doi:
10.1016/j.biopha.2022.113286
. [PMID: 35724506] - Luca Massaro, Anna Raguzzini, Paola Aiello, Débora Villaño Valencia. The Potential Role of Naringin and Naringenin as Nutraceuticals against Metabolic Syndrome.
Endocrine, metabolic & immune disorders drug targets.
2022 Aug; ?(?):. doi:
10.2174/1871530322666220827141203
. [PMID: 36043734] - Mahasin Abdel Rhman, Nikita Devnarain, Rene Khan, Peter M O Owira. Synergism Potentiates Oxidative Antiproliferative Effects of Naringenin and Quercetin in MCF-7 Breast Cancer Cells.
Nutrients.
2022 Aug; 14(16):. doi:
10.3390/nu14163437
. [PMID: 36014942] - Sharat Sarmah, Archita Goswami, Vinay Kumar Belwal, Atanu Singha Roy. Mitigation of ribose and glyoxal induced glycation, AGEs formation and aggregation of human serum albumin by citrus fruit phytochemicals naringin and naringenin: An insight into their mechanism of action.
Food research international (Ottawa, Ont.).
2022 Jul; 157(?):111358. doi:
10.1016/j.foodres.2022.111358
. [PMID: 35761621] - Juping Zhang, Neng Wang, Yifeng Zheng, Bowen Yang, Shengqi Wang, Xuan Wang, Bo Pan, Zhiyu Wang. Naringenin in Si-Ni-San formula inhibits chronic psychological stress-induced breast cancer growth and metastasis by modulating estrogen metabolism through FXR/EST pathway.
Journal of advanced research.
2022 Jun; ?(?):. doi:
10.1016/j.jare.2022.06.006
. [PMID: 35718080] - Zhengqi Dong, Xiangtao Wang, Mingyue Wang, Rui Wang, Zheng Meng, Xiaotong Wang, Bo Yu, Meihua Han, Yifei Guo. Optimization of Naringenin Nanoparticles to Improve the Antitussive Effects on Post-Infectious Cough.
Molecules (Basel, Switzerland).
2022 Jun; 27(12):. doi:
10.3390/molecules27123736
. [PMID: 35744861] - Yang Yang, Myah Trevethan, Shu Wang, Ling Zhao. Beneficial effects of citrus flavanones naringin and naringenin and their food sources on lipid metabolism: An update on bioavailability, pharmacokinetics, and mechanisms.
The Journal of nutritional biochemistry.
2022 06; 104(?):108967. doi:
10.1016/j.jnutbio.2022.108967
. [PMID: 35189328] - Bharti Yadav, Veena Vishwakarma, Sunil Kumar, Neeraj K Aggarwal, Ranjan Gupta, Anita Yadav. Ameliorative role of naringenin against lead-induced genetic damage and oxidative stress in cultured human lymphocytes.
Journal of biochemical and molecular toxicology.
2022 Jun; 36(6):e23036. doi:
10.1002/jbt.23036
. [PMID: 35289026] - Johanna Hausjell, Julia Weissensteiner, Christian Molitor, Karin Schlangen, Oliver Spadiut, Heidi Halbwirth. First purified recombinant CYP75B including transmembrane helix with unexpected high substrate specificity to (2R)-naringenin.
Scientific reports.
2022 05; 12(1):8548. doi:
10.1038/s41598-022-11556-3
. [PMID: 35595763] - Sakshi Verma, Smriti Batoye, Rajinder Jindal. Protective efficacy of naringenin against cadmium-induced redox imbalance in Labeo rohita: an integrated biomarker approach.
Environmental science and pollution research international.
2022 Apr; 29(17):25591-25604. doi:
10.1007/s11356-021-17703-z
. [PMID: 34846652] - Maarten Van Brempt, Andries Ivo Peeters, Dries Duchi, Lien De Wannemaeker, Jo Maertens, Brecht De Paepe, Marjan De Mey. Biosensor-driven, model-based optimization of the orthogonally expressed naringenin biosynthesis pathway.
Microbial cell factories.
2022 Mar; 21(1):49. doi:
10.1186/s12934-022-01775-8
. [PMID: 35346204] - Ru-Rong Gu, Xian-Hua Meng, Yin Zhang, Hai-Yan Xu, Li Zhan, Zhao-Bing Gao, Jun-Li Yang, Yue-Ming Zheng. (-)-Naringenin 4',7-dimethyl Ether Isolated from Nardostachys jatamansi Relieves Pain through Inhibition of Multiple Channels.
Molecules (Basel, Switzerland).
2022 Mar; 27(5):. doi:
10.3390/molecules27051735
. [PMID: 35268839] - Nada Oršolić, Johann Nemrava, Željko Jeleč, Marina Kukolj, Dyana Odeh, Boris Jakopović, Maja Jazvinšćak Jembrek, Tomica Bagatin, Rajko Fureš, Dinko Bagatin. Antioxidative and Anti-Inflammatory Activities of Chrysin and Naringenin in a Drug-Induced Bone Loss Model in Rats.
International journal of molecular sciences.
2022 Mar; 23(5):. doi:
10.3390/ijms23052872
. [PMID: 35270014] - Yixuan Niu, Zhanfei She, Changhai Su, Qingchun Zhao, Shumin Wang, Bin Xiao. The effects and the mechanisms of naringenin from Artemisia ordosica Krasch on allergic rhinitis based on mast cell degranulation model and network pharmacology.
The Journal of pharmacy and pharmacology.
2022 Mar; 74(3):397-408. doi:
10.1093/jpp/rgab166
. [PMID: 34969089] - Alireza Malayeri, Reza Badparva, Mohammad Amin Mombeini, Layasadat Khorsandi, Mehdi Goudarzi. Naringenin: a potential natural remedy against methotrexate-induced hepatotoxicity in rats.
Drug and chemical toxicology.
2022 Mar; 45(2):491-498. doi:
10.1080/01480545.2020.1719132
. [PMID: 31986916] - Fatemeh Naeini, Zahra Namkhah, Helda Tutunchi, Seyed Mahdi Rezayat, Siavash Mansouri, Mehdi Yaseri, Mohammad Javad Hosseinzadeh-Attar. Effects of naringenin supplementation on cardiovascular risk factors in overweight/obese patients with nonalcoholic fatty liver disease: a pilot double-blind, placebo-controlled, randomized clinical trial.
European journal of gastroenterology & hepatology.
2022 03; 34(3):345-353. doi:
10.1097/meg.0000000000002323
. [PMID: 34860705] - Naglaa M Ammar, Heba A Hassan, Heba M I Abdallah, Sherif M Afifi, Abdelbaset M Elgamal, Abdel Razik H Farrag, Abd El-Nasser G El-Gendy, Mohamed A Farag, Abdelsamed I Elshamy. Protective Effects of Naringenin from Citrus sinensis (var. Valencia) Peels against CCl4-Induced Hepatic and Renal Injuries in Rats Assessed by Metabolomics, Histological and Biochemical Analyses.
Nutrients.
2022 Feb; 14(4):. doi:
10.3390/nu14040841
. [PMID: 35215494] - Yi Yang, Jiuying Liu, Weiwei Xu. Naringenin and morin reduces insulin resistance and endometrial hyperplasia in the rat model of polycystic ovarian syndrome through enhancement of inflammation and autophagic apoptosis.
Acta biochimica Polonica.
2022 Feb; 69(1):91-100. doi:
10.18388/abp.2020_5722
. [PMID: 35143137] - Jinyue Liu, Wenbo Jiang. Identification and characterization of unique 5-hydroxyisoflavonoid biosynthetic key enzyme genes in Lupinus albus.
Plant cell reports.
2022 Feb; 41(2):415-430. doi:
10.1007/s00299-021-02818-x
. [PMID: 34851457] - Zhengqi Dong, Rui Wang, Mingyue Wang, Zheng Meng, Xiaotong Wang, Meihua Han, Yifei Guo, Xiangtao Wang. Preparation of Naringenin Nanosuspension and Its Antitussive and Expectorant Effects.
Molecules (Basel, Switzerland).
2022 Jan; 27(3):. doi:
10.3390/molecules27030741
. [PMID: 35164006] - Om Prakash, Ruchi Singh, Namrata Singh, Shazia Usmani, Mohd Arif, Rajesh Kumar, Akash Ved. Anticancer Potential of Naringenin, Biosynthesis, Molecular Target, and Structural Perspectives.
Mini reviews in medicinal chemistry.
2022; 22(5):758-769. doi:
10.2174/1389557521666210913112733
. [PMID: 34517796] - Zhen Chen, Hao Wu, Weiyang Fan, Jiashuo Zhang, Yue Yao, Weiwei Su, Yonggang Wang, Peibo Li. Naringenin suppresses BEAS-2B-derived extracellular vesicular cargoes disorder caused by cigarette smoke extract thereby inhibiting M1 macrophage polarization.
Frontiers in immunology.
2022; 13(?):930476. doi:
10.3389/fimmu.2022.930476
. [PMID: 35924248] - Osama M Ahmed, Adel A Ahmed, Hanaa I Fahim, Mohamed Y Zaky. Quercetin and naringenin abate diethylnitrosamine/acetylaminofluorene-induced hepatocarcinogenesis in Wistar rats: the roles of oxidative stress, inflammation and cell apoptosis.
Drug and chemical toxicology.
2022 Jan; 45(1):262-273. doi:
10.1080/01480545.2019.1683187
. [PMID: 31665932] - Yinan Zhang, Xiaoting Zhang, Zhiyi Xiao, Xinying Zhang, Hua Sun. Hypoglycemic and hypolipidemic dual activities of extracts and flavonoids from Desmodium caudatum and an efficient synthesis of the most potent 8-prenylquercetin.
Fitoterapia.
2022 Jan; 156(?):105083. doi:
10.1016/j.fitote.2021.105083
. [PMID: 34785238] - Suresh S Dhanisha, Sudarsanan Drishya, Karyath P Gangaraj, Muliyar K Rajesh, Chandrasekharan Guruvayoorappan. Molecular Docking Studies of Naringenin and its Protective Efficacy against Methotrexate Induced Oxidative Tissue Injury.
Anti-cancer agents in medicinal chemistry.
2022; 22(1):169-180. doi:
10.2174/1871520621666210322102915
. [PMID: 34225639] - Hui Liu, Hui Zhao, Jingjin Che, Weijie Yao. Naringenin Protects against Hypertension by Regulating Lipid Disorder and Oxidative Stress in a Rat Model.
Kidney & blood pressure research.
2022; 47(6):423-432. doi:
10.1159/000524172
. [PMID: 35354142] - Sukanya Dej-Adisai, Kedsaraporn Parndaeng, Chatchai Wattanapiromsakul, Jae Sung Hwang. Three New Isoprenylated Flavones from Artocarpus chama Stem and Their Bioactivities.
Molecules (Basel, Switzerland).
2021 Dec; 27(1):. doi:
10.3390/molecules27010003
. [PMID: 35011235] - Abdulkadir Şahin, Muhammed Sedat Sakat, Korhan Kılıç, Bülent Aktan, Serkan Yildirim, Fatih Mehmet Kandemir, Muhammed Bahaeddin Dortbudak, Sefa Kucukler. The protective effect of Naringenin against ovalbumin-induced allergic rhinitis in rats.
European archives of oto-rhino-laryngology : official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS) : affiliated with the German Society for Oto-Rhino-Laryngology - Head and Neck Surgery.
2021 Dec; 278(12):4839-4846. doi:
10.1007/s00405-021-06769-7
. [PMID: 33772317] - Artem G Veiko, Elena A Lapshina, Ilya B Zavodnik. Comparative analysis of molecular properties and reactions with oxidants for quercetin, catechin, and naringenin.
Molecular and cellular biochemistry.
2021 Dec; 476(12):4287-4299. doi:
10.1007/s11010-021-04243-w
. [PMID: 34406575] - Shujun Xu, Bingxin Wu, Biying Zhong, Luoqi Lin, Yining Ding, Xiao Jin, Zhiwei Huang, Miaoyang Lin, Huanlin Wu, Danping Xu. Naringenin alleviates myocardial ischemia/reperfusion injury by regulating the nuclear factor-erythroid factor 2-related factor 2 (Nrf2) /System xc-/ glutathione peroxidase 4 (GPX4) axis to inhibit ferroptosis.
Bioengineered.
2021 12; 12(2):10924-10934. doi:
10.1080/21655979.2021.1995994
. [PMID: 34699317] - Jing Zhao, Yaohai Zhang, Qiyang Zhao, Yue He, Zhixia Li, Aihua Chen, Chengqiu Wang, Baomin Wang, Bining Jiao, Yongliang Cui. A sensitive and practical ELISA for analyzing naringenin in pummelo and herb samples.
Food chemistry.
2021 Nov; 362(?):130223. doi:
10.1016/j.foodchem.2021.130223
. [PMID: 34091161] - Fatemeh Naeini, Zahra Namkhah, Helda Tutunchi, Seyed Mahdi Rezayat, Siavash Mansouri, Seyed Ali Jazayeri-Tehrani, Mehdi Yaseri, Mohammad Javad Hosseinzadeh-Attar. Effects of naringenin supplementation in overweight/obese patients with non-alcoholic fatty liver disease: study protocol for a randomized double-blind clinical trial.
Trials.
2021 Nov; 22(1):801. doi:
10.1186/s13063-021-05784-7
. [PMID: 34774104] - Lulu Zhang, Yue Xiao, Ruijie Yang, Siyi Wang, ShuangXin Ma, Jianling Liu, Wei Xiao, Yonghua Wang. Systems pharmacology to reveal multi-scale mechanisms of traditional Chinese medicine for gastric cancer.
Scientific reports.
2021 11; 11(1):22149. doi:
10.1038/s41598-021-01535-5
. [PMID: 34773055] - Wei-Sung Li, Shih-Chao Lin, Chien-Hui Chu, Yu-Kang Chang, Xiang Zhang, Chi-Chien Lin, Yu-Tang Tung. The Gastroprotective Effect of Naringenin against Ethanol-Induced Gastric Ulcers in Mice through Inhibiting Oxidative and Inflammatory Responses.
International journal of molecular sciences.
2021 Nov; 22(21):. doi:
10.3390/ijms222111985
. [PMID: 34769415] - Xiangju Liu, Qibin Song, Xin Li, Yunxi Chen, Chang Liu, Xiao Zhu, Jun Liu, Daniel Granato, Yijun Wang, Jinbao Huang. Effects of different dietary polyphenols on conformational changes and functional properties of protein-polyphenol covalent complexes.
Food chemistry.
2021 Nov; 361(?):130071. doi:
10.1016/j.foodchem.2021.130071
. [PMID: 34091398] - Rhubaniya Mahendran, Soo Kun Lim, Kien Chai Ong, Kek Heng Chua, Hwa Chia Chai. Natural-derived compounds and their mechanisms in potential autosomal dominant polycystic kidney disease (ADPKD) treatment.
Clinical and experimental nephrology.
2021 Nov; 25(11):1163-1172. doi:
10.1007/s10157-021-02111-x
. [PMID: 34254206] - A Madeswaran, S Brahmasundari, P G Midhuna. In silico molecular docking studies of certain commercially available flavonoids as effective antiviral agents against spike glycoprotein of SARS-CoV-2.
European review for medical and pharmacological sciences.
2021 Nov; 25(21):6741-6744. doi:
10.26355/eurrev_202111_27119
. [PMID: 34787879] - Javier Fernández, Blanca Silván, Rodrigo Entrialgo-Cadierno, Claudio J Villar, Raffaele Capasso, José Antonio Uranga, Felipe Lombó, Raquel Abalo. Antiproliferative and palliative activity of flavonoids in colorectal cancer.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2021 Nov; 143(?):112241. doi:
10.1016/j.biopha.2021.112241
. [PMID: 34649363] - Hany Elsawy, Abdullah M Alzahrani, Manal Alfwuaires, Ashraf M Abdel-Moneim, Mahmoud Khalil. Nephroprotective effect of naringin in methotrexate induced renal toxicity in male rats.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2021 Nov; 143(?):112180. doi:
10.1016/j.biopha.2021.112180
. [PMID: 34536756] - Zahra Namkhah, Fatemeh Naeini, Seyed Mahdi Rezayat, Mehdi Yaseri, Siavash Mansouri, Mohammad Javad Hosseinzadeh-Attar. Does naringenin supplementation improve lipid profile, severity of hepatic steatosis and probability of liver fibrosis in overweight/obese patients with NAFLD? A randomised, double-blind, placebo-controlled, clinical trial.
International journal of clinical practice.
2021 Nov; 75(11):e14852. doi:
10.1111/ijcp.14852
. [PMID: 34516703]