L-Ornithine (BioDeep_00000001400)
Secondary id: BioDeep_00000413278
natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite Chemicals and Drugs
代谢物信息卡片
化学式: C5H12N2O2 (132.0899)
中文名称: 鸟氨酸, L-鸟氨酸, 鳥氨酸
谱图信息:
最多检出来源 Homo sapiens(blood) 19.51%
Last reviewed on 2024-07-01.
Cite this Page
L-Ornithine. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/l-ornithine (retrieved
2024-12-26) (BioDeep RN: BioDeep_00000001400). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C(CC(C(=O)O)N)CN
InChI: InChI=1S/C5H12N2O2/c6-3-1-2-4(7)5(8)9/h4H,1-3,6-7H2,(H,8,9)/t4-/m0/s1
描述信息
Ornithine, also known as (S)-2,5-diaminopentanoic acid or ornithine, (L)-isomer, is a member of the class of compounds known as L-alpha-amino acids. L-alpha-amino acids are alpha amino acids which have the L-configuration of the alpha-carbon atom. Ornithine is soluble (in water) and a moderately acidic compound (based on its pKa). Ornithine can be found in a number of food items such as pine nut, lingonberry, turnip, and cassava, which makes ornithine a potential biomarker for the consumption of these food products. Ornithine can be found primarily in most biofluids, including urine, cerebrospinal fluid (CSF), feces, and saliva, as well as throughout most human tissues. Ornithine exists in all living species, ranging from bacteria to humans. In humans, ornithine is involved in few metabolic pathways, which include arginine and proline metabolism, glycine and serine metabolism, spermidine and spermine biosynthesis, and urea cycle. Ornithine is also involved in several metabolic disorders, some of which include ornithine transcarbamylase deficiency (OTC deficiency), prolidase deficiency (PD), citrullinemia type I, and arginine: glycine amidinotransferase deficiency (AGAT deficiency). Moreover, ornithine is found to be associated with cystinuria, alzheimers disease, leukemia, and uremia. Ornithine is a non-carcinogenic (not listed by IARC) potentially toxic compound. Ornithine is a drug which is used for nutritional supplementation, also for treating dietary shortage or imbalance. it has been claimed that ornithine improves athletic performance, has anabolic effects, has wound-healing effects, and is immuno-enhancing. Ornithine is a non-proteinogenic amino acid that plays a role in the urea cycle. Ornithine is abnormally accumulated in the body in ornithine transcarbamylase deficiency. The radical is ornithyl . L-Ornithine is metabolised to L-arginine. L-arginine stimulates the pituitary release of growth hormone. Burns or other injuries affect the state of L-arginine in tissues throughout the body. As De novo synthesis of L-arginine during these conditions is usually not sufficient for normal immune function, nor for normal protein synthesis, L-ornithine may have immunomodulatory and wound-healing activities under these conditions (by virtue of its metabolism to L-arginine) (DrugBank). Chronically high levels of ornithine are associated with at least 9 inborn errors of metabolism including: Cystathionine Beta-Synthase Deficiency, Hyperornithinemia with gyrate atrophy, Hyperornithinemia-hyperammonemia-homocitrullinuria syndrome, Hyperornithinemia-hyperammonemia-homocitrullinuria syndrome, Hyperprolinemia Type II, Lysinuric Protein Intolerance, Ornithine Aminotransferase Deficiency, Ornithine Transcarbamylase Deficiency and Prolinemia Type II (T3DB).
Ornithine or L-ornithine, also known as (S)-2,5-diaminopentanoic acid is a member of the class of compounds known as L-alpha-amino acids. L-alpha-amino acids are alpha amino acids which have the L-configuration of the alpha-carbon atom. L-ornithine is soluble (in water) and a moderately basic compound. Ornithine is a non-proteinogenic amino acid that plays a role in the urea cycle. It is considered to be a non-essential amino acid. A non-essential amino acid is an amino acid that can be synthesized from central metabolic pathway intermediates in humans and is not required in the diet. L-Ornithine is one of the products of the action of the enzyme arginase on L-arginine, creating urea. Therefore, ornithine is a central part of the urea cycle, which allows for the disposal of excess nitrogen. Outside the human body, L-ornithine is abundant in a number of food items such as wild rice, brazil nuts, common oregano, and common grapes. L-ornithine can be found throughout most human tissues; and in most biofluids, some of which include blood, urine, cerebrospinal fluid (CSF), sweat, saliva, and feces. L-ornithine exists in all living species, from bacteria to plants to humans. L-Ornithine is also a precursor of citrulline and arginine. In order for ornithine that is produced in the cytosol to be converted to citrulline, it must first cross the inner mitochondrial membrane into the mitochondrial matrix where it is carbamylated by the enzyme known as ornithine transcarbamylase. This transfer is mediated by the mitochondrial ornithine transporter (SLC25A15; AF112968; ORNT1). Mutations in the mitochondrial ornithine transporter result in hyperammonemia, hyperornithinemia, homocitrullinuria (HHH) syndrome, a disorder of the urea cycle (PMID: 16256388). The pathophysiology of the disease may involve diminished ornithine transport into mitochondria, resulting in ornithine accumulation in the cytoplasm and reduced ability to clear carbamoyl phosphate and ammonia loads (OMIM 838970). In humans, L-ornithine is involved in a number of other metabolic disorders, some of which include, ornithine transcarbamylase deficiency (OTC deficiency), argininemia, and guanidinoacetate methyltransferase deficiency (GAMT deficiency). Ornithine is abnormally accumulated in the body in ornithine transcarbamylase deficiency. Moreover, Ornithine is found to be associated with cystinuria, hyperdibasic aminoaciduria I, and lysinuric protein intolerance, which are inborn errors of metabolism. It has been claimed that ornithine improves athletic performance, has anabolic effects, has wound-healing effects, and is immuno-enhancing.
L-Ornithine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=70-26-8 (retrieved 2024-07-01) (CAS RN: 70-26-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
L-Ornithine ((S)-2,5-Diaminopentanoic acid) is a non-proteinogenic amino acid, is mainly used in urea cycle removing excess nitrogen in vivo. L-Ornithine shows nephroprotective[1][2].
L-Ornithine ((S)-2,5-Diaminopentanoic acid) is a non-proteinogenic amino acid, is mainly used in urea cycle removing excess nitrogen in vivo. L-Ornithine shows nephroprotective[1][2].
同义名列表
39 个代谢物同义名
Ornithine monohydrochloride, (DL)-isomer; Ornithine monohydrochloride, (D)-isomer; Ornithine monohydrobromide, (L)-isomer; Ornithine phosphate (1:1), (L)-isomer; Ornithine dihydrochloride, (L)-isomer; Ornithine hydrochloride, (DL)-isomer; Ornithine hydrochloride, (L)-isomer; (S)-alpha,delta-Diaminovaleric acid; Ornithine sulfate (1:1), (L)-isomer; Ornithine hydrochloride, (D)-isomer; Ornithine monoacetate, (L)-isomer; (S)-alpha,delta-Diaminovalerate; (S)-a,delta-Diaminovaleric acid; (2S)-2,5-diaminopentanoic acid; (S)-2,5-Diaminopentanoic acid; L-Ornithine monohydrochloride; (S)-a,Δ-diaminovaleric acid; (S)-Α,δ-diaminovaleric acid; (S)-2,5-Diaminovaleric acid; (S)-a,D-Diaminovaleric acid; (S)-a,delta-Diaminovalerate; 2,5-Diaminopentanoic acid; 2,5 Diaminopentanoic acid; (S)-2,5-Diaminopentanoate; (S)-a,Δ-diaminovalerate; (S)-a,D-Diaminovalerate; (S)-Α,δ-diaminovalerate; (S)-2,5-Diaminovalerate; Ornithine, (DL)-isomer; Ornithine, (L)-isomer; Ornithine, (D)-isomer; 5-Amino-L-norvaline; (+)-S-Ornithine; L-(-)-Ornithine; polyornithine; (S)-Ornithine; L-Ornithine; Ornithine; Ornithine
数据库引用编号
45 个数据库交叉引用编号
- ChEBI: CHEBI:15729
- KEGG: C00077
- KEGGdrug: D08302
- PubChem: 6262
- HMDB: HMDB0000214
- Metlin: METLIN45121
- DrugBank: DB00129
- ChEMBL: CHEMBL446143
- Wikipedia: Ornithine
- MeSH: Ornithine
- MetaCyc: L-ORNITHINE
- KNApSAcK: C00001384
- foodb: FDB030969
- chemspider: 6026
- MoNA: KNA00426
- MoNA: KNA00156
- MoNA: KNA00564
- MoNA: KO003634
- MoNA: KO003636
- MoNA: PS028503
- MoNA: KNA00154
- MoNA: PS028504
- MoNA: KO003632
- MoNA: KO003633
- MoNA: KO001533
- MoNA: KO003635
- MoNA: KNA00424
- MoNA: KNA00562
- MoNA: KNA00425
- MoNA: PS028501
- MoNA: KNA00563
- MoNA: KNA00153
- MoNA: KO001532
- MoNA: PS028502
- MoNA: KNA00155
- MoNA: KNA00565
- MoNA: KO001534
- PMhub: MS000000447
- PDB-CCD: ORN
- 3DMET: B00020
- NIKKAJI: J9.177D
- RefMet: Ornithine
- medchemexpress: HY-B1352
- CAS: 3184-13-2
- LOTUS: LTS0093444
分类词条
相关代谢途径
BioCyc(10)
- ornithine biosynthesis (arginine degradation)
- superpathway of arginine and ornithine degradation
- arginine degradation VII (arginase 3 pathway)
- arginine degradation I (arginase pathway)
- arginine degradation VII
- polyamine biosynthesis
- spermine biosynthesis II
- arginine biosynthesis I
- arginine degradation (arginase pathway)
- ornithine biosynthesis
PlantCyc(0)
代谢反应
767 个相关的代谢反应过程信息。
Reactome(30)
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of polyamines:
GAA + SAM ⟶ CRET + H+ + SAH
- Urea cycle:
CAP + L-Orn ⟶ L-Cit + Pi
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of polyamines:
GAA + SAM ⟶ CRET + H+ + SAH
- Urea cycle:
CAP + L-Orn ⟶ L-Cit + Pi
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of polyamines:
GAA + SAM ⟶ CRET + H+ + SAH
- Urea cycle:
ATP + L-Asp + L-Cit ⟶ AMP + ARSUA + PPi
- Creatine metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Amino acid synthesis and interconversion (transamination):
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid synthesis and interconversion (transamination):
H2O + L-Asn ⟶ L-Asp + ammonia
- Amino acid synthesis and interconversion (transamination):
H2O + NAA ⟶ CH3COO- + L-Asp
- Amino acid synthesis and interconversion (transamination):
H2O + NAA ⟶ CH3COO- + L-Asp
- Amino acid synthesis and interconversion (transamination):
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid synthesis and interconversion (transamination):
H2O + L-Asn ⟶ L-Asp + ammonia
- Amino acid synthesis and interconversion (transamination):
H2O + NAA ⟶ CH3COO- + L-Asp
- Amino acid synthesis and interconversion (transamination):
H2O + NAA ⟶ CH3COO- + L-Asp
- Amino acid synthesis and interconversion (transamination):
H2O + NAA ⟶ CH3COO- + L-Asp
- Amino acid synthesis and interconversion (transamination):
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid synthesis and interconversion (transamination):
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid synthesis and interconversion (transamination):
H2O + NAA ⟶ CH3COO- + L-Asp
- Amino acid synthesis and interconversion (transamination):
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid synthesis and interconversion (transamination):
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Amino acid synthesis and interconversion (transamination):
H2O + NAA ⟶ CH3COO- + L-Asp
- Amino acid synthesis and interconversion (transamination):
H2O + NAA ⟶ CH3COO- + L-Asp
- Amino acid synthesis and interconversion (transamination):
H2O + NAA ⟶ CH3COO- + L-Asp
BioCyc(21)
- urea cycle:
ATP + L-citrulline + asp ⟶ AMP + H+ + L-arginino-succinate + diphosphate
- arginine biosynthesis I:
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- superpathway of arginine and polyamine biosynthesis:
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- superpathway of polyamine biosynthesis I:
H2O + agmatine ⟶ putrescine + urea
- putrescine biosynthesis III:
H+ + L-ornithine ⟶ CO2 + putrescine
- superpathway of ornithine degradation:
γ-glutamyl-L-putrescine + H2O + O2 ⟶ γ-glutamyl-γ-aminobutyraldehyde + ammonium + hydrogen peroxide
- superpathway of arginine and ornithine degradation:
γ-glutamyl-L-putrescine + H2O + O2 ⟶ γ-glutamyl-γ-aminobutyraldehyde + ammonium + hydrogen peroxide
- superpathway of polyamine biosynthesis II:
N-carbamoylputrescine + H2O + H+ ⟶ CO2 + ammonia + putrescine
- superpathway of polyamine biosynthesis I:
H2O + agmatine ⟶ putrescine + urea
- spermine biosynthesis II:
H+ + L-ornithine ⟶ CO2 + putrescine
- putrescine biosynthesis III:
H+ + L-ornithine ⟶ CO2 + putrescine
- polyamine biosynthesis:
L-ornithine ⟶ CO2 + putrescine
- arginine degradation VI (arginase 2 pathway):
2-oxoglutarate + L-ornithine ⟶ L-glutamate γ-semialdehyde + glt
- arginine degradation I (arginase pathway):
2-oxoglutarate + L-ornithine ⟶ L-glutamate γ-semialdehyde + glt
- arginine degradation VII:
H2O + NAD(P)+ + glt ⟶ 2-oxoglutarate + NAD(P)H + ammonia
- ornithine biosynthesis:
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- citrulline biosynthesis:
α-ketoglutarate + L-ornithine ⟶ L-glutamate + L-glutamate γ-semialdehyde
- arginine biosynthesis:
ATP + L-aspartate + citrulline ⟶ AMP + L-arginino-succinate + pyrophosphate
- ornithine biosynthesis (arginine degradation):
H2O + arg ⟶ L-ornithine + urea
- arginine degradation VII (arginase 3 pathway):
H2O + arg ⟶ L-ornithine + urea
- arginine degradation (arginase pathway):
α-ketoglutarate + L-ornithine ⟶ L-glutamate + L-glutamate γ-semialdehyde
Plant Reactome(640)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
H2O + L-Arg ⟶ L-Cit + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis II (acetyl cycle):
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
L-Cit + Pi ⟶ CAP + L-Orn
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis II (acetyl cycle):
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
H2O + L-Arg ⟶ L-Cit + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
L-Cit + Pi ⟶ CAP + L-Orn
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
H2O + L-Arg ⟶ L-Cit + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
H2O + L-Arg ⟶ L-Cit + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
H2O + L-Arg ⟶ L-Cit + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis II (acetyl cycle):
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
L-Cit + Pi ⟶ CAP + L-Orn
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
H2O + L-Arg ⟶ L-Cit + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
L-Cit + Pi ⟶ CAP + L-Orn
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid biosynthesis:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Arginine biosynthesis I:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis II (acetyl cycle):
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid biosynthesis:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
H2O + L-Arg ⟶ L-Cit + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
H2O + L-Arg ⟶ L-Cit + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
L-Cit + Pi ⟶ CAP + L-Orn
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
H2O + L-Arg ⟶ L-Cit + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis II (acetyl cycle):
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid biosynthesis:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
H2O + L-Arg ⟶ L-Cit + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
H2O + L-Arg ⟶ L-Cit + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
H2O + L-Arg ⟶ L-Cit + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Amine and polyamine biosynthesis:
H2O + N-Carbamoylputrescine ⟶ Putrescine + ammonia + carbon dioxide
- ODC pathway:
L-Orn ⟶ Putrescine + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- ODC pathway:
L-Orn ⟶ Putrescine + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- ODC pathway:
L-Orn ⟶ Putrescine + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- ODC pathway:
L-Orn ⟶ Putrescine + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- ODC pathway:
L-Orn ⟶ Putrescine + carbon dioxide
- Amine and polyamine biosynthesis:
H2O + N-Carbamoylputrescine ⟶ Putrescine + ammonia + carbon dioxide
- ODC pathway:
L-Orn ⟶ Putrescine + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- ODC pathway:
L-Orn ⟶ Putrescine + carbon dioxide
- Amine and polyamine biosynthesis:
H2O + N-Carbamoylputrescine ⟶ Putrescine + ammonia + carbon dioxide
- ODC pathway:
L-Orn ⟶ Putrescine + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- ODC pathway:
L-Orn ⟶ Putrescine + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- ODC pathway:
L-Orn ⟶ Putrescine + carbon dioxide
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid biosynthesis:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Arginine degradation:
2OG + L-Orn ⟶ Glu + L-Glu5S
- Arginine degradation:
H2O + L-Arg ⟶ L-Orn + Urea
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Arginine degradation:
H2O + L-Arg ⟶ L-Orn + Urea
- Arginine degradation:
H2O + L-Arg ⟶ L-Orn + Urea
- Arginine degradation:
H2O + L-Arg ⟶ L-Orn + Urea
- Arginine degradation:
H2O + L-Arg ⟶ L-Orn + Urea
INOH(4)
- Arginine and Proline metabolism ( Arginine and Proline metabolism ):
ATP + Creatine ⟶ ADP + N-Phospho-creatine
- L-Arginine + Glycine = L-Ornithine + Guanidino-acetic acid ( Glycine and Serine metabolism ):
Glycine + L-Arginine ⟶ Guanidino-acetic acid + L-Ornithine
- Glycine and Serine metabolism ( Glycine and Serine metabolism ):
Guanidino-acetic acid + S-Adenosyl-L-methionine ⟶ Creatine + S-Adenosyl-L-homocysteine
- 2-Oxo acid + L-Ornithine = L-Amino acid + L-Glutamate 5-semialdehyde ( Arginine and Proline metabolism ):
2-Oxo-glutaric acid + L-Ornithine ⟶ L-Glutamate 5-semialdehyde + L-Glutamic acid
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(71)
- Urea Cycle:
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Arginine and Proline Metabolism:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Prolidase Deficiency (PD):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Arginine: Glycine Amidinotransferase Deficiency (AGAT Deficiency):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperprolinemia Type II:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperprolinemia Type I:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Prolinemia Type II:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Guanidinoacetate Methyltransferase Deficiency (GAMT Deficiency):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Ornithine Aminotransferase Deficiency (OAT Deficiency):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Argininemia:
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Argininosuccinic Aciduria:
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Citrullinemia Type I:
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Ornithine Transcarbamylase Deficiency (OTC Deficiency):
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Carbamoyl Phosphate Synthetase Deficiency:
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Creatine Deficiency, Guanidinoacetate Methyltransferase Deficiency:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperornithinemia with Gyrate Atrophy (HOGA):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperornithinemia-Hyperammonemia-Homocitrullinuria [HHH-syndrome]:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- L-Arginine:Glycine Amidinotransferase Deficiency:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Arginine Metabolism:
N-Acetylornithine + Water ⟶ Acetic acid + Ornithine
- Arginine Metabolism:
N-Acetylornithine + Water ⟶ Acetic acid + Ornithine
- Proline Metabolism:
N-Acetylornithine + Water ⟶ Acetic acid + Ornithine
- Arginine and Proline Metabolism:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Arginine and Proline Metabolism:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Urea Cycle:
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Arginine: Glycine Amidinotransferase Deficiency (AGAT Deficiency):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Argininemia:
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Argininosuccinic Aciduria:
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Carbamoyl Phosphate Synthetase Deficiency:
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Citrullinemia Type I:
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Guanidinoacetate Methyltransferase Deficiency (GAMT Deficiency):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperprolinemia Type I:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperprolinemia Type II:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Ornithine Aminotransferase Deficiency (OAT Deficiency):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Prolinemia Type II:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Prolidase Deficiency (PD):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Ornithine Transcarbamylase Deficiency (OTC Deficiency):
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Creatine Deficiency, Guanidinoacetate Methyltransferase Deficiency:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperornithinemia with Gyrate Atrophy (HOGA):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperornithinemia-Hyperammonemia-Homocitrullinuria [HHH-syndrome]:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- L-Arginine:Glycine Amidinotransferase Deficiency:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Arginine and Proline Metabolism:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Urea Cycle:
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Arginine and Proline Metabolism:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Urea Cycle:
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Arginine: Glycine Amidinotransferase Deficiency (AGAT Deficiency):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Argininemia:
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Argininosuccinic Aciduria:
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Carbamoyl Phosphate Synthetase Deficiency:
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Citrullinemia Type I:
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Guanidinoacetate Methyltransferase Deficiency (GAMT Deficiency):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperprolinemia Type I:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperprolinemia Type II:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Ornithine Aminotransferase Deficiency (OAT Deficiency):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Prolinemia Type II:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Prolidase Deficiency (PD):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Ornithine Transcarbamylase Deficiency (OTC Deficiency):
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Creatine Deficiency, Guanidinoacetate Methyltransferase Deficiency:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperornithinemia with Gyrate Atrophy (HOGA):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperornithinemia-Hyperammonemia-Homocitrullinuria [HHH-syndrome]:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- L-Arginine:Glycine Amidinotransferase Deficiency:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Arginine Metabolism:
N-Acetylornithine + Water ⟶ Acetic acid + Ornithine
- Spermidine and Spermine Biosynthesis:
Ornithine ⟶ Carbon dioxide + Putrescine
- Ornithine Metabolism:
N-Acetylornithine + Water ⟶ Acetic acid + Ornithine
- beta-Alanine Metabolism:
(R)-pantoate + -Alanine + Adenosine triphosphate ⟶ Adenosine monophosphate + Hydrogen Ion + Pantothenic acid + Pyrophosphate
- Spermidine and Spermine Biosynthesis:
Putrescine + S-Adenosylmethioninamine ⟶ 5'-Methylthioadenosine + Spermidine
- Spermidine and Spermine Biosynthesis:
Putrescine + S-Adenosylmethioninamine ⟶ 5'-Methylthioadenosine + Spermidine
- Spermidine and Spermine Biosynthesis:
Putrescine + S-Adenosylmethioninamine ⟶ 5'-Methylthioadenosine + Spermidine
- Spermidine and Spermine Biosynthesis:
Putrescine + S-Adenosylmethioninamine ⟶ 5'-Methylthioadenosine + Spermidine
- Spermidine and Spermine Biosynthesis:
Putrescine + S-Adenosylmethioninamine ⟶ 5'-Methylthioadenosine + Spermidine
- Ornithine Metabolism:
N-Acetylornithine + Water ⟶ Acetic acid + Ornithine
- Glutamate Metabolism:
Ornithine + Oxoglutaric acid ⟶ L-Glutamic -semialdehyde + L-Glutamic acid
PharmGKB(0)
140 个相关的物种来源信息
- 3319 - Abies: LTS0093444
- 90345 - Abies balsamea: 10.1016/S0021-9673(01)97854-9
- 90345 - Abies balsamea: LTS0093444
- 155619 - Agaricomycetes: LTS0093444
- 4678 - Allium: LTS0093444
- 4682 - Allium sativum: 10.1016/0378-8741(96)01416-X
- 4682 - Allium sativum: LTS0093444
- 4668 - Amaryllidaceae: LTS0093444
- 4890 - Ascomycota: LTS0093444
- 20400 - Astragalus: LTS0093444
- 20414 - Astragalus hamosus: 10.1021/NP50075A009
- 20414 - Astragalus hamosus: LTS0093444
- 91061 - Bacilli: LTS0093444
- 2 - Bacteria: LTS0093444
- 31345 - Bangiaceae: LTS0093444
- 2797 - Bangiophyceae: LTS0093444
- 5204 - Basidiomycota: LTS0093444
- 5475 - Candida: LTS0093444
- 5476 - Candida albicans: LTS0093444
- 21019 - Castanea: LTS0093444
- 21020 - Castanea sativa: 10.1016/S0031-9422(00)83785-1
- 21020 - Castanea sativa: LTS0093444
- 3051 - Chlamydomonadaceae: LTS0093444
- 3052 - Chlamydomonas: LTS0093444
- 3055 - Chlamydomonas reinhardtii: 10.1111/TPJ.12747
- 3055 - Chlamydomonas reinhardtii: LTS0093444
- 3166 - Chlorophyceae: LTS0093444
- 3041 - Chlorophyta: LTS0093444
- 7711 - Chordata: LTS0093444
- 3367 - Cupressaceae: LTS0093444
- 766764 - Debaryomycetaceae: LTS0093444
- 543 - Enterobacteriaceae: LTS0093444
- 33682 - Euglenozoa: LTS0093444
- 2759 - Eukaryota: LTS0093444
- 3990 - Euphorbia: LTS0093444
- 212836 - Euphorbia prostrata: 10.1016/S0031-9422(00)86537-1
- 212836 - Euphorbia prostrata: LTS0093444
- 3977 - Euphorbiaceae: LTS0093444
- 3803 - Fabaceae: LTS0093444
- 3503 - Fagaceae: LTS0093444
- 38944 - Flammulina: LTS0093444
- 38945 - Flammulina velutipes: 10.1111/J.1365-2621.1987.TB13989.X
- 38945 - Flammulina velutipes: LTS0093444
- 4751 - Fungi: LTS0093444
- 1236 - Gammaproteobacteria: LTS0093444
- 9606 - Homo sapiens: -
- 55463 - Hydrocharis: LTS0093444
- 55464 - Hydrocharis morsus-ranae: 10.1016/S0031-9422(00)80829-8
- 55464 - Hydrocharis morsus-ranae: LTS0093444
- 26319 - Hydrocharitaceae: LTS0093444
- 80649 - Hymenogastraceae: LTS0093444
- 71944 - Hypholoma: LTS0093444
- 72129 - Hypholoma fasciculare: 10.1055/S-0028-1097581
- 72129 - Hypholoma fasciculare: LTS0093444
- 13100 - Juniperus: LTS0093444
- 58039 - Juniperus communis: LTS0093444
- 244307 - Juniperus communis var. communis: 10.1016/S0021-9673(01)97854-9
- 244307 - Juniperus communis var. communis: LTS0093444
- 114265 - Juniperus occidentalis: 10.1016/S0021-9673(01)97854-9
- 114265 - Juniperus occidentalis: LTS0093444
- 466205 - Juniperus scopulorum: 10.1016/S0021-9673(01)97854-9
- 466205 - Juniperus scopulorum: LTS0093444
- 5653 - Kinetoplastea: LTS0093444
- 4447 - Liliopsida: LTS0093444
- 3867 - Lotus: LTS0093444
- 645164 - Lotus burttii: 10.1111/J.1365-3040.2010.02266.X
- 645164 - Lotus burttii: LTS0093444
- 47247 - Lotus corniculatus: 10.1111/J.1365-3040.2010.02266.X
- 47247 - Lotus corniculatus: LTS0093444
- 1211582 - Lotus corniculatus subsp. corniculatus: 10.1111/J.1365-3040.2010.02266.X
- 1211582 - Lotus corniculatus subsp. corniculatus: LTS0093444
- 347996 - Lotus tenuis: 10.1111/J.1365-3040.2010.02266.X
- 347996 - Lotus tenuis: LTS0093444
- 181288 - Lotus uliginosus: 10.1111/J.1365-3040.2010.02266.X
- 181288 - Lotus uliginosus: LTS0093444
- 3398 - Magnoliopsida: LTS0093444
- 40674 - Mammalia: LTS0093444
- 33208 - Metazoa: LTS0093444
- 10066 - Muridae: LTS0093444
- 10088 - Mus: LTS0093444
- 10090 - Mus musculus: LTS0093444
- 10090 - Mus musculus: NA
- 862241 - Physalacriaceae: LTS0093444
- 3328 - Picea: LTS0093444
- 3330 - Picea glauca: 10.1016/S0021-9673(01)97854-9
- 3330 - Picea glauca: LTS0093444
- 3335 - Picea mariana: 10.1016/S0021-9673(01)97854-9
- 3335 - Picea mariana: LTS0093444
- 3331 - Picea pungens: 10.1016/S0021-9673(01)97854-9
- 3331 - Picea pungens: LTS0093444
- 3318 - Pinaceae: LTS0093444
- 58019 - Pinopsida: LTS0093444
- 3337 - Pinus: LTS0093444
- 3339 - Pinus contorta: 10.1016/S0021-9673(01)97854-9
- 3339 - Pinus contorta: LTS0093444
- 55062 - Pinus ponderosa: 10.1016/S0021-9673(01)97854-9
- 55062 - Pinus ponderosa: 10.1034/J.1399-3054.1990.790104.X
- 55062 - Pinus ponderosa: LTS0093444
- 104366 - Pleurotaceae: LTS0093444
- 5320 - Pleurotus: LTS0093444
- 5322 - Pleurotus ostreatus: 10.3136/NSKKK1962.32.338
- 5322 - Pleurotus ostreatus: LTS0093444
- 3689 - Populus: LTS0093444
- 113636 - Populus tremula: 10.1111/NPH.16799
- 113636 - Populus tremula: LTS0093444
- 2784 - Porphyra: LTS0093444
- 3754 - Prunus: LTS0093444
- 3758 - Prunus domestica: 10.1021/JF00017A016
- 3758 - Prunus domestica: LTS0093444
- 135621 - Pseudomonadaceae: LTS0093444
- 286 - Pseudomonas: LTS0093444
- 287 - Pseudomonas aeruginosa: LTS0093444
- 3356 - Pseudotsuga: LTS0093444
- 3357 - Pseudotsuga menziesii: 10.1016/S0021-9673(01)97854-9
- 3357 - Pseudotsuga menziesii: LTS0093444
- 71950 - Psilocybe: LTS0093444
- 3889 - Psophocarpus: LTS0093444
- 3891 - Psophocarpus tetragonolobus: 10.1111/J.1365-2621.1985.TB10514.X
- 3891 - Psophocarpus tetragonolobus: LTS0093444
- 2763 - Rhodophyta: LTS0093444
- 3745 - Rosaceae: LTS0093444
- 4891 - Saccharomycetes: LTS0093444
- 3688 - Salicaceae: LTS0093444
- 590 - Salmonella: LTS0093444
- 28901 - Salmonella enterica: 10.1039/C3MB25598K
- 28901 - Salmonella enterica: LTS0093444
- 90964 - Staphylococcaceae: LTS0093444
- 1279 - Staphylococcus: LTS0093444
- 1280 - Staphylococcus aureus: LTS0093444
- 35493 - Streptophyta: LTS0093444
- 40562 - Strophariaceae: LTS0093444
- 58023 - Tracheophyta: LTS0093444
- 5690 - Trypanosoma: LTS0093444
- 5691 - Trypanosoma brucei: 10.1371/JOURNAL.PNTD.0001618
- 5691 - Trypanosoma brucei: LTS0093444
- 5654 - Trypanosomatidae: LTS0093444
- 3358 - Tsuga: LTS0093444
- 3359 - Tsuga heterophylla: 10.1016/S0021-9673(01)97854-9
- 3359 - Tsuga heterophylla: LTS0093444
- 33090 - Viridiplantae: LTS0093444
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Bayu Hadi Permana, Paitip Thiravetyan, Chairat Treesubsuntorn. Exogenous of different elicitors: proline and ornithine on Sansevieria trifasciata under particulate matter (PM) and volatile organic compounds (VOC).
Environmental science and pollution research international.
2024 May; 31(23):34028-34037. doi:
10.1007/s11356-024-33513-5
. [PMID: 38693456] - Leidy Patricia Bedoya-Pérez, Alejandro Aguilar-Vera, Mishael Sánchez-Pérez, José Utrilla, Christian Sohlenkamp. Enhancing Escherichia coli abiotic stress resistance through ornithine lipid formation.
Applied microbiology and biotechnology.
2024 Apr; 108(1):288. doi:
10.1007/s00253-024-13130-5
. [PMID: 38587638] - Liping Qu, Xiao Ma, Feifei Wang. The roles of gut microbiome and metabolites associated with skin photoaging in mice by intestinal flora sequencing and metabolomics.
Life sciences.
2024 Feb; ?(?):122487. doi:
10.1016/j.lfs.2024.122487
. [PMID: 38316265] - Wenbin Xu, Ren Mu, Tuya Gegen, Jiaxiang Luo, Yang Xiao, Shunnian Ou, Qi Wu, Yongsong Zuo, Zhi Chen, Fangwei Li. Comparative analysis of hepatic transcriptomes and metabolomes of Changshun green-shell laying hens based on different green eggshell color intensities.
Poultry science.
2024 Jan; 103(1):103220. doi:
10.1016/j.psj.2023.103220
. [PMID: 37980748] - Yao Zheng, Cécile Cabassa-Hourton, Holger Eubel, Guillaume Chevreux, Laurent Lignieres, Emilie Crilat, Hans-Peter Braun, Sandrine Lebreton, Arnould Savouré. Pyrroline-5-carboxylate metabolism protein complex detected in Arabidopsis thaliana leaf mitochondria.
Journal of experimental botany.
2023 Oct; ?(?):. doi:
10.1093/jxb/erad406
. [PMID: 37843921] - Jinxi Yang, Na Shi, Shisheng Wang, Manjiangcuo Wang, Yan Huang, Yiqin Wang, Ge Liang, Juqin Yang, Juan Rong, Yun Ma, Lan Li, Ping Zhu, Chenxia Han, Tao Jin, Hao Yang, Wei Huang, Daniel Raftery, Qing Xia, Dan Du. Multi-dimensional metabolomic profiling reveals dysregulated ornithine metabolism hallmarks associated with a severe acute pancreatitis phenotype.
Translational research : the journal of laboratory and clinical medicine.
2023 Aug; ?(?):. doi:
10.1016/j.trsl.2023.08.003
. [PMID: 37619665] - Wei Yan, Shuting Yuan, Yazhou Zu, Zhenyi Chang, Yiqi Li, Zhufeng Chen, Gang Xie, Lei Chen, Changqing Lu, Xing Wang Deng, Chengwei Yang, Chunjue Xu, Xiaoyan Tang. Ornithine δ-aminotransferase OsOAT is critical for male fertility and cold tolerance during rice plant development.
The Plant journal : for cell and molecular biology.
2023 Jun; 114(6):1301-1318. doi:
10.1111/tpj.16194
. [PMID: 36932862] - Yao Zheng, Cécile Cabassa-Hourton, Séverine Planchais, Emilie Crilat, Gilles Clément, Matthieu Dacher, Nina Durand, Marianne Bordenave-Jacquemin, Anne Guivarc'h, Corentin Dourmap, Pierre Carol, Sandrine Lebreton, Arnould Savouré. Pyrroline-5-carboxylate dehydrogenase is an essential enzyme for proline dehydrogenase function during dark-induced senescence in Arabidopsis thaliana.
Plant, cell & environment.
2023 03; 46(3):901-917. doi:
10.1111/pce.14529
. [PMID: 36583533] - Yang Liu, Andrew J Wilson, Jiatong Han, Alisa Hui, Lucy O'Sullivan, Tao Huan, Cara H Haney. Amino Acid Availability Determines Plant Immune Homeostasis in the Rhizosphere Microbiome.
mBio.
2023 Feb; ?(?):e0342422. doi:
10.1128/mbio.03424-22
. [PMID: 36786577] - Jakub Bělíček, Eva Ľuptáková, David Kopečný, Jan Frömmel, Armelle Vigouroux, Sanja Ćavar Zeljković, Franjo Jagic, Pierre Briozzo, David Jaroslav Kopečný, Petr Tarkowski, Jaroslav Nisler, Nuria De Diego, Solange Moréra, Martina Kopečná. Biochemical and structural basis of polyamine, lysine and ornithine acetylation catalyzed by spermine/spermidine N-acetyl transferase in moss and maize.
The Plant journal : for cell and molecular biology.
2023 Feb; ?(?):. doi:
10.1111/tpj.16148
. [PMID: 36786691] - Xiangjuan Yan, Fei Zhao, Guosheng Wang, Zhen Wang, Mingxi Zhou, Limin Zhang, Guoxiang Wang, Yanshan Chen. Metabolomic Analysis of Microcystis aeruginosa After Exposure to the Algicide L-Lysine.
Bulletin of environmental contamination and toxicology.
2022 Dec; 110(1):12. doi:
10.1007/s00128-022-03658-5
. [PMID: 36512146] - Yang Liu, Lei Chen, Lei Liu, Shan-Shan Zhao, Jun-Qiao You, Xin-Jie Zhao, Hui-Xin Liu, Guo-Wang Xu, De-Liang Wen. Interplay between dietary intake, gut microbiota, and metabolic profile in obese adolescents: Sex-dependent differential patterns.
Clinical nutrition (Edinburgh, Scotland).
2022 12; 41(12):2706-2719. doi:
10.1016/j.clnu.2022.10.009
. [PMID: 36351362] - Chang Liu, Wenhao Jiang, Fangwei Yang, Yuliang Cheng, Yahui Guo, Weirong Yao, Yong Zhao, He Qian. The combination of microbiome and metabolome to analyze the cross-cooperation mechanism of Echinacea purpurea polysaccharide with the gut microbiota in vitro and in vivo.
Food & function.
2022 Oct; 13(19):10069-10082. doi:
10.1039/d2fo02336a
. [PMID: 36093868] - Robert A Freudenberg, Luisa Wittemeier, Alexander Einhaus, Thomas Baier, Olaf Kruse. Advanced pathway engineering for phototrophic putrescine production.
Plant biotechnology journal.
2022 10; 20(10):1968-1982. doi:
10.1111/pbi.13879
. [PMID: 35748533] - Rhiannon Lyon, Rebekah A Jones, Holly Shropshire, Isabel Aberdeen, David J Scanlan, Andrew Millard, Yin Chen. Membrane lipid renovation in Pseudomonas aeruginosa - implications for phage therapy?.
Environmental microbiology.
2022 10; 24(10):4533-4546. doi:
10.1111/1462-2920.16136
. [PMID: 35837865] - Qing Zhang, Meixia Liang, Ruoxuan Song, Zhizhong Song, Hao Song, Xuqiang Qiao. Brassinosteroids enhance resistance to manganese toxicity in Malus robusta Rehd. via modulating polyamines profile.
Journal of plant physiology.
2022 Oct; 277(?):153808. doi:
10.1016/j.jplph.2022.153808
. [PMID: 36088781] - Dhara Patel, Tae Jin Lee, Sandeep Kumar, Sagar Vyavahare, Alison Worth, William D Hill, Mark Hamrick, Carlos M Isales, Rahul S Shinde, Sadanand Fulzele. Alterations in bone metabolites with age in C57BL/6 mice model.
Biogerontology.
2022 10; 23(5):629-640. doi:
10.1007/s10522-022-09986-7
. [PMID: 36056226] - Tetiana Mukhina, Georg Pabst, Jean-Marie Ruysschaert, Gerald Brezesinski, Emanuel Schneck. pH-Dependent physicochemical properties of ornithine lipid in mono- and bilayers.
Physical chemistry chemical physics : PCCP.
2022 Sep; 24(37):22778-22791. doi:
10.1039/d2cp01045c
. [PMID: 36111816] - Marina Urra, Javier Buezo, Beatriz Royo, Alfonso Cornejo, Pedro López-Gómez, Daniel Cerdán, Raquel Esteban, Víctor Martínez-Merino, Yolanda Gogorcena, Paraskevi Tavladoraki, Jose Fernando Moran. The importance of the urea cycle and its relationships to polyamine metabolism during ammonium stress in Medicago truncatula.
Journal of experimental botany.
2022 09; 73(16):5581-5595. doi:
10.1093/jxb/erac235
. [PMID: 35608836] - Martin H Rau, Paula Gaspar, Maiken Lund Jensen, Asger Geppel, Ana Rute Neves, Ahmad A Zeidan. Genome-Scale Metabolic Modeling Combined with Transcriptome Profiling Provides Mechanistic Understanding of Streptococcus thermophilus CH8 Metabolism.
Applied and environmental microbiology.
2022 08; 88(16):e0078022. doi:
10.1128/aem.00780-22
. [PMID: 35924931] - Jonathan D Reiss, Alan L Chang, Jonathan A Mayo, Katherine Bianco, Henry C Lee, David K Stevenson, Gary M Shaw, Nima Aghaeepour, Karl G Sylvester. Newborn screen metabolic panels reflect the impact of common disorders of pregnancy.
Pediatric research.
2022 08; 92(2):490-497. doi:
10.1038/s41390-021-01753-7
. [PMID: 34671094] - Daniela Liebsch, Marta Juvany, Zhonghai Li, Hou-Ling Wang, Agnieszka Ziolkowska, Daria Chrobok, Clément Boussardon, Xing Wen, Simon R Law, Helena Janečková, Bastiaan Brouwer, Pernilla Lindén, Nicolas Delhomme, Hans Stenlund, Thomas Moritz, Per Gardeström, Hongwei Guo, Olivier Keech. Metabolic control of arginine and ornithine levels paces the progression of leaf senescence.
Plant physiology.
2022 08; 189(4):1943-1960. doi:
10.1093/plphys/kiac244
. [PMID: 35604104] - Alexandre de Fátima Cobre, Monica Surek, Dile Pontarolo Stremel, Mariana Millan Fachi, Helena Hiemisch Lobo Borba, Fernanda Stumpf Tonin, Roberto Pontarolo. Diagnosis and prognosis of COVID-19 employing analysis of patients' plasma and serum via LC-MS and machine learning.
Computers in biology and medicine.
2022 Jul; 146(?):105659. doi:
10.1016/j.compbiomed.2022.105659
. [PMID: 35751188] - Rifaat Safadi, Robert S Rahimi, Dominique Thabut, Jasmohan S Bajaj, Kalyan Ram Bhamidimarri, Nikolaos Pyrsopoulos, Amy Potthoff, Stan Bukofzer, Laurene Wang, Khurram Jamil, Krishna R Devarakonda. Pharmacokinetics/pharmacodynamics of L-ornithine phenylacetate in overt hepatic encephalopathy and the effect of plasma ammonia concentration reduction on clinical outcomes.
Clinical and translational science.
2022 06; 15(6):1449-1459. doi:
10.1111/cts.13257
. [PMID: 35238476] - Ayman G Elnahry, Gehad A Elnahry. Gyrate Atrophy of the Choroid and Retina: A Review.
European journal of ophthalmology.
2022 May; 32(3):1314-1323. doi:
10.1177/11206721211067333
. [PMID: 34894815] - Xiaofeng Wang, Regis A Vilchez. Population Pharmacokinetic Analysis to Assist Dose Selection of the L-Ornithine Salt of Phenylacetic Acid.
Clinical pharmacokinetics.
2022 04; 61(4):515-526. doi:
10.1007/s40262-021-01075-1
. [PMID: 34786649] - Claudia Sikorski, Sandi Azab, Russell J de Souza, Meera Shanmuganathan, Dipika Desai, Koon Teo, Stephanie A Atkinson, Katherine Morrison, Milan Gupta, Philip Britz-McKibbin, Sonia S Anand. Serum metabolomic signatures of gestational diabetes in South Asian and white European women.
BMJ open diabetes research & care.
2022 04; 10(2):. doi:
10.1136/bmjdrc-2021-002733
. [PMID: 35450870] - Yumi Hoshino, Minori Kodaira, Atsuhiro Matsuno, Tomoki Kaneko, Tetsuhiro Fukuyama, Kyoko Takano, Masahide Yazaki, Yoshiki Sekijima. Reversible Leukoencephalopathy in a Man with Childhood-onset Hyperornithinemia-Hyperammonemia-Homocitrullinuria Syndrome.
Internal medicine (Tokyo, Japan).
2022 Feb; 61(4):553-557. doi:
10.2169/internalmedicine.7843-21
. [PMID: 34433721] - Armand M A Linkens, Alfons J H M Houben, Abraham A Kroon, Miranda T Schram, Tos T J M Berendschot, Carroll A B Webers, Marleen van Greevenbroek, Ronald M A Henry, Bastiaan de Galan, Coen D A Stehouwer, Simone J M P Eussen, Casper G Schalkwijk. Habitual intake of dietary advanced glycation end products is not associated with generalized microvascular function-the Maastricht Study.
The American journal of clinical nutrition.
2022 02; 115(2):444-455. doi:
10.1093/ajcn/nqab302
. [PMID: 34581759] - Yiming Shen, Qi You, Yiling Wu, Jie Wu. Inhibition of PAD4-mediated NET formation by cl-amidine prevents diabetes development in nonobese diabetic mice.
European journal of pharmacology.
2022 Feb; 916(?):174623. doi:
10.1016/j.ejphar.2021.174623
. [PMID: 34767782] - Kuo-Hsuan Chang, Mei-Ling Cheng, Hsiang-Yu Tang, Cheng-Yu Huang, Hsiu-Chuan Wu, Chiung-Mei Chen. Alterations of Sphingolipid and Phospholipid Pathways and Ornithine Level in the Plasma as Biomarkers of Parkinson's Disease.
Cells.
2022 01; 11(3):. doi:
10.3390/cells11030395
. [PMID: 35159203] - Ikuho Ban, Hikari Sugawa, Ryoji Nagai. Protein Modification with Ribose Generates Nδ-(5-hydro-5-methyl-4-imidazolone-2-yl)-ornithine.
International journal of molecular sciences.
2022 01; 23(3):. doi:
10.3390/ijms23031224
. [PMID: 35163152] - Han-Xiao Wang, Lifei Xu, Xuefeng Zhu, Chenlu Xue, Li Zhang, Minghua Liu. Dissymmetrical tails-regulated helical nanoarchitectonics of amphiphilic ornithines: nanotubes, bundles and twists.
Nanoscale.
2022 Jan; 14(3):1001-1007. doi:
10.1039/d1nr07538a
. [PMID: 35024717] - Silene M Silvera-Ruiz, Corinne Gemperle, Natalia Peano, Valentina Olivero, Adriana Becerra, Johannes Häberle, Adriana Gruppi, Laura E Larovere, Ruben D Motrich. Immune Alterations in a Patient With Hyperornithinemia-Hyperammonemia-Homocitrullinuria Syndrome: A Case Report.
Frontiers in immunology.
2022; 13(?):861516. doi:
10.3389/fimmu.2022.861516
. [PMID: 35711415] - Bo Zhou, Gulinigaer Tuerhong Jiang, Hui Liu, Manyun Guo, Junhui Liu, Jianqing She. Dysregulated Arginine Metabolism in Young Patients with Chronic Persistent Asthma and in Human Bronchial Epithelial Cells.
Nutrients.
2021 Nov; 13(11):. doi:
10.3390/nu13114116
. [PMID: 34836371] - Sehnaz Ozcaliskan, Sevcan Balci, Ozgur Artunay. A Case of Foveoschisis Associated with Ornithine Aminotransferase Deficiency and Gyrate Atrophy.
Journal of the College of Physicians and Surgeons--Pakistan : JCPSP.
2021 Nov; 31(11):1354-1356. doi:
10.29271/jcpsp.2021.11.1354
. [PMID: 34689497] - Rezvan Marzabani, Hassan Rezadoost, Peyman Choopanian, Sima Kolahdooz, Nikoo Mozafari, Mehdi Mirzaie, Mehrdad Karimi, Anni I Nieminen, Mohieddin Jafari. Metabolomic signature of amino acids in plasma of patients with non-segmental Vitiligo.
Metabolomics : Official journal of the Metabolomic Society.
2021 09; 17(10):92. doi:
10.1007/s11306-021-01843-x
. [PMID: 34562159] - Pauline De Bruyne, Patrick Verloo, Johan L K Van Hove, Bernard de Hemptinne, Saskia Vande Velde, Myriam Van Winckel, Stephanie Van Biervliet, Ruth De Bruyne. Successful liver transplantation in hyperornithinemia-hyperammonemia-homocitrullinuria syndrome: Case report.
Pediatric transplantation.
2021 Sep; 25(6):e13943. doi:
10.1111/petr.13943
. [PMID: 33314525] - Marius M Mader, Rainer Böger, Daniel Appel, Edzard Schwedhelm, Munif Haddad, Malte Mohme, Katrin Lamszus, Manfred Westphal, Patrick Czorlich, Juliane Hannemann. Intrathecal and systemic alterations of L-arginine metabolism in patients after intracerebral hemorrhage.
Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.
2021 08; 41(8):1964-1977. doi:
10.1177/0271678x20983216
. [PMID: 33461409] - Elom K Aglago, Casper G Schalkwijk, Heinz Freisling, Veronika Fedirko, David J Hughes, Li Jiao, Christina C Dahm, Anja Olsen, Anne Tjønneland, Verena Katzke, Theron Johnson, Matthias B Schulze, Krasimira Aleksandrova, Giovanna Masala, Sabina Sieri, Vittorio Simeon, Rosario Tumino, Alessandra Macciotta, Bas Bueno-de-Mesquita, Guri Skeie, Inger Torhild Gram, Torkjel Sandanger, Paula Jakszyn, Maria-Jose Sánchez, Pilar Amiano, Sandra M Colorado-Yohar, Aurelio Barricarte Gurrea, Aurora Perez-Cornago, Ana-Lucia Mayén, Elisabete Weiderpass, Marc J Gunter, Alicia K Heath, Mazda Jenab. Plasma concentrations of advanced glycation end-products and colorectal cancer risk in the EPIC study.
Carcinogenesis.
2021 05; 42(5):705-713. doi:
10.1093/carcin/bgab026
. [PMID: 33780524] - Kirti Parwani, Farhin Patel, Dhara Patel, Palash Mandal. Protective Effects of Swertiamarin against Methylglyoxal-Induced Epithelial-Mesenchymal Transition by Improving Oxidative Stress in Rat Kidney Epithelial (NRK-52E) Cells.
Molecules (Basel, Switzerland).
2021 May; 26(9):. doi:
10.3390/molecules26092748
. [PMID: 34067107] - Ali Z Siddiqui, Umar F Bhatti, Qiufang Deng, Ben E Biesterveld, Yuzi Tian, Zhenyu Wu, Julia Dahl, Baoling Liu, Jie Xu, Yui Koike, Jun Song, Jifeng Zhang, Yongqing Li, Hasan B Alam, Aaron M Williams. Cl-Amidine Improves Survival and Attenuates Kidney Injury in a Rabbit Model of Endotoxic Shock.
Surgical infections.
2021 May; 22(4):421-426. doi:
10.1089/sur.2020.189
. [PMID: 32833601] - Svetlana Baskal, Alexander Bollenbach, Dimitrios Tsikas. GC-MS Discrimination of Citrulline from Ornithine and Homocitrulline from Lysine by Chemical Derivatization: Evidence of Formation of N5-Carboxy-ornithine and N6-Carboxy-lysine.
Molecules (Basel, Switzerland).
2021 Apr; 26(8):. doi:
10.3390/molecules26082301
. [PMID: 33921162] - H A Tucker, V M R Malacco, M D Hanigan, S S Donkin. Postruminal protein supply upregulates hepatic lysine oxidation and ornithine transcarbamoylase in lactating dairy cattle.
Journal of dairy science.
2021 Apr; 104(4):4251-4259. doi:
10.3168/jds.2020-18967
. [PMID: 33485684] - Paul Bolay, Rokhsareh Rozbeh, M Isabel Muro-Pastor, Stefan Timm, Martin Hagemann, Francisco J Florencio, Karl Forchhammer, Stephan Klähn. The Novel PII-Interacting Protein PirA Controls Flux into the Cyanobacterial Ornithine-Ammonia Cycle.
mBio.
2021 03; 12(2):. doi:
10.1128/mbio.00229-21
. [PMID: 33758091] - Hongliang Wang, Qinan Zhao, Weixuan Dong, Liu Yang, Keyi Lu, Xiaoshan Guo, Haiyan Liu, Hua Wei, Yan Cheng, Zhifang Wu, Sijin Li. Radiosynthesis and evaluation of N5-(2-18F-fluoropropanyl) ornithine as a potential agent for tumor PET imaging.
Nuclear medicine and biology.
2021 Mar; 94-95(?):98-105. doi:
10.1016/j.nucmedbio.2021.02.002
. [PMID: 33621898] - Patrycja Molek, Pawel Zmudzki, Aleksandra Wlodarczyk, Jadwiga Nessler, Jaroslaw Zalewski. The shifted balance of arginine metabolites in acute myocardial infarction patients and its clinical relevance.
Scientific reports.
2021 01; 11(1):83. doi:
10.1038/s41598-020-80230-3
. [PMID: 33420142] - Martin Maronek, Barbora Gromova, Robert Liptak, Barbora Konecna, Michal Pastorek, Barbora Cechova, Maria Harsanyova, Jaroslav Budis, David Smolak, Jan Radvanszky, Tomas Szemes, Jana Harsanyiova, Alzbeta Kralova Trancikova, Roman Gardlik. Extracellular DNA Correlates with Intestinal Inflammation in Chemically Induced Colitis in Mice.
Cells.
2021 01; 10(1):. doi:
10.3390/cells10010081
. [PMID: 33418977] - Tjeerd Pols, Shubham Singh, Cecile Deelman-Driessen, Bauke F Gaastra, Bert Poolman. Enzymology of the pathway for ATP production by arginine breakdown.
The FEBS journal.
2021 01; 288(1):293-309. doi:
10.1111/febs.15337
. [PMID: 32306469] - Estelle Mühle, Chloé Abry, Priscilla Leclerc, Gogoa-Marthe Goly, Alexis Criscuolo, Hans-Jürgen Busse, Peter Kämpfer, Jean-François Bernardet, Dominique Clermont, Olivier Chesneau. Flavobacterium bizetiae sp. nov., isolated from diseased freshwater fish in Canada at the end of the 1970s.
International journal of systematic and evolutionary microbiology.
2021 Jan; 71(1):. doi:
10.1099/ijsem.0.004576
. [PMID: 33253083] - Zhaoying Yang, Xiaocui Zhao, Weina Shang, Yang Liu, Jun-Feng Ji, Jun-Ping Liu, Chao Tong. Pyrroline-5-carboxylate synthase senses cellular stress and modulates metabolism by regulating mitochondrial respiration.
Cell death and differentiation.
2021 01; 28(1):303-319. doi:
10.1038/s41418-020-0601-5
. [PMID: 32770108] - C C Reichhardt, A Ahmadpour, R G Christensen, N E Ineck, G K Murdoch, K J Thornton. Understanding the influence of trenbolone acetate and polyamines on proliferation of bovine satellite cells.
Domestic animal endocrinology.
2021 01; 74(?):106479. doi:
10.1016/j.domaniend.2020.106479
. [PMID: 32615508] - Paulo D'Amora, Ismael Dale C G Silva, Maria Auxiliadora Budib, Ricardo Ayache, Rafaela Moraes Siufi Silva, Fabricio Colacino Silva, Robson Mateus Appel, Saturnino Sarat Júnior, Henrique Budib Dorsa Pontes, Ana Carolina Alvarenga, Emilli Carvalho Arima, Wellington Galhano Martins, Nakal Laurenço F Silva, Ricardo Sobhie Diaz, Marcia B Salzgeber, Anton M Palma, Steven S Evans, Robert A Nagourney. Towards risk stratification and prediction of disease severity and mortality in COVID-19: Next generation metabolomics for the measurement of host response to COVID-19 infection.
PloS one.
2021; 16(12):e0259909. doi:
10.1371/journal.pone.0259909
. [PMID: 34851990] - Shengyuan Luo, Aditya Surapaneni, Zihe Zheng, Eugene P Rhee, Josef Coresh, Adriana M Hung, Girish N Nadkarni, Bing Yu, Eric Boerwinkle, Adrienne Tin, Dan E Arking, Inga Steinbrenner, Pascal Schlosser, Anna Köttgen, Morgan E Grams. NAT8 Variants, N-Acetylated Amino Acids, and Progression of CKD.
Clinical journal of the American Society of Nephrology : CJASN.
2020 12; 16(1):37-47. doi:
10.2215/cjn.08600520
. [PMID: 33380473] - Chi-Jen Lo, Yu-Shien Ko, Su-Wei Chang, Hsiang-Yu Tang, Cheng-Yu Huang, Yu-Chen Huang, Hung-Yao Ho, Chih-Ming Lin, Mei-Ling Cheng. Metabolic signatures of muscle mass loss in an elderly Taiwanese population.
Aging.
2020 12; 13(1):944-956. doi:
10.18632/aging.202209
. [PMID: 33410783] - Yuri Nomi, Hitomi Kudo, Kurenai Miyamoto, Tsuyoshi Okura, Kazuhiro Yamamoto, Hisashi Shimohiro, Sonoko Kitao, Yuichi Ito, Shigenobu Egawa, Kazuo Kawahara, Yuzuru Otsuka, Etsuko Ueta. Free advanced glycation end product distribution in blood components and the effect of genetic polymorphisms.
Biochimie.
2020 Dec; 179(?):69-76. doi:
10.1016/j.biochi.2020.09.010
. [PMID: 32946992] - Qiannan Guo, Bo Wang, Zhengfu Zhou, Xiubin Ke, Lijuan Zhang, Ming Chen, Min Lin, Wei Wang, Wei Zhang, Xufeng Li. Ornithinimicrobium pratense sp. nov., isolated from meadow soil.
International journal of systematic and evolutionary microbiology.
2020 Dec; 70(12):6450-6457. doi:
10.1099/ijsem.0.004557
. [PMID: 33174834] - Takuhei Yamamoto, Kousuke Sakamoto, Yukihiro Esaka, Bunji Uno. Highly Sensitive Fluorescence Detection of Daptomycin in Murine Samples through Derivatization with 2,3-Naphthalenedialdehyde.
Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.
2020 Oct; 36(10):1285-1288. doi:
10.2116/analsci.20n010
. [PMID: 32378527] - Yiwen Zhang, Hang Zhou, Yong Tao, Baixue Lin. Reconstitution of the Ornithine Cycle with Arginine:Glycine Amidinotransferase to Engineer Escherichia coli into an Efficient Whole-Cell Catalyst of Guanidinoacetate.
ACS synthetic biology.
2020 08; 9(8):2066-2075. doi:
10.1021/acssynbio.0c00138
. [PMID: 32702969] - Takahiko J Fujimi, Yoshihiro Mezaki, Takahiro Masaki, Ayasa Tajima, Mariko Nakamura, Akira Yoshikawa, Noriyuki Murai, Mamoru Aizawa, Soichi Kojima, Yoshihiro Matsumoto, Hideki Aizaki, Tomokazu Matsuura. Investigation of the effects of urea cycle amino acids on the expression of ALB and CEBPB in the human hepatocellular carcinoma cell line FLC-4.
Human cell.
2020 Jul; 33(3):590-598. doi:
10.1007/s13577-020-00383-1
. [PMID: 32474770] - Alexander Krokedal Rønnevik, Oddrun Anita Gudbrandsen. Substitution of high-dose sucrose with fructose in high-fat diets resulted in higher plasma concentrations of aspartic acid, cystine, glutamic acid, ornithine and phenylalanine, and higher urine concentrations of arginine and citrulline.
Nutrition research (New York, N.Y.).
2020 07; 79(?):100-110. doi:
10.1016/j.nutres.2020.06.005
. [PMID: 32653771] - Nanxiang Xiong, Xiaofei Gao, Hongyang Zhao, Feng Cai, Fang-Cheng Zhang, Ye Yuan, Weichao Liu, Fangping He, Lauren G Zacharias, Hong Lin, Hieu S Vu, Chao Xing, Dong-Xiao Yao, Fei Chen, Benyan Luo, Wenzhi Sun, Ralph J DeBerardinis, Hao Xu, Woo-Ping Ge. Using arterial-venous analysis to characterize cancer metabolic consumption in patients.
Nature communications.
2020 06; 11(1):3169. doi:
10.1038/s41467-020-16810-8
. [PMID: 32576825] - Zhuoheng Zhong, Tomoki Kobayashi, Wei Zhu, Hiroyuki Imai, Rongyi Zhao, Toshihisa Ohno, Shafiq Ur Rehman, Matsuo Uemura, Jingkui Tian, Setsuko Komatsu. Plant-derived smoke enhances plant growth through ornithine-synthesis pathway and ubiquitin-proteasome pathway in soybean.
Journal of proteomics.
2020 06; 221(?):103781. doi:
10.1016/j.jprot.2020.103781
. [PMID: 32294531] - Yoona Kim, Jennifer B Keogh, Permal Deo, Peter M Clifton. Differential Effects of Dietary Patterns on Advanced Glycation end Products: A Randomized Crossover Study.
Nutrients.
2020 Jun; 12(6):. doi:
10.3390/nu12061767
. [PMID: 32545555] - Abhijit Das, Dominik Fröhlich, Lavanya B Achanta, Benjamin D Rowlands, Gary D Housley, Matthias Klugmann, Caroline D Rae. L-Aspartate, L-Ornithine and L-Ornithine-L-Aspartate (LOLA) and Their Impact on Brain Energy Metabolism.
Neurochemical research.
2020 Jun; 45(6):1438-1450. doi:
10.1007/s11064-020-03044-9
. [PMID: 32424601] - Kyler R Gilbreath, Fuller W Bazer, M Carey Satterfield, Jason J Cleere, Guoyao Wu. Ruminal microbes of adult sheep do not degrade extracellular l-citrulline.
Journal of animal science.
2020 Jun; 98(6):. doi:
10.1093/jas/skaa164
. [PMID: 32415842] - Yaya Goïta, Juan Manuel Chao de la Barca, Asmaou Keïta, Mamadou Bocary Diarra, Klétigui Casimir Dembélé, Floris Chabrun, Boubacar Sidiki Ibrahim Dramé, Yaya Kassogué, Mahamadou Diakité, Delphine Mirebeau-Prunier, Bakary Mamadou Cissé, Gilles Simard, Pascal Reynier. Sexual Dimorphism of Metabolomic Profile in Arterial Hypertension.
Scientific reports.
2020 05; 10(1):7517. doi:
10.1038/s41598-020-64329-1
. [PMID: 32371946] - Zhi Tian, Shan Lu, Dong Jin, Jing Yang, Ji Pu, Xin-He Lai, Zhi-Hong Ren, Xiao-Min Wu, Junqin Li, Suping Wang, Jianguo Xu. Cellulomonas shaoxiangyii sp. nov., isolated from faeces of Tibetan antelope (Pantholops hodgsonii) on the Qinghai-Tibet Plateau.
International journal of systematic and evolutionary microbiology.
2020 Apr; 70(4):2204-2210. doi:
10.1099/ijsem.0.003939
. [PMID: 32038002] - Yang Wang, Li Yi, Li-Yun Sun, Yi-Chen Liu, Wen-Yan Wen, Xiao-Kang Li, Jing-Jing Mei, Ke Ding, Ting-Cai Wu, Daniel Grenier. Identification and characterization of a Streptococcus suis immunogenic ornithine carbamoytransferase involved in bacterial adherence.
Journal of microbiology, immunology, and infection = Wei mian yu gan ran za zhi.
2020 Apr; 53(2):234-239. doi:
10.1016/j.jmii.2018.05.004
. [PMID: 29934035] - Samuel Shin, Farai C Gombedza, Bidhan C Bandyopadhyay. l-ornithine activates Ca2+ signaling to exert its protective function on human proximal tubular cells.
Cellular signalling.
2020 03; 67(?):109484. doi:
10.1016/j.cellsig.2019.109484
. [PMID: 31770578] - T C Clark, J Tinsley, T Sigholt, D J Macqueen, S A M Martin. Arginine, ornithine and citrulline supplementation in rainbow trout: Free amino acid dynamics and gene expression responses to bacterial infection.
Fish & shellfish immunology.
2020 Mar; 98(?):374-390. doi:
10.1016/j.fsi.2020.01.026
. [PMID: 31968266] - T C Clark, J Tinsley, T Sigholt, D J Macqueen, S A M Martin. Supplementation of arginine, ornithine and citrulline in rainbow trout (Oncorhynchus mykiss): Effects on growth, amino acid levels in plasma and gene expression responses in liver tissue.
Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.
2020 03; 241(?):110632. doi:
10.1016/j.cbpa.2019.110632
. [PMID: 31812671] - Tengfei Zhao, Siqi Li, Jing Wang, Qi Zhou, Chunxian Yang, Feng Bai, Xiaozhong Lan, Min Chen, Zhihua Liao. Engineering Tropane Alkaloid Production Based on Metabolic Characterization of Ornithine Decarboxylase in Atropa belladonna.
ACS synthetic biology.
2020 02; 9(2):437-448. doi:
10.1021/acssynbio.9b00461
. [PMID: 31935324] - Ningning Zhuang, Hao Zhang, Lingting Li, Xiaoxian Wu, Chen Yang, Yu Zhang. Crystal structures and biochemical analyses of the bacterial arginine dihydrolase ArgZ suggests a "bond rotation" catalytic mechanism.
The Journal of biological chemistry.
2020 02; 295(7):2113-2124. doi:
10.1074/jbc.ra119.011752
. [PMID: 31914412] - Jeffrey D Kiiskila, Kefeng Li, Dibyendu Sarkar, Rupali Datta. Metabolic response of vetiver grass (Chrysopogon zizanioides) to acid mine drainage.
Chemosphere.
2020 Feb; 240(?):124961. doi:
10.1016/j.chemosphere.2019.124961
. [PMID: 31574433] - Virginia M Vargas-Muñoz, Arisai Martínez-Martínez, Enriqueta Muñoz-Islas, Martha B Ramírez-Rosas, Rosa I Acosta-González, Juan M Jiménez-Andrade. Chronic administration of Cl-amidine, a pan-peptidylarginine deiminase inhibitor, does not reverse bone loss in two different murine models of osteoporosis.
Drug development research.
2020 02; 81(1):93-101. doi:
10.1002/ddr.21608
. [PMID: 31633211] - Irina S Kulichevskaya, Daniil G Naumoff, Kirill K Miroshnikov, Anastasia A Ivanova, Dmitriy A Philippov, Anna Hakobyan, W Irene C Rijpstra, Jaap S Sinninghe Damsté, Werner Liesack, Svetlana N Dedysh. Limnoglobus roseus gen. nov., sp. nov., a novel freshwater planctomycete with a giant genome from the family Gemmataceae.
International journal of systematic and evolutionary microbiology.
2020 Feb; 70(2):1240-1249. doi:
10.1099/ijsem.0.003904
. [PMID: 31800383] - Yang Yang, Lu Ma, Minghui Song, Xiaomeng Li, Fagui He, Chao Wang, Meihan Chen, Jie Zhou, Changlin Mei. The role of the complement factor B-arginase-polyamine molecular axis in uremia-induced cardiac remodeling in mice.
European journal of immunology.
2020 02; 50(2):220-233. doi:
10.1002/eji.201948227
. [PMID: 31777959] - Yuying Li, Peng Wang, Jie Yin, Shunshun Jin, Wenxuan Su, Junquan Tian, Tiejun Li, Kang Yao. Effects of ornithine α-ketoglutarate on growth performance and gut microbiota in a chronic oxidative stress pig model induced by d-galactose.
Food & function.
2020 Jan; 11(1):472-482. doi:
10.1039/c9fo02043h
. [PMID: 31833510] - Fang Lu, Yang Liu, Yunlong Guo, Yunxia Gao, Yige Piao, Song Tan, Yezhong Tang. Metabolomic changes of blood plasma associated with two phases of rat OIR.
Experimental eye research.
2020 01; 190(?):107855. doi:
10.1016/j.exer.2019.107855
. [PMID: 31669404] - Alexander Lercher, Anannya Bhattacharya, Alexandra M Popa, Michael Caldera, Moritz F Schlapansky, Hatoon Baazim, Benedikt Agerer, Bettina Gürtl, Lindsay Kosack, Peter Májek, Julia S Brunner, Dijana Vitko, Theresa Pinter, Jakob-Wendelin Genger, Anna Orlova, Natalia Pikor, Daniela Reil, Maria Ozsvár-Kozma, Ulrich Kalinke, Burkhard Ludewig, Richard Moriggl, Keiryn L Bennett, Jörg Menche, Paul N Cheng, Gernot Schabbauer, Michael Trauner, Kristaps Klavins, Andreas Bergthaler. Type I Interferon Signaling Disrupts the Hepatic Urea Cycle and Alters Systemic Metabolism to Suppress T Cell Function.
Immunity.
2019 12; 51(6):1074-1087.e9. doi:
10.1016/j.immuni.2019.10.014
. [PMID: 31784108] - Sarita Devi, Bajanai Nongkhlaw, M Limesh, Roshni M Pasanna, Tinku Thomas, Rebecca Kuriyan, Anura V Kurpad, Arpita Mukhopadhyay. Acyl ethanolamides in Diabetes and Diabetic Nephropathy: Novel targets from untargeted plasma metabolomic profiles of South Asian Indian men.
Scientific reports.
2019 12; 9(1):18117. doi:
10.1038/s41598-019-54584-2
. [PMID: 31792390] - Svetlana I Galkina, Natalia V Fedorova, Alexander L Ksenofontov, Vladimir I Stadnichuk, Ludmila A Baratova, Galina F Sud'Ina. Neutrophils as a source of branched-chain, aromatic and positively charged free amino acids.
Cell adhesion & migration.
2019 12; 13(1):98-105. doi:
10.1080/19336918.2018.1540903
. [PMID: 30359173] - Zoran Erlic, Max Kurlbaum, Timo Deutschbein, Svenja Nölting, Aleksander Prejbisz, Henri Timmers, Susan Richter, Cornelia Prehn, Dirk Weismann, Jerzy Adamski, Andrzej Januszewicz, Martin Reincke, Martin Fassnacht, Mercedes Robledo, Graeme Eisenhofer, Felix Beuschlein, Matthias Kroiss. Metabolic impact of pheochromocytoma/paraganglioma: targeted metabolomics in patients before and after tumor removal.
European journal of endocrinology.
2019 Dec; 181(6):647-657. doi:
10.1530/eje-19-0589
. [PMID: 31614337] - Hoshimi Kawaguchi, Isao Matsumoto, Atsumu Osada, Izumi Kurata, Hiroshi Ebe, Yuki Tanaka, Asuka Inoue, Naoto Umeda, Yuya Kondo, Hiroto Tsuboi, Akihito Ishigami, Takayuki Sumida. Peptidyl arginine deiminase inhibition suppresses arthritis via decreased protein citrullination in joints and serum with the downregulation of interleukin-6.
Modern rheumatology.
2019 Nov; 29(6):964-969. doi:
10.1080/14397595.2018.1532545
. [PMID: 30285515] - Femke Molema, Florian Gleich, Peter Burgard, Ans T van der Ploeg, Marshall L Summar, Kimberly A Chapman, Ivo Barić, Allan M Lund, Stefan Kölker, Monique Williams. Evaluation of dietary treatment and amino acid supplementation in organic acidurias and urea-cycle disorders: On the basis of information from a European multicenter registry.
Journal of inherited metabolic disease.
2019 11; 42(6):1162-1175. doi:
10.1002/jimd.12066
. [PMID: 30734935] - Arne Gessner, Maren Mieth, Daniel Auge, Anja Chafai, Fabian Müller, Martin F Fromm, Renke Maas. Establishment of reference values for the lysine acetylation marker Nɛ-acetyllysine in small volume human plasma samples by a multi-target LC-MS/MS method.
Amino acids.
2019 Sep; 51(9):1259-1271. doi:
10.1007/s00726-019-02765-8
. [PMID: 31388851] - Alexander Bollenbach, Erik Hanff, Gorig Brunner, Dimitrios Tsikas. Asymmetric dimethylation and citrullination of proteinic arginine and homoarginine synthesis in human Helicobacter pylori infection.
Amino acids.
2019 Jun; 51(6):961-971. doi:
10.1007/s00726-019-02737-y
. [PMID: 31028565] - Wesley Williams, Lovemore Kunorozva, Iris Klaiber, Marius Henkel, Jens Pfannstiel, Leonardo J Van Zyl, Rudolf Hausmann, Anita Burger, Marla Trindade. Novel metagenome-derived ornithine lipids identified by functional screening for biosurfactants.
Applied microbiology and biotechnology.
2019 06; 103(11):4429-4441. doi:
10.1007/s00253-019-09768-1
. [PMID: 30972461] - Eleonora Napoli, Andrea Schneider, Jun Yi Wang, Aditi Trivedi, Nika Roa Carrillo, Flora Tassone, Michael Rogawski, Randi J Hagerman, Cecilia Giulivi. Allopregnanolone Treatment Improves Plasma Metabolomic Profile Associated with GABA Metabolism in Fragile X-Associated Tremor/Ataxia Syndrome: a Pilot Study.
Molecular neurobiology.
2019 May; 56(5):3702-3713. doi:
10.1007/s12035-018-1330-3
. [PMID: 30187385] - Bahadir Simsek, Ufuk Çakatay. Could ornithine supplementation be beneficial to prevent the formation of pro-atherogenic carbamylated low-density lipoprotein (c-LDL) particles?.
Medical hypotheses.
2019 May; 126(?):20-22. doi:
10.1016/j.mehy.2019.03.004
. [PMID: 31010493] - Edyta Adamska-Patruno, Joanna Godzien, Michal Ciborowski, Paulina Samczuk, Witold Bauer, Katarzyna Siewko, Maria Gorska, Coral Barbas, Adam Kretowski. The Type 2 Diabetes Susceptibility PROX1 Gene Variants Are Associated with Postprandial Plasma Metabolites Profile in Non-Diabetic Men.
Nutrients.
2019 Apr; 11(4):. doi:
10.3390/nu11040882
. [PMID: 31010169] - Beyazit Garip, Hakan Kayir, Ozcan Uzun. l-Arginine metabolism before and after 10 weeks of antipsychotic treatment in first-episode psychotic patients.
Schizophrenia research.
2019 04; 206(?):58-66. doi:
10.1016/j.schres.2018.12.015
. [PMID: 30587428] - L Y Ding, Y F Wang, Y Z Shen, G Zhou, X Zhang, M Z Wang, J J Loor, J Zhang. Effects of arginase inhibition via jugular infusion of Nω-hydroxy-nor-l-arginine on metabolic and immune indices in lactating dairy cows.
Journal of dairy science.
2019 Apr; 102(4):3310-3320. doi:
10.3168/jds.2018-14879
. [PMID: 30738683] - Takashi Fujikawa, Hiroyuki Sawada. Genome analysis of Pseudomonas syringae pv. actinidiae biovar 6, which produces the phytotoxins, phaseolotoxin and coronatine.
Scientific reports.
2019 03; 9(1):3836. doi:
10.1038/s41598-019-40754-9
. [PMID: 30846809] - Thanutchaporn Kumrungsee, Dwi Eva Nirmagustina, Takeshi Arima, Kai Onishi, Kanako Sato, Norihisa Kato, Noriyuki Yanaka. Novel metabolic disturbances in marginal vitamin B6-deficient rat heart.
The Journal of nutritional biochemistry.
2019 03; 65(?):26-34. doi:
10.1016/j.jnutbio.2018.11.004
. [PMID: 30599394] - Alan M Smith, Joseph J King, Paul R West, Michael A Ludwig, Elizabeth L R Donley, Robert E Burrier, David G Amaral. Amino Acid Dysregulation Metabotypes: Potential Biomarkers for Diagnosis and Individualized Treatment for Subtypes of Autism Spectrum Disorder.
Biological psychiatry.
2019 02; 85(4):345-354. doi:
10.1016/j.biopsych.2018.08.016
. [PMID: 30446206] - Edward Yu, Miguel Ruiz-Canela, Cristina Razquin, Marta Guasch-Ferré, Estefania Toledo, Dong D Wang, Christopher Papandreou, Courtney Dennis, Clary Clish, Liming Liang, Monica Bullo, Dolores Corella, Montserrat Fitó, Mario Gutiérrez-Bedmar, José Lapetra, Ramón Estruch, Emilio Ros, Montserrat Cofán, Fernando Arós, Dora Romaguera, Lluis Serra-Majem, Jose V Sorlí, Jordi Salas-Salvadó, Frank B Hu, Miguel A Martínez-González. Changes in arginine are inversely associated with type 2 diabetes: A case-cohort study in the PREDIMED trial.
Diabetes, obesity & metabolism.
2019 02; 21(2):397-401. doi:
10.1111/dom.13514
. [PMID: 30146690] - Wei Perng, Lu Tang, Peter X K Song, Martha Maria Tellez-Rojo, Alejandra Cantoral, Karen E Peterson. Metabolomic profiles and development of metabolic risk during the pubertal transition: a prospective study in the ELEMENT Project.
Pediatric research.
2019 02; 85(3):262-268. doi:
10.1038/s41390-018-0195-5
. [PMID: 30297880]