Maltotriose (BioDeep_00000001626)
Secondary id: BioDeep_00000001107, BioDeep_00000398075, BioDeep_00001868448
natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite Volatile Flavor Compounds
代谢物信息卡片
化学式: C18H32O16 (504.1690272)
中文名称: 麦芽三糖
谱图信息:
最多检出来源 Homo sapiens(feces) 0.06%
Last reviewed on 2024-09-14.
Cite this Page
Maltotriose. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/maltotriose (retrieved
2024-11-22) (BioDeep RN: BioDeep_00000001626). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C(C1C(C(C(C(O1)OC2C(OC(C(C2O)O)OC3C(OC(C(C3O)O)O)CO)CO)O)O)O)O
InChI: InChI=1/C18H32O16/c19-1-4-7(22)8(23)12(27)17(31-4)34-15-6(3-21)32-18(13(28)10(15)25)33-14-5(2-20)30-16(29)11(26)9(14)24/h4-29H,1-3H2/t4-,5-,6-,7-,8+,9-,10-,11-,12-,13-,14-,15-,16?,17-,18-/m1/s1
描述信息
Maltotriose is a trisaccharide (three-part sugar) consisting of three glucose molecules linked with α-1,4 glycosidic bonds. It is most commonly produced by the digestive enzyme alpha-amylase (a common enzyme in human saliva) on amylose in starch. The creation of both maltotriose and maltose during this process is due to the random manner in which alpha amylase hydrolyses α-1,4 glycosidic bonds. It is the shortest chain oligosaccharide that can be classified as maltodextrin. Maltotriose belongs to the class of organic compounds known as oligosaccharides. These are carbohydrates made up of 3 to 10 monosaccharide units linked to each other through glycosidic bonds. Maltotriose is a common oligosaccharide metabolite found in human urine after maltose ingestion or infusion (PMID:6645121). Maltotriose is increased in glycogen storage disease II (OMIM: 232300) due to a mutation of the enzyme alpha-1,4-glucosidase (EC 3.2.1.20) (PMID:4286143).
Constituent of corn syrup. Amylolysis production from starch. Maltooligosaccharide mixtures are important food additives (sweeteners, gelling agents and viscosity modifiers)
Acquisition and generation of the data is financially supported in part by CREST/JST.
COVID info from COVID-19 Disease Map
Corona-virus
Coronavirus
SARS-CoV-2
COVID-19
SARS-CoV
COVID19
SARS2
SARS
Maltotriose, the second most abundant sugar present in brewing, is an inducer of the maltose regulon of Escherichia coli. Maltotriose can induce beta-galactosidase synthesis[1][2].
Maltotriose, the second most abundant sugar present in brewing, is an inducer of the maltose regulon of Escherichia coli. Maltotriose can induce beta-galactosidase synthesis[1][2].
同义名列表
20 个代谢物同义名
(2R,3R,4S,5S,6R)-2-{[(2R,3S,4R,5R,6R)-4,5-dihydroxy-2-(hydroxymethyl)-6-{[(2R,3S,4R,5R)-4,5,6-trihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy}oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol; O-alpha-delta-Glucopyranosyl-(1beta94)-O-alpha-delta-glucopyranosyl-(1beta94)-O-alpha-delta-glucose; O-alpha-D-Glucopyranosyl-(1beta94)-O-alpha-D-glucopyranosyl-(1beta94)-O-alpha-D-glucose; WURCS=2.0/2,3,2/[a2122h-1x_1-5][a2122h-1a_1-5]/1-2-2/a4-b1_b4-C1; alpha-D-Glucosyl-(1->4)-alpha-D-glucosyl-(1->4)-D-glucoose; a-D-Glucosyl-(1->4)-a-D-glucosyl-(1->4)-D-glucoose; Α-D-glucosyl-(1->4)-α-D-glucosyl-(1->4)-D-glucoose; alpha-D-GLC-(1->4)-alpha-D-GLC-(1->4)-D-GLC; 4-O-(4-O-Hexopyranosylhexopyranosyl)hexose; a-D-GLC-(1->4)-a-D-GLC-(1->4)-D-GLC; Α-D-GLC-(1->4)-α-D-GLC-(1->4)-D-GLC; Glcalpha1-4glcalpha1-4GLC; delta-(+)-Maltotriose; D-(+)-Cellotriose; D-(+)-Maltotriose; D-Maltotriose; Amylotriose; Maltotriose; Maltotriose; Maltotriose
数据库引用编号
38 个数据库交叉引用编号
- ChEBI: CHEBI:140999
- KEGG: C01835
- PubChem: 439586
- PubChem: 871
- HMDB: HMDB0001262
- Metlin: METLIN3585
- ChEMBL: CHEMBL4637211
- Wikipedia: Maltotriose
- MetaCyc: MALTOTRIOSE
- KNApSAcK: C00055979
- foodb: FDB001196
- chemspider: 388669
- CAS: 1109-28-0
- MoNA: PS054801
- MoNA: PS054805
- MoNA: PS054808
- MoNA: PS054804
- MoNA: PS054807
- MoNA: PS054802
- MoNA: PS029501
- MoNA: PS054803
- MoNA: PR100706
- MoNA: PS029505
- MoNA: PS029506
- MoNA: PS029503
- MoNA: PR100589
- MoNA: PS029502
- PMhub: MS000000877
- ChEBI: CHEBI:27931
- PubChem: 4954
- PDB-CCD: 38J
- PDB-CCD: MLR
- NIKKAJI: J208.710C
- RefMet: Maltotriose
- medchemexpress: HY-113011
- KNApSAcK: 27931
- LOTUS: LTS0111684
- wikidata: Q28091366
分类词条
相关代谢途径
Reactome(0)
BioCyc(3)
代谢反应
167 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(24)
- glycogen degradation I:
maltose + maltotriose ⟶ β-D-glucose + maltotetraose
- glycogen degradation I:
H2O + maltotriose ⟶ D-glucopyranose + maltose
- glycogen degradation I:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- glycogen degradation I:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- glycogen degradation I:
D-glucopyranose + maltotetraose ⟶ maltose + maltotriose
- glycogen degradation I:
H2O + maltotriose ⟶ D-glucopyranose + maltose
- glycogen degradation I:
H2O + maltotriose ⟶ D-glucopyranose + maltose
- glycogen degradation I:
D-glucopyranose + maltotetraose ⟶ maltose + maltotriose
- glycogen degradation I:
D-glucopyranose + maltotetraose ⟶ maltose + maltotriose
- glycogen degradation I:
H2O + maltotriose ⟶ D-glucopyranose + maltose
- glycogen degradation I:
H2O + maltotriose ⟶ D-glucopyranose + maltose
- glycogen degradation I:
H2O + maltotriose ⟶ D-glucopyranose + maltose
- glycogen degradation I:
D-glucopyranose + maltotetraose ⟶ maltose + maltotriose
- starch degradation II:
H2O + a linear malto-oligosaccharide ⟶ a linear malto-oligosaccharide + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- glycogen degradation I:
H2O + maltotriose ⟶ D-glucopyranose + maltose
- glycogen degradation I:
H2O + maltotriose ⟶ D-glucopyranose + maltose
- glycogen degradation I:
H2O + maltotriose ⟶ D-glucopyranose + maltose
- glycogen degradation I:
H2O + maltotriose ⟶ D-glucopyranose + maltose
- glycogen degradation I:
H2O + maltotriose ⟶ D-glucopyranose + maltose
- glycogen degradation I:
maltose + maltotriose ⟶ β-D-glucose + maltotetraose
- glycogen degradation I:
β-D-glucose + ATP ⟶ β-D-glucose 6-phosphate + ADP + H+
- glycogen degradation I:
β-D-glucose + ATP ⟶ β-D-glucose-6-phosphate + ADP + H+
- glycogen degradation I:
β-D-glucose + ATP ⟶ β-D-glucose 6-phosphate + ADP + H+
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(136)
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ an exposed unphosphorylated, (α-1,6)-branched malto-oligosaccharide tail on amylopectin + maltose
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ an exposed unphosphorylated, (α-1,6)-branched malto-oligosaccharide tail on amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + a linear malto-oligosaccharide ⟶ a linear malto-oligosaccharide + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
ATP + H2O + a 6-phosphogluco-amylopectin ⟶ AMP + a 6-phosphogluco-3-phosphogluco-amylopectin + phosphate
- starch degradation II:
H2O + a 6-phosphogluco-3-phosphogluco-amylopectin ⟶ an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin + phosphate
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- superpathway of sucrose and starch metabolism I (non-photosynthetic tissue):
H2O + sucrose ⟶ β-D-fructofuranose + D-glucopyranose
- starch biosynthesis:
α-D-glucopyranose 1-phosphate ⟶ D-glucopyranose 6-phosphate
- starch biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- starch biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- starch biosynthesis:
α-D-glucopyranose 1-phosphate ⟶ D-glucopyranose 6-phosphate
- starch biosynthesis:
α-D-glucopyranose 1-phosphate ⟶ D-glucopyranose 6-phosphate
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch biosynthesis:
α-D-glucopyranose 1-phosphate ⟶ D-glucopyranose 6-phosphate
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- starch biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- starch biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- starch biosynthesis:
D-glucopyranose 6-phosphate ⟶ F6P
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
COVID-19 Disease Map(1)
- @COVID-19 Disease
Map["name"]:
2-Methyl-3-acetoacetyl-CoA + Coenzyme A ⟶ Acetyl-CoA + Propanoyl-CoA
PathBank(6)
- Starch and Sucrose Metabolism:
D-Glucose + [PTS enzyme I]-N -phospho-L-histidine ⟶ -D-glucose 1-phosphate + [PTS enzyme I]-L-histidine
- Starch and Sucrose Metabolism:
-D-Glucose + Unknown ⟶ -D-Glucose 6-phosphate + Unknown
- Operon: Maltodextrins and Maltose Transport V:
Adenosine triphosphate + Maltotriose + mal regulon transcriptional activator ⟶ mal regulon transcriptional activator
- Operon: Maltodextrins and Maltose Transport VI:
Adenosine triphosphate + Maltotriose + mal regulon transcriptional activator ⟶ mal regulon transcriptional activator
- Operon: Malto Dextrins Uptake:
Adenosine triphosphate + Maltotriose + mal regulon transcriptional activator ⟶ mal regulon transcriptional activator
- Operon: Malto Dextrins Uptake IV:
Adenosine triphosphate + Maltotriose + mal regulon transcriptional activator ⟶ mal regulon transcriptional activator
PharmGKB(0)
21 个相关的物种来源信息
- 57912 - Agrimonia eupatoria: 10.1007/BF00579983
- 4682 - Allium sativum: 10.1002/PTR.2650070514
- 7461 - Apis cerana: -
- 5580 - Aureobasidium pullulans: 10.1016/S0032-9592(98)00106-X
- 203270 - Berberis aquifolium: 10.1016/S0367-326X(01)00336-7
- 45234 - Cordyceps: -
- 47165 - Cyttaria darwinii: 10.1016/0008-6215(86)84025-3
- 308558 - Echinacea angustifolia: 10.1016/J.CARBPOL.2006.01.012
- 3494 - Ficus carica: 10.1007/BF00598339
- 190243 - Firmiana simplex: 10.1007/BF00630086
- 4232 - Helianthus annuus: 10.1021/JF60197A017
- 9606 - Homo sapiens: -
- 91060 - Hymenocladia chondricola: 10.1515/BOT.2001.032
- 112863 - Lycium barbarum: 10.1016/J.EXGER.2005.06.010
- 98504 - Matricaria chamomilla: 10.1007/BF00563599
- 72228 - Ophiocordyceps sinensis: 10.1078/0944-7113-00134
- 161684 - Umbilicaria esculenta: 10.1271/BBB.60.213
- 161685 - Umbilicaria mammulata: 10.1016/0031-9422(74)85024-7
- 85293 - Viburnum opulus: 10.1007/BF02758861
- 3972 - Viscum album: 10.1007/BF00630086
- 81056 - Wolfiporia cocos: 10.1055/S-0030-1270823
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Eun Yeong Jang, Ki-Bae Hong, Yeok Boo Chang, Jungcheul Shin, Eun Young Jung, Kyungae Jo, Hyung Joo Suh. In Vitro Prebiotic Effects of Malto-Oligosaccharides Containing Water-Soluble Dietary Fiber.
Molecules (Basel, Switzerland).
2020 Nov; 25(21):. doi:
10.3390/molecules25215201
. [PMID: 33182247] - Virve Vidgren, Brian Gibson. Trans-regulation and localization of orthologous maltose transporters in the interspecies lager yeast hybrid.
FEMS yeast research.
2018 09; 18(6):. doi:
10.1093/femsyr/foy065
. [PMID: 29931058] - Nicolas Sauvageot, Abdelhamid Mokhtari, Philippe Joyet, Aurélie Budin-Verneuil, Víctor S Blancato, Guillermo D Repizo, Céline Henry, Andreas Pikis, John Thompson, Christian Magni, Axel Hartke, Josef Deutscher. Enterococcus faecalis Uses a Phosphotransferase System Permease and a Host Colonization-Related ABC Transporter for Maltodextrin Uptake.
Journal of bacteriology.
2017 05; 199(9):. doi:
10.1128/jb.00878-16
. [PMID: 28242718] - Jing Li, Wenxu Zhou, Perigio Francisco, Russell Wong, Dongke Zhang, Steven M Smith. Inhibition of Arabidopsis chloroplast β-amylase BAM3 by maltotriose suggests a mechanism for the control of transitory leaf starch mobilisation.
PloS one.
2017; 12(2):e0172504. doi:
10.1371/journal.pone.0172504
. [PMID: 28225829] - Yallappa Rajashekar, Thimmappa Shivanandappa. Mode of Action of the Natural Insecticide, Decaleside Involves Sodium Pump Inhibition.
PloS one.
2017; 12(1):e0170836. doi:
10.1371/journal.pone.0170836
. [PMID: 28125742] - Daniela Gutsch, Dietmar Appelhans, Sabrina Höbel, Brigitte Voit, Achim Aigner. Biocompatibility and efficacy of oligomaltose-grafted poly(ethylene imine)s (OM-PEIs) for in vivo gene delivery.
Molecular pharmaceutics.
2013 Dec; 10(12):4666-75. doi:
10.1021/mp400479g
. [PMID: 24175860] - Marina Camara Mattos Martins, Mahdi Hejazi, Joerg Fettke, Martin Steup, Regina Feil, Ursula Krause, Stéphanie Arrivault, Daniel Vosloh, Carlos María Figueroa, Alexander Ivakov, Umesh Prasad Yadav, Maria Piques, Daniela Metzner, Mark Stitt, John Edward Lunn. Feedback inhibition of starch degradation in Arabidopsis leaves mediated by trehalose 6-phosphate.
Plant physiology.
2013 Nov; 163(3):1142-63. doi:
10.1104/pp.113.226787
. [PMID: 24043444] - Lin Liu, Nicola L B Pohl. Synthesis of a series of maltotriose phosphates with an evaluation of the utility of a fluorous phosphate protecting group.
Carbohydrate research.
2013 Mar; 369(?):14-24. doi:
10.1016/j.carres.2012.12.015
. [PMID: 23376679] - Barbara Ziemba, Inessa Halets, Dzmitry Shcharbin, Dietmar Appelhans, Brigitte Voit, Ireneusz Pieszynski, Maria Bryszewska, Barbara Klajnert. Influence of fourth generation poly(propyleneimine) dendrimers on blood cells.
Journal of biomedical materials research. Part A.
2012 Nov; 100(11):2870-80. doi:
10.1002/jbm.a.34222
. [PMID: 22623362] - Joanna Drzewińska, Dietmar Appelhans, Brigitte Voit, Maria Bryszewska, Barbara Klajnert. Poly(propylene imine) dendrimers modified with maltose or maltotriose protect phosphorothioate oligodeoxynucleotides against nuclease activity.
Biochemical and biophysical research communications.
2012 Oct; 427(1):197-201. doi:
10.1016/j.bbrc.2012.09.043
. [PMID: 22995301] - Hidetaka Akita, Tomoya Masuda, Takashi Nishio, Kenichi Niikura, Kuniharu Ijiro, Hideyoshi Harashima. Improving in vivo hepatic transfection activity by controlling intracellular trafficking: the function of GALA and maltotriose.
Molecular pharmaceutics.
2011 Aug; 8(4):1436-42. doi:
10.1021/mp200189s
. [PMID: 21598999] - Jong-Hyun Kim, Michihiro Sunako, Hisayo Ono, Yoshikatsu Murooka, Eiichiro Fukusaki, Mitsuo Yamashita. Characterization of gene encoding amylopullulanase from plant-originated lactic acid bacterium, Lactobacillus plantarum L137.
Journal of bioscience and bioengineering.
2008 Nov; 106(5):449-59. doi:
10.1263/jbb.106.449
. [PMID: 19111640] - Nicole M Koropatkin, Eric C Martens, Jeffrey I Gordon, Thomas J Smith. Starch catabolism by a prominent human gut symbiont is directed by the recognition of amylose helices.
Structure (London, England : 1993).
2008 Jul; 16(7):1105-15. doi:
10.1016/j.str.2008.03.017
. [PMID: 18611383] - Udo Schnupf, Julious L Willett, Wayne B Bosma, Frank A Momany. DFT conformational studies of alpha-maltotriose.
Journal of computational chemistry.
2008 May; 29(7):1103-12. doi:
10.1002/jcc.20872
. [PMID: 18069685] - Sergio L Alves, Ricardo A Herberts, Claudia Hollatz, Debora Trichez, Luiz C Miletti, Pedro S de Araujo, Boris U Stambuk. Molecular analysis of maltotriose active transport and fermentation by Saccharomyces cerevisiae reveals a determinant role for the AGT1 permease.
Applied and environmental microbiology.
2008 Mar; 74(5):1494-501. doi:
10.1128/aem.02570-07
. [PMID: 18203856] - Noriyuki Doukyu, Wataru Yamagishi, Hirokazu Kuwahara, Hiroyasu Ogino, Noritake Furuki. Purification and characterization of a maltooligosaccharide-forming amylase that improves product selectivity in water-miscible organic solvents, from dimethylsulfoxide-tolerant Brachybacterium sp. strain LB25.
Extremophiles : life under extreme conditions.
2007 Nov; 11(6):781-8. doi:
10.1007/s00792-007-0096-8
. [PMID: 17619813] - Chun Tang, Charles D Schwieters, G Marius Clore. Open-to-closed transition in apo maltose-binding protein observed by paramagnetic NMR.
Nature.
2007 Oct; 449(7165):1078-82. doi:
10.1038/nature06232
. [PMID: 17960247] - W Haas, C Wulff, K Grabe, V Meyer, S Haeberlein. Navigation within host tissues: cues for orientation of Diplostomum spathaceum (Trematoda) in fish towards veins, head and eye.
Parasitology.
2007 Jul; 134(Pt 7):1013-23. doi:
10.1017/s0031182007002430
. [PMID: 17316474] - M Kambourova, R Mandeva, I Fiume, L Maurelli, M Rossi, A Morana. Hydrolysis of xylan at high temperature by co-action of the xylanase from Anoxybacillus flavithermus BC and the beta-xylosidase/alpha-arabinosidase from Sulfolobus solfataricus Oalpha.
Journal of applied microbiology.
2007 Jun; 102(6):1586-93. doi:
10.1111/j.1365-2672.2006.03197.x
. [PMID: 17578424] - Nicole S Bresolin, Zhongyi Li, Behjat Kosar-Hashemi, Ian J Tetlow, Manash Chatterjee, Sadequr Rahman, Matthew K Morell, Crispin A Howitt. Characterisation of disproportionating enzyme from wheat endosperm.
Planta.
2006 Jun; 224(1):20-31. doi:
10.1007/s00425-005-0187-7
. [PMID: 16333636] - Birte Kramhøft, Kristian Sass Bak-Jensen, Haruhide Mori, Nathalie Juge, Jane Nøhr, Birte Svensson. Involvement of individual subsites and secondary substrate binding sites in multiple attack on amylose by barley alpha-amylase.
Biochemistry.
2005 Feb; 44(6):1824-32. doi:
10.1021/bi048100v
. [PMID: 15697208] - Angelo J B Dias, Marcos S Maia, Claudio A Retamal, María Luisa López. Identification and partial characterization of alpha-1,4-glucosidase activity in equine epididymal fluid.
Theriogenology.
2004 May; 61(7-8):1545-58. doi:
10.1016/j.theriogenology.2003.09.004
. [PMID: 15036984] - Michael M Palian, V I Boguslavsky, David F O'Brien, Robin Polt. Glycopeptide-membrane interactions: glycosyl enkephalin analogues adopt turn conformations by NMR and CD in amphipathic media.
Journal of the American Chemical Society.
2003 May; 125(19):5823-31. doi:
10.1021/ja0268635
. [PMID: 12733923] - Frank Orlik, Christian Andersen, Roland Benz. Site-directed mutagenesis of tyrosine 118 within the central constriction site of the LamB (maltoporin) channel of Escherichia coli. II. Effect on maltose and maltooligosaccharide binding kinetics.
Biophysical journal.
2002 Jul; 83(1):309-21. doi:
10.1016/s0006-3495(02)75171-0
. [PMID: 12080122] - Hee-Kyung Bae, Soo-Bok Lee, Cheon-Seok Park, Jae-Hoon Shim, Hye-Young Lee, Myo-Jeong Kim, Jin-Sook Baek, Hoe-Jin Roh, Jin-Hwan Choi, Eun-Ok Choe, Dong-Uk Ahn, Kwan-Hwa Park. Modification of ascorbic acid using transglycosylation activity of Bacillus stearothermophilus maltogenic amylase to enhance its oxidative stability.
Journal of agricultural and food chemistry.
2002 May; 50(11):3309-16. doi:
10.1021/jf011550z
. [PMID: 12010003] - I Damager, K Denyer, M S Motawia, B L Møller, A Blennow. The action of starch synthase II on 6"'-alpha-maltotriosyl-maltohexaose comprising the branch point of amylopectin.
European journal of biochemistry.
2001 Sep; 268(18):4878-84. doi:
10.1046/j.1432-1327.2001.02413.x
. [PMID: 11559356] - C Hollatz, B U Stambuk. Colorimetric determination of active alpha-glucoside transport in Saccharomyces cerevisiae.
Journal of microbiological methods.
2001 Sep; 46(3):253-9. doi:
10.1016/s0167-7012(01)00281-0
. [PMID: 11438190] - C R Zastrow, C Hollatz, P S de Araujo, B U Stambuk. Maltotriose fermentation by Saccharomyces cerevisiae.
Journal of industrial microbiology & biotechnology.
2001 Jul; 27(1):34-8. doi:
10.1038/sj.jim.7000158
. [PMID: 11598808] - C Hilty, M Winterhalter. Facilitated substrate transport through membrane proteins.
Physical review letters.
2001 Jun; 86(24):5624-7. doi:
10.1103/physrevlett.86.5624
. [PMID: 11415317] - B U Stambuk, P S de Araujo. Kinetics of active alpha-glucoside transport in Saccharomyces cerevisiae.
FEMS yeast research.
2001 Apr; 1(1):73-8. doi:
10.1111/j.1567-1364.2001.tb00015.x
. [PMID: 12702465] - A Charbit, C Andersen, J Wang, B Schiffler, V Michel, R Benz, M Hofnung. In vivo and in vitro studies of transmembrane beta-strand deletion, insertion or substitution mutants of the Escherichia coli K-12 maltoporin.
Molecular microbiology.
2000 Feb; 35(4):777-90. doi:
10.1046/j.1365-2958.2000.01748.x
. [PMID: 10692155] - P Van Gelder, F Dumas, J P Rosenbusch, M Winterhalter. Oriented channels reveal asymmetric energy barriers for sugar translocation through maltoporin of Escherichia coli.
European journal of biochemistry.
2000 Jan; 267(1):79-84. doi:
10.1046/j.1432-1327.2000.00960.x
. [PMID: 10601853] - K Denyer, D Waite, A Edwards, C Martin, A M Smith. Interaction with amylopectin influences the ability of granule-bound starch synthase I to elongate malto-oligosaccharides.
The Biochemical journal.
1999 Sep; 342 Pt 3(?):647-53. doi:
10.1042/bj3420647
. [PMID: 10477276] - K Denyer, D Waite, S Motawia, B L Møller, A M Smith. Granule-bound starch synthase I in isolated starch granules elongates malto-oligosaccharides processively.
The Biochemical journal.
1999 May; 340 ( Pt 1)(?):183-91. doi:
10.1042/bj3400183
. [PMID: 10229673] - R A Burke, G Hughes, J B Moberly. Lack of interference of icodextrin on creatinine measurements.
Advances in peritoneal dialysis. Conference on Peritoneal Dialysis.
1999; 15(?):234-7. doi:
. [PMID: 10682109]
- S Yokota, K Kumano, P Ma, T Hyodo, T Sakai, G Izumi, A Hashimoto, K Shibata, H Wang. Saccharides as osmotic agents in peritoneal dialysate: determination of molecular weight essential for more efficient fluid removal.
Advances in peritoneal dialysis. Conference on Peritoneal Dialysis.
1998; 14(?):40-3. doi:
NULL
. [PMID: 10649688] - C Andersen, M Jordy, R Benz. Evaluation of the rate constants of sugar transport through maltoporin (LamB) of Escherichia coli from the sugar-induced current noise.
The Journal of general physiology.
1995 Mar; 105(3):385-401. doi:
10.1085/jgp.105.3.385
. [PMID: 7539481] - K Itoh, T Hara, N Shibata. Synthesis of maltotriose by maltase purified from rabbit kidney.
Biochemistry international.
1991 Jul; 24(5):969-79. doi:
NULL
. [PMID: 1776960] - T G Cooper, C H Yeung, D Nashan, F Jockenhövel, E Nieschlag. Improvement in the assessment of human epididymal function by the use of inhibitors in the assay of alpha-glucosidase in seminal plasma.
International journal of andrology.
1990 Aug; 13(4):297-305. doi:
10.1111/j.1365-2605.1990.tb01035.x
. [PMID: 2201650] - A Persson, D Chang, E Crouch. Surfactant protein D is a divalent cation-dependent carbohydrate-binding protein.
The Journal of biological chemistry.
1990 Apr; 265(10):5755-60. doi:
. [PMID: 2108147]
- T A Pugh, J C Shah, P T Magee, M J Clancy. Characterization and localization of the sporulation glucoamylase of Saccharomyces cerevisiae.
Biochimica et biophysica acta.
1989 Feb; 994(3):200-9. doi:
10.1016/0167-4838(89)90294-x
. [PMID: 2493265] - H Nakatani. Selective inhibition of histidine-modified pancreatic alpha-amylase by proteinaceous inhibitor from Phaseolus vulgaris.
Archives of biochemistry and biophysics.
1988 Jun; 263(2):364-8. doi:
10.1016/0003-9861(88)90647-9
. [PMID: 3259857] - D W Andersen, L J Filer, L D Stegink. Source of the urinary maltose and maltotriose excreted during intravenous infusion of oligosaccharide solutions in young pigs.
Metabolism: clinical and experimental.
1988 Jun; 37(6):562-7. doi:
10.1016/0026-0495(88)90172-2
. [PMID: 3374322] - R Benz, A Schmid, T Nakae, G H Vos-Scheperkeuter. Pore formation by LamB of Escherichia coli in lipid bilayer membranes.
Journal of bacteriology.
1986 Mar; 165(3):978-86. doi:
10.1128/jb.165.3.978-986.1986
. [PMID: 2419312] - R R Tremblay, R Paquin, M Thabet. Nature of the residual alpha-1,4-glucosidase activity in the seminal plasma of vasectomized men.
Enzyme.
1985; 34(1):33-8. doi:
10.1159/000469357
. [PMID: 3910423] - R Paquin, P Chapdelaine, J Y Dubé, R R Tremblay. Similar biochemical properties of human seminal plasma and epididymal alpha-1,4-glucosidase.
Journal of andrology.
1984 Jul; 5(4):277-82. doi:
10.1002/j.1939-4640.1984.tb00789.x
. [PMID: 6381446] - O Yuge, M Morio, T Fukui, K Fujii, H Kikuchi, S Takahashi. Maltotriose and maltotetraose excreted in urine following intravenous administration of maltose to human volunteers.
The Japanese journal of surgery.
1983 Jul; 13(4):296-303. doi:
10.1007/bf02469510
. [PMID: 6645121] - S J Fisher, R A Laine. High alpha-amylase activity in the syncytiotrophoblastic cells of first-trimester human placentas.
Journal of cellular biochemistry.
1983; 22(1):47-54. doi:
10.1002/jcb.240220105
. [PMID: 6607928]