L-Tryptophan (BioDeep_00000000127)

 

Secondary id: BioDeep_00000014646, BioDeep_00000014689, BioDeep_00000229600, BioDeep_00000398011, BioDeep_00000398601, BioDeep_00000409081, BioDeep_00001868002, BioDeep_00001891645

natural product human metabolite PANOMIX_OTCML-2023 blood metabolite


代谢物信息卡片


L-Tryptophan, from non-animal source, meets EP, JP, USP testing specifications, suitable for cell culture, 99.0-101.0\\%

化学式: C11H12N2O2 (204.0898732)
中文名称: DL-色氨酸, L-色氨酸, 色氨酸
谱图信息: 最多检出来源 Homo sapiens(blood) 0.01%

Reviewed

Last reviewed on 2024-06-29.

Cite this Page

L-Tryptophan. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/l-tryptophan (retrieved 2024-09-17) (BioDeep RN: BioDeep_00000000127). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: C1=CC=C2C(=C1)C(=CN2)CC(C(=O)O)N
InChI: InChI=1S/C11H12N2O2/c12-9(11(14)15)5-7-6-13-10-4-2-1-3-8(7)10/h1-4,6,9,13H,5,12H2,(H,14,15)

描述信息

Tryptophan (Trp) or L-tryptophan is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. L-tryptophan is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Tryptophan is found in all organisms ranging from bacteria to plants to animals. It is classified as a non-polar, uncharged (at physiological pH) aromatic amino acid. Tryptophan is an essential amino acid, meaning the body cannot synthesize it, and it must be obtained from the diet. The requirement for tryptophan and protein decreases with age. The minimum daily requirement for adults is 3 mg/kg/day or about 200 mg a day. There is 400 mg of tryptophan in a cup of wheat germ. A cup of low-fat cottage cheese contains 300 mg of tryptophan and chicken and turkey contain up to 600 mg of tryptophan per pound (http://www.dcnutrition.com). Tryptophan is particularly plentiful in chocolate, oats, dried dates, milk, yogurt, cottage cheese, red meat, eggs, fish, poultry, sesame, chickpeas, almonds, sunflower seeds, pumpkin seeds, buckwheat, spirulina, and peanuts. Tryptophan is the precursor of both serotonin and melatonin. Melatonin is a hormone that is produced by the pineal gland in animals, which regulates sleep and wakefulness. Serotonin is a brain neurotransmitter, platelet clotting factor, and neurohormone found in organs throughout the body. Metabolism of tryptophan into serotonin requires nutrients such as vitamin B6, niacin, and glutathione. Niacin (also known as vitamin B3) is an important metabolite of tryptophan. It is synthesized via kynurenine and quinolinic acids, which are products of tryptophan degradation. There are a number of conditions or diseases that are characterized by tryptophan deficiencies. For instance, fructose malabsorption causes improper absorption of tryptophan in the intestine, which reduces levels of tryptophan in the blood and leads to depression. High corn diets or other tryptophan-deficient diets can cause pellagra, which is a niacin-tryptophan deficiency disease with symptoms of dermatitis, diarrhea, and dementia. Hartnups disease is a disorder in which tryptophan and other amino acids are not absorbed properly. Symptoms of Hartnups disease include skin rashes, difficulty coordinating movements (cerebellar ataxia), and psychiatric symptoms such as depression or psychosis. Tryptophan supplements may be useful for treating Hartnups disease. Assessment of tryptophan deficiency is done through studying excretion of tryptophan metabolites in the urine or blood. Blood may be the most sensitive test because the amino acid tryptophan is transported in a unique way. Increased urination of tryptophan breakdown products (such as kynurenine) correlates with increased tryptophan degradation, which occurs with oral contraception, depression, mental retardation, hypertension, and anxiety states. Tryptophan plays a role in "feast-induced" drowsiness. Ingestion of a meal rich in carbohydrates triggers the release of insulin. Insulin, in turn, stimulates the uptake of large neutral branched-chain amino acids (BCAAs) into muscle, increasing the ratio of tryptophan to BCAA in the bloodstream. The increased tryptophan ratio reduces competition at the large neutral amino acid transporter (which transports both BCAAs and tryptophan), resulting in greater uptake of tryptophan across the blood-brain barrier into the cerebrospinal fluid (CSF). Once in the CSF, tryptophan is converted into serotonin and the resulting serotonin is further metabolized into melatonin by the pineal gland, which promotes sleep. Because tryptophan is converted into 5-hydroxytryptophan (5-HTP) which is then converted into the neurotransmitter serotonin, it has been proposed th...
L-tryptophan is a white powder with a flat taste. An essential amino acid; occurs in isomeric forms. (NTP, 1992)
L-tryptophan is the L-enantiomer of tryptophan. It has a role as an antidepressant, a nutraceutical, a micronutrient, a plant metabolite, a human metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite and a mouse metabolite. It is an erythrose 4-phosphate/phosphoenolpyruvate family amino acid, a proteinogenic amino acid, a tryptophan and a L-alpha-amino acid. It is a conjugate base of a L-tryptophanium. It is a conjugate acid of a L-tryptophanate. It is an enantiomer of a D-tryptophan. It is a tautomer of a L-tryptophan zwitterion.
An essential amino acid that is necessary for normal growth in infants and for nitrogen balance in adults. It is a precursor of indole alkaloids in plants. It is a precursor of serotonin (hence its use as an antidepressant and sleep aid). It can be a precursor to niacin, albeit inefficiently, in mammals.
L-Tryptophan is a metabolite found in or produced by Escherichia coli (strain K12, MG1655).
Tryptophan is the least plentiful of all 22 amino acids and an essential amino acid in humans (provided by food), Tryptophan is found in most proteins and a precursor of serotonin. Tryptophan is converted to 5-hydroxy-tryptophan (5-HTP), converted in turn to serotonin, a neurotransmitter essential in regulating appetite, sleep, mood, and pain. Tryptophan is a natural sedative and present in dairy products, meats, brown rice, fish, and soybeans. (NCI04)
Tryptophan is an essential amino acid which is the precursor of serotonin. Serotonin is a brain neurotransmitter, platelet clotting factor and neurohormone found in organs throughout the body. Metabolism of tryptophan to serotonin requires nutrients such as vitamin B6, niacin and glutathione. Niacin is an important metabolite of tryptophan. High corn or other tryptophan-deficient diets can cause pellagra, which is a niacin-tryptophan deficiency disease with symptoms of dermatitis, diarrhea and dementia. Inborn errors of tryptophan metabolism exist where a tumor (carcinoid) makes excess serotonin. Hartnups disease is a disease where tryptophan and other amino acids are not absorbed properly. Tryptophan supplements may be useful in each condition, in carcinoid replacing the over-metabolized nutrient and in Hartnups supplementing a malabsorbed nutrient. Some disorders of excess tryptophan in the blood may contribute to mental retardation. Assessment of tryptophan deficiency is done through studying excretion of tryptophan metabolites in the urine or blood. Blood may be the most sensitive test because the amino acid tryptophan is transported in a unique way. Increased urination of tryptophan fragments correlates with increased tryptophan degradation, which occurs with oral contraception, depression, mental retardation, hypertension and anxiety states. The requirement for tryptophan and protein decreases with age. Adults minimum daily requirement is 3 mg/kg/day or about 200 mg a day. This may be an underestimation, for there are 400 mg of tryptophan in just a cup of wheat germ. A cup of low fat cottage cheese contains 300 mg of tryptophan and chicken and turkey contain up to 600 mg per pound.
An essential amino acid that is necessary for normal growth in infants and for NITROGEN balance in adults. It is a precursor of INDOLE ALKALOIDS in plants. It is a precursor of SEROTONIN (hence its use as an antidepressant and sleep aid). It can be a precursor to NIACIN, albeit inefficiently, in mammals.
See also: Serotonin; tryptophan (component of); Chamomile; ginger; melatonin; thiamine; tryptophan (component of) ... View More ...
Constituent of many plants. Enzymatic hydrolysis production of most plant and animal proteins. Dietary supplement, nutrient
D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents
N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants
COVID info from PDB, Protein Data Bank
The L-enantiomer of tryptophan.
Corona-virus
Coronavirus
SARS-CoV-2
COVID-19
SARS-CoV
COVID19
SARS2
SARS
Acquisition and generation of the data is financially supported in part by CREST/JST.
[Raw Data] CBA09_Tryptophan_pos_30eV_1-1_01_662.txt
[Raw Data] CBA09_Tryptophan_pos_20eV_1-1_01_661.txt
[Raw Data] CBA09_Tryptophan_neg_30eV_1-1_01_716.txt
[Raw Data] CBA09_Tryptophan_pos_10eV_1-1_01_660.txt
[Raw Data] CBA09_Tryptophan_neg_10eV_1-1_01_714.txt
[Raw Data] CBA09_Tryptophan_neg_40eV_1-1_01_717.txt
[Raw Data] CBA09_Tryptophan_neg_20eV_1-1_01_715.txt
[Raw Data] CBA09_Tryptophan_pos_50eV_1-1_01_664.txt
[Raw Data] CBA09_Tryptophan_neg_50eV_1-1_01_718.txt
[Raw Data] CBA09_Tryptophan_pos_40eV_1-1_01_663.txt
IPB_RECORD: 253; CONFIDENCE confident structure
KEIO_ID T003
DL-Tryptophan is an endogenous metabolite.
L-Tryptophan (Tryptophan) is an essential amino acid that is the precursor of serotonin, melatonin, and vitamin B3[1].
L-Tryptophan (Tryptophan) is an essential amino acid that is the precursor of serotonin, melatonin, and vitamin B3[1].

同义名列表

180 个代谢物同义名

L-Tryptophan, from non-animal source, meets EP, JP, USP testing specifications, suitable for cell culture, 99.0-101.0\\%; L-Tryptophan, United States Pharmacopeia (USP) Reference Standard; Tryptophan, European Pharmacopoeia (EP) Reference Standard; L-Tryptophan, certified reference material, TraceCERT(R); 1H-INDOLE-3-PROPANOIC ACID, .ALPHA.-AMINO-, (S)-; (S)-alpha-amino-beta-(3-indolyl)-propionic acid; L-Tryptophan, Cell Culture Reagent (H-L-Trp-OH); 1H-Indole-3-propanoic acid, alpha-amino-, (S)-; L-Tryptophan, Vetec(TM) reagent grade, >=98\\%; (2S)-2-amino-3-(1H-indol-3-yl)propanoic acid; (S)-2-amino-3-(1H-Indol-3-yl)-propionic acid; N-ACETYLTRYPTOPHAN IMPURITY A (EP IMPURITY); (S)-(-)-2-Amino-3-(3-indolyl)propionic Acid; N-ACETYLTRYPTOPHAN IMPURITY A [EP IMPURITY]; (S)-2-Amino-3-(1H-indol-3-yl)propanoic acid; (S)-alpha-Amino-beta-(3-indolyl)-propionate; (S)-alpha-Amino-1H-indole-3-propanoic acid; L-Tryptophan, reagent grade, >=98\\% (HPLC); S(-)-1-alpha-Aminoindole-3-propionic acid; 4-(3-METHOXYANILINO)-4-OXOBUT-2-ENOICACID; (S)-alpha-Amino-beta-indolepropionic acid; (S)-Tryptophan 1H-Indole-3-alanine, (S)-; (2S)-2-amino-3-(1H-indol-3-yl)propanoate; (S)-Α-amino-β-(3-indolyl)-propionic acid; (S)-a-Amino-b-(3-indolyl)-propionic acid; (S)-2-Amino-3-(3-indolyl)propionic acid; L-.ALPHA.-AMINO-3-INDOLEPROPIONIC ACID; (S)-alpha-Amino-1H-indole-3-propanoate; alpha-Amino-3-indolepropionic acid, L-; (S)-Α-amino-1H-indole-3-propanoic acid; (S)-a-Amino-1H-indole-3-propanoic acid; (S)-alpha-Aminoindole-3-propionic acid; (s)-alpha-amino-beta-indolepropionate; Propionic acid, 2-amino-3-indol-3-yl-; L-Tryptophan, BioUltra, >=99.5\\% (NT); Indole-3-propionic acid, alpha-amino-; (S)-Α-amino-β-(3-indolyl)-propionate; L-alpha-amino-3-indolepropionic acid; (S)-a-Amino-b-(3-indolyl)-propionate; L-alpha-Aminoindole-3-propionic acid; Indoe-3-propionic acid, alpha-amino-; Propionic acid, 2-amino-3-indol-3-yl; (S)-alpha-Aminoindole-3-propionate; alpha-Amino-3-indolepropionic acid; alpha-Aminoindole-3-propionic acid; (S)-a-Aminoindole-3-propionic acid; (S)-a-Amino-b-indolepropionic acid; (S)-a-Amino-1H-indole-3-propanoate; (S)-Α-amino-1H-indole-3-propanoate; Tryptophan Metabolism Alterations; Pharmascience brand OF tryptophan; L-a-Amino-3-indolepropionic acid; Upsher-smith brand OF tryptophan; 2-Amino-3-indolylpropanoic acid; L-Tryptophan, Vetec(TM), 98.5\\%; (S)-a-Aminoindole-3-propionate; Niddapharm brand OF tryptophan; Ardeypharm brand OF tryptophan; Ratiopharm brand OF tryptophan; (s)-a-amino-b-indolepropionate; L-Alanine, 3-(1H-indol-3-yl)-; 2-Amino-3-indolylpropanoate; Esparma brand OF tryptophan; 3-(1H-indol-3-yl)-L-Alanine; QIVBCDIJIAJPQS-VIFPVBQESA-N; TRYPTOPHAN (USP MONOGRAPH); TRYPTOPHAN [USP MONOGRAPH]; IS_TRYPTOPHAN-2,4,5,6,7-D5; Tryptophan (L-Tryptophan); Kalma brand OF tryptophan; 1H-Indole-3-alanine, (S)-; 1H-Indole-3-alanine (VAN); TRYPTOPHAN (EP MONOGRAPH); Merck brand OF tryptophan; TRYPTOPHAN [EP MONOGRAPH]; L-Tryptophan-13C11,15N2; L-Tryptophan-ratiopharm; L Tryptophan ratiopharm; L-beta-3-Indolylalanine; 1-beta-3-Indolylalanine; ICN brand OF tryptophan; (S)-1H-Indole-3-alanine; Alanine, 3-indol-3-yl-; 1beta-3-Indolylalanine; L-TRYPTOPHAN [USP-RS]; Alanine, 3-indol-3-yl; beta-3-indolylalanine; Tryptophan [USAN:INN]; Tryptophan (USP/INN); Tryptophane [French]; Tryptophan, L- (8CI); Tryptophanum [Latin]; Tryptophanum (Latin); Triptofano [Spanish]; L-TRYPTOPHAN [VANDF]; Tryptophan ((-),l,s); l-b-3-Indolylalanine; L-Β-3-indolylalanine; Tryptophan [WHO-DD]; 1H-Indole-3-alanine; 3-Indol-3-ylalanine; L-Tryptophan (JP17); TRYPTOPHAN [MART.]; L-TRYPTOPHAN [FCC]; TRYPTOPHAN (MART.); L-Tryptophan (9CI); TRYPTOPHAN [VANDF]; L-TRYPTOPHAN [JAN]; TRYPTOPHAN [USAN]; TRYPTOPHAN [INCI]; TRYPTOPHAN [HSDB]; Indole-3-alanine; L-(-)-Tryptophan; L-Tryptophan,(S); ratio-Tryptophan; Tryptophan (VAN); Tryptophan (H-3); TRYPTOPHAN [INN]; ratio Tryptophan; L(-)-Tryptophan; TRYPTOPHAN [MI]; UNII-8DUH1N11BX; TRYPTOPHAN [II]; TRYPTOPHAN (II); (-)-Tryptophan; Levotryptophan; PMS-Tryptophan; PMS Tryptophan; (S)-Tryptophan; Tryptophan, L-; (L)-TRYPTOPHAN; Lopac0_001183; DivK1c_000457; L-Tryptophane; DL-Tryptophan; Tox21_501183; Tox21_300359; Tox21_201246; L-Tryptophan; Tryptophanum; L Tryptophan; KBio1_000457; Lopac-T-0254; Tryptophane; L-Tryptofan; IDI1_000457; Ardeytropin; L-Trytophan; CAS-73-22-3; 8DUH1N11BX; Trytophan-; triptofano; Tryptophan; H-L-Trp-OH; Naturruhe; trytophan; Ardeydorm; tryptacin; AI3-18478; Pacitron; h-Trp-oh; Sedanoct; L-Trp-OH; Tryptan; Optimax; N06AX02; TRP-01; Lyphan; trofan; L-Trp; Kalma; 2a4m; Htrp; 1qaw; trp; W; (S)-α-Amino-β-(3-indolyl)-propionic acid; 3-beta-Indolylalanine; Tryptophan; (±)-Tryptophan



数据库引用编号

71 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(6)

PlantCyc(0)

代谢反应

45 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(15)

WikiPathways(7)

Plant Reactome(0)

INOH(1)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(22)

PharmGKB(0)

2 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Wan-Zhen Li, Zi-Liang Song, Jun-le Li, Jia-Hui Yu, Du-Jian Deng, Xiao-Qing Cai, Martin J T Reaney, Zi-Zhe Cai, Yong Wang. Stability of tryptophan-containing LOs in flaxseed oil and their response towards γ-tocopherol. Food chemistry. 2024 Aug; 448(?):139026. doi: 10.1016/j.foodchem.2024.139026. [PMID: 38531298]
  • Xiaohong Wang, Jiawei Zhou, Tianlin Jiang, Jun Xu. Deciphering the therapeutic potential of SheXiangXinTongNing: Interplay between gut microbiota and brain metabolomics in a CUMS mice model, with a focus on tryptophan metabolism. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2024 Jul; 129(?):155584. doi: 10.1016/j.phymed.2024.155584. [PMID: 38704913]
  • Ryo Hisada, Michihito Kono. Potential therapies targeting metabolic pathways in systemic lupus erythematosus. Clinical immunology (Orlando, Fla.). 2024 Jun; 263(?):110224. doi: 10.1016/j.clim.2024.110224. [PMID: 38648959]
  • Yue Zhang, Jing Li, Hongwei Yang, Kun Li, Haolin Yuan, Ziqiao Xue, Liangfu Tang, Zhijin Fan. Fungicidal Activity of New Pyrrolo[2,3-d]thiazoles and Their Potential Action on the Tryptophan Metabolic Pathway and Wax Biosynthesis. Journal of agricultural and food chemistry. 2024 May; 72(21):11990-12002. doi: 10.1021/acs.jafc.4c00930. [PMID: 38757490]
  • Tian-Ji Xia, Su-Wei Jin, Yong-Guang Liu, Shan-Shan Zhang, Zhi Wang, Xin-Min Liu, Rui-Le Pan, Ning Jiang, Yong-Hong Liao, Ming-Zhu Yan, Qi Chang. Shen Yuan extract exerts a hypnotic effect via the tryptophan/5-hydroxytryptamine/melatonin pathway in mice. Journal of ethnopharmacology. 2024 May; 326(?):117992. doi: 10.1016/j.jep.2024.117992. [PMID: 38428654]
  • Yahui Zhang, Luoxia Han, Jiaqi Dong, Ziwen Yuan, Wanling Yao, Peng Ji, Yongli Hua, Yanming Wei. Shaoyao decoction improves damp-heat colitis by activating the AHR/IL-22/STAT3 pathway through tryptophan metabolism driven by gut microbiota. Journal of ethnopharmacology. 2024 May; 326(?):117874. doi: 10.1016/j.jep.2024.117874. [PMID: 38342152]
  • Alexandra Nefedova, Fredric G Svensson, Alexander S Vanetsev, Peter Agback, Tatiana Agback, Suresh Gohil, Lars Kloo, Tanel Tätte, Angela Ivask, Gulaim A Seisenbaeva, Vadim G Kessler. Molecular Mechanisms in Metal Oxide Nanoparticle-Tryptophan Interactions. Inorganic chemistry. 2024 May; 63(19):8556-8566. doi: 10.1021/acs.inorgchem.3c03674. [PMID: 38684718]
  • Meng-Yao Ma, Li-Li Hu, Wen-Yan Xu, Wei Zhang. L-tryptophan anaerobic fermentation for indole acetic acid production: Bacterial enrichment and effects of zero valent iron. Bioresource technology. 2024 May; 400(?):130691. doi: 10.1016/j.biortech.2024.130691. [PMID: 38599347]
  • Xiaoju Ding, Yunjie Jin, Xiaokai Shi, Yidi Wang, Zhibo Jin, Lei Yin, Shenglin Gao, Yibo Lei, Jinjian Yang. TDO2 promotes bladder cancer progression via AhR-mediated SPARC/FILIP1L signaling. Biochemical pharmacology. 2024 May; 223(?):116172. doi: 10.1016/j.bcp.2024.116172. [PMID: 38552852]
  • Yuguo Niu, Xiaoming Hu, Yali Song, Cunchuan Wang, Peixiang Luo, Shihong Ni, Fuxin Jiao, Ju Qiu, Weihong Jiang, Sheng Yang, Jun Chen, Rui Huang, Haizhou Jiang, Shanghai Chen, Qiwei Zhai, Jia Xiao, Feifan Guo. Blautia Coccoides is a Newly Identified Bacterium Increased by Leucine Deprivation and has a Novel Function in Improving Metabolic Disorders. Advanced science (Weinheim, Baden-Wurttemberg, Germany). 2024 May; 11(18):e2309255. doi: 10.1002/advs.202309255. [PMID: 38429906]
  • Qianqian Xiang, Zhujun Wang, Jinzhan Yan, Minmin Niu, Wenyu Long, Zhihao Ju, Xuexiu Chang. Metabolomic analysis to understand the mechanism of Ti3C2Tx (MXene) toxicity in Daphnia magna. Aquatic toxicology (Amsterdam, Netherlands). 2024 May; 270(?):106904. doi: 10.1016/j.aquatox.2024.106904. [PMID: 38513426]
  • Yeon-Hee Kim, Jin-Soo Chung, Hyung-Ho Lee, Jin-Hee Park, Mi-Kyung Kim. Influence of Dietary Polyunsaturated Fatty Acid Intake on Potential Lipid Metabolite Diagnostic Markers in Renal Cell Carcinoma: A Case-Control Study. Nutrients. 2024 Apr; 16(9):. doi: 10.3390/nu16091265. [PMID: 38732512]
  • Magdalena Wróbel-Kwiatkowska, Waldemar Turski, Grażyna Silska, Magdalena Rakicka-Pustułka, Lucyna Dymińska, Waldemar Rymowicz. Determination of Bioactive Compound Kynurenic Acid in Linum usitatissimum L. Molecules (Basel, Switzerland). 2024 Apr; 29(8):. doi: 10.3390/molecules29081702. [PMID: 38675522]
  • Er Jin, Zhidong Yin, Xiuxiu Zheng, Chenhong Yan, Kai Xu, Fouejio Yemele Eunice, Yue Gao. Potential of Targeting TDO2 as the Lung Adenocarcinoma Treatment. Journal of proteome research. 2024 Apr; 23(4):1341-1350. doi: 10.1021/acs.jproteome.3c00746. [PMID: 38421152]
  • Chun Chu, Shengquan Liu, Liangui Nie, Hongming Hu, Yi Liu, Jun Yang. The interactions and biological pathways among metabolomics products of patients with coronary heart disease. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2024 Apr; 173(?):116305. doi: 10.1016/j.biopha.2024.116305. [PMID: 38422653]
  • Aurélie Hanin, Céline Chollet, Sophie Demeret, Lucas Di Meglio, Florence Castelli, Vincent Navarro. Metabolomic changes in adults with status epilepticus: A human case-control study. Epilepsia. 2024 Apr; 65(4):929-943. doi: 10.1111/epi.17899. [PMID: 38339978]
  • Xiurong Chen, Xiaoyun Ye, Xiao Yu, Jiamin Zhao, Meijing Song, Danning Yin, Jiayu Yu. Analysis of the regulatory mechanism of exogenous IAA-mediated tryptophan accumulation and synthesis of endogenous IAA in Chlorococcum humicola. Chemosphere. 2024 Apr; 354(?):141633. doi: 10.1016/j.chemosphere.2024.141633. [PMID: 38442772]
  • Suvi T Itkonen, Juliane Calvez, Gheorghe Airinei, Martin Chapelais, Nadezda Khodorova, Moulay Sahaka, Robert Benamouzig, Frederick L Stoddard, Asko Simojoki, Anne-Maria Pajari, Claire Gaudichon. True Ileal Amino Acid Digestibility and Protein Quality of 15N-Labeled Faba Bean in Healthy Humans. The Journal of nutrition. 2024 Apr; 154(4):1165-1174. doi: 10.1016/j.tjnut.2024.01.030. [PMID: 38311065]
  • Yingjie Qin, Jiayi Chen, Dali Qian, Zhongyu Li, Licong Zhang, Qingquan Ma. Excessive Tryptophan and Phenylalanine Induced Pancreatic Injury and Glycometabolism Disorder in Grower-finisher Pigs. The Journal of nutrition. 2024 Apr; 154(4):1333-1346. doi: 10.1016/j.tjnut.2024.01.019. [PMID: 38582698]
  • Sara Leite Dias, Ling Chuang, Shenyu Liu, Benedikt Seligmann, Fabian L Brendel, Benjamin G Chavez, Robert E Hoffie, Iris Hoffie, Jochen Kumlehn, Arne Bültemeier, Johanna Wolf, Marco Herde, Claus-Peter Witte, John C D'Auria, Jakob Franke. Biosynthesis of the allelopathic alkaloid gramine in barley by a cryptic oxidative rearrangement. Science (New York, N.Y.). 2024 Mar; 383(6690):1448-1454. doi: 10.1126/science.adk6112. [PMID: 38547266]
  • Ling-Ling Qin, Meng Yu, Peng Yang, Zhong-Mei Zou. The rhizomes of Atractylodes macrocephala relieve loperamide-induced constipation in rats by regulation of tryptophan metabolism. Journal of ethnopharmacology. 2024 Mar; 322(?):117637. doi: 10.1016/j.jep.2023.117637. [PMID: 38135226]
  • Charlène Sirvins, Pascale Goupy, Aurélie Promeyrat, Claire Dufour. C-Nitrosation, C-Nitration, and Coupling of Flavonoids with N-Acetyltryptophan Limit This Amine N-Nitrosation in a Simulated Cured and Cooked Meat. Journal of agricultural and food chemistry. 2024 Mar; 72(9):4777-4787. doi: 10.1021/acs.jafc.3c08445. [PMID: 38377948]
  • Bin Duan, Yonghua Zhang, Zhao Feng, Zhaoguo Liu, Nengguo Tao. Octanal enhances disease resistance in postharvest citrus fruit by the biosynthesis and metabolism of aromatic amino acids. Pesticide biochemistry and physiology. 2024 Mar; 200(?):105835. doi: 10.1016/j.pestbp.2024.105835. [PMID: 38582597]
  • Sen Yan, Wei Sun, Sinuo Tian, Zhiyuan Meng, Jinling Diao, Zhiqiang Zhou, Li Li, Wentao Zhu. Pre-mating nitenpyram exposure in male mice leads to depression-like behavior in offspring by affecting tryptophan metabolism in gut microbiota. Journal of environmental sciences (China). 2024 Mar; 137(?):120-130. doi: 10.1016/j.jes.2023.02.011. [PMID: 37980001]
  • Nannan Liu, Xuehua Yan, Bohan Lv, Yanxiang Wu, Xuehong Hu, Chunyan Zheng, Siyu Tao, Ruxue Deng, Jinfang Dou, Binfang Zeng, Guangjian Jiang. A study on the association between gut microbiota, inflammation, and type 2 diabetes. Applied microbiology and biotechnology. 2024 Feb; 108(1):213. doi: 10.1007/s00253-024-13041-5. [PMID: 38358546]
  • Fan Ye, Meng-Chen Dong, Chen-Xi Xu, Ning Jiang, Qi Chang, Xin-Min Liu, Rui-Le Pan. Effects of different chronic restraint stress periods on anxiety- and depression-like behaviors and tryptophan-kynurenine metabolism along the brain-gut axis in C57BL/6N mice. European journal of pharmacology. 2024 Feb; 965(?):176301. doi: 10.1016/j.ejphar.2023.176301. [PMID: 38145646]
  • Kylie E Walden, Anthony M Hagele, Logan S Orr, Kristen N Gross, Joesi M Krieger, Ralf Jäger, Chad M Kerksick. Probiotic BC30 Improves Amino Acid Absorption from Plant Protein Concentrate in Older Women. Probiotics and antimicrobial proteins. 2024 Feb; 16(1):125-137. doi: 10.1007/s12602-022-10028-4. [PMID: 36515888]
  • Feng He, Cheng-Guo Wu, Yang Gao, Sabrina N Rahman, Magda Zaoralová, Makaía M Papasergi-Scott, Ting-Jia Gu, Michael J Robertson, Alpay B Seven, Lingjun Li, Jesper M Mathiesen, Georgios Skiniotis. Allosteric modulation and G-protein selectivity of the Ca2+-sensing receptor. Nature. 2024 Feb; 626(8001):1141-1148. doi: 10.1038/s41586-024-07055-2. [PMID: 38326620]
  • Brijesh K Mehta, Hema S Chauhan, Sudipta Basu, Anjali Anand, Aanchal Baveja, Rajkumar U Zunjare, Vignesh Muthusamy, Ashok K Singh, Firoz Hossain. Mutant crtRB1 gene negates the unfavourable effects of opaque2 gene on germination and seed vigour among shrunken2-based biofortified sweet corn genotypes. Functional plant biology : FPB. 2024 02; 51(?):. doi: 10.1071/fp23179. [PMID: 38326234]
  • Rubi Barman, Pranjit Kumar Bora, Jadumoni Saikia, Parthapratim Konwar, Aditya Sarkar, Phirose Kemprai, Siddhartha Proteem Saikia, Saikat Haldar, Adrian Slater, Dipanwita Banik. Hypothetical biosynthetic pathways of pharmaceutically potential hallucinogenic metabolites in Myristicaceae, mechanistic convergence and co-evolutionary trends in plants and humans. Phytochemistry. 2024 Feb; 218(?):113928. doi: 10.1016/j.phytochem.2023.113928. [PMID: 38035973]
  • Xianghao Zeng, Shaobing Cheng, Huilan Li, Haiyang Yu, Yushun Cui, Yuanying Fang, Shilin Yang, Yulin Feng. Design, synthesis, and activity evaluation of novel multitargeted l-tryptophan derivatives with powerful antioxidant activity against Alzheimer's disease. Archiv der Pharmazie. 2024 Jan; ?(?):e2300603. doi: 10.1002/ardp.202300603. [PMID: 38290060]
  • Erika Ishikawa, Shion Kanai, Akihisa Shinozawa, Mami Hyakutake, Masayuki Sue. Hordeum vulgare CYP76M57 catalyzes C2 shortening of tryptophan side chain by C-N bond rearrangement in gramine biosynthesis. The Plant journal : for cell and molecular biology. 2024 Jan; ?(?):. doi: 10.1111/tpj.16644. [PMID: 38281119]
  • Xiaoxu Yang, Dajun Liu, Chang Liu, Mengdi Li, Zhishan Yan, Yu Zhang, Guojun Feng. Possible melatonin-induced salt stress tolerance pathway in Phaseolus vulgaris L. using transcriptomic and metabolomic analyses. BMC plant biology. 2024 Jan; 24(1):72. doi: 10.1186/s12870-023-04705-x. [PMID: 38267871]
  • Sneha Banerjee, Madarapu Naresh, Musti J Swamy. Effect of temperature and pH on the structure and stability of tumor-specific lectin jacalin and insights into the location of its tryptophan residues: CD, DSC and fluorescence studies. International journal of biological macromolecules. 2024 Jan; 260(Pt 2):129451. doi: 10.1016/j.ijbiomac.2024.129451. [PMID: 38232886]
  • Xueli Song, Guo Feng, Chenchen Ren, Wei Li, Wen Liu, Gang Liu, Ju Zhang, Yan Lei, Zhengyan He, Caiyao Han, Tingting Liu, Kexin Ma, Jinxin Hou. Study of the mechanism underlying the anti-inflammatory effect of Miao medicine comprising raw and processed Radix Wikstroemia indica using the "sweat soaking method". Journal of ethnopharmacology. 2024 Jan; 324(?):117770. doi: 10.1016/j.jep.2024.117770. [PMID: 38219877]
  • Yipu Li, Zhijun Su, Yanan Lin, Zhenghan Xu, Haizhu Bao, Fugui Wang, Jian Liu, Shuping Hu, Zhigang Wang, Xiaofang Yu, Julin Gao. Utilizing transcriptomics and metabolomics to unravel key genes and metabolites of maize seedlings in response to drought stress. BMC plant biology. 2024 Jan; 24(1):34. doi: 10.1186/s12870-023-04712-y. [PMID: 38185653]
  • Shugao Fan, Xiao Xu, Jianmin Chen, Yanling Yin, Ying Zhao. Genome-wide identification, characterization, and expression analysis of m6A readers-YTH domain-containing genes in alfalfa. BMC genomics. 2024 Jan; 25(1):18. doi: 10.1186/s12864-023-09926-w. [PMID: 38166738]
  • Razia Liaqat, Shafaq Fatima, Wajeeha Komal, Qandeel Minahal, Aya S Hussain. Dietary supplementation of methionine, lysine, and tryptophan as possible modulators of growth, immune response, and disease resistance in striped catfish (Pangasius hypophthalmus). PloS one. 2024; 19(4):e0301205. doi: 10.1371/journal.pone.0301205. [PMID: 38625974]
  • Xiurong Yang, Shuangyong Yan, Guangsheng Li, Yuejiao Li, Junling Li, Zhongqiu Cui, Shuqin Sun, Jianfei Huo, Yue Sun. Rice-Magnaporthe oryzae interactions in resistant and susceptible rice cultivars under panicle blast infection based on defense-related enzyme activities and metabolomics. PloS one. 2024; 19(3):e0299999. doi: 10.1371/journal.pone.0299999. [PMID: 38451992]
  • Ahmed F A Ghareeb, James C Foutz, Gustavo H Schneiders, Jennifer N Richter, Marie C Milfort, Alberta L Fuller, Romdhane Rekaya, Samuel E Aggrey. Host transcriptome response to heat stress and Eimeria maxima infection in meat-type chickens. PloS one. 2024; 19(2):e0296350. doi: 10.1371/journal.pone.0296350. [PMID: 38394169]
  • Arpan Kumar Basak, Anna Piasecka, Jana Hucklenbroich, Gözde Merve Türksoy, Rui Guan, Pengfan Zhang, Felix Getzke, Ruben Garrido-Oter, Stephane Hacquard, Kazimierz Strzałka, Paweł Bednarek, Kenji Yamada, Ryohei Thomas Nakano. ER body-resident myrosinases and tryptophan specialized metabolism modulate root microbiota assembly. The New phytologist. 2024 Jan; 241(1):329-342. doi: 10.1111/nph.19289. [PMID: 37771245]
  • Jiyan Su, Xiaojie Lin, Dan Li, Chunmin Yang, Shumei Lv, Xiaohong Chen, Xiujuan Yang, Botao Pan, Rui Xu, Liping Ren, Yanfang Zhang, Yizhen Xie, Qianjun Chen, Chenglai Xia. Prevotella copri exhausts intrinsic indole-3-pyruvic acid in the host to promote breast cancer progression: inactivation of AMPK via UHRF1-mediated negative regulation. Gut microbes. 2024 Jan; 16(1):2347757. doi: 10.1080/19490976.2024.2347757. [PMID: 38773738]
  • Eva Bagyinszky, Minju Kim, Young Ho Park, Seong Soo A An, SangYun Kim. PSEN1 His214Asn Mutation in a Korean Patient with Familial EOAD and the Importance of Histidine-Tryptophan Interactions in TM-4 Stability. International journal of molecular sciences. 2023 Dec; 25(1):. doi: 10.3390/ijms25010116. [PMID: 38203287]
  • Paula Henarejos-Escudero, Fernando F Méndez-García, Samanta Hernández-García, Pedro Martínez-Rodríguez, Fernando Gandía-Herrero. Design, Synthesis and Gene Modulation Insights into Pigments Derived from Tryptophan-Betaxanthin, Which Act against Tumor Development in Caenorhabditis elegans. International journal of molecular sciences. 2023 Dec; 25(1):. doi: 10.3390/ijms25010063. [PMID: 38203234]
  • Hongyan Zhang, Shupei Wang, Qian Deng, Xiong Zhang, Bi Liao, Jian Huang, Kaifang Zeng. The effect of pulcherriminic acid produced by Metschnikowia citriensis in controlling postharvest diseases of citrus fruits. Pesticide biochemistry and physiology. 2023 Dec; 197(?):105657. doi: 10.1016/j.pestbp.2023.105657. [PMID: 38072532]
  • Weijia Jiang, Ran He, Han Lv, Xinheng He, Li Wang, Yanli Wei. Chiral Sensing of Tryptophan Enantiomers Based on the Enzyme Mimics of β-Cyclodextrin-Modified Sulfur Quantum Dots. ACS sensors. 2023 11; 8(11):4264-4271. doi: 10.1021/acssensors.3c01616. [PMID: 37997656]
  • Yusuke Kato, Hiroshi Kuroda, Shin-Ichiro Ozawa, Keisuke Saito, Vivek Dogra, Martin Scholz, Guoxian Zhang, Catherine de Vitry, Hiroshi Ishikita, Chanhong Kim, Michael Hippler, Yuichiro Takahashi, Wataru Sakamoto. Characterization of tryptophan oxidation affecting D1 degradation by FtsH in the photosystem II quality control of chloroplasts. eLife. 2023 Nov; 12(?):. doi: 10.7554/elife.88822. [PMID: 37986577]
  • Zhenyan Song, Zixuan Wu, Rongsiqing Luo, Chunxiang He, Ze Li, Miao Yang, Wenjing Yu, Jiawei He, Sisi Deng, Shaowu Cheng. Identification of tryptophan metabolism-related genes in immunity and immunotherapy in Alzheimer's disease. Aging. 2023 11; 15(22):13077-13099. doi: 10.18632/aging.205220. [PMID: 37988184]
  • Mohammad Abukhalaf, Carsten Proksch, Domenika Thieme, Jörg Ziegler, Wolfgang Hoehenwarter. Changing turn-over rates regulate abundance of tryptophan, GS biosynthesis, IAA transport and photosynthesis proteins in Arabidopsis growth defense transitions. BMC biology. 2023 11; 21(1):249. doi: 10.1186/s12915-023-01739-3. [PMID: 37940940]
  • Muhammad Tauseef Jaffar, Zain Mushtaq, Abdul Waheed, Hafiz Naeem Asghar, Jianguo Zhang, Jiale Han. Pseudomonas fluorescens and L-tryptophan application triggered the phytoremediation potential of sunflower (Heliantus annuus L.) in lead-contaminated soil. Environmental science and pollution research international. 2023 Nov; ?(?):. doi: 10.1007/s11356-023-30839-4. [PMID: 37940829]
  • Ardemia Santarcangelo, Fabian Weber, Stefan Kehraus, Jeroen S Dickschat, Andreas Schieber. Generation and structure elucidation of a red colorant formed by oxidative coupling of chlorogenic acid and tryptophan. Food chemistry. 2023 Nov; 425(?):136473. doi: 10.1016/j.foodchem.2023.136473. [PMID: 37295212]
  • Pan Hu, Xin Yan, Yijia Zeng, Zherui Jiang, Juan Liu, Wu-Wen Feng. An UPLC-MS/MS method for targeted analysis of microbial and host tryptophan metabolism after administration of polysaccharides from Atractylodes macrocephala Koidz. in ulcerative colitis mice. Journal of pharmaceutical and biomedical analysis. 2023 Oct; 235(?):115585. doi: 10.1016/j.jpba.2023.115585. [PMID: 37523866]
  • Ye Cheng, Dong-Yang Tian, Ya-Hong Wang, Wu Liu, Xiao-Lei Huo, Ning Bao, Zeng-Qiang Wu. Vibration-enhanced disposable electroanalytical platform for selective analysis of tryptophan in fruits based on molecular imprinting. Analytica chimica acta. 2023 Oct; 1279(?):341853. doi: 10.1016/j.aca.2023.341853. [PMID: 37827659]
  • Sheng Yao, Jingjing Zhang, Xiang Cheng, Dengbao Wang, Wenya Yu, Kongshu Ji, Qiong Yu. Genome-Wide Identification and Characterization of the YTH Domain-Containing RNA-Binding Protein Family in Liriodendron chinense. International journal of molecular sciences. 2023 Oct; 24(20):. doi: 10.3390/ijms242015189. [PMID: 37894868]
  • Mario Mutz, Dominic Kösters, Benedikt Wynands, Nick Wierckx, Jan Marienhagen. Microbial synthesis of the plant natural product precursor p-coumaric acid with Corynebacterium glutamicum. Microbial cell factories. 2023 Oct; 22(1):209. doi: 10.1186/s12934-023-02222-y. [PMID: 37833813]
  • Yanan Li, Pingping Dong, Long Dai, Shaoping Wang. Untargeted and Targeted Metabolomics Reveal the Active Peptide of Eupolyphaga sinensis Walker against Hyperlipidemia by Modulating Imbalance in Amino Acid Metabolism. Molecules (Basel, Switzerland). 2023 Oct; 28(20):. doi: 10.3390/molecules28207049. [PMID: 37894528]
  • Jialiang Gao, Ting Yang, Bohan Song, Xiaojie Ma, Yichen Ma, Xiaowei Lin, Hongwu Wang. Abnormal tryptophan catabolism in diabetes mellitus and its complications: Opportunities and challenges. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2023 Oct; 166(?):115395. doi: 10.1016/j.biopha.2023.115395. [PMID: 37657259]
  • Ziwen He, Jingyan Guo, Huiwen Zhang, Jingjing Yu, Yiqing Zhou, Yajun Wang, Ting Li, Meiqiu Yan, Bo Li, Yigong Chen, Suhong Chen, Guiyuan Lv, Jie Su. Atractylodes macrocephala Koidz polysaccharide improves glycolipid metabolism disorders through activation of aryl hydrocarbon receptor by gut flora-produced tryptophan metabolites. International journal of biological macromolecules. 2023 Sep; 253(Pt 4):126987. doi: 10.1016/j.ijbiomac.2023.126987. [PMID: 37729987]
  • Prasun Kundu, Deboki Naskar, Shannon J McKie, Sheena Dass, Usheer Kanjee, Viola Introini, Marcelo U Ferreira, Pietro Cicuta, Manoj Duraisingh, Janet E Deane, Julian C Rayner. The structure of a Plasmodium vivax Tryptophan Rich Antigen domain suggests a lipid binding function for a pan-Plasmodium multi-gene family. Nature communications. 2023 09; 14(1):5703. doi: 10.1038/s41467-023-40885-8. [PMID: 37709739]
  • Jiabao Liao, Yongjun Cao, Jie Zhao, Bolun Yu, Yuming Wang, Wenting Li, Hanzhou Li, Shuquan Lv, Weibo Wen, Huantian Cui, Yao Chen. Aqueous extract of Polygala japonica Houtt. ameliorated nonalcoholic steatohepatitis in mice through restoring the gut microbiota disorders and affecting the metabolites in feces and liver. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2023 Sep; 118(?):154937. doi: 10.1016/j.phymed.2023.154937. [PMID: 37393831]
  • S Palacios, C Mustata, J M Rizo, P A Regidor. Improvement in menopausal symptoms with a nutritional product containing evening primrose oil, hop extract, saffron, tryptophan, vitamins B6, D3, K2, B12, and B9. European review for medical and pharmacological sciences. 2023 Sep; 27(17):8180-8189. doi: 10.26355/eurrev_202309_33578. [PMID: 37750646]
  • Elise Nordin, Per M Hellström, Eddie Vuong, Anton Ribbenstedt, Carl Brunius, Rikard Landberg. IBS randomized study: FODMAPs alter bile acids, phenolic- and tryptophan metabolites, while gluten modifies lipids. American journal of physiology. Regulatory, integrative and comparative physiology. 2023 09; 325(3):R248-R259. doi: 10.1152/ajpregu.00016.2023. [PMID: 37399002]
  • Geeta Chhetri, Inhyup Kim, Sunho Park, Yonghee Jung, Taegun Seo. Planobacterium oryzisoli sp. nov., a novel bacterium isolated from roots of rice plant. Archives of microbiology. 2023 Sep; 205(9):324. doi: 10.1007/s00203-023-03657-y. [PMID: 37656250]
  • Erin H Seeley, Zhipeng Liu, Shuai Yuan, Chad Stroope, Elizabeth Cockerham, Nabil A Rashdan, Luisa F Delgadillo, Alexandra C Finney, Dhananjay Kumar, Sandeep Das, Babak Razani, Wanqing Liu, James Traylor, A Wayne Orr, Oren Rom, Christopher B Pattillo, Arif Yurdagul. Spatially Resolved Metabolites in Stable and Unstable Human Atherosclerotic Plaques Identified by Mass Spectrometry Imaging. Arteriosclerosis, thrombosis, and vascular biology. 2023 09; 43(9):1626-1635. doi: 10.1161/atvbaha.122.318684. [PMID: 37381983]
  • Leah Y D Johnson, Ian T Major, Yani Chen, Changxian Yang, Leidy J Vanegas-Cano, Gregg A Howe. Diversification of JAZ-MYC signaling function in immune metabolism. The New phytologist. 2023 09; 239(6):2277-2291. doi: 10.1111/nph.19114. [PMID: 37403524]
  • Qing Mao, Xi Xie, Diego A Pinzon-Nuñez, Zuoming Xie, Taikun Liu, Sana Irshad. Native microalgae and Bacillus XZM remediate arsenic-contaminated soil by forming biological soil crusts. Journal of environmental management. 2023 Aug; 345(?):118858. doi: 10.1016/j.jenvman.2023.118858. [PMID: 37647731]
  • Qi Zhou, Xufeng Tao, Fangyue Guo, Yu Wu, Dawei Deng, Linlin Lv, Deshi Dong, Dong Shang, Hong Xiang. Tryptophan metabolite norharman secreted by cultivated Lactobacillus attenuates acute pancreatitis as an antagonist of histone deacetylases. BMC medicine. 2023 Aug; 21(1):329. doi: 10.1186/s12916-023-02997-2. [PMID: 37635214]
  • Hua Miao, Yan-Ni Wang, Xiao-Yong Yu, Liang Zou, Yan Guo, Wei Su, Fei Liu, Gang Cao, Ying-Yong Zhao. Lactobacillus species ameliorate membranous nephropathy through inhibiting aryl hydrocarbon receptor pathway via tryptophan-produced indole metabolites. British journal of pharmacology. 2023 Aug; ?(?):. doi: 10.1111/bph.16219. [PMID: 37594378]
  • Huda Ansaf, Abou Yobi, Ruthie Angelovici. A High-Throughput Absolute Quantification of Protein-Bound Tryptophan from Model and Crop Seeds. Current protocols. 2023 Aug; 3(8):e862. doi: 10.1002/cpz1.862. [PMID: 37540782]
  • Mei-Fen Bao, Xin-Ni Yang, Jing Wu, Jiang-Xin Liu, Xiang-Hai Cai. Discovery and biological evaluation of a new type of dual inhibitors of indoleamine 2,3-dioxygenase 1 and tryptophan 2,3-dioxygenase from ethnomedicinal plant Dactylicapnos scandens. Phytochemistry. 2023 Jul; 214(?):113794. doi: 10.1016/j.phytochem.2023.113794. [PMID: 37499850]
  • Lei Yuan, Luyao Fan, Hongchao Dai, Guoqing He, Xiangfeng Zheng, Shengqi Rao, Zhenquan Yang, Xin-An Jiao. Multi-omics reveals the increased biofilm formation of Salmonella Typhimurium M3 by the induction of tetracycline at sub-inhibitory concentrations. The Science of the total environment. 2023 Jul; 899(?):165695. doi: 10.1016/j.scitotenv.2023.165695. [PMID: 37487904]
  • Song Yu, Zulfiqar Ali Sahito, Min Lu, Qiwei Huang, Pengtao Du, Dan Chen, Jiapan Lian, Ying Feng, Zhenli He, Xiaoe Yang. Soil water stress alters differentially relative metabolic pathways affecting growth performance and metal uptake efficiency in a cadmium hyperaccumulator ecotype of Sedum alfredii. Environmental science and pollution research international. 2023 Jul; ?(?):. doi: 10.1007/s11356-023-28691-7. [PMID: 37450188]
  • Firoz Hossain, Sunil K Jaiswal, Vignesh Muthusamy, Rajkumar U Zunjare, Subhra J Mishra, Gulab Chand, Vinay Bhatt, Jayant S Bhat, Abhijit K Das, Hema S Chauhan, Hari S Gupta. Enhancement of nutritional quality in maize kernel through marker-assisted breeding for vte4, crtRB1, and opaque2 genes. Journal of applied genetics. 2023 Jul; ?(?):. doi: 10.1007/s13353-023-00768-6. [PMID: 37450243]
  • Canyong Guo, Lingyun Yang, Zhijun Liu, Dongsheng Liu, Kurt Wüthrich. Two-Dimensional NMR Spectroscopy of the G Protein-Coupled Receptor A2AAR in Lipid Nanodiscs. Molecules (Basel, Switzerland). 2023 Jul; 28(14):. doi: 10.3390/molecules28145419. [PMID: 37513291]
  • Yuxin Fang, Ling Li, Mingrui Sui, Qianzhi Jiang, Na Dong, Anshan Shan, Junguang Jiang. Protein Transduction System Based on Tryptophan-zipper against Intracellular Infections via Inhibiting Ferroptosis of Macrophages. ACS nano. 2023 07; 17(13):12247-12265. doi: 10.1021/acsnano.3c00765. [PMID: 37350353]
  • Sylvia Kalli, Cindy Vallieres, Joseph Violet, Jan-Willem Sanders, John Chapman, Jean-Paul Vincken, Simon V Avery, Carla Araya-Cloutier. Cellular Responses and Targets in Food Spoilage Yeasts Exposed to Antifungal Prenylated Isoflavonoids. Microbiology spectrum. 2023 Jul; ?(?):e0132723. doi: 10.1128/spectrum.01327-23. [PMID: 37428107]
  • Yi Huang, Yuhang Hong, Shu Wu, Xiaozhen Yang, Qiang Huang, Yanzhen Dong, Dayong Xu, Zhiqiu Huang. Prolonged darkness attenuates imidacloprid toxicity through the brain-gut-microbiome axis in zebrafish, Danio rerio. The Science of the total environment. 2023 Jul; 881(?):163481. doi: 10.1016/j.scitotenv.2023.163481. [PMID: 37068676]
  • Spencer R Rosario, Bowen Dong, Yali Zhang, Hua-Hsin Hsiao, Emily Isenhart, Jianmin Wang, Erin M Siegel, Arta M Monjazeb, Dwight H Owen, Prasenjit Dey, Fred K Tabung, Daniel J Spakowicz, William J Murphy, Stephen Edge, Sai Yendamuri, Sami Ibrahimi, Jill M Kolesar, Patsy H McDonald, Deepak Vadehra, Michelle Churchman, Song Liu, Pawel Kalinski, Sarbajit Mukherjee. Metabolic Dysregulation Explains the Diverse Impacts of Obesity in Males and Females with Gastrointestinal Cancers. International journal of molecular sciences. 2023 Jun; 24(13):. doi: 10.3390/ijms241310847. [PMID: 37446025]
  • Doosan Shin, Veronica C Perez, Gabriella K Dickinson, Haohao Zhao, Ru Dai, Breanna Tomiczek, Keun Ho Cho, Ning Zhu, Jin Koh, Alexander Grenning, Jeongim Kim. Altered methionine metabolism impacts phenylpropanoid production and plant development in Arabidopsis thaliana. The Plant journal : for cell and molecular biology. 2023 Jun; ?(?):. doi: 10.1111/tpj.16370. [PMID: 37366635]
  • Erika Dorochow, Nico Kraus, Nicolas Chenaux-Repond, Sandra Pierre, Anja Kolbinger, Gerd Geisslinger, Cristina Ortiz, Christoph Welsch, Jonel Trebicka, Robert Gurke, Lisa Hahnefeld, Sabine Klein, Klaus Scholich. Differential Lipidomics, Metabolomics and Immunological Analysis of Alcoholic and Non-Alcoholic Steatohepatitis in Mice. International journal of molecular sciences. 2023 Jun; 24(12):. doi: 10.3390/ijms241210351. [PMID: 37373497]
  • Farshad Teymoori, Golaleh Asghari, Sanaz Hoseinpour, Sajjad Roosta, Maryam Bordbar, Parvin Mirmiran, Narges Sarbazi, Fereidoun Azizi. Dietary amino acids and anthropometric indices: Tehran Lipid and Glucose Study. Archives of endocrinology and metabolism. 2023 Jun; 67(6):e000646. doi: 10.20945/2359-3997000000646. [PMID: 37364148]
  • Xiaoxia Liang, Ting Su, Pingzhou Wu, Yanting Dai, Yanmin Chen, QiQi Wang, Cheng Cao, Fenglian Chen, Qing Wang, Shuling Wang. Identification of paeoniflorin from Paeonia lactiflora pall. As an inhibitor of tryptophan 2,3-dioxygenase and assessment of its pharmacological effects on depressive mice. Journal of ethnopharmacology. 2023 Jun; ?(?):116714. doi: 10.1016/j.jep.2023.116714. [PMID: 37315645]
  • Can Tu, Zhao-Juan Guo, Bing-Qian Jiang, Qian-Jun Kang, Ting Wang. [Difference in liver injury induced by dictamnine between males and females: based on untargeted metabolomics]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2023 Jun; 48(12):3317-3326. doi: 10.19540/j.cnki.cjcmm.20230119.401. [PMID: 37382016]
  • Yueyue Cai, Linzhou Huang, Yuqi Song, Yundong Yuan, Shuo Xu, Xueping Wang, Yan Liang, Jie Zhou, Guifu Liu, Jiayang Li, Wenguang Wang, Yonghong Wang. LAZY3 interacts with LAZY2 to regulate tiller angle by modulating shoot gravity perception in rice. Plant biotechnology journal. 2023 06; 21(6):1217-1228. doi: 10.1111/pbi.14031. [PMID: 36789453]
  • Natalie Fiutek, Matthew B Couger, Stacy Pirro, Scott W Roy, José R de la Torre, Edward F Connor. Genomic Assessment of the Contribution of the Wolbachia Endosymbiont of Eurosta solidaginis to Gall Induction. International journal of molecular sciences. 2023 Jun; 24(11):. doi: 10.3390/ijms24119613. [PMID: 37298563]
  • Tianxiao Zhou, Kaige Yang, Yinjie Ma, Jin Huang, Wenchang Fu, Chao Yan, Xinyan Li, Yan Wang. GC/MS-Based Analysis of Fatty Acids and Amino Acids in H460 Cells Treated with Short-Chain and Polyunsaturated Fatty Acids: A Highly Sensitive Approach. Nutrients. 2023 May; 15(10):. doi: 10.3390/nu15102342. [PMID: 37242225]
  • Adam Yasgar, Danielle Bougie, Richard T Eastman, Ruili Huang, Misha Itkin, Jennifer Kouznetsova, Caitlin Lynch, Crystal McKnight, Mitch Miller, Deborah K Ngan, Tyler Peryea, Pranav Shah, Paul Shinn, Menghang Xia, Xin Xu, Alexey V Zakharov, Anton Simeonov. Quantitative Bioactivity Signatures of Dietary Supplements and Natural Products. ACS pharmacology & translational science. 2023 May; 6(5):683-701. doi: 10.1021/acsptsci.2c00194. [PMID: 37200814]
  • Handong Xu, Can Hu, Yi Wang, Yunfu Shi, Li Yuan, Jingli Xu, Yanqiang Zhang, Jiahui Chen, Qin Wei, Jiangjiang Qin, Zhiyuan Xu, Xiangdong Cheng. Glutathione peroxidase 2 knockdown suppresses gastric cancer progression and metastasis via regulation of kynurenine metabolism. Oncogene. 2023 May; ?(?):. doi: 10.1038/s41388-023-02708-4. [PMID: 37138031]
  • Tingting Wang, Yonggui Song, Zhifu Ai, Yali Liu, Huizhen Li, Weize Xu, Liling Chen, Genhua Zhu, Ming Yang, Dan Su. Pulsatilla chinensis saponins ameliorated murine depression by inhibiting intestinal inflammation mediated IDO1 overexpression and rebalancing tryptophan metabolism. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2023 May; 116(?):154852. doi: 10.1016/j.phymed.2023.154852. [PMID: 37167824]
  • Yansi Xian, Yunyuan Nong, Yijie Gao, Yuangang Su, Zhiqiang Lei, Haoyu Lian, Jianwen Cheng, Jiamin Liang, Xiaoliang Feng, Zhijuan Liu, Jinmin Zhao, Tongling Zhao, Zhiheng Su, Qian Liu, Fangming Song. UPLC/Q-TOF-MS-based metabolomics evaluate the efficacy of oroxylin A against postmenopausal osteoporosis. Biomedical chromatography : BMC. 2023 May; 37(5):e5609. doi: 10.1002/bmc.5609. [PMID: 36811170]
  • Helin Chen, Qibin Kan, Ling Zhao, Gang Ye, Xiaoli He, Huaqiao Tang, Fei Shi, Yuanfeng Zou, Xiaoxia Liang, Xu Song, Rui Liu, Jie Luo, Yinglun Li. Prophylactic effect of Tongxieyaofang polysaccharide on depressive behavior in adolescent male mice with chronic unpredictable stress through the microbiome-gut-brain axis. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2023 May; 161(?):114525. doi: 10.1016/j.biopha.2023.114525. [PMID: 36921537]
  • Liguo Liu, Dongmei Xu, Fengxin Chen, Shengnan Cai, Jin Wei, Jiaheng Deng, Jianhua Zheng, Qi Jin, Wenhui Lun. Identification of potential biomarkers for diagnosis of syphilis from the cerebrospinal fluid based on untargeted metabolomic analysis. Molecular omics. 2023 Apr; ?(?):. doi: 10.1039/d3mo00026e. [PMID: 37185577]
  • Solomon E Owumi, Grace Adebisi. Epirubicin Treatment Induces Neurobehavioral, Oxido-Inflammatory and Neurohistology Alterations in Rats: Protective Effect of the Endogenous Metabolite of Tryptophan - 3-Indolepropionic Acid. Neurochemical research. 2023 Apr; ?(?):. doi: 10.1007/s11064-023-03941-9. [PMID: 37097396]
  • Mingfei Liu, Yuxuan Wang, Haixin Xiang, Meng Guo, Shirong Li, Ming Liu, Jingchun Yao. The Tryptophan Metabolite Indole-3-Carboxaldehyde Alleviates Mice with DSS-Induced Ulcerative Colitis by Balancing Amino Acid Metabolism, Inhibiting Intestinal Inflammation, and Improving Intestinal Barrier Function. Molecules (Basel, Switzerland). 2023 Apr; 28(9):. doi: 10.3390/molecules28093704. [PMID: 37175112]
  • Jiaqi Zhang, Qingyu Zhao, Yuchang Qin, Wei Si, Huiyan Zhang, Junmin Zhang. The Effect of Epimedium Isopentenyl Flavonoids on the Broiler Gut Health Using Microbiomic and Metabolomic Analyses. International journal of molecular sciences. 2023 Apr; 24(8):. doi: 10.3390/ijms24087646. [PMID: 37108810]
  • Bhavna Singh, Rajkumar U Zunjare, Smriti Shrivastava, Gulab Chand, Nisrita Gain, Vinay Bhatt, Vignesh Muthusamy, Firoz Hossain. Provitamin A, lysine and tryptophan enrichment in shrunken2-based sweet corn genotypes through genomics-assisted breeding for crtRB1 and opaque2 genes. Molecular biology reports. 2023 Apr; ?(?):. doi: 10.1007/s11033-023-08446-w. [PMID: 37083988]
  • Mykola Zdioruk, Jorge-Luis Jimenez-Macias, Michal Oskar Nowicki, Katherine E Manz, Kurt D Pennell, Marilin S Koch, Tomer Finkelberg, Bin Wu, Paul Boucher, Yuji Takeda, Weiyi Li, Raziye Piranlioglu, Alexander L Ling, E Antonio Chiocca, Sean E Lawler. PPRX-1701, a nanoparticle formulation of 6'-bromoindirubin acetoxime, improves delivery and shows efficacy in preclinical GBM models. Cell reports. Medicine. 2023 Apr; ?(?):101019. doi: 10.1016/j.xcrm.2023.101019. [PMID: 37060903]
  • Hui Zhang, Hanzhou Li, Baochao Pan, Shufang Zhang, Xiuhai Su, Wenjuan Sun, Tianyu Zhang, Zhaiyi Zhang, Shuquan Lv, Huantian Cui. Integrated 16S rRNA Sequencing and Untargeted Metabolomics Analysis to Reveal the Protective Mechanisms of Polygonatum Sibiricum Polysaccharide on Type 2 Diabetes Mellitus Model Rats. Current drug metabolism. 2023 Apr; ?(?):. doi: 10.2174/1389200224666230406114012. [PMID: 37038712]
  • Xin Liu, Liwen Wang, Tsokyi Choera, Xin Fang, Gang Wang, Wenhua Chen, Yin-Won Lee, Sherif Ramzy Mohamed, Dawood H Dawood, Jianrong Shi, Jianhong Xu, Nancy P Keller. Paralogous FgIDO genes with differential roles in tryptophan catabolism, fungal development and virulence in Fusarium graminearum. Microbiological research. 2023 Apr; 272(?):127382. doi: 10.1016/j.micres.2023.127382. [PMID: 37030080]