Androstenedione (BioDeep_00000001250)
Secondary id: BioDeep_00000175643, BioDeep_00000398253, BioDeep_00001891840
human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite natural product
代谢物信息卡片
化学式: C19H26O2 (286.1933)
中文名称: 雄烯二酮
谱图信息:
最多检出来源 Homo sapiens(blood) 22.59%
Last reviewed on 2024-07-24.
Cite this Page
Androstenedione. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/androstenedione (retrieved
2024-12-22) (BioDeep RN: BioDeep_00000001250). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C1C(=O)C=C2[C@](C1)([C@@H]1[C@@H](CC2)[C@H]2[C@](CC1)(C(=O)CC2)C)C
InChI: InChI=1S/C19H26O2/c1-18-9-7-13(20)11-12(18)3-4-14-15-5-6-17(21)19(15,2)10-8-16(14)18/h11,14-16H,3-10H2,1-2H3
描述信息
Androst-4-en-3,17-dione, also known as androstenedione or delta(4)-androsten-3,17-dione, belongs to androgens and derivatives class of compounds. Those are 3-hydroxylated C19 steroid hormones. They are known to favor the development of masculine characteristics. They also show profound effects on scalp and body hair in humans. Thus, androst-4-en-3,17-dione is considered to be a steroid lipid molecule. Androst-4-en-3,17-dione is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Androst-4-en-3,17-dione can be found in a number of food items such as naranjilla, purslane, common cabbage, and oval-leaf huckleberry, which makes androst-4-en-3,17-dione a potential biomarker for the consumption of these food products. Androst-4-en-3,17-dione can be found primarily in blood, cerebrospinal fluid (CSF), and urine, as well as throughout most human tissues. In humans, androst-4-en-3,17-dione is involved in a couple of metabolic pathways, which include androgen and estrogen metabolism and androstenedione metabolism. Androst-4-en-3,17-dione is also involved in a couple of metabolic disorders, which include 17-beta hydroxysteroid dehydrogenase III deficiency and aromatase deficiency. Moreover, androst-4-en-3,17-dione is found to be associated with rheumatoid arthritis, thyroid cancer , cushings Syndrome, and schizophrenia. Androst-4-en-3,17-dione is a non-carcinogenic (not listed by IARC) potentially toxic compound.
Androstenedione is a delta-4 19-carbon steroid that is produced not only in the testis, but also in the ovary and the adrenal cortex. Depending on the tissue type, androstenedione can serve as a precursor to testosterone as well as estrone and estradiol. It is the common precursor of male and female sex hormones. Some androstenedione is also secreted into the plasma and may be converted in peripheral tissues to testosterone and estrogens. Androstenedione originates either from the conversion of dehydroepiandrosterone or from 17-hydroxyprogesterone. It is further converted to either testosterone or estrone. The production of adrenal androstenedione is governed by ACTH, while the production of gonadal androstenedione is under control by gonadotropins.
CONFIDENCE standard compound; INTERNAL_ID 396; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9081; ORIGINAL_PRECURSOR_SCAN_NO 9076
CONFIDENCE standard compound; INTERNAL_ID 396; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9111; ORIGINAL_PRECURSOR_SCAN_NO 9108
CONFIDENCE standard compound; INTERNAL_ID 396; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9069; ORIGINAL_PRECURSOR_SCAN_NO 9064
CONFIDENCE standard compound; INTERNAL_ID 396; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9077; ORIGINAL_PRECURSOR_SCAN_NO 9075
CONFIDENCE standard compound; INTERNAL_ID 396; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9113; ORIGINAL_PRECURSOR_SCAN_NO 9112
C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones
CONFIDENCE standard compound; INTERNAL_ID 2803
INTERNAL_ID 2803; CONFIDENCE standard compound
CONFIDENCE standard compound; INTERNAL_ID 4165
同义名列表
27 个代谢物同义名
(1S,2R,10R,11S,15S)-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-6-ene-5,14-dione; delta(4)-Androstene-3,17-dione; delta(4)-Androsten-3,17-dione; delta4-Androstene-3,17-dione; Δ(4)-Androstene-3,17-dione; Δ(4)-Androsten-3,17-dione; (4)-Androsten-3,17-dione; D4-Androstene-3,17-dione; androst-4-ene-3,17-dione; Δ4-Androstene-3,17-dione; 4-Androstene-3,17-dione; 4 Androstene 3,17 dione; delta-4-Androstenedione; 4-ANDROSTENE-3-17-dione; androst-4-en-3,17-dione; 3,17-Dioxoandrost-4-ene; delta 4 Androstenedione; delta4-Androstenedione; 4-Androsten-3,17-dione; 17-Ketotestosterone; 4-Androstenedione; Androstenedione; Androstendione; CHEMBL274826; ST 19:3;O2; Fecundin; Androstenedione
数据库引用编号
42 个数据库交叉引用编号
- ChEBI: CHEBI:16422
- KEGG: C00280
- KEGGdrug: D00051
- PubChem: 6128
- HMDB: HMDB0000053
- Metlin: METLIN2795
- DrugBank: DB01536
- ChEMBL: CHEMBL274826
- Wikipedia: Androstenedione
- LipidMAPS: LMST02020007
- MeSH: Androstenedione
- MetaCyc: ANDROST4ENE
- KNApSAcK: C00003644
- foodb: FDB030678
- chemspider: 5898
- CAS: 117598-81-9
- CAS: 63-05-8
- MoNA: AU280304
- MoNA: LU039601
- MoNA: UF416502
- MoNA: LU039602
- MoNA: UF416504
- MoNA: AU280301
- MoNA: UF416501
- MoNA: AU280305
- MoNA: LU039603
- MoNA: AU280302
- MoNA: UF416503
- MoNA: AU280303
- MoNA: LU039605
- MoNA: AU280306
- MoNA: LU039604
- PMhub: MS000000206
- PDB-CCD: ASD
- 3DMET: B01205
- NIKKAJI: J38.388K
- RefMet: Androstenedione
- LOTUS: LTS0018486
- PubChem: 3575
- KNApSAcK: 16422
- LOTUS: LTS0036728
- wikidata: Q411064
分类词条
相关代谢途径
Reactome(12)
- Metabolism
- Biological oxidations
- Phase I - Functionalization of compounds
- Disease
- Metabolism of lipids
- Metabolism of steroids
- Diseases of metabolism
- Cytochrome P450 - arranged by substrate type
- Endogenous sterols
- Metabolic disorders of biological oxidation enzymes
- Metabolism of steroid hormones
- Estrogen biosynthesis
BioCyc(9)
- testosterone and androsterone degradation to androstendione
- superpathway of testosterone and androsterone degradation
- superpathway of cholesterol degradation II (cholesterol dehydrogenase)
- superpathway of cholesterol degradation I (cholesterol oxidase)
- cholesterol degradation to androstenedione I (cholesterol oxidase)
- cholesterol degradation to androstenedione II (cholesterol dehydrogenase)
- androstenedione degradation
- sitosterol degradation to androstenedione
- androgen biosynthesis
PlantCyc(0)
代谢反应
191 个相关的代谢反应过程信息。
Reactome(145)
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Metabolism of steroids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Metabolism of steroid hormones:
H+ + TPNH + estrone ⟶ EST17b + TPN
- Androgen biosynthesis:
ANDST + H+ + TPNH ⟶ TEST + TPN
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of lipids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of steroid hormones:
17aHPROG + H+ + Oxygen + TPNH ⟶ 11-deoxycortisol + H2O + TPN
- Androgen biosynthesis:
DHEA + NAD ⟶ ANDST + H+ + NADH
- Estrogen biosynthesis:
H+ + Oxygen + TEST + TPNH ⟶ EST17b + H2O + HCOOH + TPN
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Endogenous sterols:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of steroid hormones:
H+ + Oxygen + TEST + TPNH ⟶ EST17b + H2O + HCOOH + TPN
- Androgen biosynthesis:
ANDST + H+ + TPNH ⟶ TEST + TPN
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase I - Functionalization of compounds:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Cytochrome P450 - arranged by substrate type:
ANDST + H+ + Oxygen + TPNH ⟶ H2O + HCOOH + TPN + estrone
- Endogenous sterols:
ANDST + H+ + Oxygen + TPNH ⟶ H2O + HCOOH + TPN + estrone
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of steroid hormones:
17aHPROG + H+ + Oxygen + TPNH ⟶ 11-deoxycortisol + H2O + TPN
- Androgen biosynthesis:
DHEA + NAD ⟶ ANDST + H+ + NADH
- Estrogen biosynthesis:
H+ + TPNH + estrone ⟶ EST17b + TPN
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Endogenous sterols:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of steroid hormones:
17aHPROG + H+ + Oxygen + TPNH ⟶ 11-deoxycortisol + H2O + TPN
- Androgen biosynthesis:
DHEA + NAD ⟶ ANDST + H+ + NADH
- Estrogen biosynthesis:
H+ + Oxygen + TEST + TPNH ⟶ EST17b + H2O + HCOOH + TPN
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Endogenous sterols:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of lipids:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of steroids:
H+ + TPNH + estrone ⟶ EST17b + TPN
- Metabolism of steroid hormones:
H+ + TPNH + estrone ⟶ EST17b + TPN
- Androgen biosynthesis:
DHEA + NAD ⟶ ANDST + H+ + NADH
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of steroid hormones:
H+ + Oxygen + TEST + TPNH ⟶ EST17b + H2O + HCOOH + TPN
- Androgen biosynthesis:
ANDST + H+ + TPNH ⟶ TEST + TPN
- Estrogen biosynthesis:
H+ + Oxygen + TEST + TPNH ⟶ EST17b + H2O + HCOOH + TPN
- Biological oxidations:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Phase I - Functionalization of compounds:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Cytochrome P450 - arranged by substrate type:
ANDST + H+ + Oxygen + TPNH ⟶ H2O + HCOOH + TPN + estrone
- Endogenous sterols:
ANDST + H+ + Oxygen + TPNH ⟶ H2O + HCOOH + TPN + estrone
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of steroid hormones:
17aHPROG + H+ + Oxygen + TPNH ⟶ 11-deoxycortisol + H2O + TPN
- Androgen biosynthesis:
DHEA + NAD ⟶ ANDST + H+ + NADH
- Estrogen biosynthesis:
H+ + Oxygen + TEST + TPNH ⟶ EST17b + H2O + HCOOH + TPN
- Biological oxidations:
H+ + Oxygen + TPNH + progesterone ⟶ 11DCORST + H2O + TPN
- Phase I - Functionalization of compounds:
H+ + Oxygen + TPNH + progesterone ⟶ 11DCORST + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
H+ + Oxygen + TPNH + progesterone ⟶ 11DCORST + H2O + TPN
- Endogenous sterols:
H+ + Oxygen + TPNH + progesterone ⟶ 11DCORST + H2O + TPN
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of steroid hormones:
11-deoxycortisol ⟶ 11DCORT
- Androgen biosynthesis:
DHEA + NAD ⟶ ANDST + H+ + NADH
- Estrogen biosynthesis:
H+ + Oxygen + TEST + TPNH ⟶ EST17b + H2O + HCOOH + TPN
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Endogenous sterols:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of steroid hormones:
17aHPROG + H+ + Oxygen + TPNH ⟶ 11-deoxycortisol + H2O + TPN
- Androgen biosynthesis:
DHEA + NAD ⟶ ANDST + H+ + NADH
- Estrogen biosynthesis:
H+ + Oxygen + TEST + TPNH ⟶ EST17b + H2O + HCOOH + TPN
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Endogenous sterols:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Metabolism of steroids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Metabolism of steroid hormones:
H+ + Oxygen + TEST + TPNH ⟶ EST17b + H2O + HCOOH + TPN
- Androgen biosynthesis:
ANDST + H+ + TPNH ⟶ TEST + TPN
- Estrogen biosynthesis:
H+ + Oxygen + TEST + TPNH ⟶ EST17b + H2O + HCOOH + TPN
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase I - Functionalization of compounds:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Endogenous sterols:
ANDST + H+ + Oxygen + TPNH ⟶ H2O + HCOOH + TPN + estrone
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
H2O + lysoPC ⟶ GPCho + LCFA(-)
- Metabolism of steroids:
H+ + TEST + TPNH ⟶ DHTEST + TPN
- Metabolism of steroid hormones:
H+ + TEST + TPNH ⟶ DHTEST + TPN
- Androgen biosynthesis:
H+ + TEST + TPNH ⟶ DHTEST + TPN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of steroid hormones:
17aHPROG + H+ + Oxygen + TPNH ⟶ 11-deoxycortisol + H2O + TPN
- Androgen biosynthesis:
H+ + Oxygen + TPNH + progesterone ⟶ 17aHPROG + H2O + TPN
- Estrogen biosynthesis:
H+ + Oxygen + TEST + TPNH ⟶ EST17b + H2O + HCOOH + TPN
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Endogenous sterols:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of lipids:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of steroids:
17aHPROG + H+ + Oxygen + TPNH ⟶ 11-deoxycortisol + H2O + TPN
- Metabolism of steroid hormones:
17aHPROG + H+ + Oxygen + TPNH ⟶ 11-deoxycortisol + H2O + TPN
- Androgen biosynthesis:
H+ + Oxygen + TPNH + progesterone ⟶ 17aHPROG + H2O + TPN
- Estrogen biosynthesis:
EST17b + TPN ⟶ H+ + TPNH + estrone
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Endogenous sterols:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of steroid hormones:
H+ + Oxygen + TEST + TPNH ⟶ EST17b + H2O + HCOOH + TPN
- Androgen biosynthesis:
DHEA + NAD ⟶ ANDST + H+ + NADH
- Estrogen biosynthesis:
H+ + Oxygen + TEST + TPNH ⟶ EST17b + H2O + HCOOH + TPN
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase I - Functionalization of compounds:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Endogenous sterols:
EST17b + H+ + Oxygen + TPNH ⟶ 4OH-EST17b + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of steroid hormones:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Androgen biosynthesis:
H+ + Oxygen + TPNH + progesterone ⟶ 17aHPROG + H2O + TPN
- Estrogen biosynthesis:
H+ + Oxygen + TEST + TPNH ⟶ EST17b + H2O + HCOOH + TPN
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Endogenous sterols:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Estrogen biosynthesis:
H+ + Oxygen + TEST + TPNH ⟶ EST17b + H2O + HCOOH + TPN
BioCyc(23)
- estradiol biosynthesis I:
17β-estradiol + NAD(P)+ ⟶ H+ + NAD(P)H + estrone
- androgen biosynthesis:
17-α-hydroxypregnenolone + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 3-β-hydroxyandrost-5-en-17-one + H+ + H2O + acetate + an oxidized [NADPH-hemoprotein reductase]
- androgen biosynthesis:
NADP+ + testosterone ⟶ H+ + NADPH + androst-4-ene-3,17-dione
- estradiol biosynthesis I (via estrone):
O2 + a reduced [NADPH-hemoprotein reductase] + androst-4-ene-3,17-dione ⟶ 19-hydroxyandrostenedione + H2O + an oxidized [NADPH-hemoprotein reductase]
- superpathway of cholesterol degradation II (cholesterol dehydrogenase):
3-hydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione + FMNH2 + O2 ⟶ 3,4-dihydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione + FMN + H+ + H2O
- superpathway of cholesterol degradation I (cholesterol oxidase):
3-hydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione + FMNH2 + O2 ⟶ 3,4-dihydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione + FMN + H+ + H2O
- cholesterol degradation to androstenedione I (cholesterol oxidase):
17-hydroxy-3-oxo-4-pregnane-20-carboxyl-CoA ⟶ androst-4-ene-3,17-dione + propanoyl-CoA
- cholesterol degradation to androstenedione II (cholesterol dehydrogenase):
17-hydroxy-3-oxo-4-pregnane-20-carboxyl-CoA ⟶ androst-4-ene-3,17-dione + propanoyl-CoA
- testosterone and androsterone degradation to androstendione:
5α-androstane-3,17-dione + A ⟶ A(H2) + androst-4-ene-3,17-dione
- androstenedione degradation:
3-hydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione + FMNH2 + O2 ⟶ 3,4-dihydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione + FMN + H+ + H2O
- sitosterol degradation to androstenedione:
17-hydroxy-3-oxo-4-pregnane-20-carboxyl-CoA ⟶ androst-4-ene-3,17-dione + propanoyl-CoA
- superpathway of testosterone and androsterone degradation:
3-hydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione + FMNH2 + O2 ⟶ 3,4-dihydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione + FMN + H+ + H2O
- superpathway of cholesterol degradation II (cholesterol dehydrogenase):
3,4-dihydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione + O2 ⟶ (1E,2Z)-3-hydroxy-5,9,17-trioxo-4,5:9,10-disecoandrosta-1 (10),2-dien-4-oate + H+
- cholesterol degradation to androstenedione I (cholesterol oxidase):
17-hydroxy-3-oxo-4-pregnane-20-carboxyl-CoA ⟶ androst-4-ene-3,17-dione + propanoyl-CoA
- cholesterol degradation to androstenedione II (cholesterol dehydrogenase):
17-hydroxy-3-oxo-4-pregnane-20-carboxyl-CoA ⟶ androst-4-ene-3,17-dione + propanoyl-CoA
- androstenedione degradation:
3,4-dihydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione + O2 ⟶ (1E,2Z)-3-hydroxy-5,9,17-trioxo-4,5:9,10-disecoandrosta-1 (10),2-dien-4-oate + H+
- superpathway of cholesterol degradation II (cholesterol dehydrogenase):
NAD+ + coenzyme A + propanal ⟶ H+ + NADH + propanoyl-CoA
- cholesterol degradation to androstenedione I (cholesterol oxidase):
17-hydroxy-3-oxo-4-pregnane-20-carboxyl-CoA ⟶ androst-4-ene-3,17-dione + propanoyl-CoA
- testosterone and androsterone degradation to androstendione:
NAD(P)+ + androsterone ⟶ 5α-androstane-3,17-dione + H+ + NAD(P)H
- cholesterol degradation to androstenedione II (cholesterol dehydrogenase):
17-hydroxy-3-oxo-4-pregnane-20-carboxyl-CoA ⟶ androst-4-ene-3,17-dione + propanoyl-CoA
- sitosterol degradation to androstenedione:
17-hydroxy-3-oxo-4-pregnane-20-carboxyl-CoA ⟶ androst-4-ene-3,17-dione + propanoyl-CoA
- superpathway of testosterone and androsterone degradation:
NAD+ + coenzyme A + propanal ⟶ H+ + NADH + propanoyl-CoA
- androstenedione degradation:
NAD+ + coenzyme A + propanal ⟶ H+ + NADH + propanoyl-CoA
WikiPathways(5)
- Male steroid hormones in cardiomyocyte energy metabolism:
3 -Androstane-diol ⟶ Epiandrosterone
- Classical pathway of steroidogenesis with glucocorticoid and mineralocorticoid metabolism:
11-Deoxycortisol ⟶ Cortisol
- Alternative pathway of fetal androgen synthesis:
17-Hydroxyallopregnanolone ⟶ Androsterone
- Estrogen metabolism:
2-Methoxyestradiol ⟶ 2-methoxy-17beta-estradiol 3-glucuronide
- Sulfatase and aromatase pathway:
DHEA ⟶ Androstenedione
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(18)
- Androgen and Estrogen Metabolism:
Estradiol + NADP ⟶ Estrone + NADPH
- 17-beta Hydroxysteroid Dehydrogenase III Deficiency:
Estradiol + NADP ⟶ Estrone + NADPH
- Aromatase Deficiency:
Estradiol + NADP ⟶ Estrone + NADPH
- Androstenedione Metabolism:
Androstanedione + Hydrogen Ion + NADH ⟶ Androsterone + NAD
- Androgen and Estrogen Metabolism:
Estradiol + NADP ⟶ Estrone + NADPH
- Androstenedione Metabolism:
Androstanedione + Hydrogen Ion + NADH ⟶ Androsterone + NAD
- 17-beta Hydroxysteroid Dehydrogenase III Deficiency:
Estradiol + NADP ⟶ Estrone + NADPH
- Aromatase Deficiency:
Estradiol + NADP ⟶ Estrone + NADPH
- Androgen and Estrogen Metabolism:
Estradiol + NADP ⟶ Estrone + NADPH
- Androstenedione Metabolism:
Androstanedione + Hydrogen Ion + NADH ⟶ Androsterone + NAD
- Androgen and Estrogen Metabolism:
Estradiol + NADP ⟶ Estrone + NADPH
- Androstenedione Metabolism:
Androstanedione + Hydrogen Ion + NADH ⟶ Androsterone + NAD
- Androgen and Estrogen Metabolism:
Estradiol + NADP ⟶ Estrone + NADPH
- Androstenedione Metabolism:
Androstanedione + Hydrogen Ion + NADH ⟶ Androsterone + NAD
- Androgen and Estrogen Metabolism:
Estradiol + NADP ⟶ Estrone + NADPH
- Androstenedione Metabolism:
Androstanedione + Hydrogen Ion + NADH ⟶ Androsterone + NAD
- 17-beta Hydroxysteroid Dehydrogenase III Deficiency:
Estradiol + NADP ⟶ Estrone + NADPH
- Aromatase Deficiency:
Estradiol + NADP ⟶ Estrone + NADPH
PharmGKB(0)
13 个相关的物种来源信息
- 4890 - Ascomycota: LTS0018486
- 5502 - Curvularia: LTS0018486
- 5503 - Curvularia lunata: 10.1016/0039-128X(94)90002-7
- 5503 - Curvularia lunata: LTS0018486
- 35525 - Daphnia magna: 10.1006/EESA.1999.1859
- 147541 - Dothideomycetes: LTS0018486
- 2759 - Eukaryota: LTS0018486
- 4751 - Fungi: LTS0018486
- 9606 - Homo sapiens:
- 9606 - Homo sapiens: -
- 7004 - Locusta migratoria: 10.1016/0305-0491(92)90052-S
- 28556 - Pleosporaceae: LTS0018486
- 54477 - Vitex agnus-castus: 10.1055/S-2006-961123
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Shiyao Huang, Ziming Wu, Youyou Chen, Han Li, Linglin Zou, Alexander T Teichmann, Yao Luo, Lifeng Zhang, Lanyang Gao. Dermal repeated dose toxicity study of the anti-breast cancer drug Formestane cream in Bama minipig.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2023 Aug; 178(?):113927. doi:
10.1016/j.fct.2023.113927
. [PMID: 37406756] - V A Filatova, R V Rozhivanov, I Z Bondarenko, V A Ioutsi, E N Andreeva, G A Mel'nichenko, N G Mokrysheva. [Features of steroidogenesis and arterial hypertension in men in different types of "physiological" male hyperandrogenism].
Problemy endokrinologii.
2023 May; 69(2):80-91. doi:
10.14341/probl13226
. [PMID: 37448275] - Shanshan Chen, Shuo Li, Xinxin Zhang, Yuxin Fan, Ming Liu. Low serum dehydroepiandrosterone is associated with diabetic dyslipidemia risk in males with type 2 diabetes.
Frontiers in endocrinology.
2023; 14(?):1272797. doi:
10.3389/fendo.2023.1272797
. [PMID: 38075062] - Qiliang Pang, Aoyun Jia, Mohammad Khaldoun Al Masri, Hamed Kord Varkaneh, Ahmed Abu-Zaid, Xiang Gao. The effect of androstenedione supplementation on testosterone, estradiol, body composition, and lipid profile: a systematic review and meta-analysis of randomized controlled trials.
Hormones (Athens, Greece).
2022 Dec; 21(4):545-554. doi:
10.1007/s42000-022-00385-8
. [PMID: 35841524] - Jiajia Ge, Na Yang, Xiaoli Zhang, Meijuan Li, Wei Zhang, Jun He, Huaijun Zhu, Xiaoliang Cheng, Shanmei Shen, Weihong Ge. Steroid Hormone Profiling in Hyperandrogenism and Non-hyperandrogenism Women with Polycystic Ovary Syndrome.
Reproductive sciences (Thousand Oaks, Calif.).
2022 Dec; 29(12):3449-3458. doi:
10.1007/s43032-022-00985-0
. [PMID: 35835901] - Zhenhua Su, Zhenjian Zhang, Jian Yu, Congcong Yuan, Yanbing Shen, Jianxin Wang, Liqiu Su, Min Wang. Combined enhancement of the propionyl-CoA metabolic pathway for efficient androstenedione production in Mycolicibacterium neoaurum.
Microbial cell factories.
2022 Oct; 21(1):218. doi:
10.1186/s12934-022-01942-x
. [PMID: 36266684] - M Athar Masood, Rafia Khatoon, Timothy D Veenstra. Quantitative analysis of specific androgens in serum and urine samples from male, pre, and postmenopausal subjects using LC-MRM-MS.
Steroids.
2022 Sep; 185(?):109060. doi:
10.1016/j.steroids.2022.109060
. [PMID: 35690120] - Haiyang Yu, Xinxin Du, Qiang Zhao, Chunguang Yin, Wenlu Song. Weighted gene Co-expression network analysis (WGCNA) reveals a set of hub genes related to chlorophyll metabolism process in chlorella (Chlorella vulgaris) response androstenedione.
Environmental pollution (Barking, Essex : 1987).
2022 Aug; 306(?):119360. doi:
10.1016/j.envpol.2022.119360
. [PMID: 35489534] - Neeharika Sriram, Priyanka Madaan, Prahbhjot Malhi, Naresh Sachdeva, Sandeep Negi, Jhumki Das, Rakesh Kumar, Jitendra Kumar Sahu, Pratibha Singhi. Evaluation of Hyperandrogenism in Children with Autism Spectrum Disorder.
Indian journal of pediatrics.
2022 07; 89(7):717-719. doi:
10.1007/s12098-022-04080-9
. [PMID: 35089488] - Markéta Šimková, Lucie Kolátorová, Pavel Drašar, Jana Vítků. An LC-MS/MS method for the simultaneous quantification of 32 steroids in human plasma.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2022 Jun; 1201-1202(?):123294. doi:
10.1016/j.jchromb.2022.123294
. [PMID: 35623176] - Özge Besci, İbrahim Mert Erbaş, Tuncay Küme, Kübra Yüksek Acinikli, Ayhan Abacı, Ece Böber, Korcan Demir. A 4-hour Profile of 17-hydroxyprogesterone in Salt-wasting Congenital Adrenal Hyperplasia: Is the Serial Monitoring Strategy Worth the Effort?.
Journal of clinical research in pediatric endocrinology.
2022 06; 14(2):145-152. doi:
10.4274/jcrpe.galenos.2021.2021-9-17
. [PMID: 34866371] - Zheng Wang, Ying Sun, Jing Jian Dong, Li Li Shi, Shoji F Nakayama, Teruhiko Kido, Chau-Ren Jung, Chaochen Ma, Hao Feng, Jin Guo Hang, Xian Liang Sun. Relationship between dioxins and steroid hormone in 6-year-olds: A follow-up study in an e-waste region of China.
Chemosphere.
2022 Jun; 296(?):134018. doi:
10.1016/j.chemosphere.2022.134018
. [PMID: 35181420] - Liuxi Chu, Xin Shu, Yao Huang, Tong Chu, Meina Ge, Qin Lu. Sex steroid hormones in urinary exosomes as biomarkers for the prediction of prostate cancer.
Clinica chimica acta; international journal of clinical chemistry.
2022 Jun; 531(?):389-398. doi:
10.1016/j.cca.2022.04.995
. [PMID: 35487250] - Karina Gasbarrino, Edward Daly, Stella S Daskalopoulou. An LC-MS/MS Methodological Framework for Steroid Hormone Measurement from Human Serum.
Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme.
2022 May; 54(5):300-307. doi:
10.1055/a-1768-0709
. [PMID: 35352333] - Jolanda van Keizerswaard, Alexandra L P Dietz de Loos, Yvonne V Louwers, Joop S E Laven. Changes in individual polycystic ovary syndrome phenotypical characteristics over time: a long-term follow-up study.
Fertility and sterility.
2022 05; 117(5):1059-1066. doi:
10.1016/j.fertnstert.2022.01.014
. [PMID: 35219451] - Kellie A Fecteau, Luca Giori, Andrew Cushing, Joshua M Price, Xiaojuan Zhu. Comparison of steroid and thyroid hormone concentrations in blood serum and plasma of captive tigers.
Journal of veterinary diagnostic investigation : official publication of the American Association of Veterinary Laboratory Diagnosticians, Inc.
2022 May; 34(3):547-551. doi:
10.1177/10406387221090538
. [PMID: 35404190] - Marjaana Viljanto, Zied Kaabia, Polly Taylor, Tessa Muir, Jocelyn Habershon-Butcher, Ludovic Bailly-Chouriberry, James Scarth. Differentiation of boldenone administration from ex vivo transformation in the urine of castrated male horses.
Drug testing and analysis.
2022 May; 14(5):887-901. doi:
10.1002/dta.3240
. [PMID: 35178884] - Xianhua Zhang, Huiyu Xu, Congya Zhou, Li Yang, Suodi Zhai, Ping Yang, Rongsheng Zhao, Rong Li. Magnetic solid phase extraction followed by in-situ derivatization with core-shell structured magnetic graphene oxide nanocomposite for the accurate quantification of free testosterone and free androstenedione in human serum.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2022 Apr; 1196(?):123188. doi:
10.1016/j.jchromb.2022.123188
. [PMID: 35272097] - Barbara Obermayer-Pietsch, Marta de Ramon, Claudia Reichmuth, Garnet Bendig, Stefan Hutzler, Judith Taibon, Christopher M Rank, Peter Findeisen. Multicenter Evaluation of a New, Fully Automated Androstenedione Electrochemiluminescence Immunoassay: Precision Analysis, Method Comparison, and Determination of Reference Ranges.
The journal of applied laboratory medicine.
2022 03; 7(2):503-514. doi:
10.1093/jalm/jfab107
. [PMID: 34662384] - Robert T Chatterton. Functions of dehydroepiandrosterone in relation to breast cancer.
Steroids.
2022 03; 179(?):108970. doi:
10.1016/j.steroids.2022.108970
. [PMID: 35122788] - Hannah Colldén, Maria E Nilsson, Anna-Karin Norlén, Andreas Landin, Sara H Windahl, Jianyao Wu, Karin L Gustafsson, Matti Poutanen, Henrik Ryberg, Liesbeth Vandenput, Claes Ohlsson. Comprehensive Sex Steroid Profiling in Multiple Tissues Reveals Novel Insights in Sex Steroid Distribution in Male Mice.
Endocrinology.
2022 03; 163(3):. doi:
10.1210/endocr/bqac001
. [PMID: 34999782] - Tianhao Wu, Gongwei Sun, Mingying Ma, Xingyu Pan, Sichun Zhang, Xinrong Zhang. Rapid quantitative analysis of hormones in serum by multilayer paper spray MS: Free MS from HPLC.
Talanta.
2022 Jan; 237(?):122900. doi:
10.1016/j.talanta.2021.122900
. [PMID: 34736715] - Junzhi Liang, Bowen Zhang, Yannan Hu, Zhijing Na, Da Li. Effects of steroid hormones on lipid metabolism in sexual dimorphism: A Mendelian randomization study.
Frontiers in endocrinology.
2022; 13(?):1119154. doi:
10.3389/fendo.2022.1119154
. [PMID: 36726474] - Huiyu Xu, Guoshuang Feng, Kannan Alpadi, Yong Han, Rui Yang, Lixue Chen, Rong Li, Jie Qiao. A Model for Predicting Polycystic Ovary Syndrome Using Serum AMH, Menstrual Cycle Length, Body Mass Index and Serum Androstenedione in Chinese Reproductive Aged Population: A Retrospective Cohort Study.
Frontiers in endocrinology.
2022; 13(?):821368. doi:
10.3389/fendo.2022.821368
. [PMID: 35370993] - Chetanna Chioma Anaje, Chinwe Laura Onyekonwu, Gladys Angela Ozoh, Ogochukwu Ifeanyi Ezejiofor. Assessment of serum androgen levels in women with acne vulgaris in Southeastern Nigeria: a cross-sectional study.
The Pan African medical journal.
2022; 41(?):227. doi:
10.11604/pamj.2022.41.227.32892
. [PMID: 35721630] - Kenichiro Sakaguchi, Tomoko Suda, Nattapong Ninpetch, Kohei Kawano, Yojiro Yanagawa, Seiji Katagiri, Koji Yoshioka, Masashi Nagano. Plasma profile of follicle-stimulating hormone and sex steroid hormones after a single epidural administration of follicle-stimulating hormone via caudal vertebrae in Holstein dry cows.
Animal science journal = Nihon chikusan Gakkaiho.
2022 Jan; 93(1):e13696. doi:
10.1111/asj.13696
. [PMID: 35195318] - Haolin Zhang, Wei Wang, Jiaming Zhao, Peijie Jiao, Lin Zeng, Hua Zhang, Yue Zhao, Li Shi, Hangqi Hu, Liyan Luo, Ii Fukuzawa, Dong Li, Rong Li, Jie Qiao. Relationship between body composition, insulin resistance, and hormonal profiles in women with polycystic ovary syndrome.
Frontiers in endocrinology.
2022; 13(?):1085656. doi:
10.3389/fendo.2022.1085656
. [PMID: 36699018] - Dongke Liu, Rusong Zhao, Shigang Zhao, Zhaobao Wang, Ruichen Liu, Fengshan Wang, Yanhui Gao. A developed HPLC-MS/MS method to quantitate 5 steriod hormones in clinical human serum by using PBS as the surrogate matrix.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2021 Dec; 1186(?):123002. doi:
10.1016/j.jchromb.2021.123002
. [PMID: 34749247] - Pengling Liu, Xue Liu, Dandan Wei, Luting Nie, Keliang Fan, Li Zhang, Lulu Wang, Xiaotian Liu, Jian Hou, Songcheng Yu, Linlin Li, Chongjian Wang, Wenqian Huo, Zhenxing Mao. Associations of serum androgens with coronary heart disease and interaction with age: The Henan Rural Cohort Study.
Nutrition, metabolism, and cardiovascular diseases : NMCD.
2021 11; 31(12):3352-3358. doi:
10.1016/j.numecd.2021.08.025
. [PMID: 34625359] - Benedikt A Gasser, Samuel F Buerki, Johann Kurz, Markus G Mohaupt. Hyperandrogenism? Increased 17, 20-Lyase Activity? A Metanalysis and Systematic Review of Altered Androgens in Boys and Girls with Autism.
International journal of molecular sciences.
2021 Nov; 22(22):. doi:
10.3390/ijms222212324
. [PMID: 34830216] - Rakibul M Islam, Robin J Bell, Marina A Skiba, Susan R Davis. Testosterone and androstenedione are positively associated with anti-Müllerian hormone in premenopausal women.
Clinical endocrinology.
2021 11; 95(5):752-759. doi:
10.1111/cen.14592
. [PMID: 34524701] - Takako Kawakita, Toshiyuki Yasui, Kanako Yoshida, Sumika Matsui, Takeshi Iwasa. Correlations of androstenediol with reproductive hormones and cortisol according to stages during the menopausal transition in Japanese women.
The Journal of steroid biochemistry and molecular biology.
2021 11; 214(?):106009. doi:
10.1016/j.jsbmb.2021.106009
. [PMID: 34571175] - Simone Caetani Machado, Bruna Maciel Souza, Luiz Paulo de Aguiar Marciano, Ana Flávia Souza Pereira, Maisa Ribeiro Pereira Lima Brigagão, André Luiz Machado Viana, Maria Rita Rodrigues, Isarita Martins. Endpoints as human biomarkers in exposure assessment of triazoles fungicides.
Environmental toxicology and pharmacology.
2021 Oct; 87(?):103703. doi:
10.1016/j.etap.2021.103703
. [PMID: 34265456] - Hale Tuhan, Tülay Öztürk, Gönül Çatlı, Sezer Acar, Ayhan Abacı, Tuğba Egeli, Korcan Demir, Şule Can, Handan Güleryüz, Bumin Dündar, Ece Böber. The relationship of carotid intima-media thickness with anthropometric and metabolic parameters in patients with classic congenital adrenal hyperplasia.
Turkish journal of medical sciences.
2021 08; 51(4):1738-1746. doi:
10.3906/sag-2001-57
. [PMID: 33486914] - Patrick Caron, Véronique Turcotte, Chantal Guillemette. A quantitative analysis of total and free 11-oxygenated androgens and its application to human serum and plasma specimens using liquid-chromatography tandem mass spectrometry.
Journal of chromatography. A.
2021 Aug; 1650(?):462228. doi:
10.1016/j.chroma.2021.462228
. [PMID: 34090133] - Anouk E de Wit, Erik J Giltay, Marrit K de Boer, Willem A Nolen, Fokko J Bosker, Brenda W J H Penninx, Robert A Schoevers. Plasma androgens and the presence and course of depression in a large cohort of men.
Psychoneuroendocrinology.
2021 08; 130(?):105278. doi:
10.1016/j.psyneuen.2021.105278
. [PMID: 34049017] - Rachel Bleach, Stephen F Madden, James Hawley, Sara Charmsaz, Cigdem Selli, Katherine M Sheehan, Leonie S Young, Andrew H Sims, Pavel Souček, Arnold D Hill, Marie McIlroy. Steroid Ligands, the Forgotten Triggers of Nuclear Receptor Action; Implications for Acquired Resistance to Endocrine Therapy.
Clinical cancer research : an official journal of the American Association for Cancer Research.
2021 07; 27(14):3980-3989. doi:
10.1158/1078-0432.ccr-20-4135
. [PMID: 34016642] - Mirta Kadivnik, Željko Debeljak, Dario Mandić, Jasenka Wagner, Kristina Kralik, Siniša Šijanović, Andrijana Muller, Vatroslav Šerić. Requirement for oxytocin augmentation in spontaneous parturition is associated with the maternal serum steroid hormones assessed by liquid chromatography coupled to the tandem mass spectrometry.
The journal of obstetrics and gynaecology research.
2021 Jul; 47(7):2347-2355. doi:
10.1111/jog.14792
. [PMID: 33855759] - Pomme I H G Simons, Olivier Valkenburg, Judith A P Bons, Coen D A Stehouwer, Martijn C G J Brouwers. The relationships of sex hormone-binding globulin, total testosterone, androstenedione and free testosterone with metabolic and reproductive features of polycystic ovary syndrome.
Endocrinology, diabetes & metabolism.
2021 Jul; 4(3):e00267. doi:
10.1002/edm2.267
. [PMID: 34277990] - Takashi Yazawa, Takahiro Sato, Takahiro Nemoto, Sayaka Nagata, Yoshitaka Imamichi, Takeshi Kitano, Toshio Sekiguchi, Junsuke Uwada, Mohammad Sayful Islam, Daisuke Mikami, Ikuyo Nakajima, Satoru Takahashi, Md Rafiqul Islam Khan, Nobuo Suzuki, Akihiro Umezawa, Takanori Ida. 11-Ketotestosterone is a major androgen produced in porcine adrenal glands and testes.
The Journal of steroid biochemistry and molecular biology.
2021 06; 210(?):105847. doi:
10.1016/j.jsbmb.2021.105847
. [PMID: 33609691] - I Rubio, F J White, L J Spicer, R P Wettemann. Postpartum nutrition affects the insulin-like growth factor system in dominant follicles and plasma of anestrous beef cows.
Animal reproduction science.
2021 Jun; 229(?):106760. doi:
10.1016/j.anireprosci.2021.106760
. [PMID: 33962315] - Mark J Henderson, Kathleen A Trychta, Shyh-Ming Yang, Susanne Bäck, Adam Yasgar, Emily S Wires, Carina Danchik, Xiaokang Yan, Hideaki Yano, Lei Shi, Kuo-Jen Wu, Amy Q Wang, Dingyin Tao, Gergely Zahoránszky-Kőhalmi, Xin Hu, Xin Xu, David Maloney, Alexey V Zakharov, Ganesha Rai, Fumihiko Urano, Mikko Airavaara, Oksana Gavrilova, Ajit Jadhav, Yun Wang, Anton Simeonov, Brandon K Harvey. A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
Cell reports.
2021 04; 35(4):109040. doi:
10.1016/j.celrep.2021.109040
. [PMID: 33910017] - Abdullah Mm Faqehi, Scott G Denham, Gregorio Naredo, Diego F Cobice, Shazia Khan, Joanna P Simpson, Ghazali Sabil, Rita Upreti, Fraser Gibb, Natalie Zm Homer, Ruth Andrew. Derivatization with 2-hydrazino-1-methylpyridine enhances sensitivity of analysis of 5α-dihydrotestosterone in human plasma by liquid chromatography tandem mass spectrometry.
Journal of chromatography. A.
2021 Mar; 1640(?):461933. doi:
10.1016/j.chroma.2021.461933
. [PMID: 33588275] - T Koch, D A Doherty, J E Dickinson, A Juul, R Hart, E V Bräuner, M Hickey. In utero exposure to maternal stressful life events and risk of polycystic ovary syndrome in the offspring: The Raine Study.
Psychoneuroendocrinology.
2021 03; 125(?):105104. doi:
10.1016/j.psyneuen.2020.105104
. [PMID: 33352473] - Fu Chen, Minjie Chen, Weichun Zhang, Huihuang Yin, Guishan Chen, Qingxia Huang, Xiaoping Yang, Lan Chen, Chujia Lin, Guoshu Yin. Comparison of the efficacy of different androgens measured by LC-MS/MS in representing hyperandrogenemia and an evaluation of adrenal-origin androgens with a dexamethasone suppression test in patients with PCOS.
Journal of ovarian research.
2021 Feb; 14(1):32. doi:
10.1186/s13048-021-00781-5
. [PMID: 33583431] - Anouk E de Wit, Erik J Giltay, Marrit K de Boer, Fokko J Bosker, Aviva Y Cohn, Willem A Nolen, Ursula B Kaiser, Hadine Joffe, Brenda W J H Penninx, Robert A Schoevers. Plasma androgens and the presence and course of depression in a large cohort of women.
Translational psychiatry.
2021 02; 11(1):124. doi:
10.1038/s41398-021-01249-2
. [PMID: 33579903] - Zuwei Yang, Wenzhong Zhou, Chengliang Zhou, Yuzhong Zhou, Xinmei Liu, Guolian Ding, Yulian Hu, Jiexue Pan, Jianzhong Sheng, Li Jin, Hefeng Huang. Steroid metabolome profiling of follicular fluid in normo- and hyperandrogenic women with polycystic ovary syndrome.
The Journal of steroid biochemistry and molecular biology.
2021 02; 206(?):105806. doi:
10.1016/j.jsbmb.2020.105806
. [PMID: 33340681] - Muhammad Ismail Shawish, Bahador Bagheri, Vijaya M Musini, Stephen P Adams, James M Wright. Effect of atorvastatin on testosterone levels.
The Cochrane database of systematic reviews.
2021 01; 1(?):CD013211. doi:
10.1002/14651858.cd013211.pub2
. [PMID: 33482034] - Taylor L Langevin, Karen Maynard, Anil Dewan. Bilateral microscopic Leydig cell ovarian tumors in the postmenopausal woman.
BMJ case reports.
2020 Dec; 13(12):. doi:
10.1136/bcr-2020-236427
. [PMID: 33370966] - Yihua Xu, Li Wang, Siyuan Cao, Ruihua Hu, Rui Liu, Ke Hua, Zhigang Guo, Hong-Jie Di, Zhigang Hu. Genipin improves reproductive health problems caused by circadian disruption in male mice.
Reproductive biology and endocrinology : RB&E.
2020 Dec; 18(1):122. doi:
10.1186/s12958-020-00679-9
. [PMID: 33308222] - Carina Ankarberg-Lindgren, Mats X Andersson, Jovanna Dahlgren. Determination of estrone sulfate, testosterone, androstenedione, DHEAS, cortisol, cortisone, and 17α-hydroxyprogesterone by LC-MS/MS in children and adolescents.
Scandinavian journal of clinical and laboratory investigation.
2020 Dec; 80(8):672-680. doi:
10.1080/00365513.2020.1829699
. [PMID: 33258387] - Nor Amira Khurshid Ahmed, Shern Kwok Lim, Ganesh N Pandian, Hiroshi Sugiyama, Chong Yew Lee, Boon Yin Khoo, Kit Lam Chan. Differentially expressed genes on the growth of mouse Leydig cells treated with standardised Eurycoma longifolia extract.
Molecular medicine reports.
2020 Nov; 22(5):3645-3658. doi:
10.3892/mmr.2020.11485
. [PMID: 32901880] - Simeon Pierre Fodouop Chegaing, Alex Doris Mboussaah Kengni, Mahwish Siddiqui, Alain Bertrand Fowa, Donatien Gatsing, M Iqbal Choudhary. Fungal transformation of norandrostenedione with Cunninghamella blakesleeana and anti-bacterial activity of the transformed products.
Steroids.
2020 10; 162(?):108679. doi:
10.1016/j.steroids.2020.108679
. [PMID: 32569733] - Jae Hyun Kim, Young Ah Lee, Youn-Hee Lim, Kyunghoon Lee, Bung-Nyun Kim, Johanna Inhyang Kim, Yun-Chul Hong, Sei Won Yang, Junghan Song, Choong Ho Shin. Changes in Adrenal Androgens and Steroidogenic Enzyme Activities From Ages 2, 4, to 6 Years: A Prospective Cohort Study.
The Journal of clinical endocrinology and metabolism.
2020 10; 105(10):. doi:
10.1210/clinem/dgaa498
. [PMID: 32750115] - David J Marshall, Joanne E Adaway, James M Hawley, Brian G Keevil. Quantification of testosterone, androstenedione and 17-hydroxyprogesterone in whole blood collected using Mitra microsampling devices.
Annals of clinical biochemistry.
2020 09; 57(5):351-359. doi:
10.1177/0004563220937735
. [PMID: 32524824] - Maria Assens, Liv Dyre, Louise Scheutz Henriksen, Vibeke Brocks, Karin Sundberg, Lisa Neerup Jensen, Anette Tønnes Pedersen, Katharina M Main. Menstrual Pattern, Reproductive Hormones, and Transabdominal 3D Ultrasound in 317 Adolescent Girls.
The Journal of clinical endocrinology and metabolism.
2020 09; 105(9):. doi:
10.1210/clinem/dgaa355
. [PMID: 32506132] - Lorela Paço, Francisco Zarate-Perez, Amanda F Clouser, William M Atkins, John C Hackett. Dynamics and Mechanism of Binding of Androstenedione to Membrane-Associated Aromatase.
Biochemistry.
2020 08; 59(33):2999-3009. doi:
10.1021/acs.biochem.0c00460
. [PMID: 32786398] - Zhao-Min Liu, Guoyi Li, Di Zhang, Suzanne C Ho, Yu-Ming Chen, Jing Ma, Qi Huang, Shuyi Li, Wen-Hua Ling. Effect of whole soy and purified daidzein on androgenic hormones in chinese equol-producing post-menopausal women: a six-month randomised, double-blinded and Placebo-Controlled trial.
International journal of food sciences and nutrition.
2020 Aug; 71(5):644-652. doi:
10.1080/09637486.2020.1712682
. [PMID: 31914834] - Tingting Yang, Yuhan Huang, Yi Zhou, Shangxiu Chen, Haiyan Wang, Yinlu Hu, Junjie Liu, Zhenzhou Jiang, Qian Lu, Xiaoxing Yin. Simultaneous quantification of oestrogens and androgens in the serum of patients with benign prostatic hyperplasia by liquid chromatography-Tandem mass spectrometry.
Andrologia.
2020 Aug; 52(7):e13611. doi:
10.1111/and.13611
. [PMID: 32441855] - Frédéric Pouliot, Mélanie Rouleau, Bertrand Neveu, Paul Toren, Fannie Morin, Lauriane Vélot, Keyue Ding, Patrick Caron, Louis Lacombe, Éric Lévesque, Laurence Klotz, Chantal Guillemette. Extragonadal Steroids Contribute Significantly to Androgen Receptor Activity and Development of Castration Resistance in Recurrent Prostate Cancer after Primary Therapy.
The Journal of urology.
2020 05; 203(5):940-948. doi:
10.1097/ju.0000000000000699
. [PMID: 31845837] - James M Hawley, Joanne E Adaway, Laura J Owen, Brian G Keevil. Development of a total serum testosterone, androstenedione, 17-hydroxyprogesterone, 11β-hydroxyandrostenedione and 11-ketotestosterone LC-MS/MS assay and its application to evaluate pre-analytical sample stability.
Clinical chemistry and laboratory medicine.
2020 04; 58(5):741-752. doi:
10.1515/cclm-2019-0959
. [PMID: 31926069] - Małgorzata Szczuko, Viktoria Hawryłkowicz, Justyna Kikut, Arleta Drozd. The implications of vitamin content in the plasma in reference to the parameters of carbohydrate metabolism and hormone and lipid profiles in PCOS.
The Journal of steroid biochemistry and molecular biology.
2020 04; 198(?):105570. doi:
10.1016/j.jsbmb.2019.105570
. [PMID: 31883924] - Matthias K Auer, Aniko Krumbholz, Martin Bidlingmaier, Detlef Thieme, Nicole Reisch. Steroid 17-Hydroxyprogesterone in Hair Is a Potential Long-Term Biomarker of Androgen Control in Congenital Adrenal Hyperplasia due to 21-Hydroxylase Deficiency.
Neuroendocrinology.
2020; 110(11-12):938-949. doi:
10.1159/000504672
. [PMID: 31711056] - E Rudnicka, M Kunicki, K Suchta, P Machura, M Grymowicz, R Smolarczyk. Inflammatory Markers in Women with Polycystic Ovary Syndrome.
BioMed research international.
2020; 2020(?):4092470. doi:
10.1155/2020/4092470
. [PMID: 32219132] - Mehdi Basaki, Mehdi Saeb, Saeedeh Saeb. Androgen profile in young females with insulin resistance; the importance of 17-HydroxyprogesteroneAndrogens in young insulin resistant females.
Gynecological endocrinology : the official journal of the International Society of Gynecological Endocrinology.
2019 Dec; 35(12):1094-1098. doi:
10.1080/09513590.2019.1630377
. [PMID: 31674860] - Alessandro D Genazzani, Alessia Prati, Federico Marchini, Tabatha Petrillo, Antonella Napolitano, Tommaso Simoncini. Differential insulin response to oral glucose tolerance test (OGTT) in overweight/obese polycystic ovary syndrome patients undergoing to myo-inositol (MYO), alpha lipoic acid (ALA), or combination of both.
Gynecological endocrinology : the official journal of the International Society of Gynecological Endocrinology.
2019 Dec; 35(12):1088-1093. doi:
10.1080/09513590.2019.1640200
. [PMID: 31304823] - Natasja G J Costermans, Nicoline M Soede, Marco Blokland, Frederike van Tricht, Jaap Keijer, Bas Kemp, Katja J Teerds. Steroid profile of porcine follicular fluid and blood serum: Relation with follicular development.
Physiological reports.
2019 12; 7(24):e14320. doi:
10.14814/phy2.14320
. [PMID: 31883224] - Bingyan Cao, Chunxiu Gong, Di Wu, Xuejun Liang, Wenjing Li, Min Liu, Chang Su, Miao Qin, Xi Meng, Liya Wei. A cross-sectional survey of adrenal steroid hormones among overweight/obese boys according to puberty stage.
BMC pediatrics.
2019 11; 19(1):414. doi:
10.1186/s12887-019-1755-5
. [PMID: 31690265] - Asmoro Lelono, Bernd Riedstra, Ton G G Groothuis. The relationship between male social status, ejaculate and circulating testosterone concentration and female yolk androgen transfer in red junglefowl (Gallus gallus).
Hormones and behavior.
2019 11; 116(?):104580. doi:
10.1016/j.yhbeh.2019.104580
. [PMID: 31472122] - Tobie D Lee, Olivia W Lee, Kyle R Brimacombe, Lu Chen, Rajarshi Guha, Sabrina Lusvarghi, Bethilehem G Tebase, Carleen Klumpp-Thomas, Robert W Robey, Suresh V Ambudkar, Min Shen, Michael M Gottesman, Matthew D Hall. A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
Molecular pharmacology.
2019 11; 96(5):629-640. doi:
10.1124/mol.119.115964
. [PMID: 31515284] - Mireya Calzada, Natividad López, Jose A Noguera, Jaime Mendiola, Ana I Hernández, Shiana Corbalán, Maria Sanchez, Alberto M Torres. AMH in combination with SHBG for the diagnosis of polycystic ovary syndrome.
Journal of obstetrics and gynaecology : the journal of the Institute of Obstetrics and Gynaecology.
2019 Nov; 39(8):1130-1136. doi:
10.1080/01443615.2019.1587604
. [PMID: 31208261] - Amina Cheboub, Nadia Regouat, Reda Djidjik, Assia Slimani, Fatima Hadj-Bekkouche. Short-term aromatase inhibition induces prostatic alterations in adult wistar rat: A biochemical, histopathological and immunohistochemical study.
Acta histochemica.
2019 Nov; 121(8):151441. doi:
10.1016/j.acthis.2019.151441
. [PMID: 31522738] - Marlene Hager, Steffen Hörath, Peter Frigo, Marianne Koch, Rodrig Marculescu, Johannes Ott. Changes in serum markers of patients with PCOS during consecutive clomiphene stimulation cycles: a retrospective study.
Journal of ovarian research.
2019 Oct; 12(1):91. doi:
10.1186/s13048-019-0564-7
. [PMID: 31585548] - Cecilie Hurup Munkboel, Tobias Bangsgaard Rasmussen, Camilla Elgaard, Maja-Luna Kingo Olesen, Andreas Christopher Kretschmann, Bjarne Styrishave. The classic azole antifungal drugs are highly potent endocrine disruptors in vitro inhibiting steroidogenic CYP enzymes at concentrations lower than therapeutic Cmax.
Toxicology.
2019 09; 425(?):152247. doi:
10.1016/j.tox.2019.152247
. [PMID: 31330226] - Nicholas M Grebe, Courtney Fitzpatrick, Katherine Sharrock, Anne Starling, Christine M Drea. Organizational and activational androgens, lemur social play, and the ontogeny of female dominance.
Hormones and behavior.
2019 09; 115(?):104554. doi:
10.1016/j.yhbeh.2019.07.002
. [PMID: 31276664] - Samira Behboudi-Gandevani, Hayedeh Abtahi, Navid Saadat, Maryam Tohidi, Fahimeh Ramezani Tehrani. Effect of phlebotomy versus oral contraceptives containing cyproterone acetate on the clinical and biochemical parameters in women with polycystic ovary syndrome: a randomized controlled trial.
Journal of ovarian research.
2019 Aug; 12(1):78. doi:
10.1186/s13048-019-0554-9
. [PMID: 31470879] - Ru-Biao Liu, Yi Liu, Li-Qun Lv, Wei Xiao, Cheng Gong, Jian-Xin Yue. Effects of Metformin Treatment on Soluble Leptin Receptor Levels in Women with Polycystic Ovary Syndrome.
Current medical science.
2019 Aug; 39(4):609-614. doi:
10.1007/s11596-019-2081-8
. [PMID: 31346998] - Danuše Tarkowská. Plants are Capable of Synthesizing Animal Steroid Hormones.
Molecules (Basel, Switzerland).
2019 Jul; 24(14):. doi:
10.3390/molecules24142585
. [PMID: 31315257] - Merel van Nuland, Nikkie Venekamp, Willemijn M E Wouters, Huub H van Rossum, Hilde Rosing, Jos H Beijnen. LC-MS/MS assay for the quantification of testosterone, dihydrotestosterone, androstenedione, cortisol and prednisone in plasma from castrated prostate cancer patients treated with abiraterone acetate or enzalutamide.
Journal of pharmaceutical and biomedical analysis.
2019 Jun; 170(?):161-168. doi:
10.1016/j.jpba.2019.03.043
. [PMID: 30925273] - L T Zeng, B Han, B L Liu, X Chen, H Zhu, Y Chen, M Chen, J H Liu, Y Liu, J Qiao. [Clinical features and genetic characteristics of 33 patients with simple virilizing form of 21-hydroxylase deficiency].
Zhonghua nei ke za zhi.
2019 Jun; 58(6):428-434. doi:
10.3760/cma.j.issn.0578-1426.2019.06.006
. [PMID: 31159521] - Anna van der Veen, Martijn van Faassen, Wilhelmina H A de Jong, André P van Beek, D A Janneke Dijck-Brouwer, Ido P Kema. Development and validation of a LC-MS/MS method for the establishment of reference intervals and biological variation for five plasma steroid hormones.
Clinical biochemistry.
2019 Jun; 68(?):15-23. doi:
10.1016/j.clinbiochem.2019.03.013
. [PMID: 30922617] - X de la Torre, D Martinez Brito, C Colamonici, M K Parr, F Botrè. Metabolism of formestane in humans: Identification of urinary biomarkers for antidoping analysis.
Steroids.
2019 06; 146(?):34-42. doi:
10.1016/j.steroids.2019.03.005
. [PMID: 30904502] - Satoshi Endo, Namiki Miyagi, Toshiyuki Matsunaga, Akira Ikari. Rabbit dehydrogenase/reductase SDR family member 11 (DHRS11): Its identity with acetohexamide reductase with broad substrate specificity and inhibitor sensitivity, different from human DHRS11.
Chemico-biological interactions.
2019 May; 305(?):12-20. doi:
10.1016/j.cbi.2019.03.026
. [PMID: 30926317] - Milap V Rakholia, Raj G Kumar, Byung-Mo Oh, Prerna R Ranganathan, Sarah L Berga, Patrick M Kochanek, Amy K Wagner. Systemic Estrone Production and Injury-Induced Sex Hormone Steroidogenesis after Severe Traumatic Brain Injury: A Prognostic Indicator of Traumatic Brain Injury-Related Mortality.
Journal of neurotrauma.
2019 04; 36(7):1156-1167. doi:
10.1089/neu.2018.5782
. [PMID: 29947289] - Andreas Krebs, Karoline Dickhuth, Rebekka Mumm, Bernhard Stier, Jürgen Doerfer, Dirk Grueninger, Michael Wurm, Corinna Brichta, Karl Otfried Schwab. Evaluating the four most important salivary sex steroids during male puberty: testosterone best characterizes pubertal development.
Journal of pediatric endocrinology & metabolism : JPEM.
2019 Mar; 32(3):287-294. doi:
10.1515/jpem-2018-0451
. [PMID: 30811345] - Jan Idkowiak, Yasir S Elhassan, Pascoe Mannion, Karen Smith, Rachel Webster, Vrinda Saraff, Timothy G Barrett, Nicholas J Shaw, Nils Krone, Renuka P Dias, Melanie Kershaw, Jeremy M Kirk, Wolfgang Högler, Ruth E Krone, Michael W O'Reilly, Wiebke Arlt. Causes, patterns and severity of androgen excess in 487 consecutively recruited pre- and post-pubertal children.
European journal of endocrinology.
2019 Mar; 180(3):213-221. doi:
10.1530/eje-18-0854
. [PMID: 30566905] - Casper Reijnen, Heidi V N Küsters-Vandevelde, Karin Abbink, Petra L M Zusterzeel, Antonius E van Herwaarden, Jeroen A W M van der Laak, Leon F A G Massuger, Marc P L M Snijders, Johanna M A Pijnenborg, Johan Bulten. Quantification of Leydig cells and stromal hyperplasia in the postmenopausal ovary of women with endometrial carcinoma.
Human pathology.
2019 03; 85(?):119-127. doi:
10.1016/j.humpath.2018.10.022
. [PMID: 30428390] - Terhi T Piltonen, Paolo Giacobini, Åsa Edvinsson, Steinar Hustad, Susanne Lager, Laure Morin-Papunen, Juha S Tapanainen, Inger Sundström-Poromaa, Riikka K Arffman. Circulating antimüllerian hormone and steroid hormone levels remain high in pregnant women with polycystic ovary syndrome at term.
Fertility and sterility.
2019 03; 111(3):588-596.e1. doi:
10.1016/j.fertnstert.2018.11.028
. [PMID: 30630591] - Prerna Ranganathan, Raj G Kumar, Byung-Mo Oh, Milap V Rakholia, Sarah L Berga, Amy K Wagner. Estradiol to Androstenedione Ratios Moderate the Relationship between Neurological Injury Severity and Mortality Risk after Severe Traumatic Brain Injury.
Journal of neurotrauma.
2019 02; 36(4):538-547. doi:
10.1089/neu.2018.5677
. [PMID: 30014751] - Eva Asselmann, Hanna Kische, Robin Haring, Johannes Hertel, Carsten-Oliver Schmidt, Matthias Nauck, Katja Beesdo-Baum, Hans-Jörgen Grabe, Christiane A Pané-Farré. Prospective associations of androgens and sex hormone-binding globulin with 12-month, lifetime and incident anxiety and depressive disorders in men and women from the general population.
Journal of affective disorders.
2019 02; 245(?):905-911. doi:
10.1016/j.jad.2018.11.052
. [PMID: 30699875] - Teng-Fei Yuan, Juan Le, Yan Cui, Rui Peng, Shao-Ting Wang, Yan Li. An LC-MS/MS analysis for seven sex hormones in serum.
Journal of pharmaceutical and biomedical analysis.
2019 Jan; 162(?):34-40. doi:
10.1016/j.jpba.2018.09.014
. [PMID: 30219597] - Sheng Wu, Ping Xue, Neile Grayson, Jeffrey S Bland, Andrew Wolfe. Bitter Taste Receptor Ligand Improves Metabolic and Reproductive Functions in a Murine Model of PCOS.
Endocrinology.
2019 01; 160(1):143-155. doi:
10.1210/en.2018-00711
. [PMID: 30418546] - Midhun Soman, Li-Cong Huang, Wen-Hui Cai, Jun-Bi Xu, Jun-Yao Chen, Ren-Ke He, Heng-Chao Ruan, Xiang-Rong Xu, Zhi-Da Qian, Xiao-Ming Zhu. Serum androgen profiles in women with premature ovarian insufficiency: a systematic review and meta-analysis.
Menopause (New York, N.Y.).
2019 01; 26(1):78-93. doi:
10.1097/gme.0000000000001161
. [PMID: 29994966] - Kirsty A Walters, Stephanie Eid, Melissa C Edwards, Rachel Thuis-Watson, Reena Desai, Mark Bowman, Anthony J Marren, David J Handelsman. Steroid profiles by liquid chromatography-mass spectrometry of matched serum and single dominant ovarian follicular fluid from women undergoing IVF.
Reproductive biomedicine online.
2019 Jan; 38(1):30-37. doi:
10.1016/j.rbmo.2018.10.006
. [PMID: 30527851] - Aino Mäntyselkä, Eero A Haapala, Virpi Lindi, Merja R Häkkinen, Seppo Auriola, Jarmo Jääskeläinen, Timo A Lakka. Associations of IGF-1 and Adrenal Androgens with Cognition in Childhood.
Hormone research in paediatrics.
2019; 91(5):329-335. doi:
10.1159/000501719
. [PMID: 31401625] - Wesley J Goedegebuure, Anita C S Hokken-Koelega. Aromatase Inhibitor as Treatment for Severely Advanced Bone Age in Congenital Adrenal Hyperplasia: A Case Report.
Hormone research in paediatrics.
2019; 92(3):209-213. doi:
10.1159/000501746
. [PMID: 31390647] - Fanny Zufferey, Rita Rahban, Arnaud Garcia, Yoric Gagnebin, Julien Boccard, David Tonoli, Fabienne Jeanneret, Eric Stettler, Alfred Senn, Serge Nef, Serge Rudaz, Michel F Rossier. Steroid profiles in both blood serum and seminal plasma are not correlated and do not reflect sperm quality: Study on the male reproductive health of fifty young Swiss men.
Clinical biochemistry.
2018 Dec; 62(?):39-46. doi:
10.1016/j.clinbiochem.2018.03.008
. [PMID: 29555320] - Josef van Helden, Ralf Weiskirchen. Cross-method comparison of serum androstenedione measurement with respect to the validation of a new fully automated chemiluminescence immunoassay.
Clinical biochemistry.
2018 Dec; 62(?):32-38. doi:
10.1016/j.clinbiochem.2018.09.009
. [PMID: 30261182] - Xiao-Jian Lai, Zhong-Qin Li, Yang-Jie Xie, Shi-Xi Chen, Yi-Lei Wang. Androstenedione and 17α-methyltestosterone induce early ovary development of Anguilla japonica.
Theriogenology.
2018 Oct; 120(?):16-24. doi:
10.1016/j.theriogenology.2018.07.009
. [PMID: 30081244]