linolenate(18:3) (BioDeep_00000000175)

   

human metabolite PANOMIX_OTCML-2023 Exogenous blood metabolite BioNovoGene_Lab2019 natural product


代谢物信息卡片


(9Z,12Z,15Z)-octadeca-9,12,15-trienoic acid

化学式: C18H30O2 (278.2246)
中文名称: α-亚麻酸, 亚麻酸
谱图信息: 最多检出来源 Homo sapiens(blood) 15.07%

Reviewed

Last reviewed on 2024-09-25.

Cite this Page

linolenate(18:3). BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/linolenate(18:3) (retrieved 2024-12-22) (BioDeep RN: BioDeep_00000000175). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: C(CCCCCCC(=O)O)/C=C\C/C=C\C/C=C\CC
InChI: InChI=1S/C18H30O2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18(19)20/h3-4,6-7,9-10H,2,5,8,11-17H2,1H3,(H,19,20)/b4-3-,7-6-,10-9-

描述信息

alpha-Linolenic acid (ALA) is a polyunsaturated fatty acid (PUFA). It is a member of the group of essential fatty acids called omega-3 fatty acids. alpha-Linolenic acid, in particular, is not synthesized by mammals and therefore is an essential dietary requirement for all mammals. Certain nuts (English walnuts) and vegetable oils (canola, soybean, flaxseed/linseed, olive) are particularly rich in alpha-linolenic acid. Omega-3 fatty acids get their name based on the location of one of their first double bond. In all omega-3 fatty acids, the first double bond is located between the third and fourth carbon atom counting from the methyl end of the fatty acid (n-3). Although humans and other mammals can synthesize saturated and some monounsaturated fatty acids from carbon groups in carbohydrates and proteins, they lack the enzymes necessary to insert a cis double bond at the n-6 or the n-3 position of a fatty acid. Omega-3 fatty acids like alpha-linolenic acid are important structural components of cell membranes. When incorporated into phospholipids, they affect cell membrane properties such as fluidity, flexibility, permeability, and the activity of membrane-bound enzymes. Omega-3 fatty acids can modulate the expression of a number of genes, including those involved with fatty acid metabolism and inflammation. alpha-Linolenic acid and other omega-3 fatty acids may regulate gene expression by interacting with specific transcription factors, including peroxisome proliferator-activated receptors (PPARs) and liver X receptors (LXRs). alpha-Linolenic acid is found to be associated with isovaleric acidemia, which is an inborn error of metabolism.

α-Linolenic acid can be obtained by humans only through their diets. Humans lack the desaturase enzymes required for processing stearic acid into A-linoleic acid or other unsaturated fatty acids.

Dietary α-linolenic acid is metabolized to stearidonic acid, a precursor to a collection of polyunsaturated 20-, 22-, 24-, etc fatty acids (eicosatetraenoic acid, eicosapentaenoic acid, docosapentaenoic acid, tetracosapentaenoic acid, 6,9,12,15,18,21-tetracosahexaenoic acid, docosahexaenoic acid).[12] Because the efficacy of n−3 long-chain polyunsaturated fatty acid (LC-PUFA) synthesis decreases down the cascade of α-linolenic acid conversion, DHA synthesis from α-linolenic acid is even more restricted than that of EPA.[13] Conversion of ALA to DHA is higher in women than in men.[14]

α-Linolenic acid, also known as alpha-linolenic acid (ALA) (from Greek alpha meaning "first" and linon meaning flax), is an n−3, or omega-3, essential fatty acid. ALA is found in many seeds and oils, including flaxseed, walnuts, chia, hemp, and many common vegetable oils.

In terms of its structure, it is named all-cis-9,12,15-octadecatrienoic acid.[2] In physiological literature, it is listed by its lipid number, 18:3 (n−3). It is a carboxylic acid with an 18-carbon chain and three cis double bonds. The first double bond is located at the third carbon from the methyl end of the fatty acid chain, known as the n end. Thus, α-linolenic acid is a polyunsaturated n−3 (omega-3) fatty acid. It is a regioisomer of gamma-linolenic acid (GLA), an 18:3 (n−6) fatty acid (i.e., a polyunsaturated omega-6 fatty acid with three double bonds).

Alpha-linolenic acid is a linolenic acid with cis-double bonds at positions 9, 12 and 15. Shown to have an antithrombotic effect. It has a role as a micronutrient, a nutraceutical and a mouse metabolite. It is an omega-3 fatty acid and a linolenic acid. It is a conjugate acid of an alpha-linolenate and a (9Z,12Z,15Z)-octadeca-9,12,15-trienoate.
Alpha-linolenic acid (ALA) is a polyunsaturated omega-3 fatty acid. It is a component of many common vegetable oils and is important to human nutrition.
alpha-Linolenic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655).
Linolenic Acid is a natural product found in Prunus mume, Dipteryx lacunifera, and other organisms with data available.
Linolenic Acid is an essential fatty acid belonging to the omega-3 fatty acids group. It is highly concentrated in certain plant oils and has been reported to inhibit the synthesis of prostaglandin resulting in reduced inflammation and prevention of certain chronic diseases.
Alpha-linolenic acid (ALA) is a polyunsaturated omega-3 fatty acid. It is a component of many common vegetable oils and is important to human nutrition.
A fatty acid that is found in plants and involved in the formation of prostaglandins.

Seed oils are the richest sources of α-linolenic acid, notably those of hempseed, chia, perilla, flaxseed (linseed oil), rapeseed (canola), and soybeans. α-Linolenic acid is also obtained from the thylakoid membranes in the leaves of Pisum sativum (pea leaves).[3] Plant chloroplasts consisting of more than 95 percent of photosynthetic thylakoid membranes are highly fluid due to the large abundance of ALA, evident as sharp resonances in high-resolution carbon-13 NMR spectra.[4] Some studies state that ALA remains stable during processing and cooking.[5] However, other studies state that ALA might not be suitable for baking as it will polymerize with itself, a feature exploited in paint with transition metal catalysts. Some ALA may also oxidize at baking temperatures.
Gamma-linolenic acid (γ-Linolenic acid) is an omega-6 (n-6), 18 carbon (18C-) polyunsaturated fatty acid (PUFA) extracted from Perilla frutescens. Gamma-linolenic acid supplements could restore needed PUFAs and mitigate the disease[1].
Gamma-linolenic acid (γ-Linolenic acid) is an omega-6 (n-6), 18 carbon (18C-) polyunsaturated fatty acid (PUFA) extracted from Perilla frutescens. Gamma-linolenic acid supplements could restore needed PUFAs and mitigate the disease[1].
α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1].
α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1].
α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1].

同义名列表

137 个代谢物同义名

alpha-Linolenic acid, 1.0 mg/mL in ethanol, certified reference material; alpha-LINOLENIC ACID (C18:3) (CONSTITUENT OF KRILL OIL); LINOLENIC ACID (CONSTITUENT OF EVENING PRIMROSE OIL); alpha-Linolenic acid; ALA; cis-alpha-Linolenic acid; alpha-LINOLENIC ACID (CONSTITUENT OF FLAX SEED OIL); 9,12,15-Octadecatrienoic acid, (9Z,12Z,15Z)- (9CI); LINOLENIC ACID (CONSTITUENT OF SAW PALMETTO) [DSC]; Linolenic acid, Vetec(TM) reagent grade, 98\\%; LINOLENIC ACID (CONSTITUENT OF SAW PALMETTO); 9,12,15-Octadecatrienoic acid, (9Z,12Z,15Z)-; cis-9, cis-12, cis-15-octadecatrienoic acid; (9Z,12Z,15Z)-octadeca-9,12,15-trienoic acid; (9Z,12Z,15Z)-9,12,15-Octadecatrienoic acid; (9Z,12Z,15Z)octadeca-9,12,15-trienoic acid; cis,cis,cis-octadeca-9,12,15-trienoic acid; cis-9,cis-12,cis-15-Octadecatrienoic acid; 9-cis,12-cis,15-cis-Octadecatrienoic acid; cis,cis,cis-9,12,15-Octadecatrienoic acid; VITAMIN F COMPONENT ALPHA LINOLENIC ACID; cis-Delta(9,12,15)-octadecatrienoic acid; CIS-DELTA-9,12,15-OCTADECATRIENOIC ACID; Linolenic acid 10 microg/mL in Methanol; 9,12,15-Octadecatrienoic acid, (Z,Z,Z)-; Octadecatrienoic acid, 9,12,15-(Z,Z,Z)-; cis-delta9,12,15-Octadecatrienoic acid; 9(Z),12(Z),15(Z)-Octadecatrienoic acid; (Z,Z,Z)-Octadeca-9,12,15-trienoic acid; 9,12,15-all-cis-Octadecatrienoic acid; 9-cis,12-cis,15-cis-octadecatrienoate; (Z,Z,Z)-9,12,15-Octadecatrienoic acid; all-cis-9,12,15-Octadecatrienoic acid; cis,cis,cis-9,12,15-octadecatrienoate; (all-Z)-9,12,15-Octadecatrienoic acid; cis,cis-9,12,15-Octadecatrienoic acid; alpha-Linolenic Acid, (E,E,Z)-Isomer; alpha-Linolenic Acid, Potassium Salt; alpha Linolenic Acid, Magnesium Salt; alpha-Linolenic Acid, (E,Z,Z)-Isomer; alpha-Linolenic Acid, (E,Z,E)-Isomer; alpha-Linolenic Acid, Magnesium Salt; 9,15-Octadecatrienoic acid, (Z,Z,Z)-; cis-Δ(9,12,15)-octadecatrienoic acid; alpha-Linolenic Acid, (E,E,E)-Isomer; cis-delta(9,12,15)-Octadecatrienoate; alpha-Linolenic Acid, (Z,Z,E)-Isomer; alpha-Linolenic Acid, (Z,E,Z)-Isomer; alpha Linolenic Acid, Potassium Salt; 2DCD0473-E5CC-47BB-A0A4-95899AFF6C4B; alpha-Linolenic Acid, (Z,E,E)-Isomer; Linolenic acid, analytical standard; alpha-Linolenic Acid, Ammonium Salt; alpha Linolenic Acid, Ammonium Salt; (9Z,12Z,15Z)-Octadecatrienoic acid; all-cis-9,15-Octadecatrienoic acid; alpha-Linolenic Acid, Calcium Salt; alpha-Linolenic Acid, Tin(2+) Salt; alpha-Linolenic Acid, Lithium Salt; alpha Linolenic Acid, Calcium Salt; alpha Linolenic Acid, Lithium Salt; all-cis-9,12,15-Octadecatrienoate; Fatty Acid cis, cis, cis 18:3 n-3; cis-9,12,15-octadecatrienoic acid; (Z,Z,Z)-9,12,15-Octadecatrienoate; Octadeca-9Z,12Z,15Z-trienoic acid; alpha-Linolenic Acid, Sodium Salt; alpha Linolenic Acid, Sodium Salt; 9Z,12Z,15Z-Octadecatrienoic acid; cis-Δ(9,12,15)-octadecatrienoate; alpha Linolenic Acid, Zinc Salt; alpha-Linolenic Acid, Zinc Salt; ALPHA-LINOLENIC ACID (C18:3 N3); (9Z,12Z,15Z)-Octadecatrienoate; cis-9,12,15-octadecatrienoate; 9,12,15-Octadecatrienoic acid; Linolenic acid, tech grade; Linolenic acid, ~70\\% (GC); alpha-Linolenic Acid tech.; 9,12,15-Octadecatrienoate; LINOLENIC ACID (18:3 n-3); (9,12,15)-linolenic acid; LINOLENIC ACID [WHO-DD]; LINOLENIC ACID [VANDF]; Linolenic acid, >=99\\%; LINOLENIC ACID [MART.]; LINOLENIC ACID (MART.); .alpha.-Linolenic acid; Linolenic acid, crude; alpha -linolenic acid; LINOLENIC ACID [INCI]; alpha-Linolenic acid; alpha Linolenic Acid; alpha-linolenic-acid; FA(18:3(9Z,12Z,15Z)); (9,12,15)-Linolenate; Linolenic acid (8CI); LINOLENIC ACID [MI]; alpha-Linolenate; a-Linolenic acid; α linolenic acid; α-Linolenic acid; UNII-0RBV727H71; Industrene 120; Linolenic Acid; Linolensaeure; Tox21_201727; Α-linolenate; Tox21_303322; a-Linolenate; C18:3n-3,6,9; Tox21_111071; IDI1_033846; α-Linolenic; C18:3 (N-3); 0RBV727H71; linolenate; FA(18:3n3); alpha-Lnn; 18:3(N-3); AI3-23986; alpha-LA; C18H30O2; BML3-B05; FA 18:3; C18:3; LNL; Ala; trans-9, trans-12, trans-15-octadecatrienoic acid; 9E,12E,15E-octadecatrienoic acid; α-Linolenic Acid; Elaidolinoleic acid; α-Linolenate; ?-linolenic acid; Alpha-Linolenic Acid; γ-Linolenic acid; Gamma-Linolenic acid; (9Z,12Z,15Z)-Octadecatrienoic acid; Linolenic acid



数据库引用编号

37 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(5)

BioCyc(0)

PlantCyc(0)

代谢反应

863 个相关的代谢反应过程信息。

Reactome(70)

BioCyc(0)

WikiPathways(4)

Plant Reactome(384)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(405)

PharmGKB(0)

1265 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 7 APOB, APOE, BDNF, FASN, NOS2, PIK3CA, PTGS2
Peripheral membrane protein 2 ACHE, PTGS2
Endosome membrane 2 APOB, FFAR4
Endoplasmic reticulum membrane 5 APOB, FADS1, FADS2, HSP90B1, PTGS2
Nucleus 5 ACHE, APOE, HSP90B1, NOS2, PPARA
cytosol 6 APOB, FASN, HSP90B1, LEP, NOS2, PIK3CA
dendrite 2 APOE, BDNF
nucleoplasm 2 NOS2, PPARA
Cell membrane 2 ACHE, FFAR4
lamellipodium 1 PIK3CA
Multi-pass membrane protein 4 CPT1A, FADS1, FADS2, FFAR4
Synapse 1 ACHE
cell surface 2 ACHE, ADIPOQ
glutamatergic synapse 1 APOE
Golgi apparatus 3 ACHE, APOE, FASN
lysosomal membrane 1 FFAR4
neuromuscular junction 1 ACHE
neuronal cell body 2 APOB, APOE
smooth endoplasmic reticulum 2 APOB, HSP90B1
synaptic vesicle 1 BDNF
Cytoplasm, cytosol 1 NOS2
plasma membrane 9 ACHE, APOB, APOE, FADS2, FASN, FFAR4, GCG, NOS2, PIK3CA
Membrane 8 ACHE, APOE, BDNF, CPT1A, FADS1, FADS2, FASN, HSP90B1
axon 1 BDNF
caveola 1 PTGS2
extracellular exosome 4 APOB, APOE, FASN, HSP90B1
Lysosome membrane 1 FFAR4
endoplasmic reticulum 4 ADIPOQ, APOE, HSP90B1, PTGS2
extracellular space 10 ACHE, ADIPOQ, APOB, APOE, BDNF, CCL2, CXCL8, GCG, IL10, LEP
lysosomal lumen 1 APOB
perinuclear region of cytoplasm 5 ACHE, BDNF, HSP90B1, NOS2, PIK3CA
intercalated disc 1 PIK3CA
mitochondrion 2 CPT1A, FADS1
protein-containing complex 2 HSP90B1, PTGS2
intracellular membrane-bounded organelle 2 APOB, FADS1
Microsome membrane 1 PTGS2
Secreted 10 ACHE, ADIPOQ, APOB, APOE, BDNF, CCL2, CXCL8, GCG, IL10, LEP
extracellular region 11 ACHE, ADIPOQ, APOB, APOE, BDNF, CCL2, CXCL8, GCG, HSP90B1, IL10, LEP
Mitochondrion outer membrane 1 CPT1A
mitochondrial outer membrane 1 CPT1A
Extracellular side 1 ACHE
ciliary membrane 1 FFAR4
Endosome, multivesicular body 1 APOE
Extracellular vesicle 1 APOE
Secreted, extracellular space, extracellular matrix 1 APOE
chylomicron 2 APOB, APOE
high-density lipoprotein particle 1 APOE
low-density lipoprotein particle 2 APOB, APOE
multivesicular body 1 APOE
very-low-density lipoprotein particle 2 APOB, APOE
midbody 1 HSP90B1
Cytoplasm, P-body 1 NOS2
P-body 1 NOS2
Early endosome 2 APOB, APOE
Cytoplasm, perinuclear region 1 NOS2
focal adhesion 1 HSP90B1
extracellular matrix 1 APOE
Peroxisome 1 NOS2
basement membrane 1 ACHE
collagen trimer 1 ADIPOQ
peroxisomal matrix 1 NOS2
collagen-containing extracellular matrix 3 ADIPOQ, APOE, HSP90B1
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
neuron projection 1 PTGS2
cilium 1 FFAR4
chromatin 1 PPARA
Secreted, extracellular space 1 APOE
blood microparticle 1 APOE
Lipid-anchor, GPI-anchor 1 ACHE
[Isoform 2]: Cell membrane 1 FFAR4
endosome lumen 1 APOB
Lipid droplet 1 APOB
[Isoform 1]: Endoplasmic reticulum membrane 1 FADS1
Melanosome 3 APOE, FASN, HSP90B1
side of membrane 1 ACHE
sperm plasma membrane 1 HSP90B1
secretory granule lumen 1 GCG
endoplasmic reticulum lumen 6 APOB, APOE, BDNF, GCG, HSP90B1, PTGS2
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
endocytic vesicle 1 FFAR4
endoplasmic reticulum exit site 1 APOB
clathrin-coated endocytic vesicle membrane 2 APOB, APOE
Sarcoplasmic reticulum lumen 1 HSP90B1
synaptic cleft 2 ACHE, APOE
[Isoform 1]: Cell membrane 1 FFAR4
[Isoform 2]: Endoplasmic reticulum membrane 1 FADS1
Cell projection, cilium membrane 1 FFAR4
discoidal high-density lipoprotein particle 1 APOE
endocytic vesicle lumen 3 APOB, APOE, HSP90B1
[Glucagon-like peptide 1]: Secreted 1 GCG
chylomicron remnant 2 APOB, APOE
intermediate-density lipoprotein particle 2 APOB, APOE
lipoprotein particle 1 APOE
multivesicular body, internal vesicle 1 APOE
cortical cytoskeleton 1 NOS2
mature chylomicron 1 APOB
endoplasmic reticulum chaperone complex 1 HSP90B1
[Isoform H]: Cell membrane 1 ACHE
[Neurotrophic factor BDNF precursor form]: Secreted 1 BDNF
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
glycogen granule 1 FASN


文献列表

  • Salim Makni, Sébastien Acket, Stéphanie Guenin, Sana Afensiss, Adeline Guellier, Raquel Martins-Noguerol, Antonio J Moreno-Perez, Brigitte Thomasset, Enrique Martinez-Force, Laurent Gutierrez, Eric Ruelland, Adrian Troncoso-Ponce. Arabidopsis seeds altered in the circadian clock protein TOC1 are characterized by higher level of linolenic acid. Plant science : an international journal of experimental plant biology. 2024 Jul; 344(?):112087. doi: 10.1016/j.plantsci.2024.112087. [PMID: 38599247]
  • Lin Liu, Ya Zhang, Meng-Di Yuan, Dong-Miao Xiao, Wei-Hua Xu, Qi Zheng, Qi-Wei Qin, You-Hua Huang, Xiao-Hong Huang. Integrated multi-omics analysis reveals liver metabolic reprogramming by fish iridovirus and antiviral function of alpha-linolenic acid. Zoological research. 2024 May; 45(3):520-534. doi: 10.24272/j.issn.2095-8137.2024.028. [PMID: 38682434]
  • Jingzhi Nie, Wenyue Ma, Xueyuan Ma, De Zhu, Xin Li, Caijin Wang, Guofeng Xu, Canni Chen, Dengjie Luo, Sichen Xie, Guanjing Hu, Peng Chen. Integrated Transcriptomic and Metabolomic Analysis Reveal the Dynamic Process of Bama Hemp Seed Development and the Accumulation Mechanism of α-Linolenic Acid and Linoleic Acid. Journal of agricultural and food chemistry. 2024 May; 72(19):10862-10878. doi: 10.1021/acs.jafc.3c09309. [PMID: 38712687]
  • Mostafa H Baky, Eman M El-Taher, Dina M Y El Naggar, Mostafa B Abouelela. Phytochemical investigation of the n-hexane-extracted oil from four umbelliferous vegetables using GC/MS analysis in the context of antibacterial activity. Scientific reports. 2024 05; 14(1):10592. doi: 10.1038/s41598-024-60631-4. [PMID: 38719900]
  • Nobuyuki Fukuoka, Ryusei Watanabe, Tatsuro Hamada. Impact of changes in root biomass on the occurrence of internal browning in radish root. Plant physiology and biochemistry : PPB. 2024 May; 210(?):108563. doi: 10.1016/j.plaphy.2024.108563. [PMID: 38554535]
  • Zhixiong Chen, Ni Hong, Cui Yan, Zhongbo Zheng, Jie Xi, Ping Cao. The potential of Paeonia lactiflora pall seeds oil as a pure natural cosmetics raw material: In Vitro findings. Journal of cosmetic dermatology. 2024 May; 23(5):1875-1883. doi: 10.1111/jocd.16204. [PMID: 38450923]
  • Marija Takić, Slavica Ranković, Zdenka Girek, Suzana Pavlović, Petar Jovanović, Vesna Jovanović, Ivana Šarac. Current Insights into the Effects of Dietary α-Linolenic Acid Focusing on Alterations of Polyunsaturated Fatty Acid Profiles in Metabolic Syndrome. International journal of molecular sciences. 2024 Apr; 25(9):. doi: 10.3390/ijms25094909. [PMID: 38732139]
  • Weizong Yang, Ziwei Xin, Qingyu Zhang, Yanlong Zhang, Lixin Niu. The tree peony DREB transcription factor PrDREB2D regulates seed α-linolenic acid accumulation. Plant physiology. 2024 Apr; 195(1):745-761. doi: 10.1093/plphys/kiae082. [PMID: 38365221]
  • Maciej Strzemski, Lubomir Adamec, Sławomir Dresler, Barbara Mazurek, Katarzyna Dubaj, Piotr Stolarczyk, Marcin Feldo, Bartosz J Płachno. Shoots and Turions of Aquatic Plants as a Source of Fatty Acids. Molecules (Basel, Switzerland). 2024 Apr; 29(9):. doi: 10.3390/molecules29092062. [PMID: 38731554]
  • Lena Hong, Peter Zahradka, Carla G Taylor. Differential Modulation by Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) of Mesenteric Fat and Macrophages and T Cells in Adipose Tissue of Obese fa/fa Zucker Rats. Nutrients. 2024 Apr; 16(9):. doi: 10.3390/nu16091311. [PMID: 38732558]
  • Jiaying Huo, Wu Peng, Hui Ouyang, Xiaolong Liu, Ping Wang, Xiongwei Yu, Tingting Xie, Shugang Li. Exploration of markers in oxidized rancidity walnut kernels based on lipidomics and volatolomics. Food research international (Ottawa, Ont.). 2024 Apr; 182(?):114141. doi: 10.1016/j.foodres.2024.114141. [PMID: 38519173]
  • Meijun Du, Mengyue Gong, Gangcheng Wu, Jun Jin, Xingguo Wang, Qingzhe Jin. Conjugated Linolenic Acid (CLnA) vs Conjugated Linoleic Acid (CLA): A Comprehensive Review of Potential Advantages in Molecular Characteristics, Health Benefits, and Production Techniques. Journal of agricultural and food chemistry. 2024 Mar; 72(11):5503-5525. doi: 10.1021/acs.jafc.3c08771. [PMID: 38442367]
  • Zeyan Chen, Yonghui Kong, Zishu Huang, Xiaoyu Zheng, Zhihong Zheng, Defu Yao, Shen Yang, Yueling Zhang, Jude Juventus Aweya. Exogenous alpha-linolenic acid and Vibrio parahaemolyticus induce EPA and DHA levels mediated by delta-6 desaturase to enhance shrimp immunity. International journal of biological macromolecules. 2024 Feb; 257(Pt 2):128583. doi: 10.1016/j.ijbiomac.2023.128583. [PMID: 38056755]
  • Maede Hasanpour, Ali Rezaie, Milad Iranshahy, Mojtaba Yousefi, Satar Saberi, Mehrdad Iranshahi. 1H NMR-based metabolomics study of the lipid profile of omega-3 fatty acid supplements and some vegetable oils. Journal of pharmaceutical and biomedical analysis. 2024 Jan; 238(?):115848. doi: 10.1016/j.jpba.2023.115848. [PMID: 37948777]
  • Smita Eknath Desale, Hariharakrishnan Chidambaram, Subashchandrabose Chinnathambi. Biochemical and Biophysical Characterization of Tau and α-Linolenic Acid Vesicles In Vitro. Methods in molecular biology (Clifton, N.J.). 2024; 2754(?):193-203. doi: 10.1007/978-1-0716-3629-9_11. [PMID: 38512668]
  • Montserrat Cofán, Antonio Checa, M Serra-Mir, I Roth, Cinta Valls-Pedret, Anna Lopez-Illamola, Monica Doménech, Sujatha Rajaram, Iolanda Lázaro, Joan Sabaté, Emilio Ros, Craig E Wheelock, Aleix Sala-Vila. A Walnut-Enriched Diet for 2 Years Changes the Serum Oxylipin Profile in Healthy Older Persons. The Journal of nutrition. 2023 Dec; ?(?):. doi: 10.1016/j.tjnut.2023.12.007. [PMID: 38081585]
  • Ariadna Pinar-Martí, Silvia Fernández-Barrés, Florence Gignac, Cecilia Persavento, Anna Delgado, Dora Romaguera, Iolanda Lázaro, Emilio Ros, Mònica López-Vicente, Jordi Salas-Salvadó, Aleix Sala-Vila, Jordi Júlvez. Red blood cell omega-3 fatty acids and attention scores in healthy adolescents. European child & adolescent psychiatry. 2023 Nov; 32(11):2187-2195. doi: 10.1007/s00787-022-02064-w. [PMID: 35960396]
  • Akiko Harauma, Hajime Yoshihara, Yukino Hoshi, Kei Hamazaki, Toru Moriguchi. Effects of Varied Omega-3 Fatty Acid Supplementation on Postpartum Mental Health and the Association between Prenatal Erythrocyte Omega-3 Fatty Acid Levels and Postpartum Mental Health. Nutrients. 2023 Oct; 15(20):. doi: 10.3390/nu15204388. [PMID: 37892462]
  • Shiyu Yin, Hai Xu, Jiayue Xia, Dengfeng Xu, Yifei Lu, Jihan Sun, Yuanyuan Wang, Wang Liao, Guiju Sun. Effect of alpha-linolenic acid supplementation on cardiovascular risk profile in individuals with obesity or overweight: A systematic review and meta-analysis of randomized controlled trials. Advances in nutrition (Bethesda, Md.). 2023 Sep; ?(?):. doi: 10.1016/j.advnut.2023.09.010. [PMID: 37778442]
  • Qiong Wang, Xingguo Wang. The Effect of Plant-Derived Low-Ratio Linoleic Acid/α-Linolenic Acid on Markers of Glucose Controls: A Systematic Review and Meta-Analysis. International journal of molecular sciences. 2023 Sep; 24(18):. doi: 10.3390/ijms241814383. [PMID: 37762686]
  • Camilla Bertoni, Martina Abodi, Veronica D'Oria, Gregorio P Milani, Carlo Agostoni, Alessandra Mazzocchi. Alpha-Linolenic Acid and Cardiovascular Events: A Narrative Review. International journal of molecular sciences. 2023 Sep; 24(18):. doi: 10.3390/ijms241814319. [PMID: 37762621]
  • Zhen-Zhong Wu, Zhi-Wei Gan, You-Xian Zhang, Si-Bei Chen, Chun-Dan Gan, Kai Yang, Jin-Yan Yang. Transcriptomic and metabolomic perspectives for the growth of alfalfa (Medicago sativa L.) seedlings with the effect of vanadium exposure. Chemosphere. 2023 Sep; 336(?):139222. doi: 10.1016/j.chemosphere.2023.139222. [PMID: 37343642]
  • Mette Jensen, Rikke Poulsen, Rikke Langebæk, Bjørn Munro Jenssen, Johanna Moe, Tomasz M Ciesielski, Rune Dietz, Christian Sonne, Jesper Madsen, Martin Hansen. The metabolome of pink-footed goose: Heavy metals and lipid metabolism. Environmental research. 2023 Aug; 231(Pt 1):116043. doi: 10.1016/j.envres.2023.116043. [PMID: 37156351]
  • Jie Chen, Qin Liu, Longyu Yuan, Wenzhong Shen, Qingxing Shi, Guojun Qi, Ting Chen, Zhenfei Zhang. Osa-miR162a Enhances the Resistance to the Brown Planthopper via α-Linolenic Acid Metabolism in Rice (Oryza sativa). Journal of agricultural and food chemistry. 2023 Aug; 71(31):11847-11859. doi: 10.1021/acs.jafc.3c02637. [PMID: 37493591]
  • Qiong Wang, Xingguo Wang. The Effects of a Low Linoleic Acid/α-Linolenic Acid Ratio on Lipid Metabolism and Endogenous Fatty Acid Distribution in Obese Mice. International journal of molecular sciences. 2023 Jul; 24(15):. doi: 10.3390/ijms241512117. [PMID: 37569494]
  • Wenran Tian, Xianghui Yan, Zheling Zeng, Jiaheng Xia, Junxin Zhao, Guibing Zeng, Ping Yu, Xuefang Wen, Deming Gong. Enzymatic interesterification improves the lipid composition, physicochemical properties and rheological behavior of Cinnamomum camphora seed kernel oil, Pangasius bocourti stearin and perilla seed oil blends. Food chemistry. 2023 Jul; 430(?):137026. doi: 10.1016/j.foodchem.2023.137026. [PMID: 37517373]
  • Nannan Zhang, Yi Zhu, Xuewu Zhang, Kaiping Yang, Xia Yang, Mingyu An, Changlin Tian, Jun Li. Based on network pharmacology and experiments to explore the underlying mechanism of Mahonia bealei (Fortune) Carrière for treating alcoholic hepatocellular carcinoma. Journal of ethnopharmacology. 2023 Jul; ?(?):116919. doi: 10.1016/j.jep.2023.116919. [PMID: 37453621]
  • Yun Wang, Dongmei Liu, Haiyan Yin, Hongqi Wang, Cheng Cao, Junyan Wang, Jia Zheng, Jihong Liu. Transcriptomic and Metabolomic Analyses of the Response of Resistant Peanut Seeds to Aspergillus flavus Infection. Toxins. 2023 06; 15(7):. doi: 10.3390/toxins15070414. [PMID: 37505683]
  • Zhan Li, Ying Wang, Lili Yu, Yongzhe Gu, Lijuan Zhang, Jun Wang, Lijuan Qiu. Overexpression of the Purple Perilla (Perilla frutescens (L.)) FAD3a Gene Enhances Salt Tolerance in Soybean. International journal of molecular sciences. 2023 Jun; 24(13):. doi: 10.3390/ijms241310533. [PMID: 37445708]
  • Hao Han, Jie Li, Lei Tian, Liyuan Pei, Mingming Zheng. Through regulation of the SIRT1 pathway plant sterol ester of α-linolenic acid inhibits pyroptosis thereby attenuating the development of NASH in mice. The Journal of nutritional biochemistry. 2023 Jun; ?(?):109408. doi: 10.1016/j.jnutbio.2023.109408. [PMID: 37336331]
  • Tone-Kari Knutsdatter Østbye, Oddrun Anita Gudbrandsen, Aslaug Drotningsvik, Bente Ruyter, Gerd Marit Berge, Gjermund Vogt, Astrid Nilsson. Different Dietary Ratios of Camelina Oil to Sandeel Oil Influence the Capacity to Synthesise and Deposit EPA and DHA in Zucker Fa/Fa Rats. Nutrients. 2023 May; 15(10):. doi: 10.3390/nu15102344. [PMID: 37242227]
  • Cancan Ma, Cheng Zhang, Xiaoyan Wang, Fuyuan Zhu, Xianrong Wang, Min Zhang, Yifan Duan. Alternative Splicing Analysis Revealed the Role of Alpha-Linolenic Acid and Carotenoids in Fruit Development of Osmanthus fragrans. International journal of molecular sciences. 2023 May; 24(10):. doi: 10.3390/ijms24108666. [PMID: 37240011]
  • Adam Yasgar, Danielle Bougie, Richard T Eastman, Ruili Huang, Misha Itkin, Jennifer Kouznetsova, Caitlin Lynch, Crystal McKnight, Mitch Miller, Deborah K Ngan, Tyler Peryea, Pranav Shah, Paul Shinn, Menghang Xia, Xin Xu, Alexey V Zakharov, Anton Simeonov. Quantitative Bioactivity Signatures of Dietary Supplements and Natural Products. ACS pharmacology & translational science. 2023 May; 6(5):683-701. doi: 10.1021/acsptsci.2c00194. [PMID: 37200814]
  • Mid-Eum Park, Hyun-A Choi, Hyun Uk Kim. Physaria fendleri FAD3-1 overexpression increases ɑ-linolenic acid content in Camelina sativa seeds. Scientific reports. 2023 May; 13(1):7143. doi: 10.1038/s41598-023-34364-9. [PMID: 37130939]
  • Rachel Gervais, Daniel E Rico, Sara M Peňa-Cotrino, Yolaine Lebeuf, P Yvan Chouinard. Effect of postruminal supply of linseed oil in dairy cows: 1. Production performance and fate of postruminally available α-linolenic acid. The Journal of dairy research. 2023 May; 90(2):118-123. doi: 10.1017/s0022029923000250. [PMID: 37138530]
  • H U Xingyao, Liu Hongning, Yan Xiaojun, Chen Zhong, F U Liu, Liu Ge, Chen Xuan, Shang Guangbin. Liver metabolomic characteristics in three different rat models of deficiency based on ultra-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. Journal of traditional Chinese medicine = Chung i tsa chih ying wen pan. 2023 Apr; 43(2):274-285. doi: 10.19852/j.cnki.jtcm.20230201.001. [PMID: 36994515]
  • Jie Xia, Xiuyue Li, Min Lin, Jiani Yu, Zhongda Zeng, Fei Ye, Guanjun Hu, Qiang Miu, Qiuling He, Xiaodan Zhang, Zongsuo Liang. Screening out Biomarkers of Tetrastigma hemsleyanum for Anti-Cancer and Anti-Inflammatory Based on Spectrum-Effect Relationship Coupled with UPLC-Q-TOF-MS. Molecules (Basel, Switzerland). 2023 Mar; 28(7):. doi: 10.3390/molecules28073021. [PMID: 37049789]
  • Lucia Cambiaggi, Akash Chakravarty, Nazek Noureddine, Martin Hersberger. The Role of α-Linolenic Acid and Its Oxylipins in Human Cardiovascular Diseases. International journal of molecular sciences. 2023 Mar; 24(7):. doi: 10.3390/ijms24076110. [PMID: 37047085]
  • Yunpeng Cao, Tingting Fan, Lihu Wang, Lin Zhang, Yanli Li. Large-scale analysis of putative Euphorbiaceae R2R3-MYB transcription factors identifies a MYB involved in seed oil biosynthesis. BMC plant biology. 2023 Mar; 23(1):145. doi: 10.1186/s12870-023-04163-5. [PMID: 36927311]
  • Adriano B Chaves-Filho, Albert S Peixoto, Érique Castro, Tiago E Oliveira, Luiz A Perandini, Rafael J Moreira, Railmara P da Silva, Beatriz P da Silva, Eduardo H Moretti, Alexandre A Steiner, Sayuri Miyamoto, Marcos Y Yoshinaga, William T Festuccia. Futile cycle of β-oxidation and de novo lipogenesis are associated with essential fatty acids depletion in lipoatrophy. Biochimica et biophysica acta. Molecular and cell biology of lipids. 2023 03; 1868(3):159264. doi: 10.1016/j.bbalip.2022.159264. [PMID: 36535597]
  • Zhen Yang, Piaopiao Tan, Zhihao Huang, Zhenzhen Sun, Zhixiang Liu, Lili Liu, Chaozhen Zeng, Jianhua Tong, Mingli Yan. Metabolic profiles in the xylem sap of Brassica juncea exposed to cadmium. Physiologia plantarum. 2023 Mar; 175(2):e13886. doi: 10.1111/ppl.13886. [PMID: 36862032]
  • Gabriela Alarcon, Liliana Sierra, Julieta Roco, Carina Van Nieuwenhove, Analia Medina, Mirta Medina, Susana Jerez. Effects of Cold Pressed Chia Seed Oil Intake on Hematological and Biochemical Biomarkers in Both Normal and Hypercholesterolemic Rabbits. Plant foods for human nutrition (Dordrecht, Netherlands). 2023 Mar; 78(1):179-185. doi: 10.1007/s11130-022-01036-4. [PMID: 36515802]
  • Lisa A Rodway, Samantha D Pauls, Christopher D Pascoe, Harold M Aukema, Carla G Taylor, Peter Zahradka. Distinct effects of α-linolenic acid and docosahexaenoic acid on the expression of genes related to cholesterol metabolism and the response to infection in THP-1 monocytes and immune cells of obese humans. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2023 Mar; 159(?):114167. doi: 10.1016/j.biopha.2022.114167. [PMID: 36621145]
  • Ana Luiza Fontes, Lígia Leão Pimentel, Ana Maria Silva Soares, Maria do Rosário Domingues, Luis Miguel Rodríguez-Alcalá, Ana Maria Gomes. Study of the viability of using lipase-hydrolyzed commercial vegetable oils to produce microbially conjugated linolenic acid-enriched milk. Food chemistry. 2023 Feb; 413(?):135665. doi: 10.1016/j.foodchem.2023.135665. [PMID: 36787664]
  • Lixia Hou, Ming Yang, Xiaomei Sun, Yujin Zhang, Bingkai Wang, Xuede Wang. Effect of Flaxseed Addition on the Quality and Storage Stability of Sesame Paste. Journal of oleo science. 2023 Feb; 72(2):117-130. doi: 10.5650/jos.ess22242. [PMID: 36631101]
  • Pei-Chi Huang, Hsuan Cheng, Yu-Ting Su, Meng-Chuan Huang, Chih-Cheng Hsu, Shang-Jyh Hwang, Shyi-Jang Shin, Wen-Tsan Chang. Interaction among dietary n-3 and n-6 polyunsaturated fatty acid intake, fatty acid desaturase 2 genetic variants, and low-density lipoprotein cholesterol levels in type 2 diabetes patients. Journal of diabetes investigation. 2023 Feb; 14(2):297-308. doi: 10.1111/jdi.13944. [PMID: 36412559]
  • Zhihui Xue, Zhidan Chen, Yankun Wang, Weijiang Sun. Proteomic Analysis Reveals the Association between the Pathways of Glutathione and α-Linolenic Acid Metabolism and Lanthanum Accumulation in Tea Plants. Molecules (Basel, Switzerland). 2023 Jan; 28(3):. doi: 10.3390/molecules28031124. [PMID: 36770792]
  • Kwok Leung Ong, Matti Marklund, Liping Huang, Kerry-Anne Rye, Nicholas Hui, Xiong-Fei Pan, Casey M Rebholz, Hyunju Kim, Lyn M Steffen, Anniek C van Westing, Johanna M Geleijnse, Ellen K Hoogeveen, Yun-Yu Chen, Kuo-Liong Chien, Amanda M Fretts, Rozenn N Lemaitre, Fumiaki Imamura, Nita G Forouhi, Nicholas J Wareham, Anna Birukov, Susanne Jäger, Olga Kuxhaus, Matthias B Schulze, Vanessa Derenji de Mello, Jaakko Tuomilehto, Matti Uusitupa, Jaana Lindström, Nathan Tintle, William S Harris, Keisuke Yamasaki, Yoichiro Hirakawa, Toshiharu Ninomiya, Toshiko Tanaka, Luigi Ferrucci, Stefania Bandinelli, Jyrki K Virtanen, Ari Voutilainen, Tharusha Jayasena, Anbupalam Thalamuthu, Anne Poljak, Sonia Bustamante, Perminder S Sachdev, Mackenzie K Senn, Stephen S Rich, Michael Y Tsai, Alexis C Wood, Markku Laakso, Maria Lankinen, Xiaowei Yang, Liang Sun, Huaixing Li, Xu Lin, Christoph Nowak, Johan Ärnlöv, Ulf Risérus, Lars Lind, Mélanie Le Goff, Cécilia Samieri, Catherine Helmer, Frank Qian, Renata Micha, Adrienne Tin, Anna Köttgen, Ian H de Boer, David S Siscovick, Dariush Mozaffarian, Jason Hy Wu. Association of omega 3 polyunsaturated fatty acids with incident chronic kidney disease: pooled analysis of 19 cohorts. BMJ (Clinical research ed.). 2023 01; 380(?):e072909. doi: 10.1136/bmj-2022-072909. [PMID: 36653033]
  • Magdalena Franczyk-Żarów, Tomasz Tarko, Anna Drahun-Misztal, Izabela Czyzynska-Cichon, Edyta Kus, Renata B Kostogrys. Pomegranate Seed Oil as a Source of Conjugated Linolenic Acid (CLnA) Has No Effect on Atherosclerosis Development but Improves Lipid Profile and Affects the Expression of Lipid Metabolism Genes in apoE/LDLR-/- Mice. International journal of molecular sciences. 2023 Jan; 24(2):. doi: 10.3390/ijms24021737. [PMID: 36675252]
  • Antoni Banaś, Katarzyna Jasieniecka-Gazarkiewicz, Sylwia Klińska. Biosynthesis and Transfer of α-Elostearic Acid In Vivo in Momordica charantia L. Developing Seeds and In Vitro in Microsomal Fractions of These Seeds. International journal of molecular sciences. 2023 Jan; 24(1):. doi: 10.3390/ijms24010848. [PMID: 36614287]
  • R De Giuseppe, I Di Napoli, C E Tomasinelli, A Vincenti, G Biino, E Sommella, L Ferron, P Campiglia, F Ferrara, P M Casali, H Cena. The Effect of Crackers Enriched with Camelina Sativa Oil on Omega-3 Serum Fatty Acid Composition in Older Adults: A Randomized Placebo-Controlled Pilot Trial. The journal of nutrition, health & aging. 2023; 27(6):463-471. doi: 10.1007/s12603-023-1925-x. [PMID: 37357331]
  • Yaguang Zhao, Fenghua Zhang, Bede Mickan, Dan Wang. Inoculation of wheat with Bacillus sp. wp-6 altered amino acid and flavonoid metabolism and promoted plant growth. Plant cell reports. 2023 Jan; 42(1):165-179. doi: 10.1007/s00299-022-02947-x. [PMID: 36348065]
  • Yingjie Ma, Jingyan Song, Xianling Cao, Zhengao Sun. Mechanism of Guilu Erxian ointment based on targeted metabolomics in intervening in vitro fertilization and embryo transfer outcome in older patients with poor ovarian response of kidney-qi deficiency type. Frontiers in endocrinology. 2023; 14(?):1045384. doi: 10.3389/fendo.2023.1045384. [PMID: 36742408]
  • Shinji Yamashita, Azusa Miwa, Yu Hinata, Koji Urita, Kazuo Miyashita, Mikio Kinoshita. Herbal Leaves Can Suppress Oxidation of Perilla Oil. Journal of nutritional science and vitaminology. 2023; 69(5):382-387. doi: 10.3177/jnsv.69.382. [PMID: 37940579]
  • Di Qin, Jiehua Xing, Ping Cheng, Guohui Yu. Genome-wide association and RNA-seq analyses reveal a potential gene related to linolenic acid in soybean seeds. PeerJ. 2023; 11(?):e16138. doi: 10.7717/peerj.16138. [PMID: 37933254]
  • Shaowen Wu, Qunjie Zhang, Wenyang Zhang, Wenjie Huang, Qian Kong, Qinjian Liu, Wenyan Li, Xinlu Zou, Chun-Ming Liu, Shijuan Yan. Linolenic Acid-Derived Oxylipins Inhibit Aflatoxin Biosynthesis in Aspergillus flavus through Activation of Imizoquin Biosynthesis. Journal of agricultural and food chemistry. 2022 Dec; 70(50):15928-15944. doi: 10.1021/acs.jafc.2c06230. [PMID: 36508213]
  • Fatemeh Hajibabaie, Navid Abedpoor, Kamran Safavi, Farzaneh Taghian. Natural remedies medicine derived from flaxseed (secoisolariciresinol diglucoside, lignans, and α-linolenic acid) improve network targeting efficiency of diabetic heart conditions based on computational chemistry techniques and pharmacophore modeling. Journal of food biochemistry. 2022 12; 46(12):e14480. doi: 10.1111/jfbc.14480. [PMID: 36239429]
  • Topi Meuronen, Maria A Lankinen, Johan Kolmert, Vanessa Derenji de Mello, Taisa Sallinen, Jyrki Ågren, Kirsi A Virtanen, Markku Laakso, Craig E Wheelock, Jussi Pihlajamäki, Ursula Schwab. The FADS1 rs174550 Genotype Modifies the n-3 and n-6 PUFA and Lipid Mediator Responses to a High Alpha-Linolenic Acid and High Linoleic Acid Diets. Molecular nutrition & food research. 2022 12; 66(24):e2200351. doi: 10.1002/mnfr.202200351. [PMID: 36367234]
  • Alicia Leikin-Frenkel, Michal Schnaider Beeri, Itzik Cooper. How Alpha Linolenic Acid May Sustain Blood-Brain Barrier Integrity and Boost Brain Resilience against Alzheimer's Disease. Nutrients. 2022 Nov; 14(23):. doi: 10.3390/nu14235091. [PMID: 36501121]
  • Zongzhen Li, Yanhao Lian, Pu Gong, Linhu Song, Junjie Hu, Haifang Pang, Yongzhe Ren, Zeyu Xin, Zhiqiang Wang, Tongbao Lin. Network of the transcriptome and metabolomics reveals a novel regulation of drought resistance during germination in wheat. Annals of botany. 2022 11; 130(5):717-735. doi: 10.1093/aob/mcac102. [PMID: 35972226]
  • Jun-Dae Kim, Teng Zhou, Aijun Zhang, Shumin Li, Anisha A Gupte, Dale J Hamilton, Longhou Fang. AIBP Regulates Metabolism of Ketone and Lipids but Not Mitochondrial Respiration. Cells. 2022 11; 11(22):. doi: 10.3390/cells11223643. [PMID: 36429071]
  • Iraj Yaghoubian, Seyed Ali Mohammad Modarres-Sanavy, Donald L Smith. Plant growth promoting microorganisms (PGPM) as an eco-friendly option to mitigate water deficit in soybean (Glycine max L.): Growth, physio-biochemical properties and oil content. Plant physiology and biochemistry : PPB. 2022 Nov; 191(?):55-66. doi: 10.1016/j.plaphy.2022.09.013. [PMID: 36183672]
  • Pan Liang, Yining Ma, Luyin Yang, Linshen Mao, Qin Sun, Changzhen Sun, Zengjin Liu, Maryam Mazhar, Sijin Yang, Wei Ren. Uncovering the Mechanisms of Active Components from Toad Venom against Hepatocellular Carcinoma Using Untargeted Metabolomics. Molecules (Basel, Switzerland). 2022 Nov; 27(22):. doi: 10.3390/molecules27227758. [PMID: 36431859]
  • Mahmoud Bahmani, Samira Shokri, Zabih Nosrati Akhtar, Saber Abbaszadeh, Aliasghar Manouchehri. The effect of pomegranate seed oil on human health, especially epidemiology of polycystic ovary syndrome; a systematic review. JBRA assisted reproduction. 2022 11; 26(4):631-636. doi: 10.5935/1518-0557.20210121. [PMID: 35257560]
  • Xu-Cong Lv, Qi Wu, Yu-Jie Yuan, Lu Li, Wei-Ling Guo, Xiao-Bin Lin, Zi-Rui Huang, Ping-Fan Rao, Lian-Zhong Ai, Li Ni. Organic chromium derived from the chelation of Ganoderma lucidum polysaccharide and chromium (III) alleviates metabolic syndromes and intestinal microbiota dysbiosis induced by high-fat and high-fructose diet. International journal of biological macromolecules. 2022 Oct; 219(?):964-979. doi: 10.1016/j.ijbiomac.2022.07.211. [PMID: 35940431]
  • William Craig Byrdwell, Robert J Goldschmidt. Fatty Acids of Ten Commonly Consumed Pulses. Molecules (Basel, Switzerland). 2022 Oct; 27(21):. doi: 10.3390/molecules27217260. [PMID: 36364086]
  • Yolanda Carmona-Jiménez, Jose M Igartuburu, Dominico A Guillén-Sánchez, M Valme García-Moreno. Fatty Acid and Tocopherol Composition of Pomace and Seed Oil from Five Grape Varieties Southern Spain. Molecules (Basel, Switzerland). 2022 Oct; 27(20):. doi: 10.3390/molecules27206980. [PMID: 36296576]
  • Qingqing Xu, Xiaoli Qin, Dongming Lan, Xuan Liu, Bo Yang, Sentai Liao, Weifei Wang, Yonghua Wang. Water-in-oil emulsions enriched with alpha-linolenic acid in diacylglycerol form: Stability, formation mechanism and in vitro digestion analysis. Food chemistry. 2022 Oct; 391(?):133201. doi: 10.1016/j.foodchem.2022.133201. [PMID: 35609461]
  • Elisabeth Koch, Michelle Wiebel, Ariane Löwen, Ina Willenberg, Nils Helge Schebb. Characterization of the Oxylipin Pattern and Other Fatty Acid Oxidation Products in Freshly Pressed and Stored Plant Oils. Journal of agricultural and food chemistry. 2022 Oct; 70(40):12935-12945. doi: 10.1021/acs.jafc.2c04987. [PMID: 36173729]
  • Liting Zhang, Yu Xia, Yage Dong, Tianyi Xie, Wenqiang Sun, Sibin Yu. Natural Variation of Fatty Acid Desaturase Gene Affects Linolenic Acid Content and Starch Pasting Viscosity in Rice Grains. International journal of molecular sciences. 2022 Oct; 23(19):. doi: 10.3390/ijms231912055. [PMID: 36233354]
  • Aleix Sala-Vila, Jennifer Fleming, Penny Kris-Etherton, Emilio Ros. Impact of α-Linolenic Acid, the Vegetable ω-3 Fatty Acid, on Cardiovascular Disease and Cognition. Advances in nutrition (Bethesda, Md.). 2022 10; 13(5):1584-1602. doi: 10.1093/advances/nmac016. [PMID: 35170723]
  • Shuai-Ying Shi, Xi-Ning Ding, Zhan-Chao Wang, Xiang-Feng Guo, Gai-Na Zhang, Yong-Hong Hu, Guo-An Shi. [Grain oil quality formation and metabolism-related genes difference expression of Paeonia suffruticosa cv. 'Fengdan' grown at different altitudes.]. Ying yong sheng tai xue bao = The journal of applied ecology. 2022 Oct; 33(11):2987-2996. doi: 10.13287/j.1001-9332.202211.012. [PMID: 36384833]
  • H Huang, Z Gong. Characterization and differentiation of pollen lipidomes and proteomes from different intrafloral stamens in heterantherous Senna bicapsularis. Plant biology (Stuttgart, Germany). 2022 Oct; 24(6):998-1009. doi: 10.1111/plb.13457. [PMID: 35880492]
  • Elif Ayşe Erdogan Eliuz, Erdal Yabalak, Gülden Gökşen, Deniz Ayas. Chemical composition, antifungal activity, antifungal mechanism and interaction manner of the fatty acid of Prunus mahaleb L. with fluconazole. International journal of environmental health research. 2022 Oct; 32(10):2337-2349. doi: 10.1080/09603123.2021.1963686. [PMID: 34382873]
  • Younes M Rashad, Sara A Abdalla, Ahmed S Shehata. Aspergillus flavus YRB2 from Thymelaea hirsuta (L.) Endl., a non-aflatoxigenic endophyte with ability to overexpress defense-related genes against Fusarium root rot of maize. BMC microbiology. 2022 09; 22(1):229. doi: 10.1186/s12866-022-02651-6. [PMID: 36175855]
  • Yujiao Wu, Jie Chen, Guoli Liao, Mengjiao Hu, Qing Zhang, Xianzhi Meng, Tian Li, Mengxian Long, Xiaodong Fan, Qing Yu, Liping Zhang, Guoqing Pan, Zeyang Zhou. Down-Regulation of Lipid Metabolism in the Hepatopancreas of Shrimp Litopenaeus vannamei upon Light and Heavy Infection of Enterocytozoon hepatopenaei: A Comparative Proteomic Study. International journal of molecular sciences. 2022 Sep; 23(19):. doi: 10.3390/ijms231911574. [PMID: 36232879]
  • Mengyue Ren, Yi Wang, Lin Lin, Shaoqiang Li, Qinhai Ma. α-Linolenic Acid Screened by Molecular Docking Attenuates Inflammation by Regulating Th1/Th2 Imbalance in Ovalbumin-Induced Mice of Allergic Rhinitis. Molecules (Basel, Switzerland). 2022 Sep; 27(18):. doi: 10.3390/molecules27185893. [PMID: 36144628]
  • Roshina Rabail, Muhammad Tauseef Sultan, Abdur Rauf Khalid, Aqiba Tus Sahar, Sania Zia, Przemysław Łukasz Kowalczewski, Paweł Jeżowski, Muhammad Asim Shabbir, Rana Muhammad Aadil. Clinical, Nutritional, and Functional Evaluation of Chia Seed-Fortified Muffins. Molecules (Basel, Switzerland). 2022 Sep; 27(18):. doi: 10.3390/molecules27185907. [PMID: 36144643]
  • A Leikin-Frenkel, H Cohen, R Keshet, R Shnerb-GanOr, M Kandel-Kfir, A Harari, K S Hollander, A Shaish, D Harats, Y Kamari. The effect of α-linolenic acid enrichment in perinatal diets in preventing high fat diet-induced SCD1 increased activity and lipid disarray in adult offspring of low density lipoprotein receptor knockout (LDLRKO) mice. Prostaglandins, leukotrienes, and essential fatty acids. 2022 09; 184(?):102475. doi: 10.1016/j.plefa.2022.102475. [PMID: 35940045]
  • Amanda Manoj Malik, Charanjit S Riar. Difference in the nutritional, in vitro, and functional characteristics of protein and fat isolates of two Indian chia (Salvia hispanica L) seed genotypes with variation in seed coat color. Journal of food science. 2022 Sep; 87(9):3872-3887. doi: 10.1111/1750-3841.16276. [PMID: 35982647]
  • Hao Han, Tingli Xue, Jie Li, Yan Guo, Xiaoyu Li, Linqi Wang, Liyuan Pei, Mingming Zheng. Plant sterol ester of α-linolenic acid improved non-alcoholic fatty liver disease by attenuating endoplasmic reticulum stress-triggered apoptosis via activation of the AMPK. The Journal of nutritional biochemistry. 2022 09; 107(?):109072. doi: 10.1016/j.jnutbio.2022.109072. [PMID: 35660097]
  • Junhuan Yang, Xiuwen Wang, Hassan Mohamed, Shaoqi Li, Chen Wu, Wenyue Shi, Futing Xue, Sergio López-García, Yuanda Song. Homologous and Heterologous Expression of Delta(12)-Desaturase in Mucor circinelloides Enhanced the Production of Linolenic Acid. Molecules (Basel, Switzerland). 2022 Aug; 27(17):. doi: 10.3390/molecules27175511. [PMID: 36080278]
  • Akriti Dhyani, Priyanka Kumari Singh, Rajni Chopra, Meenakshi Garg. Enhancement of Oxidative Stability of Perilla Seed Oil by Blending It with Other Vegetable Oils. Journal of oleo science. 2022 Aug; 71(8):1135-1144. doi: 10.5650/jos.ess22013. [PMID: 35793971]
  • Danielle Defries, Kayla Curtis, Jay C Petkau, Shiva Shariati-Ievari, Heather Blewett, Michel Aliani. Patterns of alpha-linolenic acid incorporation into phospholipids in H4IIE cells. The Journal of nutritional biochemistry. 2022 08; 106(?):109014. doi: 10.1016/j.jnutbio.2022.109014. [PMID: 35461904]
  • Svetlana S Gorina, Lucia S Mukhtarova, Tatiana M Iljina, Yana Y Toporkova, Alexander N Grechkin. Detection of divinyl ether synthase CYP74H2 biosynthesizing (11Z)-etheroleic and (1'Z)-colnelenic acids in asparagus (Asparagus officinalis L.). Phytochemistry. 2022 Aug; 200(?):113212. doi: 10.1016/j.phytochem.2022.113212. [PMID: 35460712]
  • Yuan-Yuan Dai, Chun Qin, Gan-Rong Huang, Yan-Chun Qin, Yong-Yi Huang, Yan-Qiang Huang, Li-Juan Zhao. Linolenic Acid-Metronidazole: a Compound Relieving Drug Resistance and Inhibiting Helicobacter pylori. Antimicrobial agents and chemotherapy. 2022 07; 66(7):e0007322. doi: 10.1128/aac.00073-22. [PMID: 35758720]
  • Rosario Martínez, Cristina Mesas, Ana Guzmán, Milagros Galisteo, María López-Jurado, José Prados, Consolación Melguizo, Francisco Bermúdez, Jesus M Porres. Bioavailability and biotransformation of linolenic acid from basil seed oil as a novel source of omega-3 fatty acids tested on a rat experimental model. Food & function. 2022 Jul; 13(14):7614-7628. doi: 10.1039/d2fo00672c. [PMID: 35731538]
  • Xiaoping Huang, Fang Chen, Junfeng Guan, Chao Xu, Yuanyou Li, Dizhi Xie. Beneficial effects of re-feeding high α-linolenic acid diets on the muscle quality, cold temperature and disease resistance of tilapia. Fish & shellfish immunology. 2022 Jul; 126(?):303-310. doi: 10.1016/j.fsi.2022.05.053. [PMID: 35662581]
  • Ruixue Deng, Jiayu Gao, Junpeng Yi, Pu Liu. Could peony seeds oil become a high-quality edible vegetable oil? The nutritional and phytochemistry profiles, extraction, health benefits, safety and value-added-products. Food research international (Ottawa, Ont.). 2022 06; 156(?):111200. doi: 10.1016/j.foodres.2022.111200. [PMID: 35651052]
  • Victoria Aiassa, María Del Rosario Ferreira, Noelia Villafañe, María Eugenia D'Alessandro. α-Linolenic acid rich-chia seed modulates visceral adipose tissue collagen deposition, lipolytic enzymes expression, insulin signaling and GLUT-4 levels in a diet-induced adiposity rodent model. Food research international (Ottawa, Ont.). 2022 06; 156(?):111164. doi: 10.1016/j.foodres.2022.111164. [PMID: 35651030]
  • Aline Miroski de Abreu, Cândice Laís Knöner Copetti, Daniela Barbieri Hauschild, Patricia Faria Di Pietro, Elisabeth Wazlawik. Effects of supplementation with vegetable sources of alpha-linolenic acid (ALA) on inflammatory markers and lipid profile in individuals with chronic kidney disease: A systematic review and meta-analysis. Clinical nutrition (Edinburgh, Scotland). 2022 06; 41(6):1434-1444. doi: 10.1016/j.clnu.2022.02.013. [PMID: 35341608]
  • Leslie Couëdelo, Benjamin Buaud, Hélène Abrous, Ikram Chamekh-Coelho, Didier Majou, Carole Boué-Vaysse. Effect of increased levels of dietary α-linolenic acid on the n-3 PUFA bioavailability and oxidative stress in rat. The British journal of nutrition. 2022 05; 127(9):1320-1333. doi: 10.1017/s0007114521002294. [PMID: 34462019]
  • Yuta Ihara, Takayuki Wakamatsu, Mineyuki Yokoyama, Daisuke Maezawa, Hiroyuki Ohta, Mie Shimojima. Developing a platform for production of the oxylipin KODA in plants. Journal of experimental botany. 2022 05; 73(9):3044-3052. doi: 10.1093/jxb/erab557. [PMID: 35560188]
  • Jing Ma, Jiaying Luo, Maomao He, Xiqing Bian, Jing Li, Yingsi Du, Baoqing Sun, Hao Chen. Umbilical cord blood metabolomics: association with intrauterine hyperglycemia. Pediatric research. 2022 05; 91(6):1530-1535. doi: 10.1038/s41390-021-01516-4. [PMID: 33980991]
  • Jiarui Zheng, Jiefeng Yang, Xiaoyan Yang, Zhengyan Cao, Shaoping Cai, Bo Wang, Jiabao Ye, Mingyue Fu, Weiwei Zhang, Shen Rao, Dan Du, Yongling Liao, Xiongbo Jiang, Feng Xu. Transcriptome and miRNA sequencing analyses reveal the regulatory mechanism of α-linolenic acid biosynthesis in Paeonia rockii. Food research international (Ottawa, Ont.). 2022 05; 155(?):111094. doi: 10.1016/j.foodres.2022.111094. [PMID: 35400468]
  • Nete Kodahl, Heidi Blok Frandsen, Henrik Lütken, Iben Lykke Petersen, Nelly Judith Paredes Andrade, Carmen García-Davila, Marten Sørensen. Lipid composition of the Amazonian 'Mountain Sacha Inchis' including Plukenetia carolis-vegae Bussmann, Paniagua & C.Téllez. Scientific reports. 2022 04; 12(1):6450. doi: 10.1038/s41598-022-10404-8. [PMID: 35440613]
  • Eleni Alexandri, Alexandra Primikyri, Georgios Papamokos, Themistoklis Venianakis, Vasileios K Gkalpinos, Andreas G Tzakos, Andreas Karydis-Messinis, Dimitrios Moschovas, Apostolos Avgeropoulos, Ioannis P Gerothanassis. NMR and computational studies reveal novel aspects in molecular recognition of unsaturated fatty acids with non-labelled serum albumin. The FEBS journal. 2022 Apr; ?(?):. doi: 10.1111/febs.16453. [PMID: 35380736]
  • Deheng Yao, Yukun Chen, Xiaoping Xu, Yuling Lin, Zhongxiong Lai. Exploring the Effect of Methyl Jasmonate on the Expression of microRNAs Involved in Biosynthesis of Active Compounds of Rosemary Cell Suspension Cultures through RNA-Sequencing. International journal of molecular sciences. 2022 Mar; 23(7):. doi: 10.3390/ijms23073704. [PMID: 35409063]
  • Michio Hashimoto, Kentaro Matsuzaki, Koji Maruyama, Shahdat Hossain, Eri Sumiyoshi, Harumi Wakatsuki, Setsushi Kato, Miho Ohno, Yoko Tanabe, Yoko Kuroda, Shuhei Yamaguchi, Koji Kajima, Yasushi Ohizumi, Osamu Shido. Perilla seed oil in combination with nobiletin-rich ponkan powder enhances cognitive function in healthy elderly Japanese individuals: a possible supplement for brain health in the elderly. Food & function. 2022 Mar; 13(5):2768-2781. doi: 10.1039/d1fo03508h. [PMID: 35171190]