5-Aminopentanoic acid (BioDeep_00000001260)
Secondary id: BioDeep_00000399975, BioDeep_00000400314
natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite BioNovoGene_Lab2019
代谢物信息卡片
化学式: C5H11NO2 (117.079)
中文名称: 5-氨基戊酸, 5-氨基颉草酸
谱图信息:
最多检出来源 Homo sapiens(plant) 14.34%
Last reviewed on 2024-07-17.
Cite this Page
5-Aminopentanoic acid. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/5-aminopentanoic_acid (retrieved
2024-12-26) (BioDeep RN: BioDeep_00000001260). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C(C(=O)O)CCCN
InChI: InChI=1S/C5H11NO2/c6-4-2-1-3-5(7)8/h1-4,6H2,(H,7,8)
描述信息
5-Aminopentanoic acid (or 5-aminovalerate) is a lysine degradation product. It can be produced both endogenously or through bacterial catabolism of lysine. 5-aminovalerate is formed via the following multi-step reaction: L-lysine leads to cadverine leads to L-piperideine leads 5-aminovalerate (PMID:405455). In other words it is a metabolite of cadaverine which is formed via the intermediate, 1-piperideine (PMID:6436440). Cadaverine is a foul-smelling diamine compound produced by protein hydrolysis during putrefaction of animal tissue. High levels of 5-aminovalerate in biofluids may indicate bacterial overgrowth or endogenous tissue necrosis. In most cases endogenous 5-aminovalerate is thought to be primarily a microbial metabolite produced by the gut or oral microflora, although it can be produced endogenously. 5-aminovalerate is a normal metabolite present in human saliva, with a tendency to elevated concentration in patients with chronic periodontitis. Bacterial contamination and decomposition of salivary proteins is primarily responsible for elevated salivary levels (PMID 3481959). Beyond being a general waste product, 5-aminovalerate is also believed to act as a methylene homologue of gamma-aminobutyric acid (GABA) and functions as a weak GABA agonist (PMID:4031870). It is also known as an antifibrinolytic amino acid analog and so it functions as a weak inhibitor of the blood clotting pathway (PMID:6703712). 5- aminovalerate is an in vivo substrate of 4-aminobutyrate:2-oxoglutarate aminotransferase (PMID:4031870). It can be found in Corynebacterium (PMID:27717386).
5-aminopentanoic acid is a normal metabolite present in human saliva, with a tendency to elevated concentration in patients with chronic periodontitis. Bacterial contamination and decomposition of salivary proteins is responsible for the elevated salivary levels (PMID 3481959) [HMDB]
5-Aminovaleric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=660-88-8 (retrieved 2024-07-17) (CAS RN: 660-88-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
5-Aminovaleric acid is believed to act as a methylene homologue of gamma-aminobutyric acid (GABA) and functions as a weak GABA agonist.
同义名列表
21 个代谢物同义名
5-Aminovaleric acid hydrochloride; delta-Amino-N-valeric acid; delta-Aminovaleric acid; 5-amino-pentanoic acid; delta-Amino-N-valerate; Δ-amino-N-valeric acid; 5-Amino-N-valeric acid; 5-Aminopentanoic acid; delta-Aminovalerate; 5-Aminovaleric acid; Δ-aminovaleric acid; 5-Amino-pentanoate; Δ-amino-N-valerate; 5-Amino-N-valerate; 5-Aminopentanoate; 5-Aminovalerate; Δ-aminovalerate; DANVA; 5-Aminopentanoate; 5-Aminovaleric acid; 5-Aminopentanoic acid
数据库引用编号
38 个数据库交叉引用编号
- ChEBI: CHEBI:15887
- KEGG: C00431
- KEGGdrug: D78140
- PubChem: 138
- HMDB: HMDB0003355
- Metlin: METLIN6902
- ChEMBL: CHEMBL284116
- LipidMAPS: LMFA01100040
- MetaCyc: 5-AMINOPENTANOATE
- KNApSAcK: C00052162
- foodb: FDB023151
- chemspider: 135
- CAS: 660-88-8
- MoNA: PR100327
- MoNA: KO000212
- MoNA: KO002311
- MoNA: KO002309
- MoNA: PS075503
- MoNA: KO002312
- MoNA: PS075501
- MoNA: KO002308
- MoNA: PR100762
- MoNA: PS075504
- MoNA: KO002310
- MoNA: KO000210
- MoNA: PS075502
- MoNA: KO000211
- PMhub: MS000000223
- PDB-CCD: DAV
- PDB-CCD: KFB
- 3DMET: B00111
- NIKKAJI: J38.132B
- RefMet: 5-Aminopentanoic acid
- medchemexpress: HY-W015878
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-957
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-306
- PubChem: 3720
- KNApSAcK: 15887
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
0 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
2 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Mingming Zhao, Haoran Wei, Chenze Li, Rui Zhan, Changjie Liu, Jianing Gao, Yaodong Yi, Xiao Cui, Wenxin Shan, Liang Ji, Bing Pan, Si Cheng, Moshi Song, Haipeng Sun, Huidi Jiang, Jun Cai, Minerva T Garcia-Barrio, Y Eugene Chen, Xiangbao Meng, Erdan Dong, Dao Wen Wang, Lemin Zheng. Gut microbiota production of trimethyl-5-aminovaleric acid reduces fatty acid oxidation and accelerates cardiac hypertrophy.
Nature communications.
2022 04; 13(1):1757. doi:
10.1038/s41467-022-29060-7
. [PMID: 35365608] - Mark J Henderson, Kathleen A Trychta, Shyh-Ming Yang, Susanne Bäck, Adam Yasgar, Emily S Wires, Carina Danchik, Xiaokang Yan, Hideaki Yano, Lei Shi, Kuo-Jen Wu, Amy Q Wang, Dingyin Tao, Gergely Zahoránszky-Kőhalmi, Xin Hu, Xin Xu, David Maloney, Alexey V Zakharov, Ganesha Rai, Fumihiko Urano, Mikko Airavaara, Oksana Gavrilova, Ajit Jadhav, Yun Wang, Anton Simeonov, Brandon K Harvey. A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
Cell reports.
2021 04; 35(4):109040. doi:
10.1016/j.celrep.2021.109040
. [PMID: 33910017] - Olli Kärkkäinen, Tomi Tuomainen, Ville Koistinen, Marjo Tuomainen, Jukka Leppänen, Tuomo Laitinen, Marko Lehtonen, Jaana Rysä, Seppo Auriola, Antti Poso, Pasi Tavi, Kati Hanhineva. Whole grain intake associated molecule 5-aminovaleric acid betaine decreases β-oxidation of fatty acids in mouse cardiomyocytes.
Scientific reports.
2018 08; 8(1):13036. doi:
10.1038/s41598-018-31484-5
. [PMID: 30158657] - Dorottya Nagy-Szakal, Dinesh K Barupal, Bohyun Lee, Xiaoyu Che, Brent L Williams, Ellie J R Kahn, Joy E Ukaigwe, Lucinda Bateman, Nancy G Klimas, Anthony L Komaroff, Susan Levine, Jose G Montoya, Daniel L Peterson, Bruce Levin, Mady Hornig, Oliver Fiehn, W Ian Lipkin. Insights into myalgic encephalomyelitis/chronic fatigue syndrome phenotypes through comprehensive metabolomics.
Scientific reports.
2018 07; 8(1):10056. doi:
10.1038/s41598-018-28477-9
. [PMID: 29968805] - Shawna L MacKinnon, Cheryl Craft. Analysis of Betaines from Marine Algae Using LC-MS-MS.
Methods in molecular biology (Clifton, N.J.).
2015; 1308(?):267-75. doi:
10.1007/978-1-4939-2684-8_17
. [PMID: 26108512] - Jia V Li, Jasmina Saric, Yulan Wang, Jennifer Keiser, Jürg Utzinger, Elaine Holmes. Chemometric analysis of biofluids from mice experimentally infected with Schistosoma mansoni.
Parasites & vectors.
2011 Sep; 4(?):179. doi:
10.1186/1756-3305-4-179
. [PMID: 21929782] - Silke Hack, Babette Wörlein, Georg Höfner, Jörg Pabel, Klaus T Wanner. Development of imidazole alkanoic acids as mGAT3 selective GABA uptake inhibitors.
European journal of medicinal chemistry.
2011 May; 46(5):1483-98. doi:
10.1016/j.ejmech.2011.01.042
. [PMID: 21353350] - Francois-Pierre J Martin, Norbert Sprenger, Ivan Montoliu, Serge Rezzi, Sunil Kochhar, Jeremy K Nicholson. Dietary modulation of gut functional ecology studied by fecal metabonomics.
Journal of proteome research.
2010 Oct; 9(10):5284-95. doi:
10.1021/pr100554m
. [PMID: 20806900] - Hui-Ming Lin, Matthew P G Barnett, Nicole C Roy, Nigel I Joyce, Shuotun Zhu, Kelly Armstrong, Nuala A Helsby, Lynnette R Ferguson, Daryl D Rowan. Metabolomic analysis identifies inflammatory and noninflammatory metabolic effects of genetic modification in a mouse model of Crohn's disease.
Journal of proteome research.
2010 Apr; 9(4):1965-75. doi:
10.1021/pr901130s
. [PMID: 20141220] - Jasmina Saric, Jia V Li, Yulan Wang, Jennifer Keiser, Kirill Veselkov, Stephan Dirnhofer, Ivan K S Yap, Jeremy K Nicholson, Elaine Holmes, Jürg Utzinger. Panorganismal metabolic response modeling of an experimental Echinostoma caproni infection in the mouse.
Journal of proteome research.
2009 Aug; 8(8):3899-911. doi:
10.1021/pr900185s
. [PMID: 19489577] - Jasmina Saric, Jia V Li, Yulan Wang, Jennifer Keiser, Jake G Bundy, Elaine Holmes, Jürg Utzinger. Metabolic profiling of an Echinostoma caproni infection in the mouse for biomarker discovery.
PLoS neglected tropical diseases.
2008 Jul; 2(7):e254. doi:
10.1371/journal.pntd.0000254
. [PMID: 18596973] - Sandrine P Claus, Tsz M Tsang, Yulan Wang, Olivier Cloarec, Eleni Skordi, François-Pierre Martin, Serge Rezzi, Alastair Ross, Sunil Kochhar, Elaine Holmes, Jeremy K Nicholson. Systemic multicompartmental effects of the gut microbiome on mouse metabolic phenotypes.
Molecular systems biology.
2008; 4(?):219. doi:
10.1038/msb.2008.56
. [PMID: 18854818] - Sara Schaarschmidt, Joachim Kopka, Jutta Ludwig-Müller, Bettina Hause. Regulation of arbuscular mycorrhization by apoplastic invertases: enhanced invertase activity in the leaf apoplast affects the symbiotic interaction.
The Plant journal : for cell and molecular biology.
2007 Aug; 51(3):390-405. doi:
10.1111/j.1365-313x.2007.03150.x
. [PMID: 17521407] - Olga Revelles, Manuel Espinosa-Urgel, Soeren Molin, Juan L Ramos. The davDT operon of Pseudomonas putida, involved in lysine catabolism, is induced in response to the pathway intermediate delta-aminovaleric acid.
Journal of bacteriology.
2004 Jun; 186(11):3439-46. doi:
10.1128/jb.186.11.3439-3446.2004
. [PMID: 15150230] - Päivi A Teivainen, Knut A Eliassen, Edward M Rubin, Srdjan Djurovic, Kåre Berg. Human apoB contributes to increased serum total apo(a) level in LPA transgenic mice.
Lipids in health and disease.
2004 May; 3(?):8. doi:
10.1186/1476-511x-3-8
. [PMID: 15134578] - S Frank, A Hrzenjak, K Kostner, W Sattler, G M Kostner. Effect of tranexamic acid and delta-aminovaleric acid on lipoprotein(a) metabolism in transgenic mice.
Biochimica et biophysica acta.
1999 Apr; 1438(1):99-110. doi:
10.1016/s1388-1981(99)00044-x
. [PMID: 10216284] - A K Tan, D L Eaton. Activation and characterization of procarboxypeptidase B from human plasma.
Biochemistry.
1995 May; 34(17):5811-6. doi:
10.1021/bi00017a012
. [PMID: 7727441] - S J Flora, S Das Gupta. Effect of single gallium arsenide exposure on some biochemical variables in porphyrin metabolism in rats.
Journal of applied toxicology : JAT.
1992 Oct; 12(5):333-4. doi:
10.1002/jat.2550120508
. [PMID: 1447479] - A V Rodionov, E V Trapezov, B A Dmitriev, O V Chakhava. [Identification of 5-aminovaleric acid as a characteristic product of metabolism of various Clostridium species].
Bioorganicheskaia khimiia.
1988 Jul; 14(7):944-51. doi:
NULL
. [PMID: 3190778] - T Kasai, S Kiriyama. Identification of delta-aminovaleric acid in feces of SPF-rats and its absence in those of germ-free rats.
Journal of nutritional science and vitaminology.
1988 Apr; 34(2):261-4. doi:
10.3177/jnsv.34.261
. [PMID: 3183776] - S Samuels, I Fish, S A Schwartz. Anticonvulsant activity of glycylglycine and delta-aminovaleric acid: evidence for glutamine exchange in amino acid transport.
Journal of neurochemistry.
1983 Apr; 40(4):1063-8. doi:
10.1111/j.1471-4159.1983.tb08093.x
. [PMID: 6834037]