Niacinamide (BioDeep_00000000186)
Secondary id: BioDeep_00000399877, BioDeep_00000400349, BioDeep_00000860018
natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite Toxin BioNovoGene_Lab2019 Volatile Flavor Compounds
代谢物信息卡片
化学式: C6H6N2O (122.0480106)
中文名称: 烟酰胺, 尼克酰胺
谱图信息:
最多检出来源 Homo sapiens(blood) 0.11%
Last reviewed on 2024-07-01.
Cite this Page
Niacinamide. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/niacinamide (retrieved
2024-11-21) (BioDeep RN: BioDeep_00000000186). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C1=CC(=CN=C1)C(=O)N
InChI: InChI=1S/C6H6N2O/c7-6(9)5-2-1-3-8-4-5/h1-4H,(H2,7,9)
描述信息
Nicotinamide is a white powder. (NTP, 1992)
Nicotinamide is a pyridinecarboxamide that is pyridine in which the hydrogen at position 3 is replaced by a carboxamide group. It has a role as an EC 2.4.2.30 (NAD(+) ADP-ribosyltransferase) inhibitor, a metabolite, a cofactor, an antioxidant, a neuroprotective agent, an EC 3.5.1.98 (histone deacetylase) inhibitor, an anti-inflammatory agent, a Sir2 inhibitor, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite, a mouse metabolite, a human urinary metabolite and a geroprotector. It is a vitamin B3, a pyridinecarboxamide and a pyridine alkaloid. It is functionally related to a nicotinic acid.
An important compound functioning as a component of the coenzyme NAD. Its primary significance is in the prevention and/or cure of blacktongue and pellagra. Most animals cannot manufacture this compound in amounts sufficient to prevent nutritional deficiency and it therefore must be supplemented through dietary intake.
Niacinamide is a metabolite found in or produced by Escherichia coli (strain K12, MG1655).
Nicotinamide is a natural product found in Mus musculus, Euonymus grandiflorus, and other organisms with data available.
Niacinamide is the active form of vitamin B3 and a component of the coenzyme nicotinamide adenine dinucleotide (NAD). Niacinamide acts as a chemo- and radio-sensitizing agent by enhancing tumor blood flow, thereby reducing tumor hypoxia. This agent also inhibits poly(ADP-ribose) polymerases, enzymes involved in the rejoining of DNA strand breaks induced by radiation or chemotherapy.
Nicotinamide is a uremic toxin. Uremic toxins can be subdivided into three major groups based upon their chemical and physical characteristics: 1) small, water-soluble, non-protein-bound compounds, such as urea; 2) small, lipid-soluble and/or protein-bound compounds, such as the phenols and 3) larger so-called middle-molecules, such as beta2-microglobulin. Chronic exposure of uremic toxins can lead to a number of conditions including renal damage, chronic kidney disease and cardiovascular disease. Niacinamide or vitamin B3 is an important compound functioning as a component of the coenzyme NAD. Its primary significance is in the prevention and/or cure of blacktongue and pellagra. Most animals cannot manufacture this compound in amounts sufficient to prevent nutritional deficiency and it therefore must be supplemented through dietary intake. Niacinamide is used to increase the effect of radiation therapy on tumor cells. Niacin (nicotinic acid) and niacinamide, while both labeled as vitamin B3 also have different applications. Niacinamide is useful in arthritis and early-onset type I diabetes while niacin is an effective reducer of high cholesterol levels.
Niacinamide is a metabolite found in or produced by Saccharomyces cerevisiae.
An important compound functioning as a component of the coenzyme NAD. Its primary significance is in the prevention and/or cure of blacktongue and PELLAGRA. Most animals cannot manufacture this compound in amounts sufficient to prevent nutritional deficiency and it therefore must be supplemented through dietary intake.
See also: Adenosine; Niacinamide (component of); Dapsone; niacinamide (component of); Adenosine; Niacinamide; Titanium Dioxide (component of) ... View More ...
Niacinamide, also known as nicotinamide (NAM), is a form of vitamin B3 found in food and used as a dietary supplement and medication. Niacinamide belongs to the class of organic compounds known as nicotinamides. These are heterocyclic aromatic compounds containing a pyridine ring substituted at position 3 by a carboxamide group. Its primary significance is in the prevention and/or cure of blacktongue and pellagra. The structure of nicotinamide consists of a pyridine ring to which a primary amide group is attached in the meta position. It is an amide of nicotinic acid. As an aromatic compound, it undergoes electrophilic substitution reactions and transformations of its two functional groups. Niacinamide and phosphoribosyl pyrophosphate can be converted into nicotinic acid mononucleotide and phosphate by the enzyme nicotinamide phosphoribosyltransferase. In humans, niacinamide is involved in the metabolic disorder called the nad+ signalling pathway (cancer). Niacinamide is an odorless tasting compound. Outside of the human body, niacinamide is found, on average, in the highest concentration within a few different foods, such as common sages, cow milk, and cocoa beans and in a lower concentration in common pea. Niacinamide has also been detected, but not quantified in several different foods, such as yardlong beans, roselles, apples, oyster mushrooms, and swiss chards. Niacinamide occurs in trace amounts mainly in meat, fish, nuts, and mushrooms, as well as to a lesser extent in some vegetables. It is commonly added to cereals and other foods. Many multivitamins contain 20–30 mg of vitamin B3 and it is also available in higher doses. Most animals cannot manufacture this compound in amounts sufficient to prevent nutritional deficiency and it therefore must be supplemented through dietary intake.
COVID info from COVID-19 Disease Map, WikiPathways, PDB, Protein Data Bank, clinicaltrial, clinicaltrials, clinical trial, clinical trials
A pyridinecarboxamide that is pyridine in which the hydrogen at position 3 is replaced by a carboxamide group.
Widespread in plants, e.g. rice, yeast and fungi. Dietary supplement, may be used in infant formulas
Nicotinamide. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=98-92-0 (retrieved 2024-07-01) (CAS RN: 98-92-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Nicotinamide is a form of vitamin B3 or niacin. Nicotinamide Hydrochloride inhibits SIRT2 activity (IC50: 2 μM). Nicotinamide also inhibits SIRT1. Nicotinamide increases cellular NAD+, ATP, ROS levels. Nicotinamide inhibits tumor growth and improves survival. Nicotinamide also has anti-HBV activity[1][2][3][4].
Nicotinamide is a form of vitamin B3 or niacin. Nicotinamide Hydrochloride inhibits SIRT2 activity (IC50: 2 μM). Nicotinamide also inhibits SIRT1. Nicotinamide increases cellular NAD+, ATP, ROS levels. Nicotinamide inhibits tumor growth and improves survival. Nicotinamide also has anti-HBV activity[1][2][3][4].
Nicotinamide is a form of vitamin B3 or niacin. Nicotinamide Hydrochloride inhibits SIRT2 activity (IC50: 2 μM). Nicotinamide also inhibits SIRT1. Nicotinamide increases cellular NAD+, ATP, ROS levels. Nicotinamide inhibits tumor growth and improves survival. Nicotinamide also has anti-HBV activity[1][2][3][4].
同义名列表
286 个代谢物同义名
Nicotinamide, BioReagent, suitable for cell culture, suitable for insect cell culture; Niacinamide, Pharmaceutical Secondary Standard; Certified Reference Material; Niacinamide, United States Pharmacopeia (USP) Reference Standard; Nicotinamide, European Pharmacopoeia (EP) Reference Standard; Nicotinamide, British Pharmacopoeia (BP) Reference Standard; Niacinamide;Nicotinic acid amide;Vitamin B3; Vitamin PP; InChI=1/C6H6N2O/c7-6(9)5-2-1-3-8-4-5/h1-4H,(H2,7,9; Derma Pella Cleanser for Sensitive and Dry Skin; Nicotinamide (Niacinamide), analytical standard; SISEUNDEUSI LUMINANT MASK PACK STEP2(WHITENING); LEBODY LAB RENEWAL DUAL EFFECT IDEBENONE SERUM; PAPA RECIPE BOMBEE BRIGHTENING HONEY MASK PACK; MUSTUS DAILY HARVEST SQUEEZE TONE UP MASK PACK; Niacinamide, meets USP testing specifications; Nicotinamide, Vetec(TM) reagent grade, >=98\\%; The Hayan Cherry Blossom Brightening Essence; LEBODY LAB RENEWAL DUAL EFFECT PEPTIDE SERUM; Derma Pella Facial Cleanser for Normal Skin; Niacinamide;Nicotinic acid amide;Vitamin B3; AROCELL X BELLE J SUPER POWER CELL AMPOULE; J9 ULTRA ADVANCED INTENSIVE SCALP SERUM V2; Nicotinamide, tested according to Ph.Eur.; Nicotinamide 10 microg/mL in Acetonitrile; DERMAHAN THE WHITENING MOISTURIZING MASK; MIZON ENJOY VITAL UP TIME Whitening Mask; DERLADIE HerbalExtract BodySolution MIST; Bk Cell 5days Of Secret Snow Whitening; DR.ALTHEA POWER WHITENING GLUTATHIONE; Skin Project Ya Cooling Celluven Mask; AN ADC SP INTENSIVE MOISTURE ESSENCE; THE SKIN HOUSE Vital Bright EyeCream; THE SKIN HOUSE Vital Bright Emulsion; FRESH MANDARIN AROMATHERAPY MASK27g; COSMEPURE BRIGHTENING CALMING TONER; Nicotinamide, puriss., 99.0-101.0\\%; Niveola P.H.c 3d Festival Mask Pack; Nicotinamide, >=98\\% (HPLC), powder; THE SKIN HOUSE Vital BrightEmulsion; ARILAC Brightening Mask Sheet Pack; Nicotinamide 1.0 mg/ml in Methanol; DR. GLODERM TIME TO WHITENING MASK; THE SKIN HOUSE Vital Bright Toner; Cellpium premiumEX hybrid essence; Ala-C Snail Cell Reparing Essence; Amid kyseliny nikotinove [Czech]; THE SKIN HOUSE Vital BrightSerum; EVECODE THREAD LIFTING MASK PACK; Pharmagenix brand OF niacinamide; THE SKIN HOUSE Vital BrightCream; Nicotinamide, niacin, vitamin B3; Pyridine-3-carboxylic acid amide; Daily Whitening Care Sheet Mask; Cellpium premiumEX hybrid toner; Edge Cutimal Cat Whitening Mask; Revital Perfecting Dual Ampoule; Cellpium super richness ampoule; NIACIN (AS NIACINAMIDE) [VANDF]; 3-Pyridinecarboxylic acid amide; by selected hyaluron day serum; Jenapharm brand OF niacinamide; SFERANGS VITA C CAPSULEBOOSTER; Nicotinamide, >=98.5\\% (HPLC); CAVIALL Wrinkle-Free PowerTox; Cellpium double essence toner; Shieldlife Whitening Ion Mask; Ultra Whitening First Essence; NYAAM NYAAM Skin Reborn Serum; Nicotinamide, >=99.5\\% (HPLC); Primerose Snail Hydro Essence; Dr Cellinme Skin Care Ampoule; COSMEPURE BRIGHTENING CALMING; Niacinamide pharmagenix brand; NIACINAMIDE COMPONENT OF TPN; AAPE Continuous Renewal Mask; NICOTINAMIDUM [WHO-IP LATIN]; DR. GLODERM TABRX WHITENING; Jenapharm, Nicotinsäureamid; NICOTINAMIDE (EP MONOGRAPH); NIACINAMIDE [USP MONOGRAPH]; BRIGHTUNING PEPTIDE AMPOULE; Niacinamide jenapharm brand; NIACINAMIDE (USP MONOGRAPH); Miracle Moisturizer Essence; NICOTINAMIDE [EP MONOGRAPH]; Astra brand OF niacinamide; DPC Whitening Booster Mask; Nicotinsäureamid Jenapharm; .beta.-Pyridinecarboxamide; Pellagra-Preventing Factor; Nikotinsaeureamid [German]; Nicotinamida (INN-Spanish); Nicotinamida [INN-Spanish]; Merck brand OF niacinamide; AAPE Nutrient Facial Toner; NICOTINAMIDE (EP IMPURITY); NICOTINAMIDE [EP IMPURITY]; AROCELL TIME REVERSE K I T; Nicotinamidum (INN-Latin); Nicotinamidum [INN-Latin]; Nicotinsaureamid [German]; Nicotinamide (Vitamin B3); TPN COMPONENT NIACINAMIDE; m-(Aminocarbonyl)pyridine; CELLBN MILKY TONE-UPCREAM; NYAAM NYAAM Peptide Serum; 3-(aminocarbonyl)pyridine; NIACINAMIDE [ORANGE BOOK]; Pyridine-3-carboxylamide; Nicotinamide-(amide-15N); beta-Pyridinecarboxamide; Amid kyseliny nikotinove; Miracle Laser Skin Mist; Niacinamide merck brand; Nicotinamide (Standard); Niacinamide astra brand; Ultra V AQUA SHINE MASK; CELLPIUM REAL MASK PACK; Nicotinamide (JP17/INN); Niacin (as niacinamide); Pyridine, 3-carbamoyl-; NYAAM NYAAM Vita Serum; Vita C Bright EyeCream; Dr Cellinme Mask Sheet; pyridine-3-carboxamide; Ultra Whitening Ample; Niacinamide Face Mask; 3-Pyridinecarboxamide; Royal Ginseng Essence; NICOTINAMIDE [WHO-IP]; Nicotinamidum (Latin); b-Pyridinecarboxamide; DPC Aura Booster Mask; Β-pyridinecarboxamide; NICOTINAMIDE [WHO-DD]; 3 Pyridinecarboxamide; NICOTINAMIDE (MART.); Dr. Color Effect Red; NICOTINAMIDUM [HPUS]; NIACINAMIDE (USP-RS); Mediatric (Salt/Mix); Nicotinic acid amide; Fantastic LightCream; MOISTIE PURE ESSENCE; NIACINAMIDE [USP-RS]; NICOTINAMIDE [MART.]; NIACINAMIDE [VANDF]; niacin - Vitamin B3; INTOMEDI HR PEPTIDE; Royal GinsengLotion; Nicotine acid amide; 3-Carbamoylpyridine; Vita C Bright Serum; Vita C Bright Toner; RGO HYDRATION TONER; Royal Ginseng Toner; APLIN SPOT ALL KILL; NICOTINAMIDE [JAN]; NIACINAMIDE [INCI]; NIACINAMIDE [HSDB]; Niacinamide [USAN]; JUVEHEAL W Ampoule; Nicotinamide [INN]; APLIN SPOT REMOVER; Royal GinsengCream; TANIA PURE ESSENCE; VITA C BRIGHTCREAM; TOAS Rejuvenation; Ginseng Whitening; KARATICA I M CURE; Niacinamide [USP]; CellExosome HE HR; NIACINAMIDE [FCC]; Niacinamide (USP); AAPE Skin Ampoule; Nikotinsaeureamid; Nicotinsaeureamid; NICOTINAMIDE [MI]; Nicotinamide,(S); Nicotinate amide; Nicotinsaureamid; Vitamin B3 amide; NIACINAMIDE (II); NIACINAMIDE [II]; Nicotinic amide; UNII-25X51I8RD4; TANIA PURECREAM; Costem cell 5 N; Ultra Whitening; Vitamin B (VAN); 3-Amidopyridine; CellExosome HR; CellExosome SB; Tox21_111202_1; Nicotililamido; Pahaba Control; Nicotine amide; nicotin-amide; Niacotinamide; Nicotylamidum; WLN: T6NJ CVZ; Pelonin amide; Delonin amide; Nicotinamidum; Tox21_201716; B 3, Vitamin; Nicotinamide; Nicotinamida; Austrovit PP; Tox21_302776; Nicosylamide; Tox21_111202; Nicotilamide; Nicotylamide; CAS-98-92-0; Nandervit-N; Nikotinamid; Niacinamide; Witamina PP; Inovitan PP; Propamine a; B3, Vitamin; Niocinamide; Nicotinamid; Vitamin B 3; Nicamindon; Niacinamid; Nicotamide; Nicovitina; Vi-Nicotyl; vitamin PP; Dr. Cellmo; Niko-tamin; Vitamin B3; Acid amide; Nictoamide; Nicosedine; Aminicotin; Celonia CM; 25X51I8RD4; Amixicotyn; NI-NICOTYL; Enduramide; Niavit PP; Mediatric; Nicosan 2; Vitamin B; Nicomidol; Savacotyl; Nicovitol; Amnicotin; Factor pp; PP-Faktor; Nicozymin; BREXTEM S; AI3-02906; Vi-noctyl; Nicobion; Nicamina; Amide PP; Hansamid; Endobion; Niozymin; Nicofort; Nicamide; Niacevit; Pelmine; Nicogen; Nicotol; Niamide; Dipigyl; Nicasir; Benicot; A11HA01; Papulex; Dipegyl; Nicovel; Nicamid; Nicovit; Pelmin; niacin; Nicota; 1yc5; NAM; Nicotinamide; Nicotinamide; Nicotinamide
数据库引用编号
54 个数据库交叉引用编号
- ChEBI: CHEBI:17154
- KEGG: C00153
- KEGGdrug: D00036
- PubChem: 936
- HMDB: HMDB0001406
- Metlin: METLIN1497
- DrugBank: DB02701
- ChEMBL: CHEMBL1140
- Wikipedia: Nicotinamide
- MeSH: Niacinamide
- ChemIDplus: 0000098920
- MetaCyc: NIACINAMIDE
- KNApSAcK: C00000209
- foodb: FDB012485
- chemspider: 911
- CAS: 98-92-0
- MoNA: KO003582
- MoNA: PS100902
- MoNA: PR100182
- MoNA: LU025103
- MoNA: LU025101
- MoNA: RP022301
- MoNA: PS100903
- MoNA: PS030802
- MoNA: PS100905
- MoNA: PS030804
- MoNA: RP022302
- MoNA: PS030801
- MoNA: PR100402
- MoNA: PS030803
- MoNA: LU025102
- MoNA: KO003586
- MoNA: PS100901
- MoNA: PR100181
- MoNA: LU025104
- MoNA: LU025105
- MoNA: PS100904
- MoNA: RP022303
- MoNA: PR100401
- MoNA: KO003583
- MoNA: KO003585
- MoNA: ML005101
- MoNA: LU025106
- MoNA: KO003584
- PMhub: MS000000437
- MetaboLights: MTBLC17154
- PDB-CCD: NCA
- 3DMET: B00044
- NIKKAJI: J3.988H
- RefMet: Niacinamide
- medchemexpress: HY-B0150
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-59
- PubChem: 3453
- KNApSAcK: 17154
分类词条
相关代谢途径
Reactome(22)
- Metabolism
- Metabolism of vitamins and cofactors
- Disease
- DNA Repair
- Signaling Pathways
- Cell Cycle
- Cell Cycle, Mitotic
- M Phase
- Metabolism of water-soluble vitamins and cofactors
- Cellular responses to stimuli
- Cellular responses to stress
- Infectious disease
- Gene expression (Transcription)
- RNA Polymerase II Transcription
- Generic Transcription Pathway
- Infection with Mycobacterium tuberculosis
- Bacterial Infection Pathways
- Viral Infection Pathways
- Intracellular signaling by second messengers
- PI3K/AKT Signaling
- Nicotinate metabolism
- Nicotinamide salvaging
PlantCyc(0)
代谢反应
1035 个相关的代谢反应过程信息。
Reactome(575)
- Gene expression (Transcription):
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- RNA Polymerase II Transcription:
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- Generic Transcription Pathway:
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- Epigenetic regulation of gene expression:
Chromatin with acetylated H3 + NAD ⟶ 2'-O-acetyl-ADP-ribose + Chromatin + NAM
- Negative epigenetic regulation of rRNA expression:
Chromatin with acetylated H3 + NAD ⟶ 2'-O-acetyl-ADP-ribose + Chromatin + NAM
- SIRT1 negatively regulates rRNA expression:
Chromatin with acetylated H3 + NAD ⟶ 2'-O-acetyl-ADP-ribose + Chromatin + NAM
- Cell Cycle:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Cell Cycle, Mitotic:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- M Phase:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Mitotic Metaphase and Anaphase:
A0A3Q1LKM4 + H2O + NAD ⟶ 2'-O-acetyl-ADP-ribose + A0A3Q1LKM4 + NAM
- Mitotic Anaphase:
A0A3Q1LKM4 + H2O + NAD ⟶ 2'-O-acetyl-ADP-ribose + A0A3Q1LKM4 + NAM
- Nuclear Envelope (NE) Reassembly:
A0A3Q1LKM4 + H2O + NAD ⟶ 2'-O-acetyl-ADP-ribose + A0A3Q1LKM4 + NAM
- Initiation of Nuclear Envelope (NE) Reformation:
A0A3Q1LKM4 + H2O + NAD ⟶ 2'-O-acetyl-ADP-ribose + A0A3Q1LKM4 + NAM
- DNA Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- DNA Double-Strand Break Repair:
Ac-K432,K526,K604-RBBP8 homotetramer + NAD ⟶ 2'-O-acetyl-ADP-ribose + NAM + RBBP8 homotetramer
- Homology Directed Repair:
Ac-K432,K526,K604-RBBP8 homotetramer + NAD ⟶ 2'-O-acetyl-ADP-ribose + NAM + RBBP8 homotetramer
- HDR through Homologous Recombination (HRR) or Single Strand Annealing (SSA):
Ac-K432,K526,K604-RBBP8 homotetramer + NAD ⟶ 2'-O-acetyl-ADP-ribose + NAM + RBBP8 homotetramer
- Processing of DNA double-strand break ends:
Ac-K432,K526,K604-RBBP8 homotetramer + NAD ⟶ 2'-O-acetyl-ADP-ribose + NAM + RBBP8 homotetramer
- Cellular responses to stimuli:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular responses to stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular response to heat stress:
H2O + NAD + SIRT1:HSP70:DNAJB1:Ac-K80-HSF1:target gene ⟶ 2'-O-acetyl-ADP-ribose + F1MQB8 + HSP70:DNAJB1:HSF1 trimer:target gene + NAM
- Regulation of HSF1-mediated heat shock response:
H2O + NAD + SIRT1:HSP70:DNAJB1:Ac-K80-HSF1:target gene ⟶ 2'-O-acetyl-ADP-ribose + F1MQB8 + HSP70:DNAJB1:HSF1 trimer:target gene + NAM
- Organelle biogenesis and maintenance:
Ack-ACCS2,AcK-GLUD,AcK-IDH2,Ack-SOD2 + NAD ⟶ 2'-O-acetyl-ADP-ribose + ACCS2,GLUD,IDH2,SOD2 + NAM
- Mitochondrial biogenesis:
Ack-ACCS2,AcK-GLUD,AcK-IDH2,Ack-SOD2 + NAD ⟶ 2'-O-acetyl-ADP-ribose + ACCS2,GLUD,IDH2,SOD2 + NAM
- Transcriptional activation of mitochondrial biogenesis:
Ack-ACCS2,AcK-GLUD,AcK-IDH2,Ack-SOD2 + NAD ⟶ 2'-O-acetyl-ADP-ribose + ACCS2,GLUD,IDH2,SOD2 + NAM
- DNA Repair:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- DNA Double-Strand Break Repair:
Ac-K432,K526,K604-RBBP8 homotetramer + NAD ⟶ 2'-O-acetyl-ADP-ribose + NAM + RBBP8 homotetramer
- Gene expression (Transcription):
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- RNA Polymerase II Transcription:
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- Generic Transcription Pathway:
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- Negative epigenetic regulation of rRNA expression:
Chromatin with acetylated H3 + NAD ⟶ 2'-O-acetyl-ADP-ribose + Chromatin + NAM
- SIRT1 negatively regulates rRNA expression:
Chromatin with acetylated H3 + NAD ⟶ 2'-O-acetyl-ADP-ribose + Chromatin + NAM
- Cellular responses to stimuli:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular responses to stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular response to heat stress:
H2O + NAD + SIRT1:HSP70:DNAJB1:Ac-K80-HSF1:target gene ⟶ 2'-O-acetyl-ADP-ribose + E2RE73 + HSP70:DNAJB1:HSF1 trimer:target gene + NAM
- Regulation of HSF1-mediated heat shock response:
H2O + NAD + SIRT1:HSP70:DNAJB1:Ac-K80-HSF1:target gene ⟶ 2'-O-acetyl-ADP-ribose + E2RE73 + HSP70:DNAJB1:HSF1 trimer:target gene + NAM
- DNA Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- DNA Double-Strand Break Repair:
Ac-K432,K526,K604-RBBP8 homotetramer + NAD ⟶ 2'-O-acetyl-ADP-ribose + NAM + RBBP8 homotetramer
- Homology Directed Repair:
Ac-K432,K526,K604-RBBP8 homotetramer + NAD ⟶ 2'-O-acetyl-ADP-ribose + NAM + RBBP8 homotetramer
- HDR through Homologous Recombination (HRR) or Single Strand Annealing (SSA):
Ac-K432,K526,K604-RBBP8 homotetramer + NAD ⟶ 2'-O-acetyl-ADP-ribose + NAM + RBBP8 homotetramer
- Processing of DNA double-strand break ends:
Ac-K432,K526,K604-RBBP8 homotetramer + NAD ⟶ 2'-O-acetyl-ADP-ribose + NAM + RBBP8 homotetramer
- Organelle biogenesis and maintenance:
NAD ⟶ NAM
- Mitochondrial biogenesis:
NAD ⟶ NAM
- Transcriptional activation of mitochondrial biogenesis:
NAD ⟶ NAM
- Cell Cycle:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Cell Cycle, Mitotic:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- M Phase:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Mitotic Metaphase and Anaphase:
E2R7S4 + H2O + NAD ⟶ 2'-O-acetyl-ADP-ribose + E2R7S4 + NAM
- Mitotic Anaphase:
E2R7S4 + H2O + NAD ⟶ 2'-O-acetyl-ADP-ribose + E2R7S4 + NAM
- Nuclear Envelope (NE) Reassembly:
E2R7S4 + H2O + NAD ⟶ 2'-O-acetyl-ADP-ribose + E2R7S4 + NAM
- Initiation of Nuclear Envelope (NE) Reformation:
E2R7S4 + H2O + NAD ⟶ 2'-O-acetyl-ADP-ribose + E2R7S4 + NAM
- Gene expression (Transcription):
Cytochrome c (reduced) + H+ + Oxygen ⟶ Cytochrome c (oxidised) + H+ + H2O
- RNA Polymerase II Transcription:
Cytochrome c (reduced) + H+ + Oxygen ⟶ Cytochrome c (oxidised) + H+ + H2O
- Generic Transcription Pathway:
Cytochrome c (reduced) + H+ + Oxygen ⟶ Cytochrome c (oxidised) + H+ + H2O
- Epigenetic regulation of gene expression:
Chromatin with acetylated H3 + NAD ⟶ 2'-O-acetyl-ADP-ribose + Chromatin + NAM
- Negative epigenetic regulation of rRNA expression:
Chromatin with acetylated H3 + NAD ⟶ 2'-O-acetyl-ADP-ribose + Chromatin + NAM
- SIRT1 negatively regulates rRNA expression:
Chromatin with acetylated H3 + NAD ⟶ 2'-O-acetyl-ADP-ribose + Chromatin + NAM
- DNA Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- DNA Double-Strand Break Repair:
Ac-K432,K526,K604-RBBP8 homotetramer + NAD ⟶ 2'-O-acetyl-ADP-ribose + NAM + RBBP8 homotetramer
- Homology Directed Repair:
Ac-K432,K526,K604-RBBP8 homotetramer + NAD ⟶ 2'-O-acetyl-ADP-ribose + NAM + RBBP8 homotetramer
- HDR through Homologous Recombination (HRR) or Single Strand Annealing (SSA):
Ac-K432,K526,K604-RBBP8 homotetramer + NAD ⟶ 2'-O-acetyl-ADP-ribose + NAM + RBBP8 homotetramer
- Processing of DNA double-strand break ends:
Ac-K432,K526,K604-RBBP8 homotetramer + NAD ⟶ 2'-O-acetyl-ADP-ribose + NAM + RBBP8 homotetramer
- SIRT1 negatively regulates rRNA expression:
Chromatin with acetylated H3 + NAD ⟶ 2'-O-acetyl-ADP-ribose + Chromatin + NAM
- Cell Cycle:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Cell Cycle, Mitotic:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- M Phase:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Mitotic Metaphase and Anaphase:
A2CEB2 + H2O + NAD ⟶ 2'-O-acetyl-ADP-ribose + A2CEB2 + NAM
- Mitotic Anaphase:
A2CEB2 + H2O + NAD ⟶ 2'-O-acetyl-ADP-ribose + A2CEB2 + NAM
- Nuclear Envelope (NE) Reassembly:
A2CEB2 + H2O + NAD ⟶ 2'-O-acetyl-ADP-ribose + A2CEB2 + NAM
- Initiation of Nuclear Envelope (NE) Reformation:
A2CEB2 + H2O + NAD ⟶ 2'-O-acetyl-ADP-ribose + A2CEB2 + NAM
- Organelle biogenesis and maintenance:
NAD ⟶ NAM
- Mitochondrial biogenesis:
NAD ⟶ NAM
- Transcriptional activation of mitochondrial biogenesis:
NAD ⟶ NAM
- Organelle biogenesis and maintenance:
NAD + cytC ⟶ 2'-O-acetyl-ADP-ribose + NAM + cytC
- Mitochondrial biogenesis:
NAD + cytC ⟶ 2'-O-acetyl-ADP-ribose + NAM + cytC
- Transcriptional activation of mitochondrial biogenesis:
NAD + cytC ⟶ 2'-O-acetyl-ADP-ribose + NAM + cytC
- Gene expression (Transcription):
H2O2 + Homologues of TXN ⟶ H2O + Homologues of 2xHC-TXN
- Epigenetic regulation of gene expression:
Chromatin with acetylated H3 + NAD ⟶ 2'-O-acetyl-ADP-ribose + Chromatin + NAM
- Negative epigenetic regulation of rRNA expression:
Chromatin with acetylated H3 + NAD ⟶ 2'-O-acetyl-ADP-ribose + Chromatin + NAM
- SIRT1 negatively regulates rRNA expression:
Chromatin with acetylated H3 + NAD ⟶ 2'-O-acetyl-ADP-ribose + Chromatin + NAM
- Cell Cycle:
H2O + NAD + Q8MQX9 ⟶ 2'-O-acetyl-ADP-ribose + NAM + Q8MQX9
- Cell Cycle, Mitotic:
H2O + NAD + Q8MQX9 ⟶ 2'-O-acetyl-ADP-ribose + NAM + Q8MQX9
- M Phase:
H2O + NAD + Q8MQX9 ⟶ 2'-O-acetyl-ADP-ribose + NAM + Q8MQX9
- Mitotic Metaphase and Anaphase:
H2O + NAD + Q8MQX9 ⟶ 2'-O-acetyl-ADP-ribose + NAM + Q8MQX9
- Mitotic Anaphase:
H2O + NAD + Q8MQX9 ⟶ 2'-O-acetyl-ADP-ribose + NAM + Q8MQX9
- Nuclear Envelope (NE) Reassembly:
H2O + NAD + Q8MQX9 ⟶ 2'-O-acetyl-ADP-ribose + NAM + Q8MQX9
- Initiation of Nuclear Envelope (NE) Reformation:
H2O + NAD + Q8MQX9 ⟶ 2'-O-acetyl-ADP-ribose + NAM + Q8MQX9
- Gene expression (Transcription):
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- RNA Polymerase II Transcription:
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- Generic Transcription Pathway:
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- Epigenetic regulation of gene expression:
Chromatin with acetylated H3 + NAD ⟶ 2'-O-acetyl-ADP-ribose + Chromatin + NAM
- Negative epigenetic regulation of rRNA expression:
Chromatin with acetylated H3 + NAD ⟶ 2'-O-acetyl-ADP-ribose + Chromatin + NAM
- SIRT1 negatively regulates rRNA expression:
Chromatin with acetylated H3 + NAD ⟶ 2'-O-acetyl-ADP-ribose + Chromatin + NAM
- Organelle biogenesis and maintenance:
A0A1D5NT61 + NAD ⟶ A0A1D5NT61 + NAM
- Mitochondrial biogenesis:
A0A1D5NT61 + NAD ⟶ A0A1D5NT61 + NAM
- Transcriptional activation of mitochondrial biogenesis:
A0A1D5NT61 + NAD ⟶ A0A1D5NT61 + NAM
- Gene expression (Transcription):
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- RNA Polymerase II Transcription:
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- Generic Transcription Pathway:
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- Cell Cycle:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Cell Cycle, Mitotic:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- M Phase:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Mitotic Metaphase and Anaphase:
A0A1D5NYB5 + H2O + NAD ⟶ 2'-O-acetyl-ADP-ribose + A0A1D5NYB5 + NAM
- Mitotic Anaphase:
A0A1D5NYB5 + H2O + NAD ⟶ 2'-O-acetyl-ADP-ribose + A0A1D5NYB5 + NAM
- Nuclear Envelope (NE) Reassembly:
A0A1D5NYB5 + H2O + NAD ⟶ 2'-O-acetyl-ADP-ribose + A0A1D5NYB5 + NAM
- Initiation of Nuclear Envelope (NE) Reformation:
A0A1D5NYB5 + H2O + NAD ⟶ 2'-O-acetyl-ADP-ribose + A0A1D5NYB5 + NAM
- DNA Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- DNA Double-Strand Break Repair:
Ac-K432,K526,K604-RBBP8 homotetramer + NAD ⟶ 2'-O-acetyl-ADP-ribose + NAM + RBBP8 homotetramer
- Homology Directed Repair:
Ac-K432,K526,K604-RBBP8 homotetramer + NAD ⟶ 2'-O-acetyl-ADP-ribose + NAM + RBBP8 homotetramer
- HDR through Homologous Recombination (HRR) or Single Strand Annealing (SSA):
Ac-K432,K526,K604-RBBP8 homotetramer + NAD ⟶ 2'-O-acetyl-ADP-ribose + NAM + RBBP8 homotetramer
- Processing of DNA double-strand break ends:
Ac-K432,K526,K604-RBBP8 homotetramer + NAD ⟶ 2'-O-acetyl-ADP-ribose + NAM + RBBP8 homotetramer
- Cellular responses to stimuli:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular responses to stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular response to heat stress:
H2O + NAD + SIRT1:HSP70:DNAJB1:Ac-K80-HSF1:target gene ⟶ 2'-O-acetyl-ADP-ribose + F1N886 + HSP70:DNAJB1:HSF1 trimer:target gene + NAM
- Regulation of HSF1-mediated heat shock response:
H2O + NAD + SIRT1:HSP70:DNAJB1:Ac-K80-HSF1:target gene ⟶ 2'-O-acetyl-ADP-ribose + F1N886 + HSP70:DNAJB1:HSF1 trimer:target gene + NAM
- Organelle biogenesis and maintenance:
GLUD + NAD ⟶ NAM + RibC-GLUD
- Mitochondrial biogenesis:
GLUD + NAD ⟶ NAM + RibC-GLUD
- Transcriptional activation of mitochondrial biogenesis:
GLUD + NAD ⟶ NAM + RibC-GLUD
- DNA Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- DNA Double-Strand Break Repair:
Ac-K432,K526,K604-RBBP8 homotetramer + NAD ⟶ 2'-O-acetyl-ADP-ribose + NAM + RBBP8 homotetramer
- Homology Directed Repair:
Ac-K432,K526,K604-RBBP8 homotetramer + NAD ⟶ 2'-O-acetyl-ADP-ribose + NAM + RBBP8 homotetramer
- HDR through Homologous Recombination (HRR) or Single Strand Annealing (SSA):
Ac-K432,K526,K604-RBBP8 homotetramer + NAD ⟶ 2'-O-acetyl-ADP-ribose + NAM + RBBP8 homotetramer
- Processing of DNA double-strand break ends:
Ac-K432,K526,K604-RBBP8 homotetramer + NAD ⟶ 2'-O-acetyl-ADP-ribose + NAM + RBBP8 homotetramer
- Cellular responses to stimuli:
BIL:ALB + O2.- ⟶ ALB + BV
- Cellular responses to stress:
BIL:ALB + O2.- ⟶ ALB + BV
- Cellular response to heat stress:
H2O + NAD + SIRT1:HSP70:DNAJB1:Ac-K80-HSF1:target gene ⟶ 2'-O-acetyl-ADP-ribose + HSP70:DNAJB1:HSF1 trimer:target gene + NAM + SIRT1_HUMAN
- Regulation of HSF1-mediated heat shock response:
H2O + NAD + SIRT1:HSP70:DNAJB1:Ac-K80-HSF1:target gene ⟶ 2'-O-acetyl-ADP-ribose + HSP70:DNAJB1:HSF1 trimer:target gene + NAM + SIRT1_HUMAN
- Cell Cycle:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Cell Cycle, Mitotic:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- M Phase:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Mitotic Metaphase and Anaphase:
Ac-K302-LEM4 + H2O + NAD ⟶ 2'-O-acetyl-ADP-ribose + LEM domain-containing protein 4 + NAM
- Mitotic Anaphase:
Ac-K302-LEM4 + H2O + NAD ⟶ 2'-O-acetyl-ADP-ribose + LEM domain-containing protein 4 + NAM
- Nuclear Envelope (NE) Reassembly:
Ac-K302-LEM4 + H2O + NAD ⟶ 2'-O-acetyl-ADP-ribose + LEM domain-containing protein 4 + NAM
- Initiation of Nuclear Envelope (NE) Reformation:
Ac-K302-LEM4 + H2O + NAD ⟶ 2'-O-acetyl-ADP-ribose + LEM domain-containing protein 4 + NAM
- Gene expression (Transcription):
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- RNA Polymerase II Transcription:
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- Generic Transcription Pathway:
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- Epigenetic regulation of gene expression:
Chromatin (H4K5ac, H4K8ac, H4K16ac) + SAM ⟶ CH3COO- + Chromatin (H3K9me2) + SAH
- Negative epigenetic regulation of rRNA expression:
Chromatin (H4K5ac, H4K8ac, H4K16ac) + SAM ⟶ CH3COO- + Chromatin (H3K9me2) + SAH
- SIRT1 negatively regulates rRNA expression:
Chromatin with acetylated H3 + NAD ⟶ 2'-O-acetyl-ADP-ribose + Chromatin + NAM
- Cell Cycle:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Cell Cycle, Mitotic:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- M Phase:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Mitotic Metaphase and Anaphase:
H2O + NAD + Q6P1H6 ⟶ 2'-O-acetyl-ADP-ribose + NAM + Q6P1H6
- Mitotic Anaphase:
H2O + NAD + Q6P1H6 ⟶ 2'-O-acetyl-ADP-ribose + NAM + Q6P1H6
- Nuclear Envelope (NE) Reassembly:
H2O + NAD + Q6P1H6 ⟶ 2'-O-acetyl-ADP-ribose + NAM + Q6P1H6
- Initiation of Nuclear Envelope (NE) Reformation:
H2O + NAD + Q6P1H6 ⟶ 2'-O-acetyl-ADP-ribose + NAM + Q6P1H6
- DNA Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- DNA Double-Strand Break Repair:
Ac-K432,K526,K604-RBBP8 homotetramer + NAD ⟶ 2'-O-acetyl-ADP-ribose + NAM + RBBP8 homotetramer
- Homology Directed Repair:
Ac-K432,K526,K604-RBBP8 homotetramer + NAD ⟶ 2'-O-acetyl-ADP-ribose + NAM + RBBP8 homotetramer
- HDR through Homologous Recombination (HRR) or Single Strand Annealing (SSA):
Ac-K432,K526,K604-RBBP8 homotetramer + NAD ⟶ 2'-O-acetyl-ADP-ribose + NAM + RBBP8 homotetramer
- Processing of DNA double-strand break ends:
Ac-K432,K526,K604-RBBP8 homotetramer + NAD ⟶ 2'-O-acetyl-ADP-ribose + NAM + RBBP8 homotetramer
- Cellular responses to stimuli:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular responses to stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular response to heat stress:
H2O + NAD + SIRT1:HSP70:DNAJB1:Ac-K80-HSF1:target gene ⟶ 2'-O-acetyl-ADP-ribose + HSP70:DNAJB1:HSF1 trimer:target gene + NAM + Q923E4
- Regulation of HSF1-mediated heat shock response:
H2O + NAD + SIRT1:HSP70:DNAJB1:Ac-K80-HSF1:target gene ⟶ 2'-O-acetyl-ADP-ribose + HSP70:DNAJB1:HSF1 trimer:target gene + NAM + Q923E4
- Organelle biogenesis and maintenance:
Glud1 + NAD ⟶ NAM + P26443
- Mitochondrial biogenesis:
Glud1 + NAD ⟶ NAM + P26443
- Transcriptional activation of mitochondrial biogenesis:
Glud1 + NAD ⟶ NAM + P26443
- Gene expression (Transcription):
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- RNA Polymerase II Transcription:
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- Generic Transcription Pathway:
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- Negative epigenetic regulation of rRNA expression:
Chromatin with acetylated H3 + NAD ⟶ 2'-O-acetyl-ADP-ribose + Chromatin + NAM
- SIRT1 negatively regulates rRNA expression:
Chromatin with acetylated H3 + NAD ⟶ 2'-O-acetyl-ADP-ribose + Chromatin + NAM
- Organelle biogenesis and maintenance:
Homologues of AcK-CYCS + NAD ⟶ 2'-O-acetyl-ADP-ribose + Homologues of CYCS + NAM
- Organelle biogenesis and maintenance:
Glud1 + NAD ⟶ NAM + P10860
- Mitochondrial biogenesis:
Glud1 + NAD ⟶ NAM + P10860
- Transcriptional activation of mitochondrial biogenesis:
Glud1 + NAD ⟶ NAM + P10860
- Cell Cycle:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Cell Cycle, Mitotic:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- M Phase:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Mitotic Metaphase and Anaphase:
H2O + NAD + Q7TP65 ⟶ 2'-O-acetyl-ADP-ribose + NAM + Q7TP65
- Mitotic Anaphase:
H2O + NAD + Q7TP65 ⟶ 2'-O-acetyl-ADP-ribose + NAM + Q7TP65
- Nuclear Envelope (NE) Reassembly:
H2O + NAD + Q7TP65 ⟶ 2'-O-acetyl-ADP-ribose + NAM + Q7TP65
- Initiation of Nuclear Envelope (NE) Reformation:
H2O + NAD + Q7TP65 ⟶ 2'-O-acetyl-ADP-ribose + NAM + Q7TP65
- Gene expression (Transcription):
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- RNA Polymerase II Transcription:
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- Generic Transcription Pathway:
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- Epigenetic regulation of gene expression:
Chromatin with acetylated H3 + NAD ⟶ 2'-O-acetyl-ADP-ribose + Chromatin + NAM
- Negative epigenetic regulation of rRNA expression:
Chromatin with acetylated H3 + NAD ⟶ 2'-O-acetyl-ADP-ribose + Chromatin + NAM
- SIRT1 negatively regulates rRNA expression:
Chromatin with acetylated H3 + NAD ⟶ 2'-O-acetyl-ADP-ribose + Chromatin + NAM
- Cellular responses to stimuli:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular responses to stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular response to heat stress:
H2O + NAD + SIRT1:HSP70:DNAJB1:Ac-K80-HSF1:target gene ⟶ 2'-O-acetyl-ADP-ribose + HSP70:DNAJB1:HSF1 trimer:target gene + Homologues of SIRT1 + NAM
- Regulation of HSF1-mediated heat shock response:
H2O + NAD + SIRT1:HSP70:DNAJB1:Ac-K80-HSF1:target gene ⟶ 2'-O-acetyl-ADP-ribose + HSP70:DNAJB1:HSF1 trimer:target gene + Homologues of SIRT1 + NAM
- DNA Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- DNA Double-Strand Break Repair:
Ac-K432,K526,K604-RBBP8 homotetramer + NAD ⟶ 2'-O-acetyl-ADP-ribose + NAM + RBBP8 homotetramer
- Homology Directed Repair:
Ac-K432,K526,K604-RBBP8 homotetramer + NAD ⟶ 2'-O-acetyl-ADP-ribose + NAM + RBBP8 homotetramer
- HDR through Homologous Recombination (HRR) or Single Strand Annealing (SSA):
Ac-K432,K526,K604-RBBP8 homotetramer + NAD ⟶ 2'-O-acetyl-ADP-ribose + NAM + RBBP8 homotetramer
- Processing of DNA double-strand break ends:
Ac-K432,K526,K604-RBBP8 homotetramer + NAD ⟶ 2'-O-acetyl-ADP-ribose + NAM + RBBP8 homotetramer
- Gene expression (Transcription):
H2O2 + PRDX1 dimer ⟶ H2O + HOOS-C52-PRDX1 dimer
- Epigenetic regulation of gene expression:
Chromatin with acetylated H3 + NAD ⟶ 2'-O-acetyl-ADP-ribose + Chromatin + NAM
- Negative epigenetic regulation of rRNA expression:
Chromatin with acetylated H3 + NAD ⟶ 2'-O-acetyl-ADP-ribose + Chromatin + NAM
- SIRT1 negatively regulates rRNA expression:
Chromatin with acetylated H3 + NAD ⟶ 2'-O-acetyl-ADP-ribose + Chromatin + NAM
- Organelle biogenesis and maintenance:
CoA-SH + acetylated microtubule ⟶ Ac-CoA + Microtubule
- Mitochondrial biogenesis:
NAD ⟶ 2'-O-acetyl-ADP-ribose + NAM
- Transcriptional activation of mitochondrial biogenesis:
NAD ⟶ 2'-O-acetyl-ADP-ribose + NAM
- Gene expression (Transcription):
H2O2 + PRDX1 dimer ⟶ H2O + HOOS-C52-PRDX1 dimer
- Epigenetic regulation of gene expression:
Chromatin with acetylated H3 + NAD ⟶ 2'-O-acetyl-ADP-ribose + Chromatin + NAM
- Negative epigenetic regulation of rRNA expression:
Chromatin with acetylated H3 + NAD ⟶ 2'-O-acetyl-ADP-ribose + Chromatin + NAM
- SIRT1 negatively regulates rRNA expression:
Chromatin with acetylated H3 + NAD ⟶ 2'-O-acetyl-ADP-ribose + Chromatin + NAM
- Organelle biogenesis and maintenance:
CoA-SH + acetylated microtubule ⟶ Ac-CoA + Microtubule
- Mitochondrial biogenesis:
Ack-ACCS2,AcK-GLUD,AcK-IDH2,Ack-SOD2 + NAD ⟶ 2'-O-acetyl-ADP-ribose + ACCS2,GLUD,IDH2,SOD2 + NAM
- Transcriptional activation of mitochondrial biogenesis:
Ack-ACCS2,AcK-GLUD,AcK-IDH2,Ack-SOD2 + NAD ⟶ 2'-O-acetyl-ADP-ribose + ACCS2,GLUD,IDH2,SOD2 + NAM
- Cellular responses to stimuli:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular responses to stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular response to heat stress:
H2O + NAD + SIRT1:HSP70:DNAJB1:Ac-K80-HSF1:target gene ⟶ 2'-O-acetyl-ADP-ribose + A7LKB1 + HSP70:DNAJB1:HSF1 trimer:target gene + NAM
- Regulation of HSF1-mediated heat shock response:
H2O + NAD + SIRT1:HSP70:DNAJB1:Ac-K80-HSF1:target gene ⟶ 2'-O-acetyl-ADP-ribose + A7LKB1 + HSP70:DNAJB1:HSF1 trimer:target gene + NAM
- Organelle biogenesis and maintenance:
A0A287BEZ5 + NAD ⟶ 2'-O-acetyl-ADP-ribose + A0A287BEZ5 + NAM
- Mitochondrial biogenesis:
A0A287BEZ5 + NAD ⟶ 2'-O-acetyl-ADP-ribose + A0A287BEZ5 + NAM
- Transcriptional activation of mitochondrial biogenesis:
A0A287BEZ5 + NAD ⟶ 2'-O-acetyl-ADP-ribose + A0A287BEZ5 + NAM
- Gene expression (Transcription):
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- RNA Polymerase II Transcription:
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- Generic Transcription Pathway:
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- Epigenetic regulation of gene expression:
Chromatin with acetylated H3 + NAD ⟶ 2'-O-acetyl-ADP-ribose + Chromatin + NAM
- Negative epigenetic regulation of rRNA expression:
Chromatin with acetylated H3 + NAD ⟶ 2'-O-acetyl-ADP-ribose + Chromatin + NAM
- SIRT1 negatively regulates rRNA expression:
Chromatin with acetylated H3 + NAD ⟶ 2'-O-acetyl-ADP-ribose + Chromatin + NAM
- Cell Cycle:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Cell Cycle, Mitotic:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- M Phase:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Mitotic Metaphase and Anaphase:
H2O + I3LVP6 + NAD ⟶ 2'-O-acetyl-ADP-ribose + I3LVP6 + NAM
- Mitotic Anaphase:
H2O + I3LVP6 + NAD ⟶ 2'-O-acetyl-ADP-ribose + I3LVP6 + NAM
- Nuclear Envelope (NE) Reassembly:
H2O + I3LVP6 + NAD ⟶ 2'-O-acetyl-ADP-ribose + I3LVP6 + NAM
- Initiation of Nuclear Envelope (NE) Reformation:
H2O + I3LVP6 + NAD ⟶ 2'-O-acetyl-ADP-ribose + I3LVP6 + NAM
- DNA Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- DNA Double-Strand Break Repair:
Ac-K432,K526,K604-RBBP8 homotetramer + NAD ⟶ 2'-O-acetyl-ADP-ribose + NAM + RBBP8 homotetramer
- Homology Directed Repair:
Ac-K432,K526,K604-RBBP8 homotetramer + NAD ⟶ 2'-O-acetyl-ADP-ribose + NAM + RBBP8 homotetramer
- HDR through Homologous Recombination (HRR) or Single Strand Annealing (SSA):
Ac-K432,K526,K604-RBBP8 homotetramer + NAD ⟶ 2'-O-acetyl-ADP-ribose + NAM + RBBP8 homotetramer
- Processing of DNA double-strand break ends:
Ac-K432,K526,K604-RBBP8 homotetramer + NAD ⟶ 2'-O-acetyl-ADP-ribose + NAM + RBBP8 homotetramer
- Gene expression (Transcription):
p-AMPK heterotrimer:AMP ⟶ SESN1,2,3:p-AMPK heterotrimer:AMP
- Epigenetic regulation of gene expression:
Chromatin with acetylated H3 + NAD ⟶ 2'-O-acetyl-ADP-ribose + Chromatin + NAM
- Negative epigenetic regulation of rRNA expression:
Chromatin with acetylated H3 + NAD ⟶ 2'-O-acetyl-ADP-ribose + Chromatin + NAM
- SIRT1 negatively regulates rRNA expression:
Chromatin with acetylated H3 + NAD ⟶ 2'-O-acetyl-ADP-ribose + Chromatin + NAM
- DNA Repair:
MUTYH:(OGUA:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- DNA Double-Strand Break Repair:
ATP + DNA DSBs:MRN:Ac-K3016-ATM dimer:KAT5 ⟶ ADP + DNA DSBs:MRN:p-S1981,Ac-K3016-ATM:KAT5 + phospho-p-S1981,Ac-K3016-ATM
- Homology Directed Repair:
ATP + DNA DSBs:p-MRN:p-S327,T847-RBBP8:p-S1981,Ac-K3016-ATM:KAT5 ⟶ ADP + DNA DSBs:p-MRN:p-S327,T847,T859-RBBP8:p-S1981,Ac-K3016-ATM:KAT5
- HDR through Homologous Recombination (HRR) or Single Strand Annealing (SSA):
ATP + DNA DSBs:p-MRN:p-S327,T847-RBBP8:p-S1981,Ac-K3016-ATM:KAT5 ⟶ ADP + DNA DSBs:p-MRN:p-S327,T847,T859-RBBP8:p-S1981,Ac-K3016-ATM:KAT5
- Processing of DNA double-strand break ends:
ATP + DNA DSBs:p-MRN:p-S327,T847-RBBP8:p-S1981,Ac-K3016-ATM:KAT5 ⟶ ADP + DNA DSBs:p-MRN:p-S327,T847,T859-RBBP8:p-S1981,Ac-K3016-ATM:KAT5
- Organelle biogenesis and maintenance:
H0Z5V5 + NAD ⟶ NAM + phospho-RibC-GLUD1
- Mitochondrial biogenesis:
H0Z5V5 + NAD ⟶ NAM + phospho-RibC-GLUD1
- Transcriptional activation of mitochondrial biogenesis:
H0Z5V5 + NAD ⟶ NAM + phospho-RibC-GLUD1
- DNA Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- DNA Double-Strand Break Repair:
Extended microhomologous 3'-ssDNA overhangs-flap-DSB:MRN:RBBP8:PARP1,PARP2:FEN1:POLQ + NAD ⟶ Extended microhomologous 3'-ssDNA overhangs-flap-DSB:MRN:RBBP8:FEN1 + NAM + PAR-PARP1,PAR-PARP2 dimers + POLQ homodimer
- Homology Directed Repair:
Extended microhomologous 3'-ssDNA overhangs-flap-DSB:MRN:RBBP8:PARP1,PARP2:FEN1:POLQ + NAD ⟶ Extended microhomologous 3'-ssDNA overhangs-flap-DSB:MRN:RBBP8:FEN1 + NAM + PAR-PARP1,PAR-PARP2 dimers + POLQ homodimer
- HDR through Homologous Recombination (HRR) or Single Strand Annealing (SSA):
Ac-K432,K526,K604-RBBP8 homotetramer + NAD ⟶ 2'-O-acetyl-ADP-ribose + NAM + RBBP8 homotetramer
- Processing of DNA double-strand break ends:
Ac-K432,K526,K604-RBBP8 homotetramer + NAD ⟶ 2'-O-acetyl-ADP-ribose + NAM + RBBP8 homotetramer
- Organelle biogenesis and maintenance:
NAD + Q5XGI4 ⟶ NAM + Q5XGI4
- Mitochondrial biogenesis:
NAD + Q5XGI4 ⟶ NAM + Q5XGI4
- Transcriptional activation of mitochondrial biogenesis:
NAD + Q5XGI4 ⟶ NAM + Q5XGI4
- Homology Directed Repair:
Ac-K432,K526,K604-RBBP8 homotetramer + NAD ⟶ 2'-O-acetyl-ADP-ribose + NAM + RBBP8 homotetramer
- HDR through Homologous Recombination (HRR) or Single Strand Annealing (SSA):
Ac-K432,K526,K604-RBBP8 homotetramer + NAD ⟶ 2'-O-acetyl-ADP-ribose + NAM + RBBP8 homotetramer
- Processing of DNA double-strand break ends:
Ac-K432,K526,K604-RBBP8 homotetramer + NAD ⟶ 2'-O-acetyl-ADP-ribose + NAM + RBBP8 homotetramer
- FOXO-mediated transcription:
Ac-K242,K259,K271,K290,K569-FOXO3 + NAD ⟶ 2'-O-acetyl-ADP-ribose + FOXO3 + NAM
- Regulation of FOXO transcriptional activity by acetylation:
Ac-K242,K259,K271,K290,K569-FOXO3 + NAD ⟶ 2'-O-acetyl-ADP-ribose + FOXO3 + NAM
- FOXO-mediated transcription:
F1RT23 + NAD ⟶ 2'-O-acetyl-ADP-ribose + F1RT23 + NAM
- Regulation of FOXO transcriptional activity by acetylation:
F1RT23 + NAD ⟶ 2'-O-acetyl-ADP-ribose + F1RT23 + NAM
- FOXO-mediated transcription:
F1NNE8 + NAD ⟶ 2'-O-acetyl-ADP-ribose + F1NNE8 + NAM
- Regulation of FOXO transcriptional activity by acetylation:
F1NNE8 + NAD ⟶ 2'-O-acetyl-ADP-ribose + F1NNE8 + NAM
- FOXO-mediated transcription:
D3ZBQ1 + NAD ⟶ 2'-O-acetyl-ADP-ribose + D3ZBQ1 + NAM
- Regulation of FOXO transcriptional activity by acetylation:
D3ZBQ1 + NAD ⟶ 2'-O-acetyl-ADP-ribose + D3ZBQ1 + NAM
- FOXO-mediated transcription:
F1PD83 + NAD ⟶ 2'-O-acetyl-ADP-ribose + F1PD83 + NAM
- Regulation of FOXO transcriptional activity by acetylation:
F1PD83 + NAD ⟶ 2'-O-acetyl-ADP-ribose + F1PD83 + NAM
- FOXO-mediated transcription:
F1N4K5 + NAD ⟶ 2'-O-acetyl-ADP-ribose + F1N4K5 + NAM
- Regulation of FOXO transcriptional activity by acetylation:
F1N4K5 + NAD ⟶ 2'-O-acetyl-ADP-ribose + F1N4K5 + NAM
- FOXO-mediated transcription:
NAD + foxo ⟶ 2'-O-acetyl-ADP-ribose + NAM + foxo
- Regulation of FOXO transcriptional activity by acetylation:
NAD + foxo ⟶ 2'-O-acetyl-ADP-ribose + NAM + foxo
- FOXO-mediated transcription:
NAD + Q9WVH4 ⟶ 2'-O-acetyl-ADP-ribose + NAM + Q9WVH4
- Regulation of FOXO transcriptional activity by acetylation:
NAD + Q9WVH4 ⟶ 2'-O-acetyl-ADP-ribose + NAM + Q9WVH4
- FOXO-mediated transcription:
Ac-K242,K259,K271,K290,K569-FOXO3 + NAD ⟶ 2'-O-acetyl-ADP-ribose + FOXO3A + NAM
- Regulation of FOXO transcriptional activity by acetylation:
Ac-K242,K259,K271,K290,K569-FOXO3 + NAD ⟶ 2'-O-acetyl-ADP-ribose + FOXO3A + NAM
- Negative epigenetic regulation of rRNA expression:
Chromatin with acetylated H3 + NAD ⟶ 2'-O-acetyl-ADP-ribose + Chromatin + NAM
- SIRT1 negatively regulates rRNA expression:
Chromatin with acetylated H3 + NAD ⟶ 2'-O-acetyl-ADP-ribose + Chromatin + NAM
- Mitochondrial biogenesis:
Homologues of AcK-CYCS + NAD ⟶ 2'-O-acetyl-ADP-ribose + Homologues of CYCS + NAM
- Transcriptional activation of mitochondrial biogenesis:
Homologues of AcK-CYCS + NAD ⟶ 2'-O-acetyl-ADP-ribose + Homologues of CYCS + NAM
- SIRT1 negatively regulates rRNA expression:
Chromatin with acetylated H3 + NAD ⟶ 2'-O-acetyl-ADP-ribose + Chromatin + NAM
- Organelle biogenesis and maintenance:
Homologues of GLUD1 + NAD ⟶ NAM
- Mitochondrial biogenesis:
Homologues of GLUD1 + NAD ⟶ NAM
- Transcriptional activation of mitochondrial biogenesis:
Homologues of GLUD1 + NAD ⟶ NAM
- Organelle biogenesis and maintenance:
NAD + gdh-1 ⟶ NAM + Q23621
- Mitochondrial biogenesis:
NAD + gdh-1 ⟶ NAM + Q23621
- Transcriptional activation of mitochondrial biogenesis:
NAD + gdh-1 ⟶ NAM + Q23621
- Organelle biogenesis and maintenance:
NAD ⟶ NAM
- Mitochondrial biogenesis:
NAD ⟶ NAM
- Transcriptional activation of mitochondrial biogenesis:
NAD ⟶ NAM
- Organelle biogenesis and maintenance:
Homologues of GLUD1 + NAD ⟶ NAM
- Mitochondrial biogenesis:
Homologues of GLUD1 + NAD ⟶ NAM
- Transcriptional activation of mitochondrial biogenesis:
Homologues of GLUD1 + NAD ⟶ NAM
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Nicotinate metabolism:
NAM + SAM ⟶ MNA + SAH
- Nicotinamide salvaging:
NAM + SAM ⟶ MNA + SAH
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
6x(PCCA:PCCB) + ATP + Btn ⟶ 6x(Btn-PCCA:PCCB) + AMP + PPi
- Metabolism of water-soluble vitamins and cofactors:
6x(PCCA:PCCB) + ATP + Btn ⟶ 6x(Btn-PCCA:PCCB) + AMP + PPi
- Nicotinate metabolism:
NAM + SAM ⟶ MNA + SAH
- Nicotinamide salvaging:
NAM + SAM ⟶ MNA + SAH
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Nicotinate metabolism:
H+ + Oxygen + dh-beta-NAD ⟶ H2O2 + NAD
- Nicotinamide salvaging:
H+ + Oxygen + dh-beta-NAD ⟶ H2O2 + NAD
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Nicotinate metabolism:
NAM + SAM ⟶ MNA + SAH
- Nicotinamide salvaging:
NAM + SAM ⟶ MNA + SAH
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Nicotinate metabolism:
NAM + SAM ⟶ MNA + SAH
- Nicotinamide salvaging:
NAM + SAM ⟶ MNA + SAH
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Nicotinate metabolism:
NAM + SAM ⟶ MNA + SAH
- Nicotinamide salvaging:
NAM + SAM ⟶ MNA + SAH
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Nicotinate metabolism:
NAM + SAM ⟶ MNA + SAH
- Nicotinamide salvaging:
NAM + SAM ⟶ MNA + SAH
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Nicotinate metabolism:
ATP + H2O + L-Gln + NAAD ⟶ AMP + L-Glu + NAD + PPi
- Nicotinamide salvaging:
AMP + H2O + NADH ⟶ H+ + NMNH
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Nicotinate metabolism:
NAM + SAM ⟶ MNA + SAH
- Nicotinamide salvaging:
NAM + SAM ⟶ MNA + SAH
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Nicotinate metabolism:
NAM + SAM ⟶ MNA + SAH
- Nicotinamide salvaging:
NAM + SAM ⟶ MNA + SAH
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Nicotinate metabolism:
NAM + SAM ⟶ MNA + SAH
- Nicotinamide salvaging:
NAM + SAM ⟶ MNA + SAH
- DNA Repair:
MUTYH:(OGUA:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- DNA Double-Strand Break Repair:
ATP + DNA DSBs:MRN:Ac-K3016-ATM dimer:KAT5 ⟶ ADP + DNA DSBs:MRN:p-S1981,Ac-K3016-ATM:KAT5 + Homologues of p-S1981,Ac-K3016-ATM
- Homology Directed Repair:
ATP + DNA DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:CCNA:p-T160-CDK2:RBBP8 ⟶ ADP + CCNA:p-T160-CDK2 + DNA DSBs:p-MRN:p-S327,T847-RBBP8:p-S1981,Ac-K3016-ATM:KAT5
- HDR through MMEJ (alt-NHEJ):
Extended microhomologous 3'-ssDNA overhangs-flap-DSB:MRN:RBBP8:PARP1,PARP2:FEN1:POLQ + NAD ⟶ Extended microhomologous 3'-ssDNA overhangs-flap-DSB:MRN:RBBP8:FEN1 + NAM + PAR-PARP1,PAR-PARP2 dimers + POLQ homodimer
- Nucleotide Excision Repair:
ATP + Ub:XPC:RAD23:CETN2:Distorted dsDNA:PAR-UV-DDB:TFIIH Core:XPA:PAR-PARP1,PAR-PARP2:CHD1L ⟶ ADP + Pi + Ub:XPC:RAD23:CETN2:Open bubble-dsDNA:PAR-UV-DDB:TFIIH Core:XPA:PAR-PARP1,PAR-PARP2:CHD1L
- Global Genome Nucleotide Excision Repair (GG-NER):
ATP + Ub:XPC:RAD23:CETN2:Distorted dsDNA:PAR-UV-DDB:TFIIH Core:XPA:PAR-PARP1,PAR-PARP2:CHD1L ⟶ ADP + Pi + Ub:XPC:RAD23:CETN2:Open bubble-dsDNA:PAR-UV-DDB:TFIIH Core:XPA:PAR-PARP1,PAR-PARP2:CHD1L
- DNA Damage Recognition in GG-NER:
NAD + Ub:XPC:RAD23:CETN2:Distorted dsDNA:UV-DDB:PARP1,PARP2 ⟶ NAM + Ub:XPC:RAD23:CETN2:Distorted dsDNA:PAR-UV-DDB:PAR-PARP1,PAR-PARP2
- Transcriptional activity of SMAD2/SMAD3:SMAD4 heterotrimer:
NAD + p-2S-SMAD2,3:SMAD4:PARP1 ⟶ A0A3Q1MVZ1 + NAM + PAR-SMAD2,3:PAR-SMAD4
- Downregulation of SMAD2/3:SMAD4 transcriptional activity:
NAD + p-2S-SMAD2,3:SMAD4:PARP1 ⟶ A0A3Q1MVZ1 + NAM + PAR-SMAD2,3:PAR-SMAD4
- Base Excision Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Resolution of Abasic Sites (AP sites):
H2O ⟶ ADP-ribose
- Resolution of AP sites via the multiple-nucleotide patch replacement pathway:
H2O ⟶ ADP-ribose
- POLB-Dependent Long Patch Base Excision Repair:
H2O ⟶ ADP-ribose
- HDR through MMEJ (alt-NHEJ):
Extended microhomologous 3'-ssDNA overhangs-flap-DSB:MRN:RBBP8:PARP1,PARP2:FEN1:POLQ + NAD ⟶ Extended microhomologous 3'-ssDNA overhangs-flap-DSB:MRN:RBBP8:FEN1 + NAM + PAR-PARP1,PAR-PARP2 dimers + POLQ homodimer
- Nucleotide Excision Repair:
NAD + Ub:XPC:RAD23:CETN2:Distorted dsDNA:UV-DDB:PARP1,PARP2 ⟶ NAM + Ub:XPC:RAD23:CETN2:Distorted dsDNA:PAR-UV-DDB:PAR-PARP1,PAR-PARP2
- Global Genome Nucleotide Excision Repair (GG-NER):
NAD + Ub:XPC:RAD23:CETN2:Distorted dsDNA:UV-DDB:PARP1,PARP2 ⟶ NAM + Ub:XPC:RAD23:CETN2:Distorted dsDNA:PAR-UV-DDB:PAR-PARP1,PAR-PARP2
- DNA Damage Recognition in GG-NER:
NAD + Ub:XPC:RAD23:CETN2:Distorted dsDNA:UV-DDB:PARP1,PARP2 ⟶ NAM + Ub:XPC:RAD23:CETN2:Distorted dsDNA:PAR-UV-DDB:PAR-PARP1,PAR-PARP2
- Signaling Pathways:
ADORA2A,B + Ade-Rib ⟶ ADORA2A,B:Ade-Rib
- Signaling by TGFB family members:
NAD + p-2S-SMAD2,3:SMAD4:PARP1 ⟶ A0A3Q1MVZ1 + NAM + PAR-SMAD2,3:PAR-SMAD4
- Signaling by TGF-beta Receptor Complex:
NAD + p-2S-SMAD2,3:SMAD4:PARP1 ⟶ A0A3Q1MVZ1 + NAM + PAR-SMAD2,3:PAR-SMAD4
- Signaling by WNT:
AXIN:TNKS + NAD ⟶ NAM + RibC-AXIN:TNKS
- TCF dependent signaling in response to WNT:
AXIN:TNKS + NAD ⟶ NAM + RibC-AXIN:TNKS
- Degradation of AXIN:
AXIN:TNKS + NAD ⟶ NAM + RibC-AXIN:TNKS
- Intracellular signaling by second messengers:
ATP ⟶ PPi + cAMP
- PI3K/AKT Signaling:
NAD + PTEN ⟶ F1MDX9 + NAM
- PTEN Regulation:
NAD + PTEN ⟶ F1MDX9 + NAM
- Regulation of PTEN stability and activity:
NAD + PTEN ⟶ F1MDX9 + NAM
- Nucleotide Excision Repair:
NAD + Ub:XPC:RAD23:CETN2:Distorted dsDNA:UV-DDB:PARP1,PARP2 ⟶ NAM + Ub:XPC:RAD23:CETN2:Distorted dsDNA:PAR-UV-DDB:PAR-PARP1,PAR-PARP2
- Global Genome Nucleotide Excision Repair (GG-NER):
NAD + Ub:XPC:RAD23:CETN2:Distorted dsDNA:UV-DDB:PARP1,PARP2 ⟶ NAM + Ub:XPC:RAD23:CETN2:Distorted dsDNA:PAR-UV-DDB:PAR-PARP1,PAR-PARP2
- DNA Damage Recognition in GG-NER:
NAD + Ub:XPC:RAD23:CETN2:Distorted dsDNA:UV-DDB:PARP1,PARP2 ⟶ NAM + Ub:XPC:RAD23:CETN2:Distorted dsDNA:PAR-UV-DDB:PAR-PARP1,PAR-PARP2
- Base Excision Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Resolution of Abasic Sites (AP sites):
NAD + PARP1,PARP2:FEN1:POLB:SSB(3'poly-dNMP-displaced 5'ddRP-FLAP)-dsDNA ⟶ NAM + PAR-PARP1,PAR-PARP2:FEN1:POLB:SSB(3'poly-dNMP-displaced 5'ddRP-FLAP)-dsDNA
- Resolution of AP sites via the multiple-nucleotide patch replacement pathway:
NAD + PARP1,PARP2:FEN1:POLB:SSB(3'poly-dNMP-displaced 5'ddRP-FLAP)-dsDNA ⟶ NAM + PAR-PARP1,PAR-PARP2:FEN1:POLB:SSB(3'poly-dNMP-displaced 5'ddRP-FLAP)-dsDNA
- POLB-Dependent Long Patch Base Excision Repair:
NAD + PARP1,PARP2:FEN1:POLB:SSB(3'poly-dNMP-displaced 5'ddRP-FLAP)-dsDNA ⟶ NAM + PAR-PARP1,PAR-PARP2:FEN1:POLB:SSB(3'poly-dNMP-displaced 5'ddRP-FLAP)-dsDNA
- Nucleotide Excision Repair:
NAD + Ub:XPC:RAD23:CETN2:Distorted dsDNA:UV-DDB:PARP1,PARP2 ⟶ NAM + Ub:XPC:RAD23:CETN2:Distorted dsDNA:PAR-UV-DDB:PAR-PARP1,PAR-PARP2
- Global Genome Nucleotide Excision Repair (GG-NER):
NAD + Ub:XPC:RAD23:CETN2:Distorted dsDNA:UV-DDB:PARP1,PARP2 ⟶ NAM + Ub:XPC:RAD23:CETN2:Distorted dsDNA:PAR-UV-DDB:PAR-PARP1,PAR-PARP2
- DNA Damage Recognition in GG-NER:
NAD + Ub:XPC:RAD23:CETN2:Distorted dsDNA:UV-DDB:PARP1,PARP2 ⟶ NAM + Ub:XPC:RAD23:CETN2:Distorted dsDNA:PAR-UV-DDB:PAR-PARP1,PAR-PARP2
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by TGFB family members:
NAD + p-2S-SMAD2,3:SMAD4:PARP1 ⟶ F1Q2M3 + NAM + PAR-SMAD2,3:PAR-SMAD4
- Signaling by TGF-beta Receptor Complex:
NAD + p-2S-SMAD2,3:SMAD4:PARP1 ⟶ F1Q2M3 + NAM + PAR-SMAD2,3:PAR-SMAD4
- Transcriptional activity of SMAD2/SMAD3:SMAD4 heterotrimer:
NAD + p-2S-SMAD2,3:SMAD4:PARP1 ⟶ F1Q2M3 + NAM + PAR-SMAD2,3:PAR-SMAD4
- Downregulation of SMAD2/3:SMAD4 transcriptional activity:
NAD + p-2S-SMAD2,3:SMAD4:PARP1 ⟶ F1Q2M3 + NAM + PAR-SMAD2,3:PAR-SMAD4
- Signaling by WNT:
AXIN:TNKS + NAD ⟶ NAM + RibC-AXIN:TNKS
- TCF dependent signaling in response to WNT:
AXIN:TNKS + NAD ⟶ NAM + RibC-AXIN:TNKS
- Degradation of AXIN:
AXIN:TNKS + NAD ⟶ NAM + RibC-AXIN:TNKS
- Intracellular signaling by second messengers:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- PI3K/AKT Signaling:
NAD + PTEN ⟶ A0A5F4BTC2 + NAM
- PTEN Regulation:
NAD + PTEN ⟶ A0A5F4BTC2 + NAM
- Regulation of PTEN stability and activity:
NAD + PTEN ⟶ A0A5F4BTC2 + NAM
- Base Excision Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Resolution of Abasic Sites (AP sites):
NAD + PARP1,PARP2:FEN1:POLB:SSB(3'poly-dNMP-displaced 5'ddRP-FLAP)-dsDNA ⟶ NAM + PAR-PARP1,PAR-PARP2:FEN1:POLB:SSB(3'poly-dNMP-displaced 5'ddRP-FLAP)-dsDNA
- Resolution of AP sites via the multiple-nucleotide patch replacement pathway:
NAD + PARP1,PARP2:FEN1:POLB:SSB(3'poly-dNMP-displaced 5'ddRP-FLAP)-dsDNA ⟶ NAM + PAR-PARP1,PAR-PARP2:FEN1:POLB:SSB(3'poly-dNMP-displaced 5'ddRP-FLAP)-dsDNA
- POLB-Dependent Long Patch Base Excision Repair:
NAD + PARP1,PARP2:FEN1:POLB:SSB(3'poly-dNMP-displaced 5'ddRP-FLAP)-dsDNA ⟶ NAM + PAR-PARP1,PAR-PARP2:FEN1:POLB:SSB(3'poly-dNMP-displaced 5'ddRP-FLAP)-dsDNA
- HDR through MMEJ (alt-NHEJ):
Extended microhomologous 3'-ssDNA overhangs-flap-DSB:MRN:RBBP8:PARP1,PARP2:FEN1:POLQ + NAD ⟶ Extended microhomologous 3'-ssDNA overhangs-flap-DSB:MRN:RBBP8:FEN1 + NAM + PAR-PARP1,PAR-PARP2 dimers + POLQ homodimer
- Nucleotide Excision Repair:
NAD + Ub:XPC:RAD23:CETN2:Distorted dsDNA:UV-DDB:PARP1,PARP2 ⟶ NAM + Ub:XPC:RAD23:CETN2:Distorted dsDNA:PAR-UV-DDB:PAR-PARP1,PAR-PARP2
- Global Genome Nucleotide Excision Repair (GG-NER):
NAD + Ub:XPC:RAD23:CETN2:Distorted dsDNA:UV-DDB:PARP1,PARP2 ⟶ NAM + Ub:XPC:RAD23:CETN2:Distorted dsDNA:PAR-UV-DDB:PAR-PARP1,PAR-PARP2
- DNA Damage Recognition in GG-NER:
NAD + Ub:XPC:RAD23:CETN2:Distorted dsDNA:UV-DDB:PARP1,PARP2 ⟶ NAM + Ub:XPC:RAD23:CETN2:Distorted dsDNA:PAR-UV-DDB:PAR-PARP1,PAR-PARP2
- DNA Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base Excision Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Resolution of Abasic Sites (AP sites):
NAD + PARP1,PARP2:FEN1:POLB:SSB(3'poly-dNMP-displaced 5'ddRP-FLAP)-dsDNA ⟶ NAM + PAR-PARP1,PAR-PARP2:FEN1:POLB:SSB(3'poly-dNMP-displaced 5'ddRP-FLAP)-dsDNA
- Resolution of AP sites via the multiple-nucleotide patch replacement pathway:
NAD + PARP1,PARP2:FEN1:POLB:SSB(3'poly-dNMP-displaced 5'ddRP-FLAP)-dsDNA ⟶ NAM + PAR-PARP1,PAR-PARP2:FEN1:POLB:SSB(3'poly-dNMP-displaced 5'ddRP-FLAP)-dsDNA
- POLB-Dependent Long Patch Base Excision Repair:
NAD + PARP1,PARP2:FEN1:POLB:SSB(3'poly-dNMP-displaced 5'ddRP-FLAP)-dsDNA ⟶ NAM + PAR-PARP1,PAR-PARP2:FEN1:POLB:SSB(3'poly-dNMP-displaced 5'ddRP-FLAP)-dsDNA
- Nucleotide Excision Repair:
NAD + Ub:XPC:RAD23:CETN2:Distorted dsDNA:UV-DDB:PARP1,PARP2 ⟶ NAM + Ub:XPC:RAD23:CETN2:Distorted dsDNA:PAR-UV-DDB:PAR-PARP1,PAR-PARP2
- Global Genome Nucleotide Excision Repair (GG-NER):
NAD + Ub:XPC:RAD23:CETN2:Distorted dsDNA:UV-DDB:PARP1,PARP2 ⟶ NAM + Ub:XPC:RAD23:CETN2:Distorted dsDNA:PAR-UV-DDB:PAR-PARP1,PAR-PARP2
- DNA Damage Recognition in GG-NER:
NAD + Ub:XPC:RAD23:CETN2:Distorted dsDNA:UV-DDB:PARP1,PARP2 ⟶ NAM + Ub:XPC:RAD23:CETN2:Distorted dsDNA:PAR-UV-DDB:PAR-PARP1,PAR-PARP2
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Nicotinate metabolism:
H+ + PRPP + QUIN ⟶ NAMN + PPi + carbon dioxide
- Nicotinamide salvaging:
(ADP-D-ribosyl)(n)-acceptor + NAD ⟶ (ADP-D-ribosyl)(n+1)-acceptor + NAM
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by TGFB family members:
NAD + p-2S-SMAD2,3:SMAD4:PARP1 ⟶ NAM + PAR-SMAD2,3:PAR-SMAD4 + Parp
- Signaling by TGF-beta Receptor Complex:
NAD + p-2S-SMAD2,3:SMAD4:PARP1 ⟶ NAM + PAR-SMAD2,3:PAR-SMAD4 + Parp
- Transcriptional activity of SMAD2/SMAD3:SMAD4 heterotrimer:
NAD + p-2S-SMAD2,3:SMAD4:PARP1 ⟶ NAM + PAR-SMAD2,3:PAR-SMAD4 + Parp
- Downregulation of SMAD2/3:SMAD4 transcriptional activity:
NAD + p-2S-SMAD2,3:SMAD4:PARP1 ⟶ NAM + PAR-SMAD2,3:PAR-SMAD4 + Parp
- DNA Repair:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- DNA Double-Strand Break Repair:
Extended microhomologous 3'-ssDNA overhangs-flap-DSB:MRN:RBBP8:PARP1,PARP2:FEN1:POLQ + NAD ⟶ Extended microhomologous 3'-ssDNA overhangs-flap-DSB:MRN:RBBP8:FEN1 + NAM + PAR-PARP1,PAR-PARP2 dimers + POLQ homodimer
- Homology Directed Repair:
Extended microhomologous 3'-ssDNA overhangs-flap-DSB:MRN:RBBP8:PARP1,PARP2:FEN1:POLQ + NAD ⟶ Extended microhomologous 3'-ssDNA overhangs-flap-DSB:MRN:RBBP8:FEN1 + NAM + PAR-PARP1,PAR-PARP2 dimers + POLQ homodimer
- HDR through MMEJ (alt-NHEJ):
Extended microhomologous 3'-ssDNA overhangs-flap-DSB:MRN:RBBP8:PARP1,PARP2:FEN1:POLQ + NAD ⟶ Extended microhomologous 3'-ssDNA overhangs-flap-DSB:MRN:RBBP8:FEN1 + NAM + PAR-PARP1,PAR-PARP2 dimers + POLQ homodimer
- Nucleotide Excision Repair:
NAD + Ub:XPC:RAD23:CETN2:Distorted dsDNA:UV-DDB:PARP1,PARP2 ⟶ NAM + Ub:XPC:RAD23:CETN2:Distorted dsDNA:PAR-UV-DDB:PAR-PARP1,PAR-PARP2
- Global Genome Nucleotide Excision Repair (GG-NER):
NAD + Ub:XPC:RAD23:CETN2:Distorted dsDNA:UV-DDB:PARP1,PARP2 ⟶ NAM + Ub:XPC:RAD23:CETN2:Distorted dsDNA:PAR-UV-DDB:PAR-PARP1,PAR-PARP2
- DNA Damage Recognition in GG-NER:
NAD + Ub:XPC:RAD23:CETN2:Distorted dsDNA:UV-DDB:PARP1,PARP2 ⟶ NAM + Ub:XPC:RAD23:CETN2:Distorted dsDNA:PAR-UV-DDB:PAR-PARP1,PAR-PARP2
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Nicotinate metabolism:
(ADP-D-ribosyl)(n)-acceptor + NAD ⟶ (ADP-D-ribosyl)(n+1)-acceptor + NAM
- Nicotinamide salvaging:
(ADP-D-ribosyl)(n)-acceptor + NAD ⟶ (ADP-D-ribosyl)(n+1)-acceptor + NAM
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by WNT:
AXIN:TNKS + NAD ⟶ NAM + RibC-AXIN:TNKS
- TCF dependent signaling in response to WNT:
AXIN:TNKS + NAD ⟶ NAM + RibC-AXIN:TNKS
- Degradation of AXIN:
AXIN:TNKS + NAD ⟶ NAM + RibC-AXIN:TNKS
- Intracellular signaling by second messengers:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- PI3K/AKT Signaling:
NAD + PTEN ⟶ F1NT98 + NAM
- PTEN Regulation:
NAD + PTEN ⟶ F1NT98 + NAM
- Regulation of PTEN stability and activity:
NAD + PTEN ⟶ F1NT98 + NAM
- HDR through MMEJ (alt-NHEJ):
Extended microhomologous 3'-ssDNA overhangs-flap-DSB:MRN:RBBP8:PARP1,PARP2:FEN1:POLQ + NAD ⟶ Extended microhomologous 3'-ssDNA overhangs-flap-DSB:MRN:RBBP8:FEN1 + NAM + PAR-PARP1,PAR-PARP2 dimers + POLQ homodimer
- Nucleotide Excision Repair:
NAD + Ub:XPC:RAD23:CETN2:Distorted dsDNA:UV-DDB:PARP1,PARP2 ⟶ NAM + Ub:XPC:RAD23:CETN2:Distorted dsDNA:PAR-UV-DDB:PAR-PARP1,PAR-PARP2
- Global Genome Nucleotide Excision Repair (GG-NER):
NAD + Ub:XPC:RAD23:CETN2:Distorted dsDNA:UV-DDB:PARP1,PARP2 ⟶ NAM + Ub:XPC:RAD23:CETN2:Distorted dsDNA:PAR-UV-DDB:PAR-PARP1,PAR-PARP2
- DNA Damage Recognition in GG-NER:
NAD + Ub:XPC:RAD23:CETN2:Distorted dsDNA:UV-DDB:PARP1,PARP2 ⟶ NAM + Ub:XPC:RAD23:CETN2:Distorted dsDNA:PAR-UV-DDB:PAR-PARP1,PAR-PARP2
- Base Excision Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Resolution of Abasic Sites (AP sites):
NAD + PARP1,PARP2:FEN1:POLB:SSB(3'poly-dNMP-displaced 5'ddRP-FLAP)-dsDNA ⟶ NAM + PAR-PARP1,PAR-PARP2:FEN1:POLB:SSB(3'poly-dNMP-displaced 5'ddRP-FLAP)-dsDNA
- Resolution of AP sites via the multiple-nucleotide patch replacement pathway:
NAD + PARP1,PARP2:FEN1:POLB:SSB(3'poly-dNMP-displaced 5'ddRP-FLAP)-dsDNA ⟶ NAM + PAR-PARP1,PAR-PARP2:FEN1:POLB:SSB(3'poly-dNMP-displaced 5'ddRP-FLAP)-dsDNA
- POLB-Dependent Long Patch Base Excision Repair:
NAD + PARP1,PARP2:FEN1:POLB:SSB(3'poly-dNMP-displaced 5'ddRP-FLAP)-dsDNA ⟶ NAM + PAR-PARP1,PAR-PARP2:FEN1:POLB:SSB(3'poly-dNMP-displaced 5'ddRP-FLAP)-dsDNA
- HDR through MMEJ (alt-NHEJ):
Extended microhomologous 3'-ssDNA overhangs-flap-DSB:MRN:RBBP8:PARP1,PARP2:FEN1:POLQ + NAD ⟶ Extended microhomologous 3'-ssDNA overhangs-flap-DSB:MRN:RBBP8:FEN1 + NAM + PAR-PARP1,PAR-PARP2 dimers + POLQ homodimer
- Nucleotide Excision Repair:
NAD + Ub:XPC:RAD23:CETN2:Distorted dsDNA:UV-DDB:PARP1,PARP2 ⟶ NAM + Ub:XPC:RAD23:CETN2:Distorted dsDNA:PAR-UV-DDB:PAR-PARP1,PAR-PARP2
- Global Genome Nucleotide Excision Repair (GG-NER):
NAD + Ub:XPC:RAD23:CETN2:Distorted dsDNA:UV-DDB:PARP1,PARP2 ⟶ NAM + Ub:XPC:RAD23:CETN2:Distorted dsDNA:PAR-UV-DDB:PAR-PARP1,PAR-PARP2
- DNA Damage Recognition in GG-NER:
NAD + Ub:XPC:RAD23:CETN2:Distorted dsDNA:UV-DDB:PARP1,PARP2 ⟶ NAM + Ub:XPC:RAD23:CETN2:Distorted dsDNA:PAR-UV-DDB:PAR-PARP1,PAR-PARP2
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by TGFB family members:
NAD + p-2S-SMAD2,3:SMAD4:PARP1 ⟶ NAM + PAR-SMAD2,3:PAR-SMAD4 + Poly (ADP-ribose) polymerase 1
- Signaling by TGF-beta Receptor Complex:
NAD + p-2S-SMAD2,3:SMAD4:PARP1 ⟶ NAM + PAR-SMAD2,3:PAR-SMAD4 + Poly (ADP-ribose) polymerase 1
- Transcriptional activity of SMAD2/SMAD3:SMAD4 heterotrimer:
NAD + p-2S-SMAD2,3:SMAD4:PARP1 ⟶ NAM + PAR-SMAD2,3:PAR-SMAD4 + Poly (ADP-ribose) polymerase 1
- Downregulation of SMAD2/3:SMAD4 transcriptional activity:
NAD + p-2S-SMAD2,3:SMAD4:PARP1 ⟶ NAM + PAR-SMAD2,3:PAR-SMAD4 + Poly (ADP-ribose) polymerase 1
- Signaling by WNT:
AXIN:TNKS + NAD ⟶ NAM + RibC-AXIN:TNKS
- TCF dependent signaling in response to WNT:
AXIN:TNKS + NAD ⟶ NAM + RibC-AXIN:TNKS
- Degradation of AXIN:
AXIN:TNKS + NAD ⟶ NAM + RibC-AXIN:TNKS
- Intracellular signaling by second messengers:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- PI3K/AKT Signaling:
NAD + PTEN ⟶ NAM + RibC-E40,E150,D326-PTEN
- PTEN Regulation:
NAD + PTEN ⟶ NAM + RibC-E40,E150,D326-PTEN
- Regulation of PTEN stability and activity:
NAD + PTEN ⟶ NAM + RibC-E40,E150,D326-PTEN
- Disease:
ADORA2B + Ade-Rib ⟶ ADORA2B:Ade-Rib
- Infectious disease:
ADORA2B + Ade-Rib ⟶ ADORA2B:Ade-Rib
- Uptake and actions of bacterial toxins:
ATP ⟶ PPi + cAMP
- Uptake and function of diphtheria toxin:
NAD + diphthamide EEF2 ⟶ ADP-ribo-EEF2 + NAM
- Base Excision Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Resolution of Abasic Sites (AP sites):
NAD + PARP1,PARP2:FEN1:POLB:SSB(3'poly-dNMP-displaced 5'ddRP-FLAP)-dsDNA ⟶ NAM + PAR-PARP1,PAR-PARP2:FEN1:POLB:SSB(3'poly-dNMP-displaced 5'ddRP-FLAP)-dsDNA
- Resolution of AP sites via the multiple-nucleotide patch replacement pathway:
NAD + PARP1,PARP2:FEN1:POLB:SSB(3'poly-dNMP-displaced 5'ddRP-FLAP)-dsDNA ⟶ NAM + PAR-PARP1,PAR-PARP2:FEN1:POLB:SSB(3'poly-dNMP-displaced 5'ddRP-FLAP)-dsDNA
- POLB-Dependent Long Patch Base Excision Repair:
NAD + PARP1,PARP2:FEN1:POLB:SSB(3'poly-dNMP-displaced 5'ddRP-FLAP)-dsDNA ⟶ NAM + PAR-PARP1,PAR-PARP2:FEN1:POLB:SSB(3'poly-dNMP-displaced 5'ddRP-FLAP)-dsDNA
- HDR through MMEJ (alt-NHEJ):
Extended microhomologous 3'-ssDNA overhangs-flap-DSB:MRN:RBBP8:PARP1,PARP2:FEN1:POLQ + NAD ⟶ Extended microhomologous 3'-ssDNA overhangs-flap-DSB:MRN:RBBP8:FEN1 + NAM + PAR-PARP1,PAR-PARP2 dimers + POLQ homodimer
- Nucleotide Excision Repair:
NAD + Ub:XPC:RAD23:CETN2:Distorted dsDNA:UV-DDB:PARP1,PARP2 ⟶ NAM + Ub:XPC:RAD23:CETN2:Distorted dsDNA:PAR-UV-DDB:PAR-PARP1,PAR-PARP2
- Global Genome Nucleotide Excision Repair (GG-NER):
NAD + Ub:XPC:RAD23:CETN2:Distorted dsDNA:UV-DDB:PARP1,PARP2 ⟶ NAM + Ub:XPC:RAD23:CETN2:Distorted dsDNA:PAR-UV-DDB:PAR-PARP1,PAR-PARP2
- DNA Damage Recognition in GG-NER:
NAD + Ub:XPC:RAD23:CETN2:Distorted dsDNA:UV-DDB:PARP1,PARP2 ⟶ NAM + Ub:XPC:RAD23:CETN2:Distorted dsDNA:PAR-UV-DDB:PAR-PARP1,PAR-PARP2
- Transcriptional activity of SMAD2/SMAD3:SMAD4 heterotrimer:
NAD + p-2S-SMAD2,3:SMAD4:PARP1 ⟶ NAM + PAR-SMAD2,3:PAR-SMAD4 + Parp1
- Downregulation of SMAD2/3:SMAD4 transcriptional activity:
NAD + p-2S-SMAD2,3:SMAD4:PARP1 ⟶ NAM + PAR-SMAD2,3:PAR-SMAD4 + Parp1
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by TGFB family members:
NAD + p-2S-SMAD2,3:SMAD4:PARP1 ⟶ NAM + PAR-SMAD2,3:PAR-SMAD4 + Parp1
- Signaling by TGF-beta Receptor Complex:
NAD + p-2S-SMAD2,3:SMAD4:PARP1 ⟶ NAM + PAR-SMAD2,3:PAR-SMAD4 + Parp1
- Signaling by WNT:
AXIN:TNKS + NAD ⟶ NAM + RibC-AXIN:TNKS
- TCF dependent signaling in response to WNT:
AXIN:TNKS + NAD ⟶ NAM + RibC-AXIN:TNKS
- Degradation of AXIN:
AXIN:TNKS + NAD ⟶ NAM + RibC-AXIN:TNKS
- Intracellular signaling by second messengers:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- PI3K/AKT Signaling:
NAD + Pten ⟶ NAM + phospho-Pten
- PTEN Regulation:
NAD + Pten ⟶ NAM + phospho-Pten
- Regulation of PTEN stability and activity:
NAD + Pten ⟶ NAM + phospho-Pten
- DNA Repair:
MUTYH:(OGUA:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- DNA Double-Strand Break Repair:
ATP + p-T2609,S2612,T2638,T2647-PRKDC:XRCC5:XRCC6:p-S645-DCLRE1C:DNA DSB ends ⟶ ADP + p-T2609,S2612,T2638,T2647-PRKDC:XRCC5:XRCC6:p-S516,S645-DCLRE1C:DNA DSB ends
- Homology Directed Repair:
ATP + DNA DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:CCNA:p-T160-CDK2:RBBP8 ⟶ ADP + CCNA:p-T160-CDK2 + DNA DSBs:p-MRN:p-S327,T847-RBBP8:p-S1981,Ac-K3016-ATM:KAT5
- HDR through MMEJ (alt-NHEJ):
Extended microhomologous 3'-ssDNA overhangs-flap-DSB:MRN:RBBP8:PARP1,PARP2:FEN1:POLQ + NAD ⟶ Extended microhomologous 3'-ssDNA overhangs-flap-DSB:MRN:RBBP8:FEN1 + NAM + PAR-PARP1,PAR-PARP2 dimers + POLQ homodimer
- Nucleotide Excision Repair:
ATP + Ub:XPC:RAD23:CETN2:Distorted dsDNA:PAR-UV-DDB:TFIIH Core:XPA:PAR-PARP1,PAR-PARP2:CHD1L ⟶ ADP + Pi + Ub:XPC:RAD23:CETN2:Open bubble-dsDNA:PAR-UV-DDB:TFIIH Core:XPA:PAR-PARP1,PAR-PARP2:CHD1L
- Global Genome Nucleotide Excision Repair (GG-NER):
ATP + Ub:XPC:RAD23:CETN2:Distorted dsDNA:PAR-UV-DDB:TFIIH Core:XPA:PAR-PARP1,PAR-PARP2:CHD1L ⟶ ADP + Pi + Ub:XPC:RAD23:CETN2:Open bubble-dsDNA:PAR-UV-DDB:TFIIH Core:XPA:PAR-PARP1,PAR-PARP2:CHD1L
- DNA Damage Recognition in GG-NER:
NAD + Ub:XPC:RAD23:CETN2:Distorted dsDNA:UV-DDB:PARP1,PARP2 ⟶ NAM + Ub:XPC:RAD23:CETN2:Distorted dsDNA:PAR-UV-DDB:PAR-PARP1,PAR-PARP2
- DNA Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Nucleotide Excision Repair:
(PCNA:POLD,POLE), (MonoUb:K164-PCNA:POLK):RPA:RFC:Incised DNA without lesion + dNTP ⟶ (PCNA:POLD,POLE), (MonoUb:K164-PCNA:POLK):RPA:RFC:SSB-dsDNA + PPi
- Global Genome Nucleotide Excision Repair (GG-NER):
(PCNA:POLD,POLE), (MonoUb:K164-PCNA:POLK):RPA:RFC:Incised DNA without lesion + dNTP ⟶ (PCNA:POLD,POLE), (MonoUb:K164-PCNA:POLK):RPA:RFC:SSB-dsDNA + PPi
- Transcriptional activity of SMAD2/SMAD3:SMAD4 heterotrimer:
NAD + p-2S-SMAD2,3:SMAD4:PARP1 ⟶ NAM + PAR-SMAD2,3:PAR-SMAD4 + Parp1
- Downregulation of SMAD2/3:SMAD4 transcriptional activity:
NAD + p-2S-SMAD2,3:SMAD4:PARP1 ⟶ NAM + PAR-SMAD2,3:PAR-SMAD4 + Parp1
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by TGFB family members:
NAD + p-2S-SMAD2,3:SMAD4:PARP1 ⟶ NAM + PAR-SMAD2,3:PAR-SMAD4 + Parp1
- Signaling by TGF-beta Receptor Complex:
NAD + p-2S-SMAD2,3:SMAD4:PARP1 ⟶ NAM + PAR-SMAD2,3:PAR-SMAD4 + Parp1
- Signaling by WNT:
AXIN:TNKS + NAD ⟶ NAM + RibC-AXIN:TNKS
- TCF dependent signaling in response to WNT:
AXIN:TNKS + NAD ⟶ NAM + RibC-AXIN:TNKS
- Degradation of AXIN:
AXIN:TNKS + NAD ⟶ NAM + RibC-AXIN:TNKS
- Intracellular signaling by second messengers:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- PI3K/AKT Signaling:
NAD + Pten ⟶ NAM + phospho-Pten
- PTEN Regulation:
NAD + Pten ⟶ NAM + phospho-Pten
- Regulation of PTEN stability and activity:
NAD + Pten ⟶ NAM + phospho-Pten
- Base Excision Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Resolution of Abasic Sites (AP sites):
NAD + PARP1,PARP2:FEN1:POLB:SSB(3'poly-dNMP-displaced 5'ddRP-FLAP)-dsDNA ⟶ NAM + PAR-PARP1,PAR-PARP2:FEN1:POLB:SSB(3'poly-dNMP-displaced 5'ddRP-FLAP)-dsDNA
- Resolution of AP sites via the multiple-nucleotide patch replacement pathway:
NAD + PARP1,PARP2:FEN1:POLB:SSB(3'poly-dNMP-displaced 5'ddRP-FLAP)-dsDNA ⟶ NAM + PAR-PARP1,PAR-PARP2:FEN1:POLB:SSB(3'poly-dNMP-displaced 5'ddRP-FLAP)-dsDNA
- POLB-Dependent Long Patch Base Excision Repair:
NAD + PARP1,PARP2:FEN1:POLB:SSB(3'poly-dNMP-displaced 5'ddRP-FLAP)-dsDNA ⟶ NAM + PAR-PARP1,PAR-PARP2:FEN1:POLB:SSB(3'poly-dNMP-displaced 5'ddRP-FLAP)-dsDNA
- HDR through MMEJ (alt-NHEJ):
Extended microhomologous 3'-ssDNA overhangs-flap-DSB:MRN:RBBP8:PARP1,PARP2:FEN1:POLQ + NAD ⟶ Extended microhomologous 3'-ssDNA overhangs-flap-DSB:MRN:RBBP8:FEN1 + NAM + PAR-PARP1,PAR-PARP2 dimers + POLQ homodimer
- Nucleotide Excision Repair:
NAD + Ub:XPC:RAD23:CETN2:Distorted dsDNA:UV-DDB:PARP1,PARP2 ⟶ NAM + Ub:XPC:RAD23:CETN2:Distorted dsDNA:PAR-UV-DDB:PAR-PARP1,PAR-PARP2
- Global Genome Nucleotide Excision Repair (GG-NER):
NAD + Ub:XPC:RAD23:CETN2:Distorted dsDNA:UV-DDB:PARP1,PARP2 ⟶ NAM + Ub:XPC:RAD23:CETN2:Distorted dsDNA:PAR-UV-DDB:PAR-PARP1,PAR-PARP2
- DNA Damage Recognition in GG-NER:
NAD + Ub:XPC:RAD23:CETN2:Distorted dsDNA:UV-DDB:PARP1,PARP2 ⟶ NAM + Ub:XPC:RAD23:CETN2:Distorted dsDNA:PAR-UV-DDB:PAR-PARP1,PAR-PARP2
- DNA Damage Recognition in GG-NER:
NAD + Ub:XPC:RAD23:CETN2:Distorted dsDNA:UV-DDB:PARP1,PARP2 ⟶ NAM + Ub:XPC:RAD23:CETN2:Distorted dsDNA:PAR-UV-DDB:PAR-PARP1,PAR-PARP2
- Transcriptional activity of SMAD2/SMAD3:SMAD4 heterotrimer:
NAD + p-2S-SMAD2,3:SMAD4:PARP1 ⟶ I3LDH3 + NAM + p-2S-SMAD2:p-2S-SMAD2:PAR-SMAD4
- Downregulation of SMAD2/3:SMAD4 transcriptional activity:
NAD + p-2S-SMAD2,3:SMAD4:PARP1 ⟶ I3LDH3 + NAM + p-2S-SMAD2:p-2S-SMAD2:PAR-SMAD4
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by TGFB family members:
NAD + p-2S-SMAD2,3:SMAD4:PARP1 ⟶ I3LDH3 + NAM + p-2S-SMAD2:p-2S-SMAD2:PAR-SMAD4
- Signaling by TGF-beta Receptor Complex:
NAD + p-2S-SMAD2,3:SMAD4:PARP1 ⟶ I3LDH3 + NAM + p-2S-SMAD2:p-2S-SMAD2:PAR-SMAD4
- Signaling by WNT:
AXIN:TNKS + NAD ⟶ NAM + RibC-AXIN:TNKS
- TCF dependent signaling in response to WNT:
AXIN:TNKS + NAD ⟶ NAM + RibC-AXIN:TNKS
- Degradation of AXIN:
AXIN:TNKS + NAD ⟶ NAM + RibC-AXIN:TNKS
- Intracellular signaling by second messengers:
ATP ⟶ PPi + cAMP
- PI3K/AKT Signaling:
NAD + PTEN ⟶ F2Z5H1 + NAM
- PTEN Regulation:
NAD + PTEN ⟶ F2Z5H1 + NAM
- Regulation of PTEN stability and activity:
NAD + PTEN ⟶ F2Z5H1 + NAM
- Base Excision Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Resolution of Abasic Sites (AP sites):
NAD + PARP1,PARP2:FEN1:POLB:SSB(3'poly-dNMP-displaced 5'ddRP-FLAP)-dsDNA ⟶ NAM + PAR-PARP1,PAR-PARP2:FEN1:POLB:SSB(3'poly-dNMP-displaced 5'ddRP-FLAP)-dsDNA
- Resolution of AP sites via the multiple-nucleotide patch replacement pathway:
NAD + PARP1,PARP2:FEN1:POLB:SSB(3'poly-dNMP-displaced 5'ddRP-FLAP)-dsDNA ⟶ NAM + PAR-PARP1,PAR-PARP2:FEN1:POLB:SSB(3'poly-dNMP-displaced 5'ddRP-FLAP)-dsDNA
- POLB-Dependent Long Patch Base Excision Repair:
NAD + PARP1,PARP2:FEN1:POLB:SSB(3'poly-dNMP-displaced 5'ddRP-FLAP)-dsDNA ⟶ NAM + PAR-PARP1,PAR-PARP2:FEN1:POLB:SSB(3'poly-dNMP-displaced 5'ddRP-FLAP)-dsDNA
- HDR through MMEJ (alt-NHEJ):
Extended microhomologous 3'-ssDNA overhangs-flap-DSB:MRN:RBBP8:PARP1,PARP2:FEN1:POLQ + NAD ⟶ Extended microhomologous 3'-ssDNA overhangs-flap-DSB:MRN:RBBP8:FEN1 + NAM + PAR-PARP1,PAR-PARP2 dimers + POLQ homodimer
- Nucleotide Excision Repair:
NAD + Ub:XPC:RAD23:CETN2:Distorted dsDNA:UV-DDB:PARP1,PARP2 ⟶ NAM + Ub:XPC:RAD23:CETN2:Distorted dsDNA:PAR-UV-DDB:PAR-PARP1,PAR-PARP2
- Global Genome Nucleotide Excision Repair (GG-NER):
NAD + Ub:XPC:RAD23:CETN2:Distorted dsDNA:UV-DDB:PARP1,PARP2 ⟶ NAM + Ub:XPC:RAD23:CETN2:Distorted dsDNA:PAR-UV-DDB:PAR-PARP1,PAR-PARP2
- DNA Damage Recognition in GG-NER:
NAD + Ub:XPC:RAD23:CETN2:Distorted dsDNA:UV-DDB:PARP1,PARP2 ⟶ NAM + Ub:XPC:RAD23:CETN2:Distorted dsDNA:PAR-UV-DDB:PAR-PARP1,PAR-PARP2
- Signaling Pathways:
AMP + p-AMPK heterotrimer ⟶ p-AMPK heterotrimer:AMP
- Signaling by WNT:
ATP + AXIN:GSK3:CK1alpha:ub-APC:PP2A:AMER1 complex ⟶ ADP + p-AXIN:GSK3:CK1alpha:ub-APC:PP2A:AMER1 complex
- TCF dependent signaling in response to WNT:
ATP ⟶ ADP
- Degradation of AXIN:
AXIN:TNKS + NAD ⟶ NAM + RibC-AXIN:TNKS
- Intracellular signaling by second messengers:
H2O + cAMP ⟶ AMP
- PI3K/AKT Signaling:
ATP + PI(4,5)P2 ⟶ ADP + PI(3,4,5)P3
- PTEN Regulation:
ATP + H0ZN53 ⟶ ADP + phospho-p-S109-MKRN1
- Regulation of PTEN stability and activity:
ATP + H0ZN53 ⟶ ADP + phospho-p-S109-MKRN1
- Base Excision Repair:
MUTYH:(OGUA:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Resolution of Abasic Sites (AP sites):
NAD + PARP1,PARP2:FEN1:POLB:SSB(3'poly-dNMP-displaced 5'ddRP-FLAP)-dsDNA ⟶ NAM + PAR-PARP1,PAR-PARP2:FEN1:POLB:SSB(3'poly-dNMP-displaced 5'ddRP-FLAP)-dsDNA
- Resolution of AP sites via the multiple-nucleotide patch replacement pathway:
NAD + PARP1,PARP2:FEN1:POLB:SSB(3'poly-dNMP-displaced 5'ddRP-FLAP)-dsDNA ⟶ NAM + PAR-PARP1,PAR-PARP2:FEN1:POLB:SSB(3'poly-dNMP-displaced 5'ddRP-FLAP)-dsDNA
- POLB-Dependent Long Patch Base Excision Repair:
NAD + PARP1,PARP2:FEN1:POLB:SSB(3'poly-dNMP-displaced 5'ddRP-FLAP)-dsDNA ⟶ NAM + PAR-PARP1,PAR-PARP2:FEN1:POLB:SSB(3'poly-dNMP-displaced 5'ddRP-FLAP)-dsDNA
- HDR through MMEJ (alt-NHEJ):
Extended microhomologous 3'-ssDNA overhangs-flap-DSB:MRN:RBBP8:PARP1,PARP2:FEN1:POLQ + NAD ⟶ Extended microhomologous 3'-ssDNA overhangs-flap-DSB:MRN:RBBP8:FEN1 + NAM + PAR-PARP1,PAR-PARP2 dimers + POLQ homodimer
- Nucleotide Excision Repair:
ATP + Ub:XPC:RAD23:CETN2:Distorted dsDNA:PAR-UV-DDB:TFIIH Core:XPA:PAR-PARP1,PAR-PARP2:CHD1L ⟶ ADP + Pi + Ub:XPC:RAD23:CETN2:Open bubble-dsDNA:PAR-UV-DDB:TFIIH Core:XPA:PAR-PARP1,PAR-PARP2:CHD1L
- Global Genome Nucleotide Excision Repair (GG-NER):
ATP + Ub:XPC:RAD23:CETN2:Distorted dsDNA:PAR-UV-DDB:TFIIH Core:XPA:PAR-PARP1,PAR-PARP2:CHD1L ⟶ ADP + Pi + Ub:XPC:RAD23:CETN2:Open bubble-dsDNA:PAR-UV-DDB:TFIIH Core:XPA:PAR-PARP1,PAR-PARP2:CHD1L
- DNA Damage Recognition in GG-NER:
NAD + Ub:XPC:RAD23:CETN2:Distorted dsDNA:UV-DDB:PARP1,PARP2 ⟶ NAM + Ub:XPC:RAD23:CETN2:Distorted dsDNA:PAR-UV-DDB:PAR-PARP1,PAR-PARP2
- Base Excision Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Resolution of Abasic Sites (AP sites):
NAD + PARP1,PARP2:FEN1:POLB:SSB(3'poly-dNMP-displaced 5'ddRP-FLAP)-dsDNA ⟶ NAM + PAR-PARP1,PAR-PARP2:FEN1:POLB:SSB(3'poly-dNMP-displaced 5'ddRP-FLAP)-dsDNA
- Resolution of AP sites via the multiple-nucleotide patch replacement pathway:
NAD + PARP1,PARP2:FEN1:POLB:SSB(3'poly-dNMP-displaced 5'ddRP-FLAP)-dsDNA ⟶ NAM + PAR-PARP1,PAR-PARP2:FEN1:POLB:SSB(3'poly-dNMP-displaced 5'ddRP-FLAP)-dsDNA
- POLB-Dependent Long Patch Base Excision Repair:
NAD + PARP1,PARP2:FEN1:POLB:SSB(3'poly-dNMP-displaced 5'ddRP-FLAP)-dsDNA ⟶ NAM + PAR-PARP1,PAR-PARP2:FEN1:POLB:SSB(3'poly-dNMP-displaced 5'ddRP-FLAP)-dsDNA
- HDR through MMEJ (alt-NHEJ):
Extended microhomologous 3'-ssDNA overhangs-flap-DSB:MRN:RBBP8:PARP1,PARP2:FEN1:POLQ + NAD ⟶ Extended microhomologous 3'-ssDNA overhangs-flap-DSB:MRN:RBBP8:FEN1 + NAM + PAR-PARP1,PAR-PARP2 dimers + POLQ homodimer
- Nucleotide Excision Repair:
NAD + Ub:XPC:RAD23:CETN2:Distorted dsDNA:UV-DDB:PARP1,PARP2 ⟶ NAM + Ub:XPC:RAD23:CETN2:Distorted dsDNA:PAR-UV-DDB:PAR-PARP1,PAR-PARP2
- Global Genome Nucleotide Excision Repair (GG-NER):
NAD + Ub:XPC:RAD23:CETN2:Distorted dsDNA:UV-DDB:PARP1,PARP2 ⟶ NAM + Ub:XPC:RAD23:CETN2:Distorted dsDNA:PAR-UV-DDB:PAR-PARP1,PAR-PARP2
- DNA Damage Recognition in GG-NER:
NAD + Ub:XPC:RAD23:CETN2:Distorted dsDNA:UV-DDB:PARP1,PARP2 ⟶ NAM + Ub:XPC:RAD23:CETN2:Distorted dsDNA:PAR-UV-DDB:PAR-PARP1,PAR-PARP2
- HDR through MMEJ (alt-NHEJ):
Extended microhomologous 3'-ssDNA overhangs-flap-DSB:MRN:RBBP8:PARP1,PARP2:FEN1:POLQ + NAD ⟶ Extended microhomologous 3'-ssDNA overhangs-flap-DSB:MRN:RBBP8:FEN1 + NAM + PAR-PARP1,PAR-PARP2 dimers + POLQ homodimer
- DNA Damage Recognition in GG-NER:
NAD + Ub:XPC:RAD23:CETN2:Distorted dsDNA:UV-DDB:PARP1,PARP2 ⟶ NAM + Ub:XPC:RAD23:CETN2:Distorted dsDNA:PAR-UV-DDB:PAR-PARP1,PAR-PARP2
- Infection with Mycobacterium tuberculosis:
H+ + MSH + NADH + nitrosomycothiol ⟶ H2O + MSSM + NAD + ammonia
- Escape of Mtb from the phagocyte:
H2O + NAD ⟶ ADP-D-ribose + H+ + NAM
- Phagocyte cell death caused by cytosolic Mtb:
H2O + NAD ⟶ ADP-D-ribose + H+ + NAM
- SARS-CoV Infections:
H2O + N-glycan Spike ⟶ beta-D-glucose + trimmed unfolded N-glycan Spike
- SARS-CoV-1 Infection:
H2O + N-glycan Spike ⟶ beta-D-glucose + trimmed unfolded N-glycan Spike
- Translation of Structural Proteins:
H2O + N-glycan Spike ⟶ beta-D-glucose + trimmed unfolded N-glycan Spike
- Maturation of nucleoprotein:
NAD + p-S177-N ⟶ ADPr-p-S177-N + H+ + NAM
- SARS-CoV-2 Infection:
14-sugar N-glycan unfolded Spike + H2O ⟶ Man(9) N-glycan unfolded Spike + beta-D-glucose
- Translation of Structural Proteins:
14-sugar N-glycan unfolded Spike + H2O ⟶ Man(9) N-glycan unfolded Spike + beta-D-glucose
- Maturation of nucleoprotein:
NAD + p-11S,2T-metR95,177-N ⟶ ADPr-p-11S,2T-metR95,177-N + H+ + NAM
- Late SARS-CoV-2 Infection Events:
NAD + p-11S,2T-metR95,177-N ⟶ ADPr-p-11S,2T-metR95,177-N + H+ + NAM
- Bacterial Infection Pathways:
H+ + NADH + dlaT(ox.) ⟶ NAD + dlaT
- Viral Infection Pathways:
NAD + p-S177-N ⟶ ADPr-p-S177-N + H+ + NAM
BioCyc(55)
- pyridine nucleotide cycling:
ATP + ammonia + nicotinate adenine dinucleotide ⟶ AMP + H+ + NAD+ + diphosphate
- pyridine nucleotide cycling (plants):
ATP + H2O + gln + nicotinate adenine dinucleotide ⟶ AMP + H+ + NAD+ + diphosphate + glt
- pyridine nucleotide cycling (plants):
H2O + nicotinamide ⟶ H+ + ammonia + nicotinate
- NAD salvage:
NMN + diphosphate ⟶ H+ + PRPP + nicotinamide
- NAD biosynthesis III (from nicotinamide):
NMN + diphosphate ⟶ H+ + PRPP + nicotinamide
- pyridine nucleotide cycling (plants):
1-(β-D ribofuranosyl)nicotinamide + H2O ⟶ D-ribofuranose + H+ + nicotinamide
- aldoxime degradation:
nicotinamide ⟶ 3-cyanopyridine + H2O
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- tRNA splicing I:
NAD+ ⟶ Appr>p + nicotinamide
- thiazole biosynthesis III (eukaryotes):
NAD+ + a [protein]-L-cysteine + gly ⟶ ADP-5-ethyl-4-methylthiazole-2-carboxylate + H+ + H2O + a [protein]-2-aminoprop-2-enoate + nicotinamide
- NAD salvage pathway I (PNC VI cycle):
H2O + NMN ⟶ D-ribofuranose 5-phosphate + H+ + nicotinamide
- superpathway of NAD biosynthesis in eukaryotes:
N-Formyl-L-kynurenine + H2O ⟶ H+ + L-kynurenine + formate
- NAD salvage pathway V (PNC V cycle):
H2O + NAD+ + a [histone]-N6-acetyl-L-lysine ⟶ 2''-O-acetyl-ADP-ribose + a [histone]-L-lysine + nicotinamide
- NAD salvage pathway I (PNC VI cycle):
H2O + NMN ⟶ D-ribofuranose 5-phosphate + H+ + nicotinamide
- superpathway of thiamin diphosphate biosynthesis III (eukaryotes):
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- tRNA splicing:
NAD+ ⟶ Appr>p + nicotinamide
- nicotinamide riboside salvage pathway II:
1-(β-D ribofuranosyl)nicotinamide + H2O ⟶ D-ribofuranose + H+ + nicotinamide
- NAD salvage pathway:
H2O + nicotinamide ⟶ ammonium + nicotinate
- thiazole biosynthesis III (eukaryotes):
ADP-5-ethyl-4-methylthiazole-2-carboxylate + H2O ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + AMP + CO2 + H+
- thiazole biosynthesis III (eukaryotes):
NAD+ + a [protein]-L-cysteine + gly ⟶ 2-carboxylate-4-methyl-5-beta-(ethyl adenosine 5-diphosphate) thiazole + H+ + H2O + a [protein]-2-aminoprop-2-enoate + nicotinamide
- pyridine nucleotide cycling (plants):
1-(β-D ribofuranosyl)nicotinamide + H2O ⟶ D-ribofuranose + H+ + nicotinamide
- aldoxime degradation:
H2O + nicotinamide ⟶ H+ + ammonia + nicotinate
- NAD salvage pathway I:
H2O + NMN ⟶ D-ribofuranose 5-phosphate + H+ + nicotinamide
- NAD salvage pathway I:
H2O + nicotinamide ⟶ H+ + ammonia + nicotinate
- NAD salvage pathway I (PNC VI cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway I:
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway I:
H2O + NAD+ ⟶ ADP-D-ribose + H+ + nicotinamide
- NAD salvage pathway I:
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway I:
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway I (PNC VI cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway I (PNC VI cycle):
H2O + NMN ⟶ D-ribofuranose 5-phosphate + H+ + nicotinamide
- tRNA splicing:
ATP ⟶ AMP + diphosphate
- NAD biosynthesis III:
ATP + H+ + nicotinamide mononucleotide ⟶ NAD+ + diphosphate
- pyridine nucleotide cycling:
ATP + ammonia + nicotinate adenine dinucleotide ⟶ AMP + NAD+ + diphosphate
- aldoxime degradation:
3-cyanopyridine + H2O ⟶ nicotinamide
- pyridine nucleotide cycling:
H2O + NAD+ ⟶ ADP-D-ribose + H+ + nicotinamide
- NAD salvage pathway I (PNC VI cycle):
H2O + NMN ⟶ D-ribofuranose 5-phosphate + H+ + nicotinamide
- NAD salvage pathway I:
H2O + nicotinamide ⟶ H+ + ammonia + nicotinate
- superpathway of NAD biosynthesis in eukaryotes:
H2O + nicotinamide ⟶ H+ + ammonia + nicotinate
- NAD salvage pathway I:
H2O + NMN ⟶ D-ribofuranose 5-phosphate + H+ + nicotinamide
- NAD salvage pathway I:
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway I:
H2O + NMN ⟶ D-ribofuranose 5-phosphate + H+ + nicotinamide
- NAD biosynthesis III:
diphosphate + nicotinamide mononucleotide ⟶ 5-phospho-α-D-ribose 1-diphosphate + H+ + nicotinamide
- NAD salvage pathway I:
H2O + nicotinamide mononucleotide ⟶ H+ + ammonia + nicotinate mononucleotide
- aldoxime degradation:
H2O + nicotinamide ⟶ H+ + ammonia + nicotinate
- NAD salvage pathway I:
β-nicotinamide D-ribonucleotide + H2O ⟶ β-nicotinate D-ribonucleotide + H+ + ammonia
- NAD salvage pathway I:
H2O + nicotinamide ⟶ H+ + ammonia + nicotinate
- tRNA splicing:
NAD+ ⟶ ADP ribose 1'',2''-cyclic phosphate + H2O + nicotinamide
- NAD biosynthesis III:
β-nicotinamide D-ribonucleotide + diphosphate ⟶ 5-phospho-α-D-ribose 1-diphosphate + H+ + nicotinamide
- NAD salvage pathway I:
H2O + nicotinamide ⟶ H+ + ammonia + nicotinate
- NAD salvage pathway I:
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway I:
H2O + nicotinamide ⟶ ammonium + nicotinate
- tRNA splicing:
NAD+ ⟶ Appr>p + nicotinamide
- NAD biosynthesis III:
ATP + H+ + NMN ⟶ NAD+ + diphosphate
- NAD salvage pathway I:
H2O + nicotinamide ⟶ ammonium + nicotinate
WikiPathways(2)
- NAD salvage pathway I:
Nicotinic acid ⟶ Nicotinic acid mononucleotide
- NAD metabolism in oncogene-induced senescence and mitochondrial dysfunction-associated senescence:
OAA ⟶ Malate
Plant Reactome(0)
INOH(3)
- Nicotinate and Nicotinamide metabolism ( Nicotinate and Nicotinamide metabolism ):
ATP + Deamido-NAD+ + H2O + L-Glutamine ⟶ AMP + L-Glutamic acid + NAD+ + Pyrophosphate
- N-Ribosyl-nicotinamide + Orthophosphate = Nicotinamide + D-Ribose 1-phosphate ( Nicotinate and Nicotinamide metabolism ):
N-Ribosyl-nicotinamide + Orthophosphate ⟶ D-Ribose 1-phosphate + Nicotinamide
- Nicotinamide D-ribonucleotide + Pyrophosphate = Nicotinamide + D-5-Phospho-ribosyl 1-diphosphate ( Nicotinate and Nicotinamide metabolism ):
D-5-Phospho-ribosyl 1-diphosphate + Nicotinamide D-ribonucleotide ⟶ Nicotinamide + Pyrophosphate
PlantCyc(387)
- thiazole biosynthesis III (eukaryotes):
ADP-5-ethyl-4-methylthiazole-2-carboxylate + H2O ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + AMP + CO2 + H+
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiazole biosynthesis III (eukaryotes):
ADP-5-ethyl-4-methylthiazole-2-carboxylate + H2O ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + AMP + CO2 + H+
- thiazole biosynthesis III (eukaryotes):
ADP-5-ethyl-4-methylthiazole-2-carboxylate + H2O ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + AMP + CO2 + H+
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiazole biosynthesis III (eukaryotes):
ADP-5-ethyl-4-methylthiazole-2-carboxylate + H2O ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + AMP + CO2 + H+
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiazole biosynthesis III (eukaryotes):
ADP-5-ethyl-4-methylthiazole-2-carboxylate + H2O ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + AMP + CO2 + H+
- pyridine nucleotide cycling (plants):
D-ribulose 1-phosphate + H+ + nicotinate ⟶ β-D-ribosylnicotinate + phosphate
- thiazole biosynthesis III (eukaryotes):
NAD+ + a [protein]-L-cysteine + gly ⟶ ADP-5-ethyl-4-methylthiazole-2-carboxylate + H+ + H2O + a [protein]-2-aminoprop-2-enoate + nicotinamide
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiazole biosynthesis III (eukaryotes):
ADP-5-ethyl-4-methylthiazole-2-carboxylate + H2O ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + AMP + CO2 + H+
- thiazole biosynthesis III (eukaryotes):
ADP-5-ethyl-4-methylthiazole-2-carboxylate + H2O ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + AMP + CO2 + H+
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiazole biosynthesis III (eukaryotes):
ADP-5-ethyl-4-methylthiazole-2-carboxylate + H2O ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + AMP + CO2 + H+
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiazole biosynthesis III (eukaryotes):
ADP-5-ethyl-4-methylthiazole-2-carboxylate + H2O ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + AMP + CO2 + H+
- thiazole biosynthesis III (eukaryotes):
ADP-5-ethyl-4-methylthiazole-2-carboxylate + H2O ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + AMP + CO2 + H+
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiazole biosynthesis III (eukaryotes):
ADP-5-ethyl-4-methylthiazole-2-carboxylate + H2O ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + AMP + CO2 + H+
- thiazole biosynthesis III (eukaryotes):
ADP-5-ethyl-4-methylthiazole-2-carboxylate + H2O ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + AMP + CO2 + H+
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiazole biosynthesis III (eukaryotes):
ADP-5-ethyl-4-methylthiazole-2-carboxylate + H2O ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + AMP + CO2 + H+
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiazole biosynthesis III (eukaryotes):
ADP-5-ethyl-4-methylthiazole-2-carboxylate + H2O ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + AMP + CO2 + H+
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiazole biosynthesis III (eukaryotes):
ADP-5-ethyl-4-methylthiazole-2-carboxylate + H2O ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + AMP + CO2 + H+
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiazole biosynthesis III (eukaryotes):
ADP-5-ethyl-4-methylthiazole-2-carboxylate + H2O ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + AMP + CO2 + H+
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiazole biosynthesis III (eukaryotes):
ADP-5-ethyl-4-methylthiazole-2-carboxylate + H2O ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + AMP + CO2 + H+
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiazole biosynthesis III (eukaryotes):
ADP-5-ethyl-4-methylthiazole-2-carboxylate + H2O ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + AMP + CO2 + H+
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiazole biosynthesis III (eukaryotes):
ADP-5-ethyl-4-methylthiazole-2-carboxylate + H2O ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + AMP + CO2 + H+
- thiazole biosynthesis III (eukaryotes):
ADP-5-ethyl-4-methylthiazole-2-carboxylate + H2O ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + AMP + CO2 + H+
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiazole biosynthesis III (eukaryotes):
ADP-5-ethyl-4-methylthiazole-2-carboxylate + H2O ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + AMP + CO2 + H+
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiazole biosynthesis III (eukaryotes):
ADP-5-ethyl-4-methylthiazole-2-carboxylate + H2O ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + AMP + CO2 + H+
- thiazole biosynthesis III (eukaryotes):
ADP-5-ethyl-4-methylthiazole-2-carboxylate + H2O ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + AMP + CO2 + H+
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiazole biosynthesis III (eukaryotes):
ADP-5-ethyl-4-methylthiazole-2-carboxylate + H2O ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + AMP + CO2 + H+
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiazole biosynthesis III (eukaryotes):
ADP-5-ethyl-4-methylthiazole-2-carboxylate + H2O ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + AMP + CO2 + H+
- thiazole biosynthesis III (eukaryotes):
ADP-5-ethyl-4-methylthiazole-2-carboxylate + H2O ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + AMP + CO2 + H+
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- NAD biosynthesis III (from nicotinamide):
ATP + H+ + NMN ⟶ NAD+ + diphosphate
- pyridine nucleotide cycling (plants):
1-(β-D ribofuranosyl)nicotinamide + H2O ⟶ D-ribofuranose + H+ + nicotinamide
- thiazole biosynthesis III (eukaryotes):
ADP-5-ethyl-4-methylthiazole-2-carboxylate + H2O ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + AMP + CO2 + H+
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiazole biosynthesis III (eukaryotes):
ADP-5-ethyl-4-methylthiazole-2-carboxylate + H2O ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + AMP + CO2 + H+
- thiazole biosynthesis III (eukaryotes):
ADP-5-ethyl-4-methylthiazole-2-carboxylate + H2O ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + AMP + CO2 + H+
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiazole biosynthesis III (eukaryotes):
ADP-5-ethyl-4-methylthiazole-2-carboxylate + H2O ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + AMP + CO2 + H+
- thiazole biosynthesis III (eukaryotes):
ADP-5-ethyl-4-methylthiazole-2-carboxylate + H2O ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + AMP + CO2 + H+
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- pyridine nucleotide cycling (plants):
H2O + NMN ⟶ 1-(β-D ribofuranosyl)nicotinamide + phosphate
- thiazole biosynthesis III (eukaryotes):
ADP-5-ethyl-4-methylthiazole-2-carboxylate + H2O ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + AMP + CO2 + H+
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiazole biosynthesis III (eukaryotes):
ADP-5-ethyl-4-methylthiazole-2-carboxylate + H2O ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + AMP + CO2 + H+
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiazole biosynthesis III (eukaryotes):
ADP-5-ethyl-4-methylthiazole-2-carboxylate + H2O ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + AMP + CO2 + H+
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiazole biosynthesis III (eukaryotes):
ADP-5-ethyl-4-methylthiazole-2-carboxylate + H2O ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + AMP + CO2 + H+
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiazole biosynthesis III (eukaryotes):
ADP-5-ethyl-4-methylthiazole-2-carboxylate + H2O ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + AMP + CO2 + H+
- thiazole biosynthesis III (eukaryotes):
ADP-5-ethyl-4-methylthiazole-2-carboxylate + H2O ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + AMP + CO2 + H+
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiazole biosynthesis III (eukaryotes):
ADP-5-ethyl-4-methylthiazole-2-carboxylate + H2O ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + AMP + CO2 + H+
- thiazole biosynthesis III (eukaryotes):
ADP-5-ethyl-4-methylthiazole-2-carboxylate + H2O ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + AMP + CO2 + H+
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiazole biosynthesis III (eukaryotes):
ADP-5-ethyl-4-methylthiazole-2-carboxylate + H2O ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + AMP + CO2 + H+
- thiazole biosynthesis III (eukaryotes):
ADP-5-ethyl-4-methylthiazole-2-carboxylate + H2O ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + AMP + CO2 + H+
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiazole biosynthesis III (eukaryotes):
ADP-5-ethyl-4-methylthiazole-2-carboxylate + H2O ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + AMP + CO2 + H+
- thiazole biosynthesis III (eukaryotes):
ADP-5-ethyl-4-methylthiazole-2-carboxylate + H2O ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + AMP + CO2 + H+
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiazole biosynthesis III (eukaryotes):
ADP-5-ethyl-4-methylthiazole-2-carboxylate + H2O ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + AMP + CO2 + H+
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiazole biosynthesis III (eukaryotes):
ADP-5-ethyl-4-methylthiazole-2-carboxylate + H2O ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + AMP + CO2 + H+
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiazole biosynthesis III (eukaryotes):
ADP-5-ethyl-4-methylthiazole-2-carboxylate + H2O ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + AMP + CO2 + H+
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiazole biosynthesis III (eukaryotes):
ADP-5-ethyl-4-methylthiazole-2-carboxylate + H2O ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + AMP + CO2 + H+
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiazole biosynthesis III (eukaryotes):
ADP-5-ethyl-4-methylthiazole-2-carboxylate + H2O ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + AMP + CO2 + H+
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiazole biosynthesis III (eukaryotes):
ADP-5-ethyl-4-methylthiazole-2-carboxylate + H2O ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + AMP + CO2 + H+
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiazole biosynthesis III (eukaryotes):
ADP-5-ethyl-4-methylthiazole-2-carboxylate + H2O ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + AMP + CO2 + H+
- thiazole biosynthesis III (eukaryotes):
ADP-5-ethyl-4-methylthiazole-2-carboxylate + H2O ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + AMP + CO2 + H+
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiazole biosynthesis III (eukaryotes):
ADP-5-ethyl-4-methylthiazole-2-carboxylate + H2O ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + AMP + CO2 + H+
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiazole biosynthesis III (eukaryotes):
ADP-5-ethyl-4-methylthiazole-2-carboxylate + H2O ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + AMP + CO2 + H+
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiazole biosynthesis III (eukaryotes):
ADP-5-ethyl-4-methylthiazole-2-carboxylate + H2O ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + AMP + CO2 + H+
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiazole biosynthesis III (eukaryotes):
ADP-5-ethyl-4-methylthiazole-2-carboxylate + H2O ⟶ 4-methyl-5-(2-phosphooxyethyl)thiazole + AMP + CO2 + H+
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiazole biosynthesis III (eukaryotes):
NAD+ + a [protein]-L-cysteine + gly ⟶ ADP-5-ethyl-4-methylthiazole-2-carboxylate + H+ + H2O + a [protein]-2-aminoprop-2-enoate + nicotinamide
- thiazole biosynthesis III (eukaryotes):
NAD+ + a [protein]-L-cysteine + gly ⟶ ADP-5-ethyl-4-methylthiazole-2-carboxylate + H+ + H2O + a [protein]-2-aminoprop-2-enoate + nicotinamide
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiazole component of thiamine diphosphate biosynthesis III:
NAD+ + a [protein]-L-cysteine + gly ⟶ ADP-5-ethyl-4-methylthiazole-2-carboxylate + H+ + H2O + a [protein]-2-aminoprop-2-enoate + nicotinamide
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiazole biosynthesis III (eukaryotes):
NAD+ + a [protein]-L-cysteine + gly ⟶ ADP-5-ethyl-4-methylthiazole-2-carboxylate + H+ + H2O + a [protein]-2-aminoprop-2-enoate + nicotinamide
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- pyridine nucleotide cycling (plants):
H2O + NMN ⟶ 1-(β-D ribofuranosyl)nicotinamide + phosphate
- thiazole biosynthesis III (eukaryotes):
NAD+ + a [protein]-L-cysteine + gly ⟶ ADP-5-ethyl-4-methylthiazole-2-carboxylate + H+ + H2O + a [protein]-2-aminoprop-2-enoate + nicotinamide
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiazole biosynthesis III (eukaryotes):
NAD+ + a [protein]-L-cysteine + gly ⟶ ADP-5-ethyl-4-methylthiazole-2-carboxylate + H+ + H2O + a [protein]-2-aminoprop-2-enoate + nicotinamide
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiazole biosynthesis III (eukaryotes):
NAD+ + a [protein]-L-cysteine + gly ⟶ ADP-5-ethyl-4-methylthiazole-2-carboxylate + H+ + H2O + a [protein]-2-aminoprop-2-enoate + nicotinamide
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiazole biosynthesis III (eukaryotes):
NAD+ + a [protein]-L-cysteine + gly ⟶ ADP-5-ethyl-4-methylthiazole-2-carboxylate + H+ + H2O + a [protein]-2-aminoprop-2-enoate + nicotinamide
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiazole biosynthesis III (eukaryotes):
NAD+ + a [protein]-L-cysteine + gly ⟶ ADP-5-ethyl-4-methylthiazole-2-carboxylate + H+ + H2O + a [protein]-2-aminoprop-2-enoate + nicotinamide
- thiazole biosynthesis III (eukaryotes):
NAD+ + a [protein]-L-cysteine + gly ⟶ ADP-5-ethyl-4-methylthiazole-2-carboxylate + H+ + H2O + a [protein]-2-aminoprop-2-enoate + nicotinamide
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiazole biosynthesis III (eukaryotes):
NAD+ + a [protein]-L-cysteine + gly ⟶ ADP-5-ethyl-4-methylthiazole-2-carboxylate + H+ + H2O + a [protein]-2-aminoprop-2-enoate + nicotinamide
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- pyridine nucleotide cycling (plants):
1-(β-D ribofuranosyl)nicotinamide + H2O ⟶ D-ribofuranose + H+ + nicotinamide
- thiazole biosynthesis III (eukaryotes):
NAD+ + a [protein]-L-cysteine + gly ⟶ ADP-5-ethyl-4-methylthiazole-2-carboxylate + H+ + H2O + a [protein]-2-aminoprop-2-enoate + nicotinamide
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiazole biosynthesis III (eukaryotes):
NAD+ + a [protein]-L-cysteine + gly ⟶ ADP-5-ethyl-4-methylthiazole-2-carboxylate + H+ + H2O + a [protein]-2-aminoprop-2-enoate + nicotinamide
- thiazole biosynthesis III (eukaryotes):
NAD+ + a [protein]-L-cysteine + gly ⟶ ADP-5-ethyl-4-methylthiazole-2-carboxylate + H+ + H2O + a [protein]-2-aminoprop-2-enoate + nicotinamide
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiazole biosynthesis III (eukaryotes):
NAD+ + a [protein]-L-cysteine + gly ⟶ ADP-5-ethyl-4-methylthiazole-2-carboxylate + H+ + H2O + a [protein]-2-aminoprop-2-enoate + nicotinamide
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiazole component of thiamine diphosphate biosynthesis III:
NAD+ + a [protein]-L-cysteine + gly ⟶ ADP-5-ethyl-4-methylthiazole-2-carboxylate + H+ + H2O + a [protein]-2-aminoprop-2-enoate + nicotinamide
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiazole biosynthesis III (eukaryotes):
NAD+ + a [protein]-L-cysteine + gly ⟶ ADP-5-ethyl-4-methylthiazole-2-carboxylate + H+ + H2O + a [protein]-2-aminoprop-2-enoate + nicotinamide
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- NAD biosynthesis III (from nicotinamide):
NMN + diphosphate ⟶ H+ + PRPP + nicotinamide
- pyridine nucleotide cycling (plants):
D-ribulose 1-phosphate + H+ + nicotinate ⟶ β-D-ribosylnicotinate + phosphate
- thiazole biosynthesis III (eukaryotes):
NAD+ + a [protein]-L-cysteine + gly ⟶ ADP-5-ethyl-4-methylthiazole-2-carboxylate + H+ + H2O + a [protein]-2-aminoprop-2-enoate + nicotinamide
- thiazole component of thiamine diphosphate biosynthesis III:
NAD+ + a [protein]-L-cysteine + gly ⟶ ADP-5-ethyl-4-methylthiazole-2-carboxylate + H+ + H2O + a [protein]-2-aminoprop-2-enoate + nicotinamide
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiazole component of thiamine diphosphate biosynthesis III:
NAD+ + a [protein]-L-cysteine + gly ⟶ ADP-5-ethyl-4-methylthiazole-2-carboxylate + H+ + H2O + a [protein]-2-aminoprop-2-enoate + nicotinamide
- thiazole biosynthesis III (eukaryotes):
NAD+ + a [protein]-L-cysteine + gly ⟶ ADP-5-ethyl-4-methylthiazole-2-carboxylate + H+ + H2O + a [protein]-2-aminoprop-2-enoate + nicotinamide
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiazole biosynthesis III (eukaryotes):
NAD+ + a [protein]-L-cysteine + gly ⟶ ADP-5-ethyl-4-methylthiazole-2-carboxylate + H+ + H2O + a [protein]-2-aminoprop-2-enoate + nicotinamide
- thiazole component of thiamine diphosphate biosynthesis III:
NAD+ + a [protein]-L-cysteine + gly ⟶ ADP-5-ethyl-4-methylthiazole-2-carboxylate + H+ + H2O + a [protein]-2-aminoprop-2-enoate + nicotinamide
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiazole biosynthesis III (eukaryotes):
NAD+ + a [protein]-L-cysteine + gly ⟶ ADP-5-ethyl-4-methylthiazole-2-carboxylate + H+ + H2O + a [protein]-2-aminoprop-2-enoate + nicotinamide
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiazole biosynthesis III (eukaryotes):
NAD+ + a [protein]-L-cysteine + gly ⟶ ADP-5-ethyl-4-methylthiazole-2-carboxylate + H+ + H2O + a [protein]-2-aminoprop-2-enoate + nicotinamide
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiazole biosynthesis III (eukaryotes):
NAD+ + a [protein]-L-cysteine + gly ⟶ ADP-5-ethyl-4-methylthiazole-2-carboxylate + H+ + H2O + a [protein]-2-aminoprop-2-enoate + nicotinamide
- thiazole biosynthesis III (eukaryotes):
NAD+ + a [protein]-L-cysteine + gly ⟶ ADP-5-ethyl-4-methylthiazole-2-carboxylate + H+ + H2O + a [protein]-2-aminoprop-2-enoate + nicotinamide
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiazole biosynthesis III (eukaryotes):
NAD+ + a [protein]-L-cysteine + gly ⟶ ADP-5-ethyl-4-methylthiazole-2-carboxylate + H+ + H2O + a [protein]-2-aminoprop-2-enoate + nicotinamide
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiazole component of thiamine diphosphate biosynthesis III:
NAD+ + a [protein]-L-cysteine + gly ⟶ ADP-5-ethyl-4-methylthiazole-2-carboxylate + H+ + H2O + a [protein]-2-aminoprop-2-enoate + nicotinamide
- thiazole biosynthesis III (eukaryotes):
NAD+ + a [protein]-L-cysteine + gly ⟶ ADP-5-ethyl-4-methylthiazole-2-carboxylate + H+ + H2O + a [protein]-2-aminoprop-2-enoate + nicotinamide
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiazole biosynthesis III (eukaryotes):
NAD+ + a [protein]-L-cysteine + gly ⟶ ADP-5-ethyl-4-methylthiazole-2-carboxylate + H+ + H2O + a [protein]-2-aminoprop-2-enoate + nicotinamide
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiazole biosynthesis III (eukaryotes):
NAD+ + a [protein]-L-cysteine + gly ⟶ ADP-5-ethyl-4-methylthiazole-2-carboxylate + H+ + H2O + a [protein]-2-aminoprop-2-enoate + nicotinamide
- pyridine nucleotide cycling (plants):
H2O + NMN ⟶ 1-(β-D ribofuranosyl)nicotinamide + phosphate
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiazole biosynthesis III (eukaryotes):
NAD+ + a [protein]-L-cysteine + gly ⟶ ADP-5-ethyl-4-methylthiazole-2-carboxylate + H+ + H2O + a [protein]-2-aminoprop-2-enoate + nicotinamide
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiazole biosynthesis III (eukaryotes):
NAD+ + a [protein]-L-cysteine + gly ⟶ ADP-5-ethyl-4-methylthiazole-2-carboxylate + H+ + H2O + a [protein]-2-aminoprop-2-enoate + nicotinamide
- thiazole biosynthesis III (eukaryotes):
NAD+ + a [protein]-L-cysteine + gly ⟶ ADP-5-ethyl-4-methylthiazole-2-carboxylate + H+ + H2O + a [protein]-2-aminoprop-2-enoate + nicotinamide
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiazole biosynthesis III (eukaryotes):
NAD+ + a [protein]-L-cysteine + gly ⟶ ADP-5-ethyl-4-methylthiazole-2-carboxylate + H+ + H2O + a [protein]-2-aminoprop-2-enoate + nicotinamide
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiazole biosynthesis III (eukaryotes):
NAD+ + a [protein]-L-cysteine + gly ⟶ ADP-5-ethyl-4-methylthiazole-2-carboxylate + H+ + H2O + a [protein]-2-aminoprop-2-enoate + nicotinamide
- thiazole biosynthesis III (eukaryotes):
NAD+ + a [protein]-L-cysteine + gly ⟶ ADP-5-ethyl-4-methylthiazole-2-carboxylate + H+ + H2O + a [protein]-2-aminoprop-2-enoate + nicotinamide
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiazole biosynthesis III (eukaryotes):
NAD+ + a [protein]-L-cysteine + gly ⟶ ADP-5-ethyl-4-methylthiazole-2-carboxylate + H+ + H2O + a [protein]-2-aminoprop-2-enoate + nicotinamide
- thiazole component of thiamine diphosphate biosynthesis III:
NAD+ + a [protein]-L-cysteine + gly ⟶ ADP-5-ethyl-4-methylthiazole-2-carboxylate + H+ + H2O + a [protein]-2-aminoprop-2-enoate + nicotinamide
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiazole biosynthesis III (eukaryotes):
NAD+ + a [protein]-L-cysteine + gly ⟶ ADP-5-ethyl-4-methylthiazole-2-carboxylate + H+ + H2O + a [protein]-2-aminoprop-2-enoate + nicotinamide
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiazole biosynthesis III (eukaryotes):
NAD+ + a [protein]-L-cysteine + gly ⟶ ADP-5-ethyl-4-methylthiazole-2-carboxylate + H+ + H2O + a [protein]-2-aminoprop-2-enoate + nicotinamide
- thiazole component of thiamine diphosphate biosynthesis III:
NAD+ + a [protein]-L-cysteine + gly ⟶ ADP-5-ethyl-4-methylthiazole-2-carboxylate + H+ + H2O + a [protein]-2-aminoprop-2-enoate + nicotinamide
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiazole biosynthesis III (eukaryotes):
NAD+ + a [protein]-L-cysteine + gly ⟶ ADP-5-ethyl-4-methylthiazole-2-carboxylate + H+ + H2O + a [protein]-2-aminoprop-2-enoate + nicotinamide
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiazole component of thiamine diphosphate biosynthesis III:
NAD+ + a [protein]-L-cysteine + gly ⟶ ADP-5-ethyl-4-methylthiazole-2-carboxylate + H+ + H2O + a [protein]-2-aminoprop-2-enoate + nicotinamide
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- thiazole biosynthesis III (eukaryotes):
NAD+ + a [protein]-L-cysteine + gly ⟶ ADP-5-ethyl-4-methylthiazole-2-carboxylate + H+ + H2O + a [protein]-2-aminoprop-2-enoate + nicotinamide
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiazole biosynthesis III (eukaryotes):
NAD+ + a [protein]-L-cysteine + gly ⟶ ADP-5-ethyl-4-methylthiazole-2-carboxylate + H+ + H2O + a [protein]-2-aminoprop-2-enoate + nicotinamide
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiazole biosynthesis III (eukaryotes):
NAD+ + a [protein]-L-cysteine + gly ⟶ ADP-5-ethyl-4-methylthiazole-2-carboxylate + H+ + H2O + a [protein]-2-aminoprop-2-enoate + nicotinamide
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- thiazole biosynthesis III (eukaryotes):
NAD+ + a [protein]-L-cysteine + gly ⟶ ADP-5-ethyl-4-methylthiazole-2-carboxylate + H+ + H2O + a [protein]-2-aminoprop-2-enoate + nicotinamide
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiazole component of thiamine diphosphate biosynthesis III:
NAD+ + a [protein]-L-cysteine + gly ⟶ ADP-5-ethyl-4-methylthiazole-2-carboxylate + H+ + H2O + a [protein]-2-aminoprop-2-enoate + nicotinamide
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- thiazole component of thiamine diphosphate biosynthesis III:
NAD+ + a [protein]-L-cysteine + gly ⟶ ADP-5-ethyl-4-methylthiazole-2-carboxylate + H+ + H2O + a [protein]-2-aminoprop-2-enoate + nicotinamide
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- thiazole biosynthesis III (eukaryotes):
NAD+ + a [protein]-L-cysteine + gly ⟶ ADP-5-ethyl-4-methylthiazole-2-carboxylate + H+ + H2O + a [protein]-2-aminoprop-2-enoate + nicotinamide
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- thiazole biosynthesis III (eukaryotes):
NAD+ + a [protein]-L-cysteine + gly ⟶ ADP-5-ethyl-4-methylthiazole-2-carboxylate + H+ + H2O + a [protein]-2-aminoprop-2-enoate + nicotinamide
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiazole biosynthesis III (eukaryotes):
NAD+ + a [protein]-L-cysteine + gly ⟶ ADP-5-ethyl-4-methylthiazole-2-carboxylate + H+ + H2O + a [protein]-2-aminoprop-2-enoate + nicotinamide
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiazole biosynthesis III (eukaryotes):
NAD+ + a [protein]-L-cysteine + gly ⟶ ADP-5-ethyl-4-methylthiazole-2-carboxylate + H+ + H2O + a [protein]-2-aminoprop-2-enoate + nicotinamide
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- thiazole biosynthesis III (eukaryotes):
NAD+ + a [protein]-L-cysteine + gly ⟶ ADP-5-ethyl-4-methylthiazole-2-carboxylate + H+ + H2O + a [protein]-2-aminoprop-2-enoate + nicotinamide
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- thiazole biosynthesis III (eukaryotes):
NAD+ + a [protein]-L-cysteine + gly ⟶ ADP-5-ethyl-4-methylthiazole-2-carboxylate + H+ + H2O + a [protein]-2-aminoprop-2-enoate + nicotinamide
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- thiazole biosynthesis III (eukaryotes):
NAD+ + a [protein]-L-cysteine + gly ⟶ ADP-5-ethyl-4-methylthiazole-2-carboxylate + H+ + H2O + a [protein]-2-aminoprop-2-enoate + nicotinamide
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiazole biosynthesis III (eukaryotes):
NAD+ + a [protein]-L-cysteine + gly ⟶ ADP-5-ethyl-4-methylthiazole-2-carboxylate + H+ + H2O + a [protein]-2-aminoprop-2-enoate + nicotinamide
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- pyridine nucleotide cycling (plants):
H2O + NMN ⟶ 1-(β-D ribofuranosyl)nicotinamide + phosphate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- thiazole biosynthesis III (eukaryotes):
NAD+ + a [protein]-L-cysteine + gly ⟶ ADP-5-ethyl-4-methylthiazole-2-carboxylate + H+ + H2O + a [protein]-2-aminoprop-2-enoate + nicotinamide
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- thiazole biosynthesis III (eukaryotes):
NAD+ + a [protein]-L-cysteine + gly ⟶ ADP-5-ethyl-4-methylthiazole-2-carboxylate + H+ + H2O + a [protein]-2-aminoprop-2-enoate + nicotinamide
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- thiazole biosynthesis III (eukaryotes):
NAD+ + a [protein]-L-cysteine + gly ⟶ ADP-5-ethyl-4-methylthiazole-2-carboxylate + H+ + H2O + a [protein]-2-aminoprop-2-enoate + nicotinamide
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- thiazole biosynthesis III (eukaryotes):
NAD+ + a [protein]-L-cysteine + gly ⟶ ADP-5-ethyl-4-methylthiazole-2-carboxylate + H+ + H2O + a [protein]-2-aminoprop-2-enoate + nicotinamide
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- thiazole biosynthesis III (eukaryotes):
NAD+ + a [protein]-L-cysteine + gly ⟶ ADP-5-ethyl-4-methylthiazole-2-carboxylate + H+ + H2O + a [protein]-2-aminoprop-2-enoate + nicotinamide
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiazole biosynthesis III (eukaryotes):
NAD+ + a [protein]-L-cysteine + gly ⟶ ADP-5-ethyl-4-methylthiazole-2-carboxylate + H+ + H2O + a [protein]-2-aminoprop-2-enoate + nicotinamide
- thiazole biosynthesis III (eukaryotes):
NAD+ + a [protein]-L-cysteine + gly ⟶ ADP-5-ethyl-4-methylthiazole-2-carboxylate + H+ + H2O + a [protein]-2-aminoprop-2-enoate + nicotinamide
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- thiazole biosynthesis III (eukaryotes):
NAD+ + a [protein]-L-cysteine + gly ⟶ ADP-5-ethyl-4-methylthiazole-2-carboxylate + H+ + H2O + a [protein]-2-aminoprop-2-enoate + nicotinamide
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- thiazole biosynthesis III (eukaryotes):
NAD+ + a [protein]-L-cysteine + gly ⟶ ADP-5-ethyl-4-methylthiazole-2-carboxylate + H+ + H2O + a [protein]-2-aminoprop-2-enoate + nicotinamide
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- thiazole biosynthesis III (eukaryotes):
NAD+ + a [protein]-L-cysteine + gly ⟶ ADP-5-ethyl-4-methylthiazole-2-carboxylate + H+ + H2O + a [protein]-2-aminoprop-2-enoate + nicotinamide
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- NAD salvage pathway V (PNC V cycle):
ATP + H2O + PRPP + nicotinate ⟶ ADP + NaMN + diphosphate + phosphate
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- superpathway of thiamine diphosphate biosynthesis III (eukaryotes):
AIR + SAM ⟶ 5'-deoxyadenosine + CO + H+ + HMP-P + formate + met
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
- thiazole biosynthesis III (eukaryotes):
NAD+ + a [protein]-L-cysteine + gly ⟶ ADP-5-ethyl-4-methylthiazole-2-carboxylate + H+ + H2O + a [protein]-2-aminoprop-2-enoate + nicotinamide
- NAD salvage pathway V (PNC V cycle):
H2O + nicotinamide ⟶ ammonium + nicotinate
COVID-19 Disease Map(2)
- @COVID-19 Disease
Map["name"]:
Adenosine + Pi ⟶ Adenine + _alpha_-D-Ribose 1-phosphate
- @COVID-19 Disease
Map["name"]:
2-Methyl-3-acetoacetyl-CoA + Coenzyme A ⟶ Acetyl-CoA + Propanoyl-CoA
PathBank(11)
- Nicotinate and Nicotinamide Metabolism:
NAD + Water ⟶ Adenosine monophosphate + Nicotinamide ribotide
- Nicotinate and Nicotinamide Metabolism:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Nicotinate and Nicotinamide Metabolism:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Nicotinate and Nicotinamide Metabolism:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Nicotinate and Nicotinamide Metabolism:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- NAD Salvage:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + Hydrogen Ion + L-Glutamic acid + NAD + Pyrophosphate
- NAD Metabolism:
N'-Formylkynurenine + Water ⟶ Formic acid + Hydrogen Ion + L-Kynurenine
- NAD Salvage:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + Hydrogen Ion + L-Glutamic acid + NAD + Pyrophosphate
- NAD+ Signalling Pathway (Cancer):
Niacinamide + Phosphoribosyl pyrophosphate ⟶ Nicotinic acid mononucleotide + Phosphate
- NAD+ Signalling and Aging:
Niacinamide + Phosphoribosyl pyrophosphate ⟶ Nicotinic acid mononucleotide + Phosphate
- Nicotinate and Nicotinamide Metabolism:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
PharmGKB(0)
44 个相关的物种来源信息
- 59045 - Anemarrhena asphodeloides Bge.: -
- 65558 - Capparis spinosa: 10.1080/10575630290034302
- 82528 - Crocus sativus:
- 392618 - Cunila: 10.1007/S00299-018-2303-8
- 7227 - Drosophila melanogaster: 10.1038/S41467-019-11933-Z
- 3039 - Euglena gracilis: 10.3389/FBIOE.2021.662655
- 4307 - Euonymus alatus: 10.1016/0305-1978(86)90021-9
- 473042 - Euonymus americanus: 10.1016/0305-1978(86)90021-9
- 482937 - Euonymus atropurpureus: 10.1016/0305-1978(86)90021-9
- 255352 - Euonymus fortunei: 10.1016/0305-1978(86)90021-9
- 1089395 - Euonymus grandiflorus: 10.1016/0305-1978(86)90021-9
- 408194 - Euonymus hamiltonianus: 10.1016/0305-1978(86)90021-9
- 1089399 - Euonymus latifolius: 10.1016/0305-1978(86)90021-9
- 1089402 - Euonymus nanus: 10.1016/0305-1978(86)90021-9
- 2071469 - Euonymus obovatus: 10.1016/0305-1978(86)90021-9
- 349479 - Euonymus oxyphyllus: 10.1016/0305-1978(86)90021-9
- 1089404 - Euonymus phellomanus: 10.1016/0305-1978(86)90021-9
- 212227 - Euonymus planipes: 10.1016/0305-1978(86)90021-9
- 749925 - Euonymus sachalinensis: 10.1016/0305-1978(86)90021-9
- 1442727 - Euonymus sanguineus: 10.1016/0305-1978(86)90021-9
- 1089408 - Euonymus verrucosus: 10.1016/0305-1978(86)90021-9
- 212310 - Euphorbia tithymaloides: 10.1016/J.FITOTE.2005.08.020
- 4414 - Euryale ferox Salisb.: -
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S11306-016-1051-4
- 439404 - Lactarius subplinthogalus: 10.1080/14786410310001608073
- 8187 - Lates calcarifer: 10.3389/FPHYS.2020.00205
- 4006 - Linum usitatissimum: 10.1021/NP50101A026
- 29747 - Mallotus japonicus:
- 10090 - Mus musculus:
- 2096 - Mycoplasma gallisepticum: 10.1128/MSYSTEMS.00055-17
- 72228 - Ophiocordyceps sinensis: 10.1016/J.JEP.2013.10.064
- 3888 - Pisum sativum: 10.1016/S0031-9422(00)86960-5
- 303 - Pseudomonas putida: 10.1371/JOURNAL.PONE.0156509
- 28901 - Salmonella enterica: 10.1021/ACS.JPROTEOME.0C00281
- 4896 - Schizosaccharomyces pombe: 10.1039/C4MB00346B
- 170733 - Taraxacum formosanum: 10.1248/CPB.53.853
- 90037 - Taraxacum mongolicum: 10.1248/CPB.53.853
- 5691 - Trypanosoma brucei: 10.1371/JOURNAL.PNTD.0001618
- 157791 - Vigna Radiata: -
- 29760 - Vitis vinifera: 10.1016/J.DIB.2020.106469
- 33090 - 番茄: -
- 33090 - 蒲公英: -
- 569774 - 金线莲: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Li Gao, Ai-Ping Zhang, Lei Fu, Qian-Wen Li, Xue-Mei Qin, Jing Zhao. Huangqin decoction attenuates spared nerve injury (SNI)-induced neuropathic pain by modulating microglial M1/M2 polarization partially mediated by intestinal nicotinamide metabolism.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2024 Jul; 129(?):155594. doi:
10.1016/j.phymed.2024.155594
. [PMID: 38614040] - Xue-Xiu Yu, Ke-Xin Chen, Pan-Pan Yuan, Yu-He Wang, Hua-Xiao Li, Yun-Xiu Zhao, Yi-Jun Dai. Asp-tRNAAsn/Glu-tRNAGln amidotransferase A subunit-like amidase mediates the degradation of insecticide flonicamid by Variovorax boronicumulans CGMCC 4969.
The Science of the total environment.
2024 Jun; 928(?):172479. doi:
10.1016/j.scitotenv.2024.172479
. [PMID: 38621543] - Mengqing Deng, Tianxiang Xiao, Xiyue Xu, Wenxiu Wang, Zhiming Yang, Kai Lu. Nicotinamide deficiency promotes imidacloprid resistance via activation of ROS/CncC signaling pathway-mediated UGT detoxification in Nilaparvata lugens.
The Science of the total environment.
2024 May; 926(?):172035. doi:
10.1016/j.scitotenv.2024.172035
. [PMID: 38565349] - Mohammad Hasan Maleki, Morvarid Siri, Amirhossein Jafarabadi, Mahsa Rajabi, Seyed Amirhossein Mazhari, Zahra Noori, Farhad Koohpeyma, Amirreza Dehghanian, Nafiseh Esmaeili, Zeinab Aryanian, Sanaz Dastghaib. Boosting wound healing in diabetic rats: The role of nicotinamide riboside and resveratrol in UPR modulation and pyroptosis inhibition.
International immunopharmacology.
2024 May; 132(?):112013. doi:
10.1016/j.intimp.2024.112013
. [PMID: 38583241] - Xiong Li, Na Hu, Yanshuang Li, Haisheng Tang, Xumei Huang, Ting Yang, Jianchu Xu. Integrated ultrastructural, physiological, transcriptomic, and metabolomic analysis uncovers the mechanisms by which nicotinamide alleviates cadmium toxicity in Pistia stratiotes L.
Journal of hazardous materials.
2024 Apr; 467(?):133702. doi:
10.1016/j.jhazmat.2024.133702
. [PMID: 38330649] - Antonia Schuhmann, Janna Schulte, Heike Feldhaar, Ricarda Scheiner. Bumblebees are resilient to neonicotinoid-fungicide combinations.
Environment international.
2024 Apr; 186(?):108608. doi:
10.1016/j.envint.2024.108608
. [PMID: 38554503] - Ningbo Wang, Zeming Zhang, Yinan Wang, Liuquan Zhang, Aili Sun, Hua Liu, Xizhi Shi. Comparative antioxidant and metabolomic analysis for the identification of differential response of mussel (Mytilus coruscus) to four succinate dehydrogenase inhibitor fungicides.
Environmental science and pollution research international.
2024 Mar; 31(11):16819-16831. doi:
10.1007/s11356-024-32309-x
. [PMID: 38324158] - Jichang Song, Hui Qiu, Xianghao Meng, Shengxue Li, Yushuai Mao, Lu Zhang, Yiqiang Cai, Jianxin Wang, Mingguo Zhou, Yabing Duan. Risk assessment and molecular mechanism of Sclerotium rolfsii resistance to boscalid.
Pesticide biochemistry and physiology.
2024 Mar; 200(?):105806. doi:
10.1016/j.pestbp.2024.105806
. [PMID: 38582572] - F M Kasali, J N Kadima, J B Safari, A G Agaba, J Tusiimire, B A Witika. Effects of Physalis peruviana L. (leaf crude extracts) on blood glucose and functional biomarkers in streptozotocin-nicotinamide-induced diabetic rats.
Die Pharmazie.
2024 Feb; 79(1):6-10. doi:
10.1691/ph.2024.3640
. [PMID: 38509628] - Feyisayo O Adepoju, Ksenia V Sokolova, Irina F Gette, Irina G Danilova, Mikhail V Tsurkan, Alicia C Mondragon, Elena G Kovaleva, Jose Manuel Miranda. Protective Effect of Betulin on Streptozotocin-Nicotinamide-Induced Diabetes in Female Rats.
International journal of molecular sciences.
2024 Feb; 25(4):. doi:
10.3390/ijms25042166
. [PMID: 38396842] - A Abdulhamed, L Khaleel. CARDIOPROTECTIVE EFFECT OF GLYCYRRHIZA GLABRA EXTRACT AND GLYCYRRHIZA GLABRA SILVER NANOPARTICLE AGAINST ALLOXAN AND NICOTINAMIDE INDUCED DIABETIC CARDIAC INJURY IN RATS.
Georgian medical news.
2024 Feb; ?(347):156-159. doi:
"
. [PMID: 38609134] - Xiaojing Wei, Yutian Tan, Jiaqi Huang, Ximing Dong, Weijie Feng, Tanglin Liu, Zhao Yang, Guiying Yang, Xiao Luo. N1-methylnicotinamide impairs gestational glucose tolerance in mice.
Journal of molecular endocrinology.
2024 Feb; 72(2):. doi:
10.1530/jme-23-0126
. [PMID: 38029302] - Konstantinos Samaras, Maria L Pappas, Alberto Pozzebon, George D Broufas. Pollen provisioning attenuates pesticide side-effects on a phytoseiid predator.
Pest management science.
2024 Jan; ?(?):. doi:
10.1002/ps.7969
. [PMID: 38294174] - Jue Li, Lusha Zhang, Teng Ge, Jiping Liu, Chuan Wang, Qi Yu. Understanding Sorafenib-Induced Cardiovascular Toxicity: Mechanisms and Treatment Implications.
Drug design, development and therapy.
2024; 18(?):829-843. doi:
10.2147/dddt.s443107
. [PMID: 38524877] - Lianzhu Zhou, Yongqiang Liu, Fanfang Kong, Shuangshuang Jia, Qi Wang, Zhongyue Wang, Hao Zhang, Xiaoqing Huang. Sensitivity of Botrytis cinerea from vineyards to Boscalid, Isofetamid and Pydiflumetofen in Shandong province, China.
Phytopathology.
2023 Dec; ?(?):. doi:
10.1094/phyto-10-23-0369-kc
. [PMID: 38105240] - Arman Syah Goli, Vilasinee Hirunpanich Sato, Hitoshi Sato, Savita Chewchinda, Jiraporn Leanpolchareanchai, Jannarin Nontakham, Jantana Yahuafai, Thavaree Thilavech, Pongsatorn Meesawatsom, Metawee Maitree. Antihyperglycemic effects of Lysiphyllum strychnifolium leaf extract in vitro and in vivo.
Pharmaceutical biology.
2023 Dec; 61(1):189-200. doi:
10.1080/13880209.2022.2160771
. [PMID: 36625086] - Mo Yi Yue, Rong Wang, Yan Min Liu, Bing Wei Chen, Wan-Long Ding, Yong Li. Resistance of ginseng gray mold pathogen, Botrytis cinerea, to boscalid and pyraclostrobin fungicides in China.
Plant disease.
2023 Nov; ?(?):. doi:
10.1094/pdis-02-23-0321-re
. [PMID: 38012822] - Nagalakshmi Kamaraj, Kadhirmathiyan Velumani, Ajay Guru, Praveen Kumar Issac. Antihyperglycemic activity of 14-deoxy, 11, 12-didehydro andrographolide on streptozotocin-nicotinamide induced type 2 diabetic rats.
Molecular biology reports.
2023 Oct; ?(?):. doi:
10.1007/s11033-023-08878-4
. [PMID: 37856062] - Rongjia Zhou, Bingxue Sun, Guangxue Zhu, Xuewen Xie, Ali Chai, Lei Li, Tengfei Fan, Baoju Li, Yanxia Shi. Monitoring in Corynespora cassiicola resistance to boscalid, trifloxystrobin, and carbendazim in China.
Phytopathology.
2023 Sep; ?(?):. doi:
10.1094/phyto-06-23-0186-r
. [PMID: 37665395] - Su Wu, Wenwei Ai, Lei Nie, Xiao Lu. Antidiabetic activity of eupafolin through peroxisome proliferator-activated receptor-gamma and PI3K/Akt signaling in Type 2 diabetic rats.
Journal of biochemical and molecular toxicology.
2023 Aug; ?(?):e23463. doi:
10.1002/jbt.23463
. [PMID: 37566541] - Chen Yang, Shengxin Sun, Wei Li, Yushuai Mao, Qiao Wang, Yabing Duan, René Csuk, Shengkun Li. Bioactivity-Guided Subtraction of MIQOX for Easily Available Isoquinoline Hydrazides as Novel Antifungal Candidates.
Journal of agricultural and food chemistry.
2023 Aug; 71(30):11341-11349. doi:
10.1021/acs.jafc.3c02096
. [PMID: 37462275] - Hina Gul, Ihsan Ul Haq, Farman Ullah, Shanza Khan, Aqsa Yaseen, Said Hussain Shah, Kaleem Tariq, Ali Güncan, Nicolas Desneux, Xiaoxia Liu. Impact of sublethal concentrations of flonicamid on key demographic parameters and feeding behavior of Schizaphis graminum.
Ecotoxicology (London, England).
2023 Jul; ?(?):. doi:
10.1007/s10646-023-02682-3
. [PMID: 37462788] - Reza Noei Razliqi, Akram Ahangarpour, Seyyed Ali Mard, Layasadat Khorsandi. Gentisic acid ameliorates type 2 diabetes induced by Nicotinamide-Streptozotocin in male mice by attenuating pancreatic oxidative stress and inflammation through modulation of Nrf2 and NF-кB pathways.
Life sciences.
2023 Jul; 325(?):121770. doi:
10.1016/j.lfs.2023.121770
. [PMID: 37192699] - Swee Ching Tan, Ramkumar Rajendran, Subrat Kumar Bhattamisra, Purushotham Krishnappa, Fabian Davamani, Ebenezer Chitra, Stephen Ambu, Brian Furman, Mayuren Candasamy. Effect of madecassoside in reducing oxidative stress and blood glucose in streptozotocin-nicotinamide-induced diabetes in rats.
The Journal of pharmacy and pharmacology.
2023 Jul; ?(?):. doi:
10.1093/jpp/rgad063
. [PMID: 37402616] - Yazhi Wang, Weina Cheng, Xiaoning Wang, Tianmu He, Jingxian Liu, Shuangshuang Chen, Jianyong Zhang. Integrated metabolomics and network pharmacology revealing the mechanism of arsenic-induced hepatotoxicity in mice.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2023 Jun; 178(?):113913. doi:
10.1016/j.fct.2023.113913
. [PMID: 37348806] - Tomasz Piechowiak, Bartosz Skóra, Maciej Balawejder. Effect of postharvest nicotinamide treatment on NAD+ metabolism and redox status in strawberry fruit during storage.
Phytochemistry.
2023 Jun; 213(?):113766. doi:
10.1016/j.phytochem.2023.113766
. [PMID: 37343736] - S A Alzohairy, L Heger, N Nikzainalalam, T D Miles. Cross-Resistance of Succinate Dehydrogenase Inhibitors (SDHI) in Botrytis cinerea and Development of Molecular Diagnostic Tools for SDHI Resistance Detection.
Phytopathology.
2023 Jun; 113(6):998-1009. doi:
10.1094/phyto-09-22-0346-r
. [PMID: 36596212] - Hong Yang, Xiangyu Li, Han Jin, Hasan Turkez, Gurkan Ozturk, Hamdi Levent Doganay, Cheng Zhang, Jens Nielsen, Mathias Uhlén, Jan Borén, Adil Mardinoglu. Longitudinal metabolomics analysis reveals the acute effect of cysteine and NAC included in the combined metabolic activators.
Free radical biology & medicine.
2023 May; ?(?):. doi:
10.1016/j.freeradbiomed.2023.05.013
. [PMID: 37245532] - Qing Song, Jun Wang, Alexandra Griffiths, Samuel Man Lee, Iredia D Iyamu, Rong Huang, Jose Cordoba-Chacon, Zhenyuan Song. Nicotinamide N-methyltransferase (NNMT) upregulation contributes to palmitate-elicited PPARγ transactivation in hepatocytes.
American journal of physiology. Cell physiology.
2023 May; ?(?):. doi:
10.1152/ajpcell.00010.2023
. [PMID: 37212549] - Mayuko Yoda, Rin Mizuno, Yoshihiro Izumi, Masatomo Takahashi, Takeshi Bamba, Shinpei Kawaoka. Nicotinamide-N-methyltransferase regulates lipid metabolism via SAM and 1-methylnicotinamide in the AML12 hepatocyte cell line.
Journal of biochemistry.
2023 Apr; ?(?):. doi:
10.1093/jb/mvad028
. [PMID: 37014628] - Pierre Jacob, Junko Hige, Lijiang Song, Adam Bayless, Dor Russ, Vera Bonardi, Farid El Kasmi, Lisa Wünsch, Yu Yang, Connor R Fitzpatrick, Brock J McKinney, Marc T Nishimura, Murray R Grant, Jeffery L Dangl. Broader functions of TIR domains in Arabidopsis immunity.
Proceedings of the National Academy of Sciences of the United States of America.
2023 03; 120(11):e2220921120. doi:
10.1073/pnas.2220921120
. [PMID: 36893276] - Nur Khaleeda Zulaikha Zolkeflee, Pei Lou Wong, Nurul Shazini Ramli, Azrina Azlan, Faridah Abas. Metabolic alterations in streptozotocin-nicotinamide-induced diabetic rats treated with Muntingia calabura L. extract via 1H-NMR-based metabolomics.
Planta medica.
2023 Mar; ?(?):. doi:
10.1055/a-2053-0950
. [PMID: 36914160] - Tamara Kuchmerovska, Lesya Yanitska, Oksana Horkunenko, Mykhailo Guzyk, Tetiana Tykhonenko, Irina Pryvrotska. Nicotinamide prevention in diabetes-induced alterations in the rat liver.
Endocrine regulations.
2023 Jan; 57(1):279-291. doi:
10.2478/enr-2023-0031
. [PMID: 38127690] - Yan Huang, Zhijie Cui, Xiaoshi Wei, Jiayu Wang, Junhu Yao, Chuanjiang Cai, Jianguo Wang. Nicotinamide supplementation alters plasma lipidomic profiles of peripartal dairy cows.
Animal science journal = Nihon chikusan Gakkaiho.
2023 Jan; 94(1):e13857. doi:
10.1111/asj.13857
. [PMID: 37496108] - Zhe-Cheng Wei, Qiao Wang, Li-Jing Min, Joanna Bajsa-Hirschel, Charles L Cantrell, Liang Han, Cheng-Xia Tan, Jian-Quan Weng, Yu-Xin Li, Na-Bo Sun, Stephen O Duke, Xing-Hai Liu. Synthesis and Pesticidal Activity of New Niacinamide Derivatives Containing a Flexible, Chiral Chain.
Molecules (Basel, Switzerland).
2022 Dec; 28(1):. doi:
10.3390/molecules28010047
. [PMID: 36615249] - Jestin Chellian, Kit-Kay Mak, Dinesh Kumar Chellappan, Purushotham Krishnappa, Mallikarjuna Rao Pichika. Quercetin and metformin synergistically reverse endothelial dysfunction in the isolated aorta of streptozotocin-nicotinamide- induced diabetic rats.
Scientific reports.
2022 Dec; 12(1):21393. doi:
10.1038/s41598-022-25739-5
. [PMID: 36496468] - Haojie Gao, Shaokun Shi, Fengxin Luan, Yan Jin, Wenwen Zhang, Yue Xu, Beixing Li, Wei Mu, Chuanjie Gao, Feng Liu. Fungicide smoke generated by electrical heating effectively controls gray mold of Chinese chives and reduces residue risk through adequate environmental sterilization.
Pest management science.
2022 Dec; ?(?):. doi:
10.1002/ps.7312
. [PMID: 36480116] - Xiaoyan Zhang, Jinfeng Ding, Li Feng, Hongmei Wu, Zhongyuan Xu, Weizhi Tao, Yichen Wang, Yongqiu Zheng, Yong Ling, Peng Zhu. Development of novel nitric oxide-releasing quinolinedione/furoxan hybrids as NQO1 inhibitors for intervention of drug-resistanthepatocellular cancer.
Bioorganic chemistry.
2022 Dec; 129(?):106174. doi:
10.1016/j.bioorg.2022.106174
. [PMID: 36191428] - Hui Zhao, Yingjie Tian, Yuwei Zuo, Xiaoqi Zhang, Yijun Gao, Peng Wang, Lirui Sun, Huaqi Zhang, Hui Liang. Nicotinamide riboside ameliorates high-fructose-induced lipid metabolism disorder in mice via improving FGF21 resistance in the liver and white adipose tissue.
Food & function.
2022 Nov; 13(23):12400-12411. doi:
10.1039/d2fo01934e
. [PMID: 36373585] - Sandra Smiljanic, Cyril Messaraa, Virginie Lafon-Kolb, Nina Hrapovic, Nahid Amini, Christina Osterlund, Lene Visdal-Johnsen. Betula alba Bark Extract and Empetrum nigrum Fruit Juice, a Natural Alternative to Niacinamide for Skin Barrier Benefits.
International journal of molecular sciences.
2022 Oct; 23(20):. doi:
10.3390/ijms232012507
. [PMID: 36293365] - Tomasz Kopczewski, Elżbieta Kuźniak, Iwona Ciereszko, Andrzej Kornaś. Alterations in Primary Carbon Metabolism in Cucumber Infected with Pseudomonas syringae pv lachrymans: Local and Systemic Responses.
International journal of molecular sciences.
2022 Oct; 23(20):. doi:
10.3390/ijms232012418
. [PMID: 36293272] - Ramani Kandasamy, Paul Igor Costea, Lynn Stam, Alexandre Nesterov. TRPV channel nanchung and TRPA channel water witch form insecticide-activated complexes.
Insect biochemistry and molecular biology.
2022 10; 149(?):103835. doi:
10.1016/j.ibmb.2022.103835
. [PMID: 36087889] - Georgios Makris, Nikolaos Nikoloudakis, Anastasios Samaras, Georgios S Karaoglanidis, Loukas I Kanetis. Under Pressure: A Comparative Study of Botrytis cinerea Populations from Conventional and Organic Farms in Cyprus and Greece.
Phytopathology.
2022 Oct; 112(10):2236-2247. doi:
10.1094/phyto-12-21-0510-r
. [PMID: 35671479] - Mario A Tan, Hayato Ishikawa, Seong Soo A An. Pandanus amaryllifolius Exhibits In Vitro Anti-Amyloidogenic Activity and Promotes Neuroprotective Effects in Amyloid-β-Induced SH-SY5Y Cells.
Nutrients.
2022 Sep; 14(19):. doi:
10.3390/nu14193962
. [PMID: 36235616] - Chensihui Xiong, Tianming Ding, Jie Liu, Ou Yi, Xiaoping Ding, Yun Xie. [Rapid determination of 22 functional components in cosmetics using ultra-high performance liquid chromatography-linear ion trap/orbitrap high resolution mass spectrometry].
Se pu = Chinese journal of chromatography.
2022 Sep; 40(9):817-824. doi:
10.3724/sp.j.1123.2022.03037
. [PMID: 36156628] - Jihyun Lee, Minjoo Noh, Jihui Jang, Jun Bae Lee, Yoon-Ho Hwang, Hyomin Lee. Skin Penetration Enhancer-Incorporated Lipid Nanovesicles (SPE-LNV) for Skin Brightening and Wrinkle Treatment.
ACS applied materials & interfaces.
2022 Aug; 14(32):36331-36340. doi:
10.1021/acsami.2c07135
. [PMID: 35917318] - Bingxue Sun, Guangxue Zhu, Xuewen Xie, Ali Chai, Lei Li, Tengfei Fan, Baoju Li, Shi Yanxia. Rapidly Increasing Boscalid Resistance in Corynespora cassiicola in China.
Phytopathology.
2022 Aug; 112(8):1659-1666. doi:
10.1094/phyto-12-21-0503-r
. [PMID: 35080436] - Huoyong Jiang, Nengdang Jiang, Li Wang, Jingjing Guo, Kexin Chen, Yijun Dai. Characterization of nitrilases from Variovorax boronicumulans that functions in insecticide flonicamid degradation and β-cyano-L-alanine detoxification.
Journal of applied microbiology.
2022 Aug; 133(2):311-322. doi:
10.1111/jam.15561
. [PMID: 35365856] - Alyaa Sadeq, Sharjeel Usmani, Abdulredha A Esmail, Wael Fathallah, Mahmoud A Alfeeli, Fahad Marafi. Incremental Value of 18F-PSMA-1007 PET/CT in Detection of Metastatic Renal Cell Carcinoma to the Brain.
Clinical nuclear medicine.
2022 Jul; 47(7):627-628. doi:
10.1097/rlu.0000000000004162
. [PMID: 35675136] - Matthias Hoch, Felix Huth, Masahiko Sato, Tirtha Sengupta, Michelle Quinlan, Stephanie Dodd, Shruti Kapoor, Florence Hourcade-Potelleret. Pharmacokinetics of asciminib in the presence of CYP3A or P-gp inhibitors, CYP3A inducers, and acid-reducing agents.
Clinical and translational science.
2022 07; 15(7):1698-1712. doi:
10.1111/cts.13285
. [PMID: 35616006] - Catherine S Nation, Akram A Da'Dara, Patrick J Skelly. NAD-catabolizing ectoenzymes of Schistosoma mansoni.
The Biochemical journal.
2022 06; 479(11):1165-1180. doi:
10.1042/bcj20210784
. [PMID: 35593185] - Matthias Hoch, Tirtha Sengupta, Florence Hourcade-Potelleret. Pharmacokinetic drug interactions of asciminib with the sensitive cytochrome P450 probe substrates midazolam, warfarin, and repaglinide in healthy participants.
Clinical and translational science.
2022 06; 15(6):1406-1416. doi:
10.1111/cts.13252
. [PMID: 35293131] - Jia Fang, Hongmin Wu, Jianning Zhang, Song Mao, Haosong Shi, Dongzhen Yu, Zhengnong Chen, Kaiming Su, Yazhi Xing, Hongjun Dong, Haibo Shi. A reduced form of nicotinamide riboside protects the cochlea against aminoglycoside-induced ototoxicity by SIRT1 activation.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2022 Jun; 150(?):113071. doi:
10.1016/j.biopha.2022.113071
. [PMID: 35658237] - Anna Reustle, Lena-Sophie Menig, Patrick Leuthold, Ute Hofmann, Viktoria Stühler, Christian Schmees, Michael Becker, Mathias Haag, Verena Klumpp, Stefan Winter, Florian A Büttner, Steffen Rausch, Jörg Hennenlotter, Falko Fend, Marcus Scharpf, Arnulf Stenzl, Jens Bedke, Matthias Schwab, Elke Schaeffeler. Nicotinamide-N-methyltransferase is a promising metabolic drug target for primary and metastatic clear cell renal cell carcinoma.
Clinical and translational medicine.
2022 06; 12(6):e883. doi:
10.1002/ctm2.883
. [PMID: 35678045] - Mototsugu Oya, Shuichi Kaneko, Tsuneo Imai, Toshiaki Tsujino, Toshiyuki Sunaya, Yutaka Okayama. Effectiveness and safety of sorafenib for renal cell, hepatocellular and thyroid carcinoma: pooled analysis in patients with renal impairment.
Cancer chemotherapy and pharmacology.
2022 Jun; 89(6):761-772. doi:
10.1007/s00280-022-04428-0
. [PMID: 35445315] - Clemens Mingels, Karl Peter Bohn, Axel Rominger, Ali Afshar-Oromieh, Ian Alberts. Diagnostic accuracy of [18F]PSMA-1007 PET/CT in biochemical recurrence of prostate cancer.
European journal of nuclear medicine and molecular imaging.
2022 Jun; 49(7):2436-2444. doi:
10.1007/s00259-022-05693-0
. [PMID: 35067735] - Qianru Xu, Chaoxi Luo, Yanping Fu, Fuxing Zhu. Risk and molecular mechanisms for boscalid resistance in Penicillium digitatum.
Pesticide biochemistry and physiology.
2022 Jun; 184(?):105130. doi:
10.1016/j.pestbp.2022.105130
. [PMID: 35715068] - Alba Serrano, Andreu Palou, M Luisa Bonet, Joan Ribot. Nicotinamide Riboside Supplementation to Suckling Male Mice Improves Lipid and Energy Metabolism in Skeletal Muscle and Liver in Adulthood.
Nutrients.
2022 May; 14(11):. doi:
10.3390/nu14112259
. [PMID: 35684059] - Yongquan Xue, Trisha Shamp, G A Nagana Gowda, Michael Crabtree, Debasis Bagchi, Daniel Raftery. A Combination of Nicotinamide and D-Ribose (RiaGev) Is Safe and Effective to Increase NAD+ Metabolome in Healthy Middle-Aged Adults: A Randomized, Triple-Blind, Placebo-Controlled, Cross-Over Pilot Clinical Trial.
Nutrients.
2022 May; 14(11):. doi:
10.3390/nu14112219
. [PMID: 35684021] - Hamid Heidari, Azam Khalaj, Sima Khani, Maasoume Abdollahi, Hamid Farahani, Samira Khani. Hypoglycemic, hypolipidemic and hepatoprotective effects of Alpinia officinarum on nicotinamide/streptozotocin induced type II diabetic rats.
Hormone molecular biology and clinical investigation.
2022 May; ?(?):. doi:
10.1515/hmbci-2021-0050
. [PMID: 35488439] - Xiao Zhang, Bing Tian, Qin Deng, Jian Cao, Xionghui Ding, Qingshuang Liu, Yunfei Zhang, Cuilian Ye, Chun Deng, Lin Qiu, Chunbao Guo. Nicotinamide riboside relieves the severity of experimental necrotizing enterocolitis by regulating endothelial function via eNOS deacetylation.
Free radical biology & medicine.
2022 05; 184(?):218-229. doi:
10.1016/j.freeradbiomed.2022.04.008
. [PMID: 35430341] - Minsun Jung, Kyung-Min Lee, Yebin Im, Seung Hyeok Seok, Hyewon Chung, Da Young Kim, Dohyun Han, Cheng Hyun Lee, Eun Hye Hwang, Soo Young Park, Jiwon Koh, Bohyun Kim, Ilias P Nikas, Hyebin Lee, Daehee Hwang, Han Suk Ryu. Nicotinamide (niacin) supplement increases lipid metabolism and ROS-induced energy disruption in triple-negative breast cancer: potential for drug repositioning as an anti-tumor agent.
Molecular oncology.
2022 05; 16(9):1795-1815. doi:
10.1002/1878-0261.13209
. [PMID: 35278276] - Wei Wang, Xiang-Jia Liu, Guo-Tai Lin, Ji-Peng Wu, Gong Xu, Dan Xu. Novel N-(1H-Pyrazol-5-yl)nicotinamide Derivatives: Design, Synthesis and Antifungal Activity.
Chemistry & biodiversity.
2022 May; 19(5):e202101032. doi:
10.1002/cbdv.202101032
. [PMID: 35275425] - Rina Takahashi, Takeshi Kanda, Motoaki Komatsu, Tomoaki Itoh, Hitoshi Minakuchi, Hidenori Urai, Tomohiro Kuroita, Shuhei Shigaki, Tasuku Tsukamoto, Naoko Higuchi, Minoru Ikeda, Risa Yamanaka, Norito Yoshimura, Takashi Ono, Hideo Yukioka, Kazuhiro Hasegawa, Hirobumi Tokuyama, Shu Wakino, Hiroshi Itoh. The significance of NAD + metabolites and nicotinamide N-methyltransferase in chronic kidney disease.
Scientific reports.
2022 04; 12(1):6398. doi:
10.1038/s41598-022-10476-6
. [PMID: 35430611] - Renata Novak Kujundžić. COVID-19: Are We Facing Secondary Pellagra Which Cannot Simply Be Cured by Vitamin B3?.
International journal of molecular sciences.
2022 Apr; 23(8):. doi:
10.3390/ijms23084309
. [PMID: 35457123] - Omoaghe Adams O, Oyesola O, Ezike Tony, Omizu Blessing, Boone I Kukoyi. Effects of combined Garcinia kola and Kigelia africana on Insulin and Paraoxonase 1 (PON1) levels in type 2 diabetic rats.
Current drug discovery technologies.
2022 Apr; ?(?):. doi:
10.2174/1570163819666220408100011
. [PMID: 35400345] - Vikas Ostwal, Anant Ramaswamy, Vikram Gota, Prabhat G Bhargava, Sujay Srinivas, Bharati Shriyan, Shraddha Jadhav, Mahesh Goel, Shraddha Patkar, Sarika Mandavkar, Deepali Naughane, Anuprita Daddi, Chaitali Nashikkar, Nitin Shetty, Suman Kumar Ankathi, Shripad D Banavali. Phase I Study Evaluating Dose De-escalation of Sorafenib with Metformin and Atorvastatin in Hepatocellular Carcinoma (SMASH).
The oncologist.
2022 03; 27(3):165-e222. doi:
10.1093/oncolo/oyab008
. [PMID: 35274724] - Nafiseh Ghazanfari, Aren van Waarde, Janine Doorduin, Jürgen W A Sijbesma, Maria Kominia, Martin Koelewijn, Khaled Attia, Antoon T M Willemsen, Ton J Visser, André Heeres, Rudi A J O Dierckx, Erik F J de Vries, Philip H Elsinga. Pharmacokinetic Modeling of [11C]GSK-189254, PET Tracer Targeting H3 Receptors, in Rat Brain.
Molecular pharmaceutics.
2022 03; 19(3):918-928. doi:
10.1021/acs.molpharmaceut.1c00889
. [PMID: 35170965] - Gerald B Kasting, Matthew A Miller, Lijing Xu, Fang Yu, Joanna Jaworska. In Vitro Human Skin Absorption of Solvent-deposited Solids: Niacinamide and Methyl Nicotinate.
Journal of pharmaceutical sciences.
2022 03; 111(3):727-733. doi:
10.1016/j.xphs.2021.09.040
. [PMID: 34600943] - Wenying Zhang, Guang Rong, Jinge Gu, Cuiling Fan, Tingting Guo, Tingting Jiang, Weiqian Deng, Jiayu Xie, Zhihua Su, Qimin Yu, Jingyi Mai, Rinan Zheng, Xingling Chen, Xun Tang, Jun Zhang. Nicotinamide N-methyltransferase ameliorates renal fibrosis by its metabolite 1-methylnicotinamide inhibiting the TGF-β1/Smad3 pathway.
FASEB journal : official publication of the Federation of American Societies for Experimental Biology.
2022 03; 36(3):e22084. doi:
10.1096/fj.202100913rrr
. [PMID: 35107844] - David R Cardoza-Ochoa, Cesar Cristancho-Rojas, David J Pérez, Paola Moreno-Izaguirre, Melissa Guzman, María C Gutiérrez-Rivera, Aarón P Gaxiola-Mascareño, Miguel A Avila-Rodríguez, Belén Rivera-Bravo. Semiautomatic assessment of whole-body tumor burden with 18F-PSMA-1007 in biochemical recurrent prostate cancer.
Nuclear medicine communications.
2022 Mar; 43(3):332-339. doi:
10.1097/mnm.0000000000001522
. [PMID: 34954764] - Tinku, Mohd Mujeeb, Abdul Ahad, Mohd Aqil, Waseem Ahmad Siddiqui, Abul Kalam Najmi, Mymoona Akhtar, Apeksha Shrivastava, Abdul Qadir, Thasleem Moolakkadath. Ameliorative effect of rubiadin-loaded nanocarriers in STZ-NA-induced diabetic nephropathy in rats: formulation optimization, molecular docking, and in vivo biological evaluation.
Drug delivery and translational research.
2022 03; 12(3):615-628. doi:
10.1007/s13346-021-00971-0
. [PMID: 34013457] - Jinwei Suo, Yadi Gao, Haizhen Zhang, Guifang Wang, Hao Cheng, Yuanyuan Hu, Heqiang Lou, Weiwu Yu, Wensheng Dai, Lili Song, Jiasheng Wu. New insights into the accumulation of vitamin B3 in Torreya grandis nuts via ethylene induced key gene expression.
Food chemistry.
2022 Mar; 371(?):131050. doi:
10.1016/j.foodchem.2021.131050
. [PMID: 34537615] - Flóra Jozefíková, Spyros Perontsis, Katarína Koňáriková, Ľubomír Švorc, Milan Mazúr, George Psomas, Ján Moncol. In vitro biological activity of copper(II) complexes with NSAIDs and nicotinamide: Characterization, DNA- and BSA-interaction study and anticancer activity.
Journal of inorganic biochemistry.
2022 03; 228(?):111696. doi:
10.1016/j.jinorgbio.2021.111696
. [PMID: 35030390] - Yasuyuki Kimura, Keisuke Takahata, Toshiharu Shimazaki, Soichiro Kitamura, Chie Seki, Yoko Ikoma, Masanori Ichise, Kazunori Kawamura, Makiko Yamada, Ming-Rong Zhang, Makoto Higuchi, Izumi Nishino, Tetsuya Suhara. Pharmacokinetic and pharmacodynamic assessment of histamine H3 receptor occupancy by enerisant: a human PET study with a novel H3 binding ligand, [11C]TASP457.
European journal of nuclear medicine and molecular imaging.
2022 03; 49(4):1127-1135. doi:
10.1007/s00259-021-05571-1
. [PMID: 34651222] - Fang Yu, Kevin Tonnis, Lijing Xu, Joanna Jaworska, Gerald B Kasting. Modeling the Percutaneous Absorption of Solvent-deposited Solids Over a Wide Dose Range.
Journal of pharmaceutical sciences.
2022 03; 111(3):769-779. doi:
10.1016/j.xphs.2021.10.001
. [PMID: 34627876] - Hua-Li Wang, Xue Ma, Xin-Yuan Guan, Chen Song, Guo-Bo Li, Ya-Mei Yu, Ling-Ling Yang. Potential synthetic lethality for breast cancer: A selective sirtuin 2 inhibitor combined with a multiple kinase inhibitor sorafenib.
Pharmacological research.
2022 03; 177(?):106050. doi:
10.1016/j.phrs.2021.106050
. [PMID: 34973468] - Melinda S Suchard, Dana M Savulescu. Nicotinamide pathways as the root cause of sepsis - an evolutionary perspective on macrophage energetic shifts.
The FEBS journal.
2022 02; 289(4):955-964. doi:
10.1111/febs.15807
. [PMID: 33686748] - Jihong Chu, Ming Liu, Guoliang Dai, Changyin Li, Ting Wu, Jiandong Zou, Wenzheng Ju, Meijuan Xu. Simultaneous determination of nicotinamide and N1 -methylnicotinamide in human serum by LC-MS/MS to associate their serum concentrations with obesity.
Biomedical chromatography : BMC.
2022 Feb; 36(2):e5261. doi:
10.1002/bmc.5261
. [PMID: 34716608] - Matthias Hoch, Julia Zack, Michelle Quinlan, Felix Huth, Sofia Forte, Stephanie Dodd, Paola Aimone, Florence Hourcade-Potelleret. Pharmacokinetics of Asciminib When Taken With Imatinib or With Food.
Clinical pharmacology in drug development.
2022 02; 11(2):207-219. doi:
10.1002/cpdd.1019
. [PMID: 34609077] - Jing Yan, Yingqun Nian, Bo Zou, Juqing Wu, Guanghong Zhou, Chunbao Li. Acetylation inhibition alleviates energy metabolism in muscles of minipigs varying with the type of muscle fibers.
Meat science.
2022 Feb; 184(?):108699. doi:
10.1016/j.meatsci.2021.108699
. [PMID: 34700176] - Valeria Losasso, Khushbu Agarwal, Morris Waskar, Amitabha Majumdar, Jason Crain, Martyn Winn, Michael Hoptroff. Small molecules enhance the potency of natural antimicrobial peptides.
Biophysical journal.
2022 02; 121(3):491-501. doi:
10.1016/j.bpj.2021.12.029
. [PMID: 34954157] - Zikai Liu, Qing Cheng, Xiaoli Ma, Mingke Song. Suppressing Effect of Na+/Ca2+ Exchanger (NCX) Inhibitors on the Growth of Melanoma Cells.
International journal of molecular sciences.
2022 Jan; 23(2):. doi:
10.3390/ijms23020901
. [PMID: 35055084] - Hamid Reza Nejabati, Mahsa Ghaffari-Novin, Nazila Fathi-Maroufi, Yousef Faridvand, Hans-Christer Holmberg, Ola Hansson, Saba Nikanfar, Mohammad Nouri. N1-Methylnicotinamide: Is it Time to Consider it as a Dietary Supplement for Athletes?.
Current pharmaceutical design.
2022; 28(10):800-805. doi:
10.2174/1381612828666220211151204
. [PMID: 35152860] - Linfeng Zou, Bing Liang, YuanZhen Gao, Ting Ye, MengJiao Li, Yukun Zhang, Qi Lu, Xiaokun Hu, Huanting Li, Yang Yuan, Dongming Xing. Nicotinic Acid Riboside Regulates Nrf-2/P62-Related Oxidative Stress and Autophagy to Attenuate Doxorubicin-Induced Cardiomyocyte Injury.
BioMed research international.
2022; 2022(?):6293329. doi:
10.1155/2022/6293329
. [PMID: 35242876] - Xuejun He, Yimin Huang, Yanchao Liu, Xincheng Zhang, Pengjie Yue, Xiaopeng Ma, Zhuangzhuang Miao, Xiaobing Long, Yiping Yang, Xueyan Wan, Jin Lei, Kai Shu, Ting Lei, Chao Gan, Huaqiu Zhang. BAY61‑3606 attenuates neuroinflammation and neurofunctional damage by inhibiting microglial Mincle/Syk signaling response after traumatic brain injury.
International journal of molecular medicine.
2022 01; 49(1):. doi:
10.3892/ijmm.2021.5060
. [PMID: 34751408] - Xue Liu, Qi Wang, Bao Zhang, Tao Jiang, Wenbing Zeng. Diagnostic accuracy of 18F-PSMA-1007 PET/CT for prostate cancer in primary staging and biochemical recurrence with different serum PSA levels: A systematic review and meta-analysis.
Hellenic journal of nuclear medicine.
2022 Jan; 25(1):88-102. doi:
10.1967/s002449912438
. [PMID: 35388806] - Sebastian J Hofer, Guido Kroemer, Oliver Kepp. Autophagy-inducing nutritional interventions in experimental and clinical oncology.
International review of cell and molecular biology.
2022; 373(?):125-158. doi:
10.1016/bs.ircmb.2022.08.003
. [PMID: 36283765] - Farag Malhat, Mona Bakery, Chris Anagnostopoulos, Mohamed Youssef, Walaa Abd El-Ghany, Amira Abdallah, Shokr Abd El-Salam. Investigation of the dissipation behaviour and exposure of spitotetramat, flonicamid, imidacloprid and pymetrozine in open field strawberries in Egypt.
Food additives & contaminants. Part A, Chemistry, analysis, control, exposure & risk assessment.
2021 Dec; 38(12):2128-2136. doi:
10.1080/19440049.2021.1973113
. [PMID: 34525319] - Stefanie J G Veenhuis, Nienke J H van Os, Anjo J W M Janssen, Marjo H J C van Gerven, Karlien L M Coene, Udo F H Engelke, Ron A Wevers, Gerjen H Tinnevelt, Rob Ter Heine, Bart P C van de Warrenburg, Corry M R Weemaes, Nel Roeleveld, Michèl A A P Willemsen. Nicotinamide Riboside Improves Ataxia Scores and Immunoglobulin Levels in Ataxia Telangiectasia.
Movement disorders : official journal of the Movement Disorder Society.
2021 12; 36(12):2951-2957. doi:
10.1002/mds.28788
. [PMID: 34515380] - Syed Ali Raza Shah, M Israr Khan, Hira Jawaid, Urooj Qureshi, Zaheer Ul-Haq, M Rahman Hafizur. Nicotinamide-cinnamic acid cocktail exerts pancreatic β-cells survival coupled with insulin secretion through ERK1/2 signaling pathway in an animal model of apoptosis.
Daru : journal of Faculty of Pharmacy, Tehran University of Medical Sciences.
2021 Dec; 29(2):483-492. doi:
10.1007/s40199-021-00412-w
. [PMID: 34495496] - Ayah A Nawwar, Julie Searle, Jes S Green, Iain D Lyburn. COVID-19-Related Lung Parenchymal Uptake on 18F-PSMA-1007 PET/CT.
Clinical nuclear medicine.
2021 Dec; 46(12):1016-1017. doi:
10.1097/rlu.0000000000003812
. [PMID: 34115710] - Ohn Mar Lwin, Nelli Giribabu, Eswar Kumar Kilari, Naguib Salleh. Topical administration of mangiferin promotes healing of the wound of streptozotocin-nicotinamide-induced type-2 diabetic male rats.
The Journal of dermatological treatment.
2021 Dec; 32(8):1039-1048. doi:
10.1080/09546634.2020.1721419
. [PMID: 32013660] - Evyn G Arnfield, Paul A Thomas, Matthew J Roberts, Anita M Pelecanos, Stuart C Ramsay, Charles Y Lin, Melissa J Latter, Peter L Garcia, David A Pattison. Clinical insignificance of [18F]PSMA-1007 avid non-specific bone lesions: a retrospective evaluation.
European journal of nuclear medicine and molecular imaging.
2021 12; 48(13):4495-4507. doi:
10.1007/s00259-021-05456-3
. [PMID: 34136957] - Hesam Parsa, Zahra Moradi-Khaligh, Sara Rajabi, Kamal Ranjbar, Alireza Komaki. Swimming training and Plantago psyllium ameliorate cognitive impairment and glucose tolerance in streptozotocin-nicotinamide-induced type 2 diabetic rats.
The journal of physiological sciences : JPS.
2021 Nov; 71(1):37. doi:
10.1186/s12576-021-00823-z
. [PMID: 34837961] - Constantin Yanicostas, Nadia Soussi-Yanicostas. SDHI Fungicide Toxicity and Associated Adverse Outcome Pathways: What Can Zebrafish Tell Us?.
International journal of molecular sciences.
2021 Nov; 22(22):. doi:
10.3390/ijms222212362
. [PMID: 34830252] - Elisa Biliotti, Ottavia Giampaoli, Fabio Sciubba, Federico Marini, Alberta Tomassini, Donatella Palazzo, Giorgio Capuani, Rozenn Esvan, Martina Spaziante, Gloria Taliani, Alfredo Miccheli. Urinary metabolomics of HCV patients with severe liver fibrosis before and during the sustained virologic response achieved by direct acting antiviral treatment.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2021 Nov; 143(?):112217. doi:
10.1016/j.biopha.2021.112217
. [PMID: 34560544] - Wenjun Lin, Xianfeng Wu, Jiejun Wen, Yang Fei, Junnan Wu, Xiaomei Li, Qunzi Zhang, Yang Dong, Tao Xu, Ying Fan, Niansong Wang. Nicotinamide retains Klotho expression and ameliorates rhabdomyolysis-induced acute kidney injury.
Nutrition (Burbank, Los Angeles County, Calif.).
2021 Nov; 91-92(?):111376. doi:
10.1016/j.nut.2021.111376
. [PMID: 34274652] - Matthias Hoch, Masahiko Sato, Julia Zack, Michelle Quinlan, Tirtha Sengupta, Alex Allepuz, Paola Aimone, Florence Hourcade-Potelleret. Pharmacokinetics of Asciminib in Individuals With Hepatic or Renal Impairment.
Journal of clinical pharmacology.
2021 11; 61(11):1454-1465. doi:
10.1002/jcph.1926
. [PMID: 34115385]