Pyrophosphate (BioDeep_00000004365)

 

Secondary id: BioDeep_00001867913

human metabolite Endogenous blood metabolite


代谢物信息卡片


phosphono dihydrogen phosphate

化学式: H4O7P2 (177.9432)
中文名称: 焦磷酸
谱图信息: 最多检出来源 Homo sapiens(blood) 19.54%

分子结构信息

SMILES: O=P(O)(O)OP(=O)(O)O
InChI: InChI=1S/H4O7P2/c1-8(2,3)7-9(4,5)6/h(H2,1,2,3)(H2,4,5,6)

描述信息

The anion, the salts, and the esters of pyrophosphoric acid are called pyrophosphates. The pyrophosphate anion is abbreviated PPi and is formed by the hydrolysis of ATP into AMP in cells. This hydrolysis is called pyrophosphorolysis. The pyrophosphate anion has the structure P2O74-, and is an acid anhydride of phosphate. It is unstable in aqueous solution and rapidly hydrolyzes into inorganic phosphate. Pyrophosphate is an osteotoxin (arrests bone development) and an arthritogen (promotes arthritis). It is also a metabotoxin (an endogenously produced metabolite that causes adverse health affects at chronically high levels). Chronically high levels of pyrophosphate are associated with hypophosphatasia. Hypophosphatasia (also called deficiency of alkaline phosphatase or phosphoethanolaminuria) is a rare, and sometimes fatal, metabolic bone disease. Hypophosphatasia is associated with a molecular defect in the gene encoding tissue non-specific alkaline phosphatase (TNSALP). TNSALP is an enzyme that is tethered to the outer surface of osteoblasts and chondrocytes. TNSALP hydrolyzes several substances, including inorganic pyrophosphate (PPi) and pyridoxal 5-phosphate (PLP), a major form of vitamin B6. When TSNALP is low, inorganic pyrophosphate (PPi) accumulates outside of cells and inhibits the formation of hydroxyapatite, one of the main components of bone, causing rickets in infants and children and osteomalacia (soft bones) in adults. Vitamin B6 must be dephosphorylated by TNSALP before it can cross the cell membrane. Vitamin B6 deficiency in the brain impairs synthesis of neurotransmitters which can cause seizures. In some cases, a build-up of calcium pyrophosphate dihydrate crystals in the joints can cause pseudogout.
COVID info from WikiPathways
Corona-virus
Coronavirus
SARS-CoV-2
COVID-19
SARS-CoV
COVID19
SARS2
SARS

同义名列表

15 个代谢物同义名

phosphono dihydrogen phosphate; (phosphonooxy)phosphonic acid; [(HO)2P(O)OP(O)(OH)2]; Acide diphosphorique; Pyrophosphoric acid; Pyrophosphorsaeure; Diphosphoric acid; Diphosphorsaeure; Pyrophosphate; Diphosphate; PPi CPD; Na4p2O7; H4P2O7; PPi; Diphosphate



数据库引用编号

24 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(7)

BioCyc(314)

PlantCyc(100)

代谢反应

11952 个相关的代谢反应过程信息。

Reactome(412)

BioCyc(1074)

WikiPathways(0)

Plant Reactome(4405)

INOH(32)

PlantCyc(6029)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 7 ANK2, AXIN2, FLNA, GCK, MYLK, NOL3, PRDX3
Peripheral membrane protein 1 GCK
Nucleus 4 ADK, AXIN2, FLNA, GCK
cytosol 8 ADK, ANK2, AXIN2, FLNA, GCK, MYLK, NOL3, PRDX3
dendrite 1 DRD2
trans-Golgi network 1 FLNA
centrosome 1 AXIN2
nucleoplasm 3 ADK, GCK, PRDX3
Cell membrane 4 ALPI, ANK2, DRD2, PECAM1
Lipid-anchor 1 NOL3
Cleavage furrow 1 MYLK
lamellipodium 1 MYLK
Cell projection, growth cone 1 FLNA
Multi-pass membrane protein 1 DRD2
Golgi apparatus membrane 2 DRD2, GCK
Synapse 2 DRD2, MYLK
cell junction 1 PECAM1
cell surface 2 ALPP, ENPP1
dendritic shaft 1 FLNA
glutamatergic synapse 2 DRD2, FLNA
Golgi membrane 2 DRD2, GCK
lysosomal membrane 1 ENPP1
postsynapse 1 FLNA
presynaptic membrane 1 DRD2
sarcolemma 1 ANK2
Lysosome 1 ANK2
acrosomal vesicle 1 DRD2
plasma membrane 12 ADK, ALPI, ALPP, ANK2, AXIN2, BCHE, DRD2, ENPP1, FLNA, MYLK, PECAM1, PRDX3
synaptic vesicle membrane 1 DRD2
Membrane 4 ANK2, ENPP1, FLNA, NOL3
apical plasma membrane 1 ANK2
axon 1 DRD2
basolateral plasma membrane 3 ANK2, ENPP1, GCK
brush border 1 FLNA
extracellular exosome 2 FLNA, PECAM1
extracellular space 3 BCHE, ENPP1, PECAM1
perinuclear region of cytoplasm 1 FLNA
intercalated disc 1 ANK2
mitochondrion 4 ANK2, GCK, NOL3, PRDX3
protein-containing complex 2 PECAM1, PRDX3
intracellular membrane-bounded organelle 1 PRDX3
Single-pass type I membrane protein 1 PECAM1
Secreted 2 BCHE, ENPP1
extracellular region 3 ALPI, BCHE, FLNA
mitochondrial matrix 1 PRDX3
ciliary membrane 1 DRD2
external side of plasma membrane 1 PECAM1
actin cytoskeleton 2 FLNA, MYLK
dendritic spine 1 DRD2
T-tubule 1 ANK2
perikaryon 2 DRD2, FLNA
Z disc 2 ANK2, FLNA
beta-catenin destruction complex 1 AXIN2
nucleolus 2 FLNA, NOL3
sarcoplasm 1 NOL3
Early endosome 2 ANK2, PRDX3
cell-cell junction 2 FLNA, PECAM1
recycling endosome 1 ANK2
postsynaptic membrane 2 ANK2, DRD2
Apical cell membrane 1 ANK2
Cell projection, lamellipodium 1 MYLK
Membrane raft 1 PECAM1
Cytoplasm, cytoskeleton 2 ANK2, FLNA
focal adhesion 1 FLNA
GABA-ergic synapse 1 DRD2
sarcoplasmic reticulum 1 NOL3
lateral plasma membrane 1 DRD2
Postsynaptic cell membrane 1 ANK2
neuron projection 1 ANK2
cilium 1 DRD2
axonal growth cone 1 FLNA
cytoskeleton 1 ANK2
Cell projection, podosome 1 FLNA
podosome 1 FLNA
Cytoplasm, cell cortex 1 FLNA
actin filament 1 FLNA
blood microparticle 1 BCHE
non-motile cilium 1 DRD2
Basolateral cell membrane 2 ENPP1, GCK
Lipid-anchor, GPI-anchor 2 ALPI, ALPP
sperm flagellum 1 DRD2
Cytoplasm, myofibril, sarcomere, M line 1 ANK2
M band 1 ANK2
side of membrane 2 ALPI, ALPP
Cytoplasm, myofibril, sarcomere, Z line 1 ANK2
stress fiber 1 MYLK
[Isoform 3]: Cytoplasm 1 NOL3
Cell membrane, sarcolemma, T-tubule 1 ANK2
secretory granule membrane 1 PECAM1
endoplasmic reticulum lumen 1 BCHE
axon terminus 1 DRD2
endocytic vesicle 1 DRD2
nuclear envelope lumen 1 BCHE
[Isoform 2]: Cytoplasm 2 ADK, NOL3
Cytoplasm, cytoskeleton, stress fiber 1 MYLK
A band 1 ANK2
[Isoform 1]: Nucleus 1 ADK
costamere 1 ANK2
[Isoform 1]: Nucleus, nucleolus 1 NOL3
apical dendrite 1 FLNA
dopaminergic synapse 1 DRD2
intracellular non-membrane-bounded organelle 1 FLNA
[Isoform Long]: Cell membrane 1 PECAM1
platelet alpha granule membrane 1 PECAM1
actin filament bundle 1 FLNA
cortical cytoskeleton 1 FLNA
glycoprotein Ib-IX-V complex 1 FLNA
Myb complex 1 FLNA
G protein-coupled receptor complex 1 DRD2
[Isoform Delta15]: Cell junction 1 PECAM1
[Ectonucleotide pyrophosphatase/phosphodiesterase family member 1]: Cell membrane 1 ENPP1
[Ectonucleotide pyrophosphatase/phosphodiesterase family member 1, secreted form]: Secreted 1 ENPP1


文献列表

  • Deepika Sharma, Nishima Wangoo, Rohit K Sharma. Ultrasensitive NIR fluorometric assay for inorganic pyrophosphatase detection via Cu2+-PPi interaction using bimetallic Au-Ag nanoclusters. Analytica chimica acta. 2024 May; 1305(?):342584. doi: 10.1016/j.aca.2024.342584. [PMID: 38677840]
  • Rhythm Shukla, Aaron J Peoples, Kevin C Ludwig, Sourav Maity, Maik G N Derks, Stefania De Benedetti, Annika M Krueger, Bram J A Vermeulen, Theresa Harbig, Francesca Lavore, Raj Kumar, Rodrigo V Honorato, Fabian Grein, Kay Nieselt, Yangping Liu, Alexandre M J J Bonvin, Marc Baldus, Ulrich Kubitscheck, Eefjan Breukink, Catherine Achorn, Anthony Nitti, Christopher J Schwalen, Amy L Spoering, Losee Lucy Ling, Dallas Hughes, Moreno Lelli, Wouter H Roos, Kim Lewis, Tanja Schneider, Markus Weingarth. An antibiotic from an uncultured bacterium binds to an immutable target. Cell. 2023 Aug; ?(?):. doi: 10.1016/j.cell.2023.07.038. [PMID: 37611581]
  • Sandip Mukherjee, Molee Chakraborty, Jake Haubner, Glen Ernst, Michael DePasquale, Danielle Carpenter, James C Barrow, Anutosh Chakraborty. The IP6K Inhibitor LI-2242 Ameliorates Diet-Induced Obesity, Hyperglycemia, and Hepatic Steatosis in Mice by Improving Cell Metabolism and Insulin Signaling. Biomolecules. 2023 May; 13(5):. doi: 10.3390/biom13050868. [PMID: 37238737]
  • Ningning Zhang, Lixin Zhao, Mengting He, Peng Luo, Liang Tan. Assay of inorganic pyrophosphatase activity based on a fluorescence 'turn-off' strategy using carbon quantum dots@Cu-MOF nanotubes. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy. 2023 Jan; 284(?):121771. doi: 10.1016/j.saa.2022.121771. [PMID: 36027790]
  • Philipp Gaugler, Robin Schneider, Guizhen Liu, Danye Qiu, Jonathan Weber, Jochen Schmid, Nikolaus Jork, Markus Häner, Kevin Ritter, Nicolás Fernández-Rebollo, Ricardo F H Giehl, Minh Nguyen Trung, Ranjana Yadav, Dorothea Fiedler, Verena Gaugler, Henning J Jessen, Gabriel Schaaf, Debabrata Laha. Arabidopsis PFA-DSP-Type Phosphohydrolases Target Specific Inositol Pyrophosphate Messengers. Biochemistry. 2022 06; 61(12):1213-1227. doi: 10.1021/acs.biochem.2c00145. [PMID: 35640071]
  • Tomoko Nakatsuka-Mori, Daisuke Sato, Hideyuki Aoki. Improvement of substrate recognition in branched-chain aminoacyl-tRNA synthetases from Escherichia coli under conditions of pyrophosphate amplification. Journal of bioscience and bioengineering. 2022 May; 133(5):436-443. doi: 10.1016/j.jbiosc.2022.01.009. [PMID: 35216933]
  • Flora Szeri, Fatemeh Niaziorimi, Sylvia Donnelly, Nishat Fariha, Mariia Tertyshnaia, Drithi Patel, Stefan Lundkvist, Koen van de Wetering. The Mineralization Regulator ANKH Mediates Cellular Efflux of ATP, Not Pyrophosphate. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research. 2022 05; 37(5):1024-1031. doi: 10.1002/jbmr.4528. [PMID: 35147247]
  • Eszter Kozák, Krisztina Fülöp, Natália Tőkési, Nidhi Rao, Qiaoli Li, Sharon F Terry, Jouni Uitto, Xiaoming Zhang, Cyrus Becker, András Váradi, Viola Pomozi. Oral supplementation of inorganic pyrophosphate in pseudoxanthoma elasticum. Experimental dermatology. 2022 04; 31(4):548-555. doi: 10.1111/exd.14498. [PMID: 34758173]
  • Vivien M Hsu, Eszter Kozák, Qiaoli Li, Márta Bocskai, Naomi Schlesinger, Ann Rosenthal, Scott T McClure, László Kovács, László Bálint, Szilvia Szamosi, Gabriella Szücs, Mary Carns, Kathleen Aren, Isaac Goldberg, András Váradi, John Varga. Inorganic pyrophosphate is reduced in patients with systemic sclerosis. Rheumatology (Oxford, England). 2022 03; 61(3):1158-1165. doi: 10.1093/rheumatology/keab508. [PMID: 34152415]
  • Ricardo Villa-Bellosta. Vascular Calcification: Key Roles of Phosphate and Pyrophosphate. International journal of molecular sciences. 2021 Dec; 22(24):. doi: 10.3390/ijms222413536. [PMID: 34948333]
  • Daniel Couto, Annika Richter, Henriette Walter, David Furkert, Michael Hothorn, Dorothea Fiedler. Using Biotinylated myo-Inositol Hexakisphosphate to Investigate Inositol Pyrophosphate-Protein Interactions with Surface-Based Biosensors. Biochemistry. 2021 09; 60(37):2739-2748. doi: 10.1021/acs.biochem.1c00497. [PMID: 34499474]
  • Abir U Igamberdiev, Leszek A Kleczkowski. Pyrophosphate as an alternative energy currency in plants. The Biochemical journal. 2021 04; 478(8):1515-1524. doi: 10.1042/bcj20200940. [PMID: 33881486]
  • Natália Tőkési, Eszter Kozák, Krisztina Fülöp, Dóra Dedinszki, Nikolett Hegedűs, Bálint Király, Krisztián Szigeti, Kitti Ajtay, Zoltán Jakus, Jeremy Zaworski, Emmanuel Letavernier, Viola Pomozi, András Váradi. Pyrophosphate therapy prevents trauma-induced calcification in the mouse model of neurogenic heterotopic ossification. Journal of cellular and molecular medicine. 2020 10; 24(20):11791-11799. doi: 10.1111/jcmm.15793. [PMID: 32885586]
  • Flora Szeri, Stefan Lundkvist, Sylvia Donnelly, Udo F H Engelke, Kyu Rhee, Charlene J Williams, John P Sundberg, Ron A Wevers, Ryan E Tomlinson, Robert S Jansen, Koen van de Wetering. The membrane protein ANKH is crucial for bone mechanical performance by mediating cellular export of citrate and ATP. PLoS genetics. 2020 07; 16(7):e1008884. doi: 10.1371/journal.pgen.1008884. [PMID: 32639996]
  • Irina Panina, Nikolay Krylov, Dmitry Nolde, Roman Efremov, Anton Chugunov. Environmental and dynamic effects explain how nisin captures membrane-bound lipid II. Scientific reports. 2020 06; 10(1):8821. doi: 10.1038/s41598-020-65522-y. [PMID: 32483218]
  • Anne Babler, Carlo Schmitz, Andrea Buescher, Marietta Herrmann, Felix Gremse, Theo Gorgels, Juergen Floege, Willi Jahnen-Dechent. Microvasculopathy and soft tissue calcification in mice are governed by fetuin-A, magnesium and pyrophosphate. PloS one. 2020; 15(2):e0228938. doi: 10.1371/journal.pone.0228938. [PMID: 32074140]
  • Emmanuel Letavernier, Elise Bouderlique, Jeremy Zaworski, Ludovic Martin, Michel Daudon. Pseudoxanthoma Elasticum, Kidney Stones and Pyrophosphate: From a Rare Disease to Urolithiasis and Vascular Calcifications. International journal of molecular sciences. 2019 Dec; 20(24):. doi: 10.3390/ijms20246353. [PMID: 31861118]
  • Ricardo Villa-Bellosta. ATP-based therapy prevents vascular calcification and extends longevity in a mouse model of Hutchinson-Gilford progeria syndrome. Proceedings of the National Academy of Sciences of the United States of America. 2019 11; 116(47):23698-23704. doi: 10.1073/pnas.1910972116. [PMID: 31690656]
  • C Primo, G A Pizzio, J Yang, R A Gaxiola, J Scholz-Starke, K D Hirschi. Plant proton pumping pyrophosphatase: the potential for its pyrophosphate synthesis activity to modulate plant growth. Plant biology (Stuttgart, Germany). 2019 Nov; 21(6):989-996. doi: 10.1111/plb.13007. [PMID: 31081197]
  • Adriana C Casabuono, Federico Sisti, Julieta Fernández, Daniela Hozbor, Alicia S Couto. Bordetella bronchiseptica Glycosyltransferase Core Mutants Trigger Changes in Lipid A Structure. Journal of the American Society for Mass Spectrometry. 2019 Sep; 30(9):1679-1689. doi: 10.1007/s13361-019-02233-3. [PMID: 31190311]
  • Haijian Liu, Lu Jia, Yixuan Wang, Mengyao Wang, Zideng Gao, Xueqin Ren. Ratiometric fluorescent sensor for visual determination of copper ions and alkaline phosphatase based on carbon quantum dots and gold nanoclusters. Analytical and bioanalytical chemistry. 2019 May; 411(12):2531-2543. doi: 10.1007/s00216-019-01693-6. [PMID: 30828757]
  • Mariko Asaoka, Shin-Ichiro Inoue, Shizuka Gunji, Toshinori Kinoshita, Masayoshi Maeshima, Hirokazu Tsukaya, Ali Ferjani. Excess Pyrophosphate within Guard Cells Delays Stomatal Closure. Plant & cell physiology. 2019 Apr; 60(4):875-887. doi: 10.1093/pcp/pcz002. [PMID: 30649470]
  • Robertino J Muchut, Claudia V Piattoni, Ezequiel Margarit, Karina E J Tripodi, Florencio E Podestá, Alberto A Iglesias. Heterologous expression and kinetic characterization of the α, β and αβ blend of the PPi-dependent phosphofructokinase from Citrus sinensis. Plant science : an international journal of experimental plant biology. 2019 Mar; 280(?):348-354. doi: 10.1016/j.plantsci.2018.12.012. [PMID: 30824014]
  • M Görkem Patir-Nebioglu, Zaida Andrés, Melanie Krebs, Fabian Fink, Katarzyna Drzewicka, Nicolas Stankovic-Valentin, Shoji Segami, Sebastian Schuck, Michael Büttner, Rüdiger Hell, Masayoshi Maeshima, Frauke Melchior, Karin Schumacher. Pyrophosphate modulates plant stress responses via SUMOylation. eLife. 2019 02; 8(?):. doi: 10.7554/elife.44213. [PMID: 30785397]
  • Ryan P Sweeney, Todd L Lowary. A Route to Polyprenol Pyrophosphate-Based Probes of O-Polysaccharide Biosynthesis in Klebsiella pneumoniae O2a. Organic letters. 2019 02; 21(4):1050-1053. doi: 10.1021/acs.orglett.8b04093. [PMID: 30681873]
  • Qiaoli Li, Koen van de Wetering, Jouni Uitto. Pseudoxanthoma Elasticum as a Paradigm of Heritable Ectopic Mineralization Disorders: Pathomechanisms and Treatment Development. The American journal of pathology. 2019 02; 189(2):216-225. doi: 10.1016/j.ajpath.2018.09.014. [PMID: 30414410]
  • Yongcun Yan, Juan Li, Wenhui Li, Ye Wang, Weiling Song, Sai Bi. DNA flower-encapsulated horseradish peroxidase with enhanced biocatalytic activity synthesized by an isothermal one-pot method based on rolling circle amplification. Nanoscale. 2018 Dec; 10(47):22456-22465. doi: 10.1039/c8nr07294a. [PMID: 30478460]
  • Seonghoon Kim, Marcos M Pires, Wonpil Im. Insight into Elongation Stages of Peptidoglycan Processing in Bacterial Cytoplasmic Membranes. Scientific reports. 2018 12; 8(1):17704. doi: 10.1038/s41598-018-36075-y. [PMID: 30531805]
  • Jingjing Zhang, Yue Sun, Jianzhong Lu. A novel bioluminescent detection of exonuclease I activity based on terminal deoxynucleotidyl transferase-mediated pyrophosphate release. Luminescence : the journal of biological and chemical luminescence. 2018 Nov; 33(7):1157-1163. doi: 10.1002/bio.3530. [PMID: 30047621]
  • Ali Ferjani, Kensuke Kawade, Mariko Asaoka, Akira Oikawa, Takashi Okada, Atsushi Mochizuki, Masayoshi Maeshima, Masami Yokota Hirai, Kazuki Saito, Hirokazu Tsukaya. Pyrophosphate inhibits gluconeogenesis by restricting UDP-glucose formation in vivo. Scientific reports. 2018 10; 8(1):14696. doi: 10.1038/s41598-018-32894-1. [PMID: 30279540]
  • Wu Zou, Fuchun Gong, Xuejiao Chen, Zhong Cao, Jiaoyun Xia, Tingting Gu, Zhizhang Li. Intrinsically fluorescent and highly functionalized polymer nanoparticles as probes for the detection of zinc and pyrophosphate ions in rabbit serum samples. Talanta. 2018 Oct; 188(?):203-209. doi: 10.1016/j.talanta.2018.05.087. [PMID: 30029365]
  • Daniel Azpiazu, Emilio González-Parra, Jesús Egido, Ricardo Villa-Bellosta. Hydrolysis of Extracellular Pyrophosphate increases in post-hemodialysis plasma. Scientific reports. 2018 07; 8(1):11089. doi: 10.1038/s41598-018-29432-4. [PMID: 30038263]
  • Shoji Segami, Mariko Asaoka, Satoru Kinoshita, Mayu Fukuda, Yoichi Nakanishi, Masayoshi Maeshima. Biochemical, Structural and Physiological Characteristics of Vacuolar H+-Pyrophosphatase. Plant & cell physiology. 2018 Jul; 59(7):1300-1308. doi: 10.1093/pcp/pcy054. [PMID: 29534212]
  • Ricardo Villa-Bellosta, W Charles O'Neill. Pyrophosphate deficiency in vascular calcification. Kidney international. 2018 06; 93(6):1293-1297. doi: 10.1016/j.kint.2017.11.035. [PMID: 29580636]
  • Daniel Azpiazu, Sergio Gonzalo, Emilio González-Parra, Jesús Egido, Ricardo Villa-Bellosta. Role of pyrophosphate in vascular calcification in chronic kidney disease. Nefrologia. 2018 May; 38(3):250-257. doi: 10.1016/j.nefro.2017.07.005. [PMID: 29137892]
  • Shoji Segami, Takaaki Tomoyama, Shingo Sakamoto, Shizuka Gunji, Mayu Fukuda, Satoru Kinoshita, Nobutaka Mitsuda, Ali Ferjani, Masayoshi Maeshima. Vacuolar H+-Pyrophosphatase and Cytosolic Soluble Pyrophosphatases Cooperatively Regulate Pyrophosphate Levels in Arabidopsis thaliana. The Plant cell. 2018 05; 30(5):1040-1061. doi: 10.1105/tpc.17.00911. [PMID: 29691313]
  • Shigeto Hiratsuka, Masahiko Takahata, Tomohiro Shimizu, Hiroki Hamano, Masahiro Ota, Dai Sato, Norimasa Iwasaki. Drug therapy targeting pyrophosphate slows the ossification of spinal ligaments in twy mice. Journal of orthopaedic research : official publication of the Orthopaedic Research Society. 2018 04; 36(4):1256-1261. doi: 10.1002/jor.23743. [PMID: 28940647]
  • Michael A Fuery, Lusha Liang, Frederick S Kaplan, Emile R Mohler. Vascular ossification: Pathology, mechanisms, and clinical implications. Bone. 2018 04; 109(?):28-34. doi: 10.1016/j.bone.2017.07.006. [PMID: 28688892]
  • Yalei Hu, Xin Geng, Lin Zhang, Zhongming Huang, Jia Ge, Zhaohui Li. Nitrogen-doped Carbon Dots Mediated Fluorescent on-off Assay for Rapid and Highly Sensitive Pyrophosphate and Alkaline Phosphatase Detection. Scientific reports. 2017 07; 7(1):5849. doi: 10.1038/s41598-017-06356-z. [PMID: 28724997]
  • Viola Pomozi, Christopher Brampton, Koen van de Wetering, Janna Zoll, Bianca Calio, Kevin Pham, Jesse B Owens, Joel Marh, Stefan Moisyadi, András Váradi, Ludovic Martin, Carolin Bauer, Jeanette Erdmann, Zouhair Aherrahrou, Olivier Le Saux. Pyrophosphate Supplementation Prevents Chronic and Acute Calcification in ABCC6-Deficient Mice. The American journal of pathology. 2017 Jun; 187(6):1258-1272. doi: 10.1016/j.ajpath.2017.02.009. [PMID: 28416300]
  • Dominique P Germain. Pseudoxanthoma elasticum. Orphanet journal of rare diseases. 2017 05; 12(1):85. doi: 10.1186/s13023-017-0639-8. [PMID: 28486967]
  • Cong Tang, Hui Feng, Yuanyuan Huang, Zhaosheng Qian. Reversible Luminescent Nanoswitches Based on Aggregation-Induced Emission Enhancement of Silver Nanoclusters for Luminescence Turn-on Assay of Inorganic Pyrophosphatase Activity. Analytical chemistry. 2017 05; 89(9):4994-5002. doi: 10.1021/acs.analchem.7b00319. [PMID: 28372359]
  • Qiaoli Li, Joshua Kingman, Koen van de Wetering, Sami Tannouri, John P Sundberg, Jouni Uitto. Abcc6 Knockout Rat Model Highlights the Role of Liver in PPi Homeostasis in Pseudoxanthoma Elasticum. The Journal of investigative dermatology. 2017 05; 137(5):1025-1032. doi: 10.1016/j.jid.2016.11.042. [PMID: 28111129]
  • Tong Liu, Liu He, Manuel Valiente, Montserrat López-Mesas. Fast determination of bioactive phytic acid and pyrophosphate in walnuts using microwave accelerated extraction. Food chemistry. 2017 Apr; 221(?):771-775. doi: 10.1016/j.foodchem.2016.11.105. [PMID: 27979271]
  • Rhiannon K Schilling, Mark Tester, Petra Marschner, Darren C Plett, Stuart J Roy. AVP1: One Protein, Many Roles. Trends in plant science. 2017 02; 22(2):154-162. doi: 10.1016/j.tplants.2016.11.012. [PMID: 27989652]
  • Michaël Bosco, Ahmad Massarweh, Soria Iatmanen-Harbi, Ahmed Bouhss, Isabelle Chantret, Patricia Busca, Stuart E H Moore, Christine Gravier-Pelletier. Synthesis and biological evaluation of chemical tools for the study of Dolichol Linked Oligosaccharide Diphosphatase (DLODP). European journal of medicinal chemistry. 2017 Jan; 125(?):952-964. doi: 10.1016/j.ejmech.2016.10.013. [PMID: 27769035]
  • Ricardo Villa-Bellosta, Magda R Hamczyk, Vicente Andrés. Novel phosphate-activated macrophages prevent ectopic calcification by increasing extracellular ATP and pyrophosphate. PloS one. 2017; 12(3):e0174998. doi: 10.1371/journal.pone.0174998. [PMID: 28362852]
  • Daniel Caballero, Yuwen Li, Jonathan Fetene, Julian Ponsetto, Alyssa Chen, Chuanlong Zhu, Demetrios T Braddock, Clemens Bergwitz. Intraperitoneal pyrophosphate treatment reduces renal calcifications in Npt2a null mice. PloS one. 2017; 12(7):e0180098. doi: 10.1371/journal.pone.0180098. [PMID: 28704395]
  • Ellen Neven, Britt Opdebeeck, Annelies De Maré, Rida Bashir-Dar, Geert Dams, Rita Marynissen, Geert J Behets, Anja Verhulst, Bruce L Riser, Patrick C D'Haese. Can Intestinal Phosphate Binding or Inhibition of Hydroxyapatite Growth in the Vascular Wall Halt the Progression of Established Aortic Calcification in Chronic Kidney Disease?. Calcified tissue international. 2016 11; 99(5):525-534. doi: 10.1007/s00223-016-0178-7. [PMID: 27461215]
  • Hao-Hua Deng, Fei-Fei Wang, Xiao-Qiong Shi, Hua-Ping Peng, Ai-Lin Liu, Xing-Hua Xia, Wei Chen. Water-soluble gold nanoclusters prepared by protein-ligand interaction as fluorescent probe for real-time assay of pyrophosphatase activity. Biosensors & bioelectronics. 2016 Sep; 83(?):1-8. doi: 10.1016/j.bios.2016.04.031. [PMID: 27093483]
  • Kimberly L James, Luis A Ríos-Hernández, Neil Q Wofford, Housna Mouttaki, Jessica R Sieber, Cody S Sheik, Hong H Nguyen, Yanan Yang, Yongming Xie, Jonathan Erde, Lars Rohlin, Elizabeth A Karr, Joseph A Loo, Rachel R Ogorzalek Loo, Gregory B Hurst, Robert P Gunsalus, Luke I Szweda, Michael J McInerney. Pyrophosphate-Dependent ATP Formation from Acetyl Coenzyme A in Syntrophus aciditrophicus, a New Twist on ATP Formation. mBio. 2016 08; 7(4):. doi: 10.1128/mbio.01208-16. [PMID: 27531911]
  • Lei Yin, Kevin Shengyang Yu, Kun Lu, Xiaozhong Yu. Benzyl butyl phthalate promotes adipogenesis in 3T3-L1 preadipocytes: A High Content Cellomics and metabolomic analysis. Toxicology in vitro : an international journal published in association with BIBRA. 2016 Apr; 32(?):297-309. doi: 10.1016/j.tiv.2016.01.010. [PMID: 26820058]
  • S M Bristow, G D Gamble, A Pasch, W C O'Neill, A Stewart, A M Horne, I R Reid. Acute and 3-month effects of calcium carbonate on the calcification propensity of serum and regulators of vascular calcification: secondary analysis of a randomized controlled trial. Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. 2016 Mar; 27(3):1209-1216. doi: 10.1007/s00198-015-3372-y. [PMID: 26493812]
  • Liping Lin, Xinhong Song, Yiying Chen, Mingcong Rong, Tingting Zhao, Yaqi Jiang, Yiru Wang, Xi Chen. One-pot synthesis of highly greenish-yellow fluorescent nitrogen-doped graphene quantum dots for pyrophosphate sensing via competitive coordination with Eu(3+) ions. Nanoscale. 2015 Oct; 7(37):15427-33. doi: 10.1039/c5nr04005a. [PMID: 26335520]
  • Vincent E Zwicker, Benjamin M Long, Katrina A Jolliffe. Selective sensing of pyrophosphate in physiological media using zinc(II)dipicolylamino-functionalised peptides. Organic & biomolecular chemistry. 2015 Jul; 13(28):7822-9. doi: 10.1039/c5ob00956a. [PMID: 26107804]
  • María M Adeva-Andany, Carlos Fernández-Fernández, Rocío Sánchez-Bello, Cristóbal Donapetry-García, Julia Martínez-Rodríguez. The role of carbonic anhydrase in the pathogenesis of vascular calcification in humans. Atherosclerosis. 2015 Jul; 241(1):183-91. doi: 10.1016/j.atherosclerosis.2015.05.012. [PMID: 26005791]
  • Brian J Atwell, Hank Greenway, Timothy D Colmer. Efficient use of energy in anoxia-tolerant plants with focus on germinating rice seedlings. The New phytologist. 2015 Apr; 206(1):36-56. doi: 10.1111/nph.13173. [PMID: 25472708]
  • Gaston A Pizzio, Julio Paez-Valencia, Aswad S Khadilkar, Kamesh Regmi, Araceli Patron-Soberano, Shangji Zhang, Jonathan Sanchez-Lares, Tara Furstenau, Jisheng Li, Concepcion Sanchez-Gomez, Pedro Valencia-Mayoral, Umesh P Yadav, Brian G Ayre, Roberto A Gaxiola. Arabidopsis type I proton-pumping pyrophosphatase expresses strongly in phloem, where it is required for pyrophosphate metabolism and photosynthate partitioning. Plant physiology. 2015 Apr; 167(4):1541-53. doi: 10.1104/pp.114.254342. [PMID: 25681328]
  • Natalia Mallo, Jesús Lamas, Carla Piazzon, José M Leiro. Presence of a plant-like proton-translocating pyrophosphatase in a scuticociliate parasite and its role as a possible drug target. Parasitology. 2015 Mar; 142(3):449-62. doi: 10.1017/s0031182014001267. [PMID: 25118804]
  • Gautam Dhar, Suvajit Sen, Gautam Chaudhuri. Acid gradient across plasma membrane can drive phosphate bond synthesis in cancer cells: acidic tumor milieu as a potential energy source. PloS one. 2015; 10(4):e0124070. doi: 10.1371/journal.pone.0124070. [PMID: 25874623]
  • Marcello Rattazzi, Elisa Bertacco, Laura Iop, Susanna D'Andrea, Massimo Puato, Giacomo Buso, Valerio Causin, Gino Gerosa, Elisabetta Faggin, Paolo Pauletto. Extracellular pyrophosphate is reduced in aortic interstitial valve cells acquiring a calcifying profile: implications for aortic valve calcification. Atherosclerosis. 2014 Dec; 237(2):568-76. doi: 10.1016/j.atherosclerosis.2014.10.027. [PMID: 25463090]
  • Aiko Shimokado, Yujing Sun, Masako Nakanishi, Fuyuki Sato, Kosuke Oikawa, Takashi Akasaka, Yasuteru Muragaki. Smad3 plays an inhibitory role in phosphate-induced vascular smooth muscle cell calcification. Experimental and molecular pathology. 2014 Dec; 97(3):458-64. doi: 10.1016/j.yexmp.2014.10.005. [PMID: 25303897]
  • Fellype C Barreto, Rodrigo B de Oliveira, Joyce Benchitrit, Loïc Louvet, Raja Rezg, Sabrina Poirot, Vanda Jorgetti, Tilman B Drüeke, Bruce L Riser, Ziad A Massy. Effects of pyrophosphate delivery in a peritoneal dialysis solution on bone tissue of apolipoprotein-E knockout mice with chronic kidney disease. Journal of bone and mineral metabolism. 2014 Nov; 32(6):636-44. doi: 10.1007/s00774-013-0541-y. [PMID: 24442863]
  • Rony Sapir-Koren, Gregory Livshits. Bone mineralization is regulated by signaling cross talk between molecular factors of local and systemic origin: the role of fibroblast growth factor 23. BioFactors (Oxford, England). 2014 Nov; 40(6):555-68. doi: 10.1002/biof.1186. [PMID: 25352227]
  • Fang Li, Yating Liu, Meng Zhuang, Hongli Zhang, Xiaoying Liu, Hua Cui. Biothiols as chelators for preparation of N-(aminobutyl)-N-(ethylisoluminol)/Cu(2+) complexes bifunctionalized gold nanoparticles and sensitive sensing of pyrophosphate ion. ACS applied materials & interfaces. 2014 Oct; 6(20):18104-11. doi: 10.1021/am504985w. [PMID: 25275558]
  • Robert S Jansen, Suzanne Duijst, Sunny Mahakena, Daniela Sommer, Flóra Szeri, András Váradi, Astrid Plomp, Arthur A Bergen, Ronald P J Oude Elferink, Piet Borst, Koen van de Wetering. ABCC6-mediated ATP secretion by the liver is the main source of the mineralization inhibitor inorganic pyrophosphate in the systemic circulation-brief report. Arteriosclerosis, thrombosis, and vascular biology. 2014 Sep; 34(9):1985-9. doi: 10.1161/atvbaha.114.304017. [PMID: 24969777]
  • Jinyan Du, Li Ye, Meili Ding, Yuting Chen, Shujuan Zhuo, Changqing Zhu. Label-free fluorescence polarization detection of pyrophosphate based on 0D/1D fast transformation of CdTe nanostructures. The Analyst. 2014 Jul; 139(14):3541-7. doi: 10.1039/c4an00266k. [PMID: 24862863]
  • Swetha Rathan, Ajit P Yoganathan, Charles W O'Neill. The role of inorganic pyrophosphate in aortic valve calcification. The Journal of heart valve disease. 2014 Jul; 23(4):387-94. doi: . [PMID: 25803964]
  • Koba A Lomashvili, Sonoko Narisawa, Jose L Millán, W Charles O'Neill. Vascular calcification is dependent on plasma levels of pyrophosphate. Kidney international. 2014 Jun; 85(6):1351-6. doi: 10.1038/ki.2013.521. [PMID: 24717293]
  • Masafumi Kameya, Yasuhisa Asano. Rapid enzymatic assays for L-citrulline and L-arginine based on the platform of pyrophosphate detection. Enzyme and microbial technology. 2014 Apr; 57(?):36-41. doi: 10.1016/j.enzmictec.2014.01.008. [PMID: 24629265]
  • Masafumi Kameya, Mariko Himi, Yasuhisa Asano. Rapid and selective enzymatic assay for L-methionine based on a pyrophosphate detection system. Analytical biochemistry. 2014 Feb; 447(?):33-8. doi: 10.1016/j.ab.2013.11.002. [PMID: 24239571]
  • Anita Leocadio Freitas-Mesquita, André Luiz Fonseca-de-Souza, José Roberto Meyer-Fernandes. Leishmania amazonensis: characterization of an ecto-pyrophosphatase activity. Experimental parasitology. 2014 Feb; 137(?):8-13. doi: 10.1016/j.exppara.2013.11.008. [PMID: 24316462]
  • Edward R Smith, Martin L Ford, Laurie A Tomlinson, Emma Bodenham, Lawrence P McMahon, Stefan Farese, Chakravarthi Rajkumar, Stephen G Holt, Andreas Pasch. Serum calcification propensity predicts all-cause mortality in predialysis CKD. Journal of the American Society of Nephrology : JASN. 2014 Feb; 25(2):339-48. doi: 10.1681/asn.2013060635. [PMID: 24179171]
  • Francis Biville, Christophe Brézillon, Dario Giorgini, Muhamed-Kheir Taha. Pyrophosphate-mediated iron acquisition from transferrin in Neisseria meningitidis does not require TonB activity. PloS one. 2014; 9(10):e107612. doi: 10.1371/journal.pone.0107612. [PMID: 25290693]
  • Guillaume Ménard, Benoit Biais, Duyên Prodhomme, Patricia Ballias, Yves Gibon. Analysis of enzyme activities. Methods in molecular biology (Clifton, N.J.). 2014; 1090(?):249-59. doi: 10.1007/978-1-62703-688-7_15. [PMID: 24222420]
  • Rong-Mei Kong, Ting Fu, Ni-Na Sun, Feng-Li Qu, Shu-Fang Zhang, Xiao-Bing Zhang. Pyrophosphate-regulated Zn(2+)-dependent DNAzyme activity: an amplified fluorescence sensing strategy for alkaline phosphatase. Biosensors & bioelectronics. 2013 Dec; 50(?):351-5. doi: 10.1016/j.bios.2013.06.064. [PMID: 23891797]
  • Robert S Jansen, Aslı Küçükosmanoglu, Marcel de Haas, Sunny Sapthu, Jon Andoni Otero, Ilse E M Hegman, Arthur A B Bergen, Theo G M F Gorgels, P Borst, Koen van de Wetering. ABCC6 prevents ectopic mineralization seen in pseudoxanthoma elasticum by inducing cellular nucleotide release. Proceedings of the National Academy of Sciences of the United States of America. 2013 Dec; 110(50):20206-11. doi: 10.1073/pnas.1319582110. [PMID: 24277820]
  • Akimitsu Kugimiya, Rie Fukada, Daiki Funamoto. A luminol chemiluminescence method for sensing histidine and lysine using enzyme reactions. Analytical biochemistry. 2013 Dec; 443(1):22-6. doi: 10.1016/j.ab.2013.08.012. [PMID: 23973428]
  • Montserrat Arzoz-Fàbregas, Luis Ibarz-Servio, Jordi Fernández-Castro, Manuel Valiente-Malmagro, Josep Roca-Antonio, Sílvia Edo-Izquierdo, Oscar Buisan-Rueda. Chronic stress and calcium oxalate stone disease: influence on blood cortisol and urine composition. Urology. 2013 Dec; 82(6):1246-52. doi: 10.1016/j.urology.2013.06.077. [PMID: 24129077]
  • Qiaoli Li, Haitao Guo, David W Chou, Annerose Berndt, John P Sundberg, Jouni Uitto. Mutant Enpp1asj mice as a model for generalized arterial calcification of infancy. Disease models & mechanisms. 2013 Sep; 6(5):1227-35. doi: 10.1242/dmm.012765. [PMID: 23798568]
  • Ricardo Villa-Bellosta, José Rivera-Torres, Fernando G Osorio, Rebeca Acín-Pérez, José A Enriquez, Carlos López-Otín, Vicente Andrés. Defective extracellular pyrophosphate metabolism promotes vascular calcification in a mouse model of Hutchinson-Gilford progeria syndrome that is ameliorated on pyrophosphate treatment. Circulation. 2013 Jun; 127(24):2442-51. doi: 10.1161/circulationaha.112.000571. [PMID: 23690466]
  • Ho-Sung Yoon, Saeng-Young Kim, Il-Sup Kim. Stress response of plant H+-PPase-expressing transgenic Escherichia coli and Saccharomyces cerevisiae: a potentially useful mechanism for the development of stress-tolerant organisms. Journal of applied genetics. 2013 Feb; 54(1):129-33. doi: 10.1007/s13353-012-0117-x. [PMID: 23055406]
  • Xin Su, Chen Zhang, Xianjin Xiao, Anqin Xu, Zhendong Xu, Meiping Zhao. A kinetic method for expeditious detection of pyrophosphate anions at nanomolar concentrations based on a nucleic acid fluorescent sensor. Chemical communications (Cambridge, England). 2013 Jan; 49(8):798-800. doi: 10.1039/c2cc38020j. [PMID: 23229067]
  • Gexin Zhao, Ming-Jiang Xu, Ming-Ming Zhao, Xiao-Yan Dai, Wei Kong, Gerald M Wilson, Youfei Guan, Cun-Yu Wang, Xian Wang. Activation of nuclear factor-kappa B accelerates vascular calcification by inhibiting ankylosis protein homolog expression. Kidney international. 2012 Jul; 82(1):34-44. doi: 10.1038/ki.2012.40. [PMID: 22437419]
  • Thaisângela L Rodrigues, Brian L Foster, Karina G Silverio, Luciane Martins, Marcio Z Casati, Enilson A Sallum, Martha J Somerman, Francisco H Nociti. Correction of hypophosphatasia-associated mineralization deficiencies in vitro by phosphate/pyrophosphate modulation in periodontal ligament cells. Journal of periodontology. 2012 May; 83(5):653-63. doi: 10.1902/jop.2011.110310. [PMID: 22014174]
  • Eric E Hernández-Domíguez, Lilián G Valencia-Turcotte, Rogelio Rodríguez-Sotres. Changes in expression of soluble inorganic pyrophosphatases of Phaseolus vulgaris under phosphate starvation. Plant science : an international journal of experimental plant biology. 2012 May; 187(?):39-48. doi: 10.1016/j.plantsci.2012.01.009. [PMID: 22404831]
  • Weiqing Han, Baolin Wu, Lei Li, Guohui Zhao, Robert Woodward, Nicholas Pettit, Li Cai, Vireak Thon, Peng G Wang. Defining function of lipopolysaccharide O-antigen ligase WaaL using chemoenzymatically synthesized substrates. The Journal of biological chemistry. 2012 Feb; 287(8):5357-65. doi: 10.1074/jbc.m111.308486. [PMID: 22158874]
  • Shabbir H Moochhala. Extracellular pyrophosphate in the kidney: how does it get there and what does it do?. Nephron. Physiology. 2012; 120(4):p33-8. doi: 10.1159/000341597. [PMID: 23075758]
  • Ali Ferjani, Shoji Segami, Gorou Horiguchi, Azusa Sakata, Masayoshi Maeshima, Hirokazu Tsukaya. Regulation of pyrophosphate levels by H+-PPase is central for proper resumption of early plant development. Plant signaling & behavior. 2012 Jan; 7(1):38-42. doi: 10.4161/psb.7.1.18573. [PMID: 22301965]
  • Ali Ferjani, Shoji Segami, Gorou Horiguchi, Yukari Muto, Masayoshi Maeshima, Hirokazu Tsukaya. Keep an eye on PPi: the vacuolar-type H+-pyrophosphatase regulates postgerminative development in Arabidopsis. The Plant cell. 2011 Aug; 23(8):2895-908. doi: 10.1105/tpc.111.085415. [PMID: 21862707]
  • Gregory Bertoni. A surprising role for vacuolar pyrophosphatase. The Plant cell. 2011 Aug; 23(8):2808. doi: 10.1105/tpc.111.230813. [PMID: 21862706]
  • Oliver Fiehn, W Timothy Garvey, John W Newman, Kerry H Lok, Charles L Hoppel, Sean H Adams. Plasma metabolomic profiles reflective of glucose homeostasis in non-diabetic and type 2 diabetic obese African-American women. PloS one. 2010 Dec; 5(12):e15234. doi: 10.1371/journal.pone.0015234. [PMID: 21170321]
  • Megumi Hirono, Hisatoshi Mimura, Shoji Segami, Yoichi Nakanishi, Masayoshi Maeshima. [Proton-translocating inorganic pyrophosphatase: a proton pump using a low cost fuel]. Seikagaku. The Journal of Japanese Biochemical Society. 2007 Jun; 79(6):535-41. doi: ". [PMID: 17663157]
  • C M P G Amorim, J R Albert-García, M C B S Montenegro, A N Araújo, J Martínez Calatayud. Photo-induced chemiluminometric determination of Karbutilate in a continuous-flow multicommutation assembly. Journal of pharmaceutical and biomedical analysis. 2007 Jan; 43(2):421-7. doi: 10.1016/j.jpba.2006.07.006. [PMID: 16930910]
  • Yasushi Shinohara, Norihiko Kohyama. Quantitative analysis of tridymite and cristobalite crystallized in rice husk ash by heating. Industrial health. 2004 Apr; 42(2):277-85. doi: 10.2486/indhealth.42.277. [PMID: 15128180]
  • L Saso, G Valentini, M L Casini, E Mattei, C Panzironi, B Silvestrini. Development of a turbidimetric assay to study the effect of urinary components on calcium oxalate precipitation. Urologia internationalis. 1998; 60(1):47-52. doi: 10.1159/000030202. [PMID: 9519421]
  • F H Lin, C J Liao, K S Chen, J S Sun, H C Liu. Degradation behaviour of a new bioceramic: Ca2P2O7 with addition of Na4P2O7.10H2O. Biomaterials. 1997 Jul; 18(13):915-21. doi: 10.1016/s0142-9612(97)00016-1. [PMID: 9199761]
  • R G RUSSELL. EXCRETION OF INORGANIC PYROPHOSPHATE IN HYPOPHOSPHATASIA. Lancet (London, England). 1965 Sep; 2(7410):461-4. doi: 10.1016/s0140-6736(65)91422-4. [PMID: 14337825]
  • L V AVIOLI, J E MCDONALD, R A SINGER. EXCRETION OF PYROPHOSPHATE IN DISORDERS OF BONE METABOLISM. The Journal of clinical endocrinology and metabolism. 1965 Jul; 25(?):912-5. doi: 10.1210/jcem-25-7-912. [PMID: 14319372]