PC(16:0/18:1(9Z)) (BioDeep_00000017449)

 

Secondary id: BioDeep_00000004080, BioDeep_00000411226

human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite


代谢物信息卡片


3,5,8-Trioxa-4-phosphahexacos-17-en-1-aminium, 4-hydroxy-N,N,N-trimethyl-9-oxo-7-[[(1-oxohexadecyl)oxy]methyl]-, inner salt, 4-oxide, (7R,17Z)- 3,5,8-Trioxa-4-phosphahexacos-17-en-1-aminium, 4-hydroxy

化学式: C42H82NO8P (759.5777742)
中文名称: 2-油酰-1-棕榈酰- 锡 -甘油基-3-磷酸胆碱, 1-棕榈酰基-2-油酰基-sn-甘油-3-磷酸胆碱, 2-油酰-1-棕榈锡甘油-3-磷酸胆碱, 1-棕榈酰基-2-油酰基-sn-甘油-3-磷脂胆碱
谱图信息: 最多检出来源 Homo sapiens(lipidomics) 0.01%

分子结构信息

SMILES: CCCCCCCCC=CCCCCCCCC(=O)OC(COC(=O)CCCCCCCCCCCCCCC)COP(=O)([O-])OCC[N+](C)(C)C
InChI: InChI=1S/C42H82NO8P/c1-6-8-10-12-14-16-18-20-21-23-25-27-29-31-33-35-42(45)51-40(39-50-52(46,47)49-37-36-43(3,4)5)38-48-41(44)34-32-30-28-26-24-22-19-17-15-13-11-9-7-2/h20-21,40H,6-19,22-39H2,1-5H3/b21-20-/t40-/m1/s1

描述信息

PC(16:0/18:1(9Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(16:0/18:1(9Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of oleic acid at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.
1-hexadecanoyl-2-(9Z-octadecenoyl)-sn-glycero-3-phosphocholine is a phosphatidylcholine 34:1 in which the 1- and 2-acyl groups are specified as hexadecanoyl (palmitoyl) and 9Z-octadecenoyl (oleoyl) respectively. It has a role as a mouse metabolite. It is a phosphatidylcholine 34:1 and a 1-acyl-2-oleoyl-sn-glycero-3-phosphocholine betaine. It is functionally related to a hexadecanoic acid and an oleic acid.
1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine is a natural product found in Streptomyces roseicoloratus, Vitis vinifera, and other organisms with data available.
PC(16:0/18:1(9Z)) is a metabolite found in or produced by Saccharomyces cerevisiae.
PC(16:0/18:1(9z)) is a phosphatidylchloline (PC). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylcholines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PC(16:0/18:1(9z)), in particular, consists of one hexadecanoyl chain to the C-1 atom, and one 9Z-octadecenoyl to the C-2 atom. In E. coli, PCs can be found in the integral component of the cell outer membrane. They are hydrolyzed by Phospholipases to a 2-acylglycerophosphocholine and a carboxylate.
A phosphatidylcholine 34:1 in which the 1- and 2-acyl groups are specified as hexadecanoyl (palmitoyl) and 9Z-octadecenoyl (oleoyl) respectively.

同义名列表

101 个代谢物同义名

3,5,8-Trioxa-4-phosphahexacos-17-en-1-aminium, 4-hydroxy-N,N,N-trimethyl-9-oxo-7-[[(1-oxohexadecyl)oxy]methyl]-, inner salt, 4-oxide, (7R,17Z)- 3,5,8-Trioxa-4-phosphahexacos-17-en-1-aminium, 4-hydroxy; ethanaminium, 2-[[hydroxy[[(2R)-3-[(1-oxohexadecyl)oxy]-2-[[(9Z)-1-oxo-9-octadecenyl]oxy]propyl]oxy]phosphinyl]oxy]-N,N,N-trimethyl-, inner salt; 3,5,8-TRIOXA-4-PHOSPHAHEXACOS-17-EN-1-AMINIUM, 4-HYDROXY-N,N,N-TRIMETHYL-9-OXO-7-(((1-OXOHEXADECYL)OXY)METHYL)-, INNER SALT, 4-OXIDE, (7R,17Z)-; 3,5,8-Trioxa-4-phosphahexacos-17-en-1-aminium, 4-hydroxy-N,N,N-trimethyl-9-oxo-7-[[(1-oxohexadecyl)oxy]methyl]-, inner salt, 4-oxide, [R-(Z)]-; 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (main component of Egg Phosphatidylcholines / EPC, CAS 97281-44-2); (R)-(Z)-(4-Oxido-9-oxo-7-(palmitoylmethyl)-3,5,8-trioxa-4-phosphahexacos-17-enyl)trimethylammonium 4-oxide; (2-{[(2R)-3-(hexadecanoyloxy)-2-[(9Z)-octadec-9-enoyloxy]propyl phosphonato]oxy}ethyl)trimethylazanium; (2-{[(2R)-3-(hexadecanoyloxy)-2-[(9Z)-octadec-9-enoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium; (2R)-3-(hexadecanoyloxy)-2-{[(9Z)-octadec-9-enoyl]oxy}propyl 2-(trimethylazaniumyl)ethyl phosphate; -N,N,N-trimethyl-9-oxo-7-[[(1-oxohexadecyl)oxy]methyl]-, hydroxide, inner salt, 4-oxide, [R-(Z)]-; [(2R)-3-hexadecanoyloxy-2-[(Z)-octadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate; Choline, hydroxide, dihydrogen phosphate, inner salt, ester with 1-palmito-2-olein, L- (8CI); [3-hexadecanoyloxy-2-[(E)-octadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate; (2R)-2-[(9Z)-9-Octadecenoyloxy]-3-(palmitoyloxy)propyl 2-(trimethylammonio)ethyl phosphate; (R,Z)-2-(Oleoyloxy)-3-(palmitoyloxy)propyl (2-(trimethylammonio)ethyl) phosphate; (R)-2-(oleoyloxy)-3-(palmitoyloxy)propyl (2-(trimethylammonio)ethyl) phosphate; (R,Z)-2-(Oleoyloxy)-3-(palmitoyloxy)propyl(2-(trimethylammonio)ethyl)phosphate; (R,Z)-2-(Oleoyloxy)-3-(palmitoyloxy)propyl 2-(trimethylammonio)ethyl phosphate; 16:0-18:1 PC, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, chloroform; 16:0-18:1 PC, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, powder; Brain PC, L-alpha-phosphatidylcholine (Brain, Porcine), chloroform; 1-Hexadecanoyl-2-(cis-9-octadecenoyl)-sn-glycero-3-phosphocholine; 1-Hexadecanoyl-2-(9Z-octadecenoyl)-sn-glycero-3-phosphocholine; Brain PC, L-alpha-phosphatidylcholine (Brain, Porcine), powder; Egg PC, L-alpha-phosphatidylcholine (Egg, Chicken), powder; beta-oleoyl-gamma-palmitoyl-L-alpha-phosphatidylcholine; 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (popc); 1-palmitoyl-2-oleoylphosphatidylcholine, (R)-(Z)-isomer; 1-Palmitoyl-2-oleoyl-sn-glycerol-3-phosphatidylcholine; 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine; alpha-phosphatidylcholine-beta-oleoyl-gamma-palmitoyl; 1-Palmitoyl-2-oleoyl-sn-glyceryl-3-phosphorylcholine; 1-Palmitoyl-2-oleoyl-sn-glycero-phosphatidylcholine; 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphorylcholine; 1-hexadecanoyl-2-oleoyl-sn-glycero-3-phosphocholine; 1-Palmitoyl-2-oleoyl-sn-glycerol-3-phosphocholine; 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine; 1-Palmitoyl-2-oleoyl-L-alpha-phosphatidylcholine; 2-Oleoyl-1-palmitoyl-sn-glycero-3-phosphocholine; L-alpha-1-Palmitoyl-2-oleoylphosphatidylcholine; 3-sn-Phosphatidylcholine, 2-oleoyl-1-palmitoyl; 1-Palmitoyl-2-oleoyl-sn-glycero-phosphocholine; 1-Palmitoyl-2-oleoyl-3-sn-phosphatidylcholine; 1-palmotoyl-2-oleoylglycero-3-phosphocholine; 1-Palmitoyl-2-oleoyl-L-α-phosphatidylcholine; β-Oleoyl-γ-palmitoyl-L-α-phosphatidylcholine; 1-Palmitoyl-2-oleyl-3-sn-phosphatidylcholine; L-α-1-Palmitoyl-2-oleoylphosphatidylcholine; 2-Oleo-1-palmitin phosphate choline ester; L-1-Palmitoyl-2-oleoylphosphatidylcholine; 1-Palmitoyl-2-oleoyl-sn-3-phosphocholine; 1-palmitoyl-2-oleoyl-phosphatidylcholine; 1-palmitoyl-2-oleoylphosphatidylcholine; 2-Oleoyl-1-palmitoylphosphatidylcholine; L-a-phosphatidylcholine (Egg, Chicken); 1-Palmitoyl-2-oleoyl-L-alpha-lecithin; 1-Palmitoyl-2-oleoyl-sn-glycero-3-PC; L-Palmitoyloleoylphosphatidylcholine; 1-palmitoyl-2-oleoyl-GPC (16:0/18:1); Phosphatidylcholine(16:0/18:1omega9); phosphatidylcholine (1-16:0-2-18:1); Phosphatidylcholine(16:0/18:1(9Z)); palmitoyloleoylphosphatidylcholine; L-b-Oleoyl-g-palmitoyl-a-lecithin; 1-16:0-2-18:1-phosphatidylcholine; 1-Palmitoyl-2-oleoyl-L-α-lecithin; Phosphatidylcholine(16:0/18:1w9); Phosphatidylcholine(16:0/18:1n9); Phosphatidylcholine(16:0/18:1); 1-palmitoyl-2-oleoyl-lecithin; 2-Oleoyl-1-palmitoyllecithin; 1-Palmitoyl-2-oleoyllecithin; Phosphatidylcholine(34:1); 1-palmitoyl-2-oleoyl-GPC; GPCho(16:0/18:1omega9); GPCho(16:0/18:1(9Z)); PC(16:0/18:1omega9); GPC(16:0/18:1(9Z)); GPCho(16:0/18:1w9); GPCho(16:0/18:1n9); PC(16:0/18:1(9Z)); GPC(16:0/18:1n9); GPCho(16:0/18:1); GPC(16:0/18:1w9); PC(16:0/18:1n9); PC(16:0/18:1w9); GPC(16:0/18:1); PC(16:0_18:1); PC(16:0/18:1); 16:0-18:1 PC; 16:0-18:1-PC; GPCho(34:1); POPC lipid; GPC(34:1); PC(34:1); Lecithin; Ptd-Cho; PC 34:1; 1-Popc; POPC; L-beta-Oleoyl-gamma-palmitoyl-alpha-lecithin



数据库引用编号

22 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

34 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(2)

  • phospholipid desaturation: 1-linoleoyl-2-linoleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-α-linolenoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-linoleoyl-2-linoleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-α-linolenoyl-2-linoleoyl-phosphatidylcholine + H2O + a ferricytochrome b5

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(20)

  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-oleoyl-2-linoleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5
  • phospholipid desaturation: 1-oleoyl-2-oleoyl-phosphatidylcholine + H+ + O2 + a ferrocytochrome b5 ⟶ 1-linoleoyl-2-oleoyl-phosphatidylcholine + H2O + a ferricytochrome b5

COVID-19 Disease Map(0)

PathBank(12)

PharmGKB(0)

9 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Victoria Vitkova, Rusina Hazarosova, Iva Valkova, Albena Momchilova, Galya Staneva. Glycerophospholipid polyunsaturation modulates resveratrol action on biomimetic membranes. Colloids and surfaces. B, Biointerfaces. 2024 Jun; 238(?):113922. doi: 10.1016/j.colsurfb.2024.113922. [PMID: 38678790]
  • Diyali Sil, Edin Osmanbasic, Sasthi Charan Mandal, Atanu Acharya, Chayan Dutta. Variable Non-Gaussian Transport of Nanoplastic on Supported Lipid Bilayers in Saline Conditions. The journal of physical chemistry letters. 2024 May; 15(20):5428-5435. doi: 10.1021/acs.jpclett.4c00806. [PMID: 38743920]
  • Matti Javanainen, Peter Heftberger, Jesper J Madsen, Markus S Miettinen, Georg Pabst, O H Samuli Ollila. Quantitative Comparison against Experiments Reveals Imperfections in Force Fields' Descriptions of POPC-Cholesterol Interactions. Journal of chemical theory and computation. 2023 Sep; 19(18):6342-6352. doi: 10.1021/acs.jctc.3c00648. [PMID: 37616238]
  • Milla Kurki, Antti Poso, Piia Bartos, Markus S Miettinen. Structure of POPC Lipid Bilayers in OPLS3e Force Field. Journal of chemical information and modeling. 2022 12; 62(24):6462-6474. doi: 10.1021/acs.jcim.2c00395. [PMID: 36044537]
  • Naomi Hamada, Marjorie L Longo. Characterization of phase separation phenomena in hybrid lipid/block copolymer/cholesterol bilayers using laurdan fluorescence with log-normal multipeak analysis. Biochimica et biophysica acta. Biomembranes. 2022 05; 1864(5):183887. doi: 10.1016/j.bbamem.2022.183887. [PMID: 35150645]
  • Evgeniy Salnikov, Christopher Aisenbrey, Burkhard Bechinger. Lipid saturation and head group composition have a pronounced influence on the membrane insertion equilibrium of amphipathic helical polypeptides. Biochimica et biophysica acta. Biomembranes. 2022 04; 1864(4):183844. doi: 10.1016/j.bbamem.2021.183844. [PMID: 34954200]
  • Pawel Pabisz, Jerzy Bazak, Albert W Girotti, Witold Korytowski. Anti-steroidogenic effects of cholesterol hydroperoxide trafficking in MA-10 Leydig cells: Role of mitochondrial lipid peroxidation and inhibition thereof by selenoperoxidase GPx4. Biochemical and biophysical research communications. 2022 02; 591(?):82-87. doi: 10.1016/j.bbrc.2021.12.117. [PMID: 34999258]
  • Alain Bolaño Alvarez, Pablo E A Rodríguez, Gerardo D Fidelio. Gangliosides smelt nanostructured amyloid Aβ(1-40) fibrils in a membrane lipid environment. Biochimica et biophysica acta. Biomembranes. 2022 02; 1864(1):183749. doi: 10.1016/j.bbamem.2021.183749. [PMID: 34506795]
  • Ruitao Jin, Sitong He, Katrina A Black, Oliver B Clarke, Di Wu, Jani R Bolla, Paul Johnson, Agalya Periasamy, Ahmad Wardak, Peter Czabotar, Peter M Colman, Carol V Robinson, Derek Laver, Brian J Smith, Jacqueline M Gulbis. Ion currents through Kir potassium channels are gated by anionic lipids. Nature communications. 2022 01; 13(1):490. doi: 10.1038/s41467-022-28148-4. [PMID: 35079013]
  • Albert A Smith, Alexander Vogel, Oskar Engberg, Peter W Hildebrand, Daniel Huster. A method to construct the dynamic landscape of a bio-membrane with experiment and simulation. Nature communications. 2022 01; 13(1):108. doi: 10.1038/s41467-021-27417-y. [PMID: 35013165]
  • Bin Xie, Changchun Hao, Runguang Sun. The impact of fluoxetine and pH values on relaxation of the ternary lipid monolayers. Biochimica et biophysica acta. Biomembranes. 2021 12; 1863(12):183760. doi: 10.1016/j.bbamem.2021.183760. [PMID: 34499884]
  • Marcelo Caparotta, Diego Masone. Cholesterol plays a decisive role in tetraspanin assemblies during bilayer deformations. Bio Systems. 2021 Nov; 209(?):104505. doi: 10.1016/j.biosystems.2021.104505. [PMID: 34403719]
  • Debora Petroni, Claudia Riccardi, Domenico Cavasso, Irene Russo Krauss, Luigi Paduano, Daniela Montesarchio, Luca Menichetti. Synthesis and Characterization of Multifunctional Nanovesicles Composed of POPC Lipid Molecules for Nuclear Imaging. Molecules (Basel, Switzerland). 2021 Oct; 26(21):. doi: 10.3390/molecules26216591. [PMID: 34770999]
  • Muhammad Nawaz Qaisrani, Roman Belousov, Jawad Ur Rehman, Elham Moharramzadeh Goliaei, Ivan Girotto, Ricardo Franklin-Mergarejo, Oriol Güell, Ali Hassanali, Édgar Roldán. Phospholipids dock SARS-CoV-2 spike protein via hydrophobic interactions: a minimal in-silico study of lecithin nasal spray therapy. The European physical journal. E, Soft matter. 2021 Oct; 44(11):132. doi: 10.1140/epje/s10189-021-00137-3. [PMID: 34718875]
  • Helena Junqueira, André P Schroder, Fabrice Thalmann, Andrey Klymchenko, Yves Mély, Mauricio S Baptista, Carlos M Marques. Molecular organization in hydroperoxidized POPC bilayers. Biochimica et biophysica acta. Biomembranes. 2021 10; 1863(10):183659. doi: 10.1016/j.bbamem.2021.183659. [PMID: 34052197]
  • Alessio Ausili, Illya Yakymenko, José A Teruel, Juan C Gómez-Fernández. Clotrimazole Fluidizes Phospholipid Membranes and Localizes at the Hydrophobic Part near the Polar Part of the Membrane. Biomolecules. 2021 09; 11(9):. doi: 10.3390/biom11091304. [PMID: 34572517]
  • Anna Chmielińska, Piotr Stepien, Piotr Bonarek, Mykhailo Girych, Giray Enkavi, Tomasz Rog, Marta Dziedzicka-Wasylewska, Agnieszka Polit. Can di-4-ANEPPDHQ reveal the structural differences between nanodiscs and liposomes?. Biochimica et biophysica acta. Biomembranes. 2021 09; 1863(9):183649. doi: 10.1016/j.bbamem.2021.183649. [PMID: 33991503]
  • Victoria N Syryamina, Natalia E Sannikova, Marta De Zotti, Marina Gobbo, Fernando Formaggio, Sergei A Dzuba. Tylopeptin B peptide antibiotic in lipid membranes at low concentrations: Self-assembling, mutual repulsion and localization. Biochimica et biophysica acta. Biomembranes. 2021 09; 1863(9):183585. doi: 10.1016/j.bbamem.2021.183585. [PMID: 33640429]
  • Amélie Bacle, Pavel Buslaev, Rebeca Garcia-Fandino, Fernando Favela-Rosales, Tiago Mendes Ferreira, Patrick F J Fuchs, Ivan Gushchin, Matti Javanainen, Anne M Kiirikki, Jesper J Madsen, Josef Melcr, Paula Milán Rodríguez, Markus S Miettinen, O H Samuli Ollila, Chris G Papadopoulos, Antonio Peón, Thomas J Piggot, Ángel Piñeiro, Salla I Virtanen. Inverse Conformational Selection in Lipid-Protein Binding. Journal of the American Chemical Society. 2021 09; 143(34):13701-13709. doi: 10.1021/jacs.1c05549. [PMID: 34465095]
  • Dongmei Zhang, Chu Gong, Jie Wang, Dong Xing, Lingling Zhao, Danyang Li, Xinxing Zhang. Unravelling Melatonin's Varied Antioxidizing Protection of Membrane Lipids Determined by its Spatial Distribution. The journal of physical chemistry letters. 2021 Aug; 12(31):7387-7393. doi: 10.1021/acs.jpclett.1c01965. [PMID: 34328330]
  • Pathomwat Wongrattanakamon, Jutamas Jiaranaikulwanitch, Opa Vajragupta, Supat Jiranusornkul, Chalermpong Saenjum, Wipawadee Yooin. Potential Anti-Alzheimer Agents from Guanidinyl Tryptophan Derivatives with Activities of Membrane Adhesion and Conformational Transition Inhibitions. Molecules (Basel, Switzerland). 2021 Aug; 26(16):. doi: 10.3390/molecules26164863. [PMID: 34443456]
  • Juan Hu, Wesley G Cochrane, Alexander X Jones, Donna G Blackmond, Brian M Paegel. Chiral lipid bilayers are enantioselectively permeable. Nature chemistry. 2021 08; 13(8):786-791. doi: 10.1038/s41557-021-00708-z. [PMID: 34112989]
  • Fikret Aydin, Aleksander E P Durumeric, Gabriel C A da Hora, John D M Nguyen, Myong In Oh, Jessica M J Swanson. Improving the accuracy and convergence of drug permeation simulations via machine-learned collective variables. The Journal of chemical physics. 2021 Jul; 155(4):045101. doi: 10.1063/5.0055489. [PMID: 34340389]
  • Amanda Dyrholm Stange, Jenny Pin-Chia Hsu, Lisbeth Kjølbye Ravnkilde, Nils Berglund, Birgit Schiøtt. Effect of cholesterol on the dimerization of C99-A molecular modeling perspective. Biointerphases. 2021 06; 16(3):031002. doi: 10.1116/6.0000985. [PMID: 34241229]
  • Thais A Enoki, Joy Wu, Frederick A Heberle, Gerald W Feigenson. Investigation of the domain line tension in asymmetric vesicles prepared via hemifusion. Biochimica et biophysica acta. Biomembranes. 2021 06; 1863(6):183586. doi: 10.1016/j.bbamem.2021.183586. [PMID: 33647248]
  • Jacob Olondo Kuba, Yalun Yu, Jeffery B Klauda. Estimating localization of various statins within a POPC bilayer. Chemistry and physics of lipids. 2021 05; 236(?):105074. doi: 10.1016/j.chemphyslip.2021.105074. [PMID: 33676920]
  • Ylenia Miele, Anne-Françoise Mingotaud, Enrico Caruso, Miryam C Malacarne, Lorella Izzo, Barbara Lonetti, Federico Rossi. Hybrid giant lipid vesicles incorporating a PMMA-based copolymer. Biochimica et biophysica acta. General subjects. 2021 04; 1865(4):129611. doi: 10.1016/j.bbagen.2020.129611. [PMID: 32272202]
  • Filomena Battista, Rosario Oliva, Pompea Del Vecchio, Roland Winter, Luigi Petraccone. Insights into the Action Mechanism of the Antimicrobial Peptide Lasioglossin III. International journal of molecular sciences. 2021 Mar; 22(6):. doi: 10.3390/ijms22062857. [PMID: 33799744]
  • Witek Kwiatkowski, Radoslaw Bomba, Pavel Afanasyev, Daniel Boehringer, Roland Riek, Jason Greenwald. Prebiotic Peptide Synthesis and Spontaneous Amyloid Formation Inside a Proto-Cellular Compartment. Angewandte Chemie (International ed. in English). 2021 03; 60(10):5561-5568. doi: 10.1002/anie.202015352. [PMID: 33325627]
  • Diniz M Sena, Xiaojing Cong, Alejandro Giorgetti. Ligand based conformational space studies of the μ-opioid receptor. Biochimica et biophysica acta. General subjects. 2021 03; 1865(3):129838. doi: 10.1016/j.bbagen.2020.129838. [PMID: 33373630]
  • Daxin Wu, Ruixuan Zhao, Yu Chen, Ying Wang, Jiebo Li, Yubo Fan. Molecular insights into MXene destructing the cell membrane as a 'nano thermal blade'. Physical chemistry chemical physics : PCCP. 2021 Feb; 23(5):3341-3350. doi: 10.1039/d0cp05928e. [PMID: 33502424]
  • Alessio Ausili, Inés Rodríguez-González, Alejandro Torrecillas, José A Teruel, Juan C Gómez-Fernández. Diethylstilbestrol Modifies the Structure of Model Membranes and Is Localized Close to the First Carbons of the Fatty Acyl Chains. Biomolecules. 2021 02; 11(2):. doi: 10.3390/biom11020220. [PMID: 33557377]
  • Joschka Hellmeier, Rene Platzer, Alexandra S Eklund, Thomas Schlichthaerle, Andreas Karner, Viktoria Motsch, Magdalena C Schneider, Elke Kurz, Victor Bamieh, Mario Brameshuber, Johannes Preiner, Ralf Jungmann, Hannes Stockinger, Gerhard J Schütz, Johannes B Huppa, Eva Sevcsik. DNA origami demonstrate the unique stimulatory power of single pMHCs as T cell antigens. Proceedings of the National Academy of Sciences of the United States of America. 2021 01; 118(4):. doi: 10.1073/pnas.2016857118. [PMID: 33468643]
  • Alessandro Crnjar, Carla Molteni. Cholesterol content in the membrane promotes key lipid-protein interactions in a pentameric serotonin-gated ion channel. Biointerphases. 2021 01; 15(6):061018. doi: 10.1116/6.0000561. [PMID: 33397116]
  • Andreas Haahr Larsen, Nicolai Tidemand Johansen, Michael Gajhede, Lise Arleth, Søren Roi Midtgaard. Lipid-bound ApoE3 self-assemble into elliptical disc-shaped particles. Biochimica et biophysica acta. Biomembranes. 2021 01; 1863(1):183495. doi: 10.1016/j.bbamem.2020.183495. [PMID: 33189719]
  • Aml A Alnaas, Abena Watson-Siriboe, Sherleen Tran, Mikias Negussie, Jack A Henderson, J Ryan Osterberg, Nara L Chon, Beckston M Harrott, Julianna Oviedo, Tatyana Lyakhova, Cole Michel, Nichole Reisdorph, Richard Reisdorph, Colin T Shearn, Hai Lin, Jefferson D Knight. Multivalent lipid targeting by the calcium-independent C2A domain of synaptotagmin-like protein 4/granuphilin. The Journal of biological chemistry. 2021 Jan; 296(?):100159. doi: 10.1074/jbc.ra120.014618. [PMID: 33277360]
  • Samantha Schrecke, Yun Zhu, Jacob W McCabe, Mariah Bartz, Charles Packianathan, Minglei Zhao, Ming Zhou, David Russell, Arthur Laganowsky. Selective regulation of human TRAAK channels by biologically active phospholipids. Nature chemical biology. 2021 01; 17(1):89-95. doi: 10.1038/s41589-020-00659-5. [PMID: 32989299]
  • Dominik Drabik, Grzegorz Chodaczek, Sebastian Kraszewski. Effect of Amyloid-β Monomers on Lipid Membrane Mechanical Parameters-Potential Implications for Mechanically Driven Neurodegeneration in Alzheimer's Disease. International journal of molecular sciences. 2020 Dec; 22(1):. doi: 10.3390/ijms22010018. [PMID: 33375009]
  • Hasna Ahyayauch, Aritz B García-Arribas, Massimo E Masserini, Sergio Pantano, Félix M Goñi, Alicia Alonso. β-Amyloid (1-42) peptide adsorbs but does not insert into ganglioside-containing phospholipid membranes in the liquid-disordered state: modelling and experimental studies. International journal of biological macromolecules. 2020 Dec; 164(?):2651-2658. doi: 10.1016/j.ijbiomac.2020.08.165. [PMID: 32846182]
  • Warin Rangubpit, Pasawan Paritanon, Ras B Pandey, Pornthep Sompornpisut. Thermally induced structural organization of nanodiscs by coarse-grained molecular dynamics simulations. Biophysical chemistry. 2020 12; 267(?):106464. doi: 10.1016/j.bpc.2020.106464. [PMID: 32927312]
  • Diego Ugarte La Torre, Shoji Takada. Coarse-grained implicit solvent lipid force field with a compatible resolution to the Cα protein representation. The Journal of chemical physics. 2020 Nov; 153(20):205101. doi: 10.1063/5.0026342. [PMID: 33261497]
  • Maryssa Beasley, Alyssa R Stonebraker, Justin Legleiter. Normalizing polydiacetylene colorimetric assays of vesicle binding across lipid systems. Analytical biochemistry. 2020 11; 609(?):113864. doi: 10.1016/j.ab.2020.113864. [PMID: 32846147]
  • Piotr Stepien, Bozena Augustyn, Chetan Poojari, Wojciech Galan, Agnieszka Polit, Ilpo Vattulainen, Anna Wisnieska-Becker, Tomasz Rog. Complexity of seemingly simple lipid nanodiscs. Biochimica et biophysica acta. Biomembranes. 2020 11; 1862(11):183420. doi: 10.1016/j.bbamem.2020.183420. [PMID: 32712188]
  • P Gehan, S Kulifaj, P Soule, J B Bodin, M Amoura, A Walrant, S Sagan, A R Thiam, K Ngo, V Vivier, S Cribier, N Rodriguez. Penetratin translocation mechanism through asymmetric droplet interface bilayers. Biochimica et biophysica acta. Biomembranes. 2020 11; 1862(11):183415. doi: 10.1016/j.bbamem.2020.183415. [PMID: 32710854]
  • Mehdi Azouz, Alexandre Therrien, Corinne Buré, Caroline Tokarski, Sophie Lecomte, Michel Lafleur. Lipid selectivity in detergent extraction from bilayers. Biochemical and biophysical research communications. 2020 10; 531(2):140-143. doi: 10.1016/j.bbrc.2020.07.065. [PMID: 32782150]
  • Sophie Lau, David A Middleton. Sensitive Morphological Characterization of Oriented High-Density Lipoprotein Nanoparticles Using 31 P NMR Spectroscopy. Angewandte Chemie (International ed. in English). 2020 10; 59(41):18126-18130. doi: 10.1002/anie.202004130. [PMID: 32542937]
  • Luca Massaccesi, Emiliano Laudadio, Giovanna Mobbili, Cristina Minnelli, Roberta Galeazzi. Cholesterol-mediated oligomerization pathways of serotonin G-coupled receptor 5-HT2C. International journal of biological macromolecules. 2020 Oct; 160(?):1090-1100. doi: 10.1016/j.ijbiomac.2020.05.231. [PMID: 32485258]
  • Rodrigo Aguayo-Ortiz, L Michel Espinoza-Fonseca. Atomistic Structure and Dynamics of the Ca2+-ATPase Bound to Phosphorylated Phospholamban. International journal of molecular sciences. 2020 Oct; 21(19):. doi: 10.3390/ijms21197261. [PMID: 33019581]
  • Poonam Nigam. Thermodynamic quantification of sodium dodecyl sulfate penetration in cholesterol and phospholipid monolayers. Chemistry and physics of lipids. 2020 10; 232(?):104974. doi: 10.1016/j.chemphyslip.2020.104974. [PMID: 32941828]
  • Jan Kremkow, Meike Luck, Daniel Huster, Peter Müller, Holger A Scheidt. Membrane Interaction of Ibuprofen with Cholesterol-Containing Lipid Membranes. Biomolecules. 2020 09; 10(10):. doi: 10.3390/biom10101384. [PMID: 32998467]
  • Xubo Lin, Alemayehu A Gorfe. Transmembrane potential of physiologically relevant model membranes: Effects of membrane asymmetry. The Journal of chemical physics. 2020 Sep; 153(10):105103. doi: 10.1063/5.0018303. [PMID: 32933265]
  • Niko Kimura, Masatoshi Maeki, Yusuke Sato, Akihiko Ishida, Hirofumi Tani, Hideyoshi Harashima, Manabu Tokeshi. Development of a Microfluidic-Based Post-Treatment Process for Size-Controlled Lipid Nanoparticles and Application to siRNA Delivery. ACS applied materials & interfaces. 2020 Jul; 12(30):34011-34020. doi: 10.1021/acsami.0c05489. [PMID: 32667806]
  • Elisa Parra-Ortiz, Sara Malekkhaiat Häffner, Thomas Saerbeck, Maximilian W A Skoda, Kathryn L Browning, Martin Malmsten. Oxidation of Polyunsaturated Lipid Membranes by Photocatalytic Titanium Dioxide Nanoparticles: Role of pH and Salinity. ACS applied materials & interfaces. 2020 Jul; 12(29):32446-32460. doi: 10.1021/acsami.0c08642. [PMID: 32589394]
  • Weizhong Zheng, Wei Huang, Zhongchen Song, Zisheng Tang, Weizhen Sun. Insight into the structure-antibacterial activity of amino cation-based and acetate anion-based ionic liquids from computational interactions with the POPC phospholipid bilayer. Physical chemistry chemical physics : PCCP. 2020 Jul; 22(27):15573-15581. doi: 10.1039/d0cp02353a. [PMID: 32613219]
  • Simli Dey, Anirban Das, Arpan Dey, Sudipta Maiti. Membrane affinity of individual toxic protein oligomers determined at the single-molecule level. Physical chemistry chemical physics : PCCP. 2020 Jul; 22(26):14613-14620. doi: 10.1039/d0cp00450b. [PMID: 32483579]
  • Vincent Faugeras, Olivier Duclos, Didier Bazile, Abdou Rachid Thiam. Membrane determinants for the passive translocation of analytes through droplet interface bilayers. Soft matter. 2020 Jul; 16(25):5970-5980. doi: 10.1039/d0sm00667j. [PMID: 32543614]
  • Sean P Cleary, James S Prell. Distinct classes of multi-subunit heterogeneity: analysis using Fourier Transform methods and native mass spectrometry. The Analyst. 2020 Jul; 145(13):4688-4697. doi: 10.1039/d0an00726a. [PMID: 32459233]
  • Carlos M Guardia, Xiao-Feng Tan, Tengfei Lian, Mitra S Rana, Wenchang Zhou, Eric T Christenson, Augustus J Lowry, José D Faraldo-Gómez, Juan S Bonifacino, Jiansen Jiang, Anirban Banerjee. Structure of Human ATG9A, the Only Transmembrane Protein of the Core Autophagy Machinery. Cell reports. 2020 06; 31(13):107837. doi: 10.1016/j.celrep.2020.107837. [PMID: 32610138]
  • Krishnamoorthy Rajavenkatesh, Murali Padmaja, Indrakumar Janani, Satish Aishwarya, Korrapati Purna Sai, Sathiah Thennarasu. Design and synthesis of a novel peptide for selective detection of cancer cells. Chemical biology & drug design. 2020 06; 95(6):610-623. doi: 10.1111/cbdd.13675. [PMID: 32147880]
  • Zvonimir Boban, Ana Puljas, Dubravka Kovač, Witold Karol Subczynski, Marija Raguz. Effect of Electrical Parameters and Cholesterol Concentration on Giant Unilamellar Vesicles Electroformation. Cell biochemistry and biophysics. 2020 Jun; 78(2):157-164. doi: 10.1007/s12013-020-00910-9. [PMID: 32319021]
  • Wiparat Hotarat, Bodee Nutho, Peter Wolschann, Thanyada Rungrotmongkol, Supot Hannongbua. Delivery of Alpha-Mangostin Using Cyclodextrins through a Biological Membrane: Molecular Dynamics Simulation. Molecules (Basel, Switzerland). 2020 May; 25(11):. doi: 10.3390/molecules25112532. [PMID: 32485931]
  • Phu K Tang, Kaushik Chakraborty, William Hu, Myungshim Kang, Sharon M Loverde. Interaction of Camptothecin with Model Cellular Membranes. Journal of chemical theory and computation. 2020 May; 16(5):3373-3384. doi: 10.1021/acs.jctc.9b00541. [PMID: 32126167]
  • Alexandr Colbasevici, Natalia Voskoboynikova, Philipp S Orekhov, Marine E Bozdaganyan, Maria G Karlova, Olga S Sokolova, Johann P Klare, Armen Y Mulkidjanian, Konstantin V Shaitan, Heinz-Jürgen Steinhoff. Lipid dynamics in nanoparticles formed by maleic acid-containing copolymers: EPR spectroscopy and molecular dynamics simulations. Biochimica et biophysica acta. Biomembranes. 2020 05; 1862(5):183207. doi: 10.1016/j.bbamem.2020.183207. [PMID: 31987867]
  • Poonam Nigam. Equilibrium penetration of pluronic F-68 in lipid monolayers. Chemistry and physics of lipids. 2020 05; 228(?):104888. doi: 10.1016/j.chemphyslip.2020.104888. [PMID: 32032569]
  • Jingchao Tang, Jialu Ma, Lianghao Guo, Kaicheng Wang, Yang Yang, Wenfei Bo, Lixia Yang, Zhao Wang, Haibo Jiang, Zhe Wu, Baoqing Zeng, Yubin Gong. Interpretation of the molecular mechanism of the electroporation induced by symmetrical bipolar picosecond pulse trains. Biochimica et biophysica acta. Biomembranes. 2020 05; 1862(5):183213. doi: 10.1016/j.bbamem.2020.183213. [PMID: 32057755]
  • Serena H Chen, Jose Manuel Perez-Aguilar, Ruhong Zhou. Graphene-extracted membrane lipids facilitate the activation of integrin αvβ8. Nanoscale. 2020 Apr; 12(14):7939-7949. doi: 10.1039/c9nr10469k. [PMID: 32232233]
  • Keisuke Mizomichi, Takayuki Yamagishi, Tomoko Kawashima, Michael Dürr, Satoka Aoyagi. Investigating matrix effects of different combinations of lipids and peptides on TOF-SIMS data. Biointerphases. 2020 04; 15(2):021008. doi: 10.1116/6.0000036. [PMID: 32241114]
  • Riya Sett, Bijan K Paul, Swagata Sen, Nikhil Guchhait. How is the interaction of a chloride channel blocker with phospholipids influenced by divalent metal ions? Effect of unsaturation on the lipid side chain. Colloids and surfaces. B, Biointerfaces. 2020 Apr; 188(?):110743. doi: 10.1016/j.colsurfb.2019.110743. [PMID: 31884083]
  • Nicholas M Frame, Meera Kumanan, Thomas E Wales, Asanga Bandara, Marcus Fändrich, John E Straub, John R Engen, Olga Gursky. Structural Basis for Lipid Binding and Function by an Evolutionarily Conserved Protein, Serum Amyloid A. Journal of molecular biology. 2020 03; 432(7):1978-1995. doi: 10.1016/j.jmb.2020.01.029. [PMID: 32035904]
  • Magdalena Wlodek, Anna Slastanova, Laura J Fox, Nicholas Taylor, Oier Bikondoa, Michal Szuwarzynski, Marta Kolasinska-Sojka, Piotr Warszynski, Wuge H Briscoe. Structural evolution of supported lipid bilayers intercalated with quantum dots. Journal of colloid and interface science. 2020 Mar; 562(?):409-417. doi: 10.1016/j.jcis.2019.11.102. [PMID: 31806357]
  • Sanobar Khan, James McCabe, Kathryn Hill, Paul A Beales. Biodegradable hybrid block copolymer - lipid vesicles as potential drug delivery systems. Journal of colloid and interface science. 2020 Mar; 562(?):418-428. doi: 10.1016/j.jcis.2019.11.101. [PMID: 31806358]
  • Stefano Borocci, Giulia Della Pelle, Francesca Ceccacci, Cristina Olivieri, Francesco Buonocore, Fernando Porcelli. Structural Analysis and Design of Chionodracine-Derived Peptides Using Circular Dichroism and Molecular Dynamics Simulations. International journal of molecular sciences. 2020 Feb; 21(4):. doi: 10.3390/ijms21041401. [PMID: 32092980]
  • Hong Zhang, Xueguang Shao, François Dehez, Wensheng Cai, Christophe Chipot. Modulation of membrane permeability by carbon dioxide. Journal of computational chemistry. 2020 02; 41(5):421-426. doi: 10.1002/jcc.26063. [PMID: 31479166]
  • Apurba Bhattarai, Jinan Wang, Yinglong Miao. G-Protein-Coupled Receptor-Membrane Interactions Depend on the Receptor Activation State. Journal of computational chemistry. 2020 02; 41(5):460-471. doi: 10.1002/jcc.26082. [PMID: 31602675]
  • Reza Amani, Collin G Borcik, Nazmul H Khan, Derek B Versteeg, Maryam Yekefallah, Hoa Q Do, Heather R Coats, Benjamin J Wylie. Conformational changes upon gating of KirBac1.1 into an open-activated state revealed by solid-state NMR and functional assays. Proceedings of the National Academy of Sciences of the United States of America. 2020 02; 117(6):2938-2947. doi: 10.1073/pnas.1915010117. [PMID: 31980523]
  • Ana West, Valeria Zoni, Walter E Teague, Alison N Leonard, Stefano Vanni, Klaus Gawrisch, Stephanie Tristram-Nagle, Jonathan N Sachs, Jeffery B Klauda. How Do Ethanolamine Plasmalogens Contribute to Order and Structure of Neurological Membranes?. The journal of physical chemistry. B. 2020 02; 124(5):828-839. doi: 10.1021/acs.jpcb.9b08850. [PMID: 31916765]
  • Marzena Mach, Magdalena Kowalska, Karolina Olechowska, Katarzyna Hąc-Wydro, Paweł Wydro. The influence of cationic lipoid - 1-palmitoyl-2-oleoyl-sn-glycero-3-ethylphosphocholine - on model lipid membranes. Biochimica et biophysica acta. Biomembranes. 2020 02; 1862(2):183088. doi: 10.1016/j.bbamem.2019.183088. [PMID: 31676373]
  • Fernando Favela-Rosales, Arturo Galván-Hernández, Jorge Hernández-Cobos, Naritaka Kobayashi, Mauricio D Carbajal-Tinoco, Seiichiro Nakabayashi, Iván Ortega-Blake. A molecular dynamics study proposing the existence of statistical structural heterogeneity due to chain orientation in the POPC-cholesterol bilayer. Biophysical chemistry. 2020 02; 257(?):106275. doi: 10.1016/j.bpc.2019.106275. [PMID: 31790909]
  • Arturo Galván-Hernández, Naritaka Kobayashi, Jorge Hernández-Cobos, Armando Antillón, Seiichiro Nakabayashi, Iván Ortega-Blake. Morphology and dynamics of domains in ergosterol or cholesterol containing membranes. Biochimica et biophysica acta. Biomembranes. 2020 02; 1862(2):183101. doi: 10.1016/j.bbamem.2019.183101. [PMID: 31672540]
  • Xiaofeng Tang, Shitong Zhang, Hong Zhou, Bo Zhou, Shengtang Liu, Zaixing Yang. The role of electrostatic potential polarization in the translocation of graphene quantum dots across membranes. Nanoscale. 2020 Jan; 12(4):2732-2739. doi: 10.1039/c9nr09258g. [PMID: 31951244]
  • Maninder Singh, Vikash Kumar, Kamakshi Sikka, Ravi Thakur, Munesh Kumar Harioudh, Durga Prasad Mishra, Jimut Kanti Ghosh, Mohammad Imran Siddiqi. Computational Design of Biologically Active Anticancer Peptides and Their Interactions with Heterogeneous POPC/POPS Lipid Membranes. Journal of chemical information and modeling. 2020 01; 60(1):332-341. doi: 10.1021/acs.jcim.9b00348. [PMID: 31880450]
  • Jiansheng Huang, Dongdong Wang, Li-Hao Huang, Hui Huang. Roles of Reconstituted High-Density Lipoprotein Nanoparticles in Cardiovascular Disease: A New Paradigm for Drug Discovery. International journal of molecular sciences. 2020 Jan; 21(3):. doi: 10.3390/ijms21030739. [PMID: 31979310]
  • Thiru Sabapathy, Evelyne Deplazes, Ricardo L Mancera. Revisiting the Interaction of Melittin with Phospholipid Bilayers: The Effects of Concentration and Ionic Strength. International journal of molecular sciences. 2020 Jan; 21(3):. doi: 10.3390/ijms21030746. [PMID: 31979376]
  • Alessandra Luchini, Frederik Grønbæk Tidemand, Nicolai Tidemand Johansen, Mario Campana, Javier Sotres, Michael Ploug, Marité Cárdenas, Lise Arleth. Peptide Disc Mediated Control of Membrane Protein Orientation in Supported Lipid Bilayers for Surface-Sensitive Investigations. Analytical chemistry. 2020 01; 92(1):1081-1088. doi: 10.1021/acs.analchem.9b04125. [PMID: 31769649]
  • Li-Ping Gao, Hai-Chao Chen, Ze-Lin Ma, An-Di Chen, Hong-Li Du, Jie Yin, Yu-Hong Jing. Fibrillation of human islet amyloid polypeptide and its toxicity to pancreatic β-cells under lipid environment. Biochimica et biophysica acta. General subjects. 2020 01; 1864(1):129422. doi: 10.1016/j.bbagen.2019.129422. [PMID: 31491457]
  • Alessandra Luchini, Lise Arleth. Protocol for Investigating the Interactions Between Intrinsically Disordered Proteins and Membranes by Neutron Reflectometry. Methods in molecular biology (Clifton, N.J.). 2020; 2141(?):569-584. doi: 10.1007/978-1-0716-0524-0_29. [PMID: 32696378]
  • Shailendra S Rathore, Yinghui Liu, Haijia Yu, Chun Wan, MyeongSeon Lee, Qian Yin, Michael H B Stowell, Jingshi Shen. Intracellular Vesicle Fusion Requires a Membrane-Destabilizing Peptide Located at the Juxtamembrane Region of the v-SNARE. Cell reports. 2019 12; 29(13):4583-4592.e3. doi: 10.1016/j.celrep.2019.11.107. [PMID: 31875562]
  • Pratibha Kumari, Hemant K Kashyap. DMSO induced dehydration of heterogeneous lipid bilayers and its impact on their structures. The Journal of chemical physics. 2019 Dec; 151(21):215103. doi: 10.1063/1.5127852. [PMID: 31822068]
  • Antti H Rantamäki, Wen Chen, Paulus Hyväri, Jussi Helminen, Gabriel Partl, Alistair W T King, Susanne K Wiedmer. Interactions of Ionic Liquids and Spirocyclic Compounds with Liposome Model Membranes. A Steady-State Fluorescence Anisotropy Study. Scientific reports. 2019 12; 9(1):18349. doi: 10.1038/s41598-019-53893-w. [PMID: 31797938]
  • Grzegorz Nawrocki, Wonpil Im, Yuji Sugita, Michael Feig. Clustering and dynamics of crowded proteins near membranes and their influence on membrane bending. Proceedings of the National Academy of Sciences of the United States of America. 2019 12; 116(49):24562-24567. doi: 10.1073/pnas.1910771116. [PMID: 31740611]
  • Bozena Augustyn, Piotr Stepien, Chetan Poojari, Edouard Mobarak, Agnieszka Polit, Anna Wisniewska-Becker, Tomasz Róg. Cholesteryl Hemisuccinate Is Not a Good Replacement for Cholesterol in Lipid Nanodiscs. The journal of physical chemistry. B. 2019 11; 123(46):9839-9845. doi: 10.1021/acs.jpcb.9b07853. [PMID: 31674185]
  • Mehdi Azouz, Christophe Cullin, Sophie Lecomte, Michel Lafleur. Membrane domain modulation of Aβ1-42 oligomer interactions with supported lipid bilayers: an atomic force microscopy investigation. Nanoscale. 2019 Nov; 11(43):20857-20867. doi: 10.1039/c9nr06361g. [PMID: 31657431]
  • Sofia Duarte, Tânia Melo, Rosário Domingues, Juan de Dios Alché, Dolores Pérez-Sala. Insight into the cellular effects of nitrated phospholipids: Evidence for pleiotropic mechanisms of action. Free radical biology & medicine. 2019 11; 144(?):192-202. doi: 10.1016/j.freeradbiomed.2019.06.003. [PMID: 31199965]
  • Pratibha Kumari, Monika Kumari, Hemant K Kashyap. Counter-effects of Ethanol and Cholesterol on the Heterogeneous PSM-POPC Lipid Membrane: A Molecular Dynamics Simulation Study. The journal of physical chemistry. B. 2019 11; 123(45):9616-9628. doi: 10.1021/acs.jpcb.9b07107. [PMID: 31625744]
  • Xiao Wu, Benjamin Chantemargue, Florent Di Meo, Claudie Bourgaux, David Chapron, Patrick Trouillas, Véronique Rosilio. Deciphering the Peculiar Behavior of β-Lapachone in Lipid Monolayers and Bilayers. Langmuir : the ACS journal of surfaces and colloids. 2019 11; 35(45):14603-14615. doi: 10.1021/acs.langmuir.9b02886. [PMID: 31619039]
  • Maria C Oliveira, Maksudbek Yusupov, Annemie Bogaerts, Rodrigo M Cordeiro. Molecular dynamics simulations of mechanical stress on oxidized membranes. Biophysical chemistry. 2019 11; 254(?):106266. doi: 10.1016/j.bpc.2019.106266. [PMID: 31629220]
  • Maryssa Beasley, Alyssa R Stonebraker, Iraj Hasan, Kathryn L Kapp, Barry J Liang, Garima Agarwal, Sharon Groover, Faezeh Sedighi, Justin Legleiter. Lipid Membranes Influence the Ability of Small Molecules To Inhibit Huntingtin Fibrillization. Biochemistry. 2019 10; 58(43):4361-4373. doi: 10.1021/acs.biochem.9b00739. [PMID: 31608620]
  • Jianrong Sang, Ketav Kulkarni, Gabrielle M Watson, Xiuquan Ma, David J Craik, Sónia T Henriques, Aaron G Poth, Aurélie H Benfield, Jacqueline A Wilce. Evaluation of Cyclic Peptide Inhibitors of the Grb7 Breast Cancer Target: Small Change in Cargo Results in Large Change in Cellular Activity. Molecules (Basel, Switzerland). 2019 Oct; 24(20):. doi: 10.3390/molecules24203739. [PMID: 31627265]
  • Marc Siggel, Ramachandra M Bhaskara, Gerhard Hummer. Phospholipid Scramblases Remodel the Shape of Asymmetric Membranes. The journal of physical chemistry letters. 2019 Oct; 10(20):6351-6354. doi: 10.1021/acs.jpclett.9b02531. [PMID: 31566982]