gamma-Glutamylcysteine (BioDeep_00000002897)
Secondary id: BioDeep_00000228562, BioDeep_00000400313, BioDeep_00000405412, BioDeep_00001878610
natural product human metabolite Endogenous blood metabolite PANOMIX_OTCML-2023 BioNovoGene_Lab2019 Volatile Flavor Compounds
代谢物信息卡片
化学式: C8H14N2O5S (250.0623394)
中文名称: γ-谷氨酰半胱氨酸, G-谷氨酸-半胱-三氟乙酸盐
谱图信息:
最多检出来源 Homo sapiens(blood) 0.8%
Last reviewed on 2024-08-14.
Cite this Page
gamma-Glutamylcysteine. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/gamma-glutamylcysteine (retrieved
2024-11-21) (BioDeep RN: BioDeep_00000002897). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C(CC(=O)NC(CS)C(=O)O)C(C(=O)O)N
InChI: InChI=1S/C8H14N2O5S/c9-4(7(12)13)1-2-6(11)10-5(3-16)8(14)15/h4-5,16H,1-3,9H2,(H,10,11)(H,12,13)(H,14,15)
描述信息
gamma-Glutamylcysteine is a dipeptide composed of gamma-glutamate and cysteine, and is a proteolytic breakdown product of larger proteins. It belongs to the family of N-acyl-alpha amino acids and derivatives. These are compounds containing an alpha amino acid which bears an acyl group at its terminal nitrogen atom. gamma-Glutamylcysteine is an incomplete breakdown product of protein digestion or protein catabolism. Some dipeptides are known to have physiological or cell-signaling effects although most are simply short-lived intermediates on their way to specific amino acid degradation pathways following further proteolysis. gamma-Glutamylcysteine is a product of enzyme glutamate-cysteine ligase [EC 6.3.2.2] and a substrate of enzyme glutathione synthase [EC 6.3.2.3] in the glutamate metabolism pathway (KEGG).
G-Glutamylcysteine is a product of enzyme glutamate-cysteine ligase [EC 6.3.2.2] and a substrate of enzyme glutathione synthase [EC 6.3.2.3] in glutamate metabolism pathway (KEGG). gamma-Glutamyl-cysteine is found in many foods, some of which are cardamom, hyacinth bean, oil palm, and pak choy.
Acquisition and generation of the data is financially supported in part by CREST/JST.
Gamma-glutamylcysteine (γ-Glutamylcysteine), a dipeptide containing cysteine and glutamic acid, is a precursor to glutathione (GSH). Gamma-glutamylcysteine is a cofactor for glutathione peroxidase (GPx) to increase GSH levels[1].
同义名列表
35 个代谢物同义名
(2S)-2-amino-4-{[(1R)-1-carboxy-2-sulfanylethyl]carbamoyl}butanoic acid; 2-amino-5-[(1-carboxy-2-sulfanylethyl)amino]-5-oxopentanoic acid; N-L-gamma-Glutamyl-L-cysteine; γ-L-Glutamyl-L-cysteine; L-gamma-Glutamyl-L-cysteine; gamma-L-Glutamyl-L-cysteine; N-L-gamma-Glutamylcysteine; N-Γ-L-glutamyl-L-cysteine; N-L-Γ-glutamyl-L-cysteine; N-gamma-Glutamylcysteine; L-gamma-Glutamylcysteine; L-Γ-glutamyl-L-cysteine; g-L-Glutamyl-L-cysteine; gamma-Glutamyl-cysteine; L-g-Glutamyl-L-cysteine; Γ-L-glutamyl-L-cysteine; 5-L-Glutamyl-L-cysteine; N-L-Γ-glutamylcysteine; Gamma-glutamylcysteine; L-g-Glutamylcysteine; L-Γ-glutamylcysteine; N-Γ-glutamylcysteine; 5-L-Glutamylcysteine; des-Gly-glutathione; H-gamma-Glu-cys-OH; Γ-glutamylcysteine; g-Glutamylcysteine; gamma-L-Glu-L-cys; γ-Glu-Cys; gamma-Glu-cys; Γ-L-glu-L-cys; g-Glu-cys; Γ-glu-cys; gamma-L-Glutamyl-L-cysteine; ?Glu-Cys
数据库引用编号
29 个数据库交叉引用编号
- ChEBI: CHEBI:181725
- ChEBI: CHEBI:17515
- KEGG: C00669
- PubChem: 123938
- HMDB: HMDB0001049
- Metlin: METLIN3379
- DrugBank: DB03408
- ChEMBL: CHEMBL460831
- Wikipedia: Gamma-Glutamylcysteine
- MetaCyc: L-GAMMA-GLUTAMYLCYSTEINE
- KNApSAcK: C00007507
- foodb: FDB003603
- chemspider: 110467
- CAS: 636-58-8
- MoNA: PR100326
- MoNA: PS074803
- MoNA: PS074802
- MoNA: PS074804
- MoNA: PS074801
- MoNA: PS090501
- PMhub: MS000006826
- PDB-CCD: 3GC
- 3DMET: B01305
- NIKKAJI: J40.069F
- RefMet: gamma-Glutamylcysteine
- medchemexpress: HY-113402
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-907
- PubChem: 3938
- KNApSAcK: 17515
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
398 个相关的代谢反应过程信息。
Reactome(15)
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + SAH ⟶ Ade-Rib + HCYS
- Glutathione conjugation:
GSH + H2O ⟶ CysGly + L-Glu
- Glutathione synthesis and recycling:
GSH + H2O ⟶ CysGly + L-Glu
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + SAH ⟶ Ade-Rib + HCYS
- Glutathione conjugation:
GSH + H2O ⟶ CysGly + L-Glu
- Glutathione synthesis and recycling:
GSH + H2O ⟶ CysGly + L-Glu
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Glutathione conjugation:
GSH + H2O ⟶ CysGly + L-Glu
- Glutathione synthesis and recycling:
GSH + H2O ⟶ CysGly + L-Glu
BioCyc(3)
- glutathione biosynthesis:
ATP + L-γ-glutamylcysteine + gly ⟶ ADP + H+ + glutathione + phosphate
- γ-glutamyl cycle:
a 5-L-glutamyl-L-amino acid + cysteinylglycine ⟶ a standard α amino acid + glutathione
- glutathione biosynthesis:
ATP + L-γ-glutamylcysteine + gly ⟶ ADP + H+ + glutathione + phosphate
WikiPathways(3)
- One-carbon metabolism and related pathways:
5-oxoproline ⟶ Glutamate
- Gamma-glutamyl cycle for the biosynthesis and degradation of glutathione, including diseases:
Glutathione ⟶ Cysteinylglycine
- Ferroptosis:
GSH ⟶ GSSG
Plant Reactome(317)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
9-mercaptodethiobiotin ⟶ Btn
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Gamma-glutamyl cycle:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + L-Cys + L-Glu ⟶ ADP + Pi + gGluCys
INOH(1)
- Glutamic acid and Glutamine metabolism ( Glutamic acid and Glutamine metabolism ):
ATP + L-Glutamine + tRNA(Gln) ⟶ AMP + L-Glutaminyl-tRNA(Gln) + Pyrophosphate
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(59)
- Glutamate Metabolism:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Glutathione Metabolism:
Cysteinylglycine + Water ⟶ Glycine + L-Cysteine
- 4-Hydroxybutyric Aciduria/Succinic Semialdehyde Dehydrogenase Deficiency:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Homocarnosinosis:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Hyperinsulinism-Hyperammonemia Syndrome:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Glutathione Synthetase Deficiency:
Cysteinylglycine + Water ⟶ Glycine + L-Cysteine
- 5-Oxoprolinuria:
Cysteinylglycine + Water ⟶ Glycine + L-Cysteine
- gamma-Glutamyltransferase Deficiency:
Cysteinylglycine + Water ⟶ Glycine + L-Cysteine
- 2-Hydroxyglutric Aciduria (D and L Form):
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- 5-Oxoprolinase Deficiency:
Cysteinylglycine + Water ⟶ Glycine + L-Cysteine
- gamma-Glutamyltranspeptidase Deficiency:
Cysteinylglycine + Water ⟶ Glycine + L-Cysteine
- Succinic Semialdehyde Dehydrogenase Deficiency:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Glutathione Metabolism:
-Glutamylcysteine + Adenosine triphosphate + Glycine ⟶ Adenosine diphosphate + Glutathione + Hydrogen Ion + Phosphate
- Glutathione Metabolism II:
1-Nitronaphthalene-5,6-oxide + Glutathione ⟶ 1-Nitro-5-glutathionyl-6-hydroxy-5,6-dihydronaphthalene
- Glutathione Metabolism III:
-Glutamylcysteine + Adenosine triphosphate + Glycine ⟶ Adenosine diphosphate + Glutathione + Hydrogen Ion + Phosphate
- Glutathione Metabolism:
Glutathione + L-Cysteine ⟶ -Glutamylcysteine + Cysteinylglycine
- Glutamate Metabolism:
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- Glutathione Metabolism:
Glutathione + L-amino acid ⟶ (5-L-Glutamyl)-L-amino acid + Cysteinylglycine
- 2-Hydroxyglutric Aciduria (D and L Form):
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- 4-Hydroxybutyric Aciduria/Succinic Semialdehyde Dehydrogenase Deficiency:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- 5-Oxoprolinuria:
Glutathione + L-amino acid ⟶ (5-L-Glutamyl)-L-amino acid + Cysteinylglycine
- gamma-Glutamyltransferase Deficiency:
Glutathione + L-amino acid ⟶ (5-L-Glutamyl)-L-amino acid + Cysteinylglycine
- Glutathione Synthetase Deficiency:
Glutathione + L-amino acid ⟶ (5-L-Glutamyl)-L-amino acid + Cysteinylglycine
- Homocarnosinosis:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Hyperinsulinism-Hyperammonemia Syndrome:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- 5-Oxoprolinase Deficiency:
Glutathione + L-amino acid ⟶ (5-L-Glutamyl)-L-amino acid + Cysteinylglycine
- gamma-Glutamyltranspeptidase Deficiency:
Glutathione + L-amino acid ⟶ (5-L-Glutamyl)-L-amino acid + Cysteinylglycine
- Succinic Semialdehyde Dehydrogenase Deficiency:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Glutathione Metabolism:
Glutathione + L-amino acid ⟶ (5-L-Glutamyl)-L-amino acid + Cysteinylglycine
- Glutamate Metabolism:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Glutathione Metabolism:
Glutathione + L-amino acid ⟶ (5-L-Glutamyl)-L-amino acid + Cysteinylglycine
- Glutamate Metabolism:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Glutathione Metabolism:
Glutathione + L-amino acid ⟶ (5-L-Glutamyl)-L-amino acid + Cysteinylglycine
- Glutamate Metabolism:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Glutathione Metabolism:
Glutathione + L-amino acid ⟶ (5-L-Glutamyl)-L-amino acid + Cysteinylglycine
- Glutamate Metabolism:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- 2-Hydroxyglutric Aciduria (D and L Form):
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- 4-Hydroxybutyric Aciduria/Succinic Semialdehyde Dehydrogenase Deficiency:
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- 5-Oxoprolinuria:
Glutathione + L-amino acid ⟶ (5-L-Glutamyl)-L-amino acid + Cysteinylglycine
- gamma-Glutamyltransferase Deficiency:
Glutathione + L-amino acid ⟶ (5-L-Glutamyl)-L-amino acid + Cysteinylglycine
- Glutathione Synthetase Deficiency:
Glutathione + L-amino acid ⟶ (5-L-Glutamyl)-L-amino acid + Cysteinylglycine
- Homocarnosinosis:
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- Hyperinsulinism-Hyperammonemia Syndrome:
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- 5-Oxoprolinase Deficiency:
Glutathione + L-amino acid ⟶ (5-L-Glutamyl)-L-amino acid + Cysteinylglycine
- gamma-Glutamyltranspeptidase Deficiency:
Glutathione + L-amino acid ⟶ (5-L-Glutamyl)-L-amino acid + Cysteinylglycine
- Succinic Semialdehyde Dehydrogenase Deficiency:
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- Glutathione Metabolism:
Hydrogen Ion + NADPH + Oxidized glutathione ⟶ Glutathione + NADP
- Glutathione Metabolism II:
1-Nitronaphthalene-5,6-oxide + Glutathione ⟶ 1-Nitro-5-glutathionyl-6-hydroxy-5,6-dihydronaphthalene
- Glutathione Metabolism III:
Hydrogen Ion + NADPH + Oxidized glutathione ⟶ Glutathione + NADP
- Cysteine Metabolism:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- beta-Mercaptolactate-Cysteine Disulfiduria:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- Cystinosis, Ocular Nonnephropathic:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- Cysteine Metabolism:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- Cystinosis, Ocular Nonnephropathic:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- beta-Mercaptolactate-Cysteine Disulfiduria:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- Cystinosis, Ocular Nonnephropathic:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- Cysteine Metabolism:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- Cysteine Metabolism:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- beta-Mercaptolactate-Cysteine Disulfiduria:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
PharmGKB(0)
6 个相关的物种来源信息
- 4678 - Allium: 10.1016/J.JFCA.2016.09.012
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S11306-016-1051-4
- 1177 - Nostoc: 10.1016/J.PHYTOCHEM.2004.09.017
- 5691 - Trypanosoma brucei: 10.1128/AAC.00044-13
- 29760 - Vitis vinifera: 10.1016/J.DIB.2020.106469
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Jie Liu, Shuai Lu, Xiaoxue Zhang, Jinyi Zhou, Xintong Yan, Huimin Liu, Juanjuan Liang, Lan Luo, Da Zhou, Zhimin Yin. γ-Glutamylcysteine alleviates ethanol-induced hepatotoxicity via suppressing oxidative stress, apoptosis, and inflammation.
Journal of food biochemistry.
2022 10; 46(10):e14318. doi:
10.1111/jfbc.14318
. [PMID: 35822930] - Peter Pressman Md, Wallace John Bridge, Martin Hani Zarka, A Wallace Hayes, Roger Clemens. Dietary γ-Glutamylcysteine: Its Impact on Glutathione Status and Potential Health Outcomes.
Journal of dietary supplements.
2022; 19(2):259-270. doi:
10.1080/19390211.2020.1856266
. [PMID: 33307893] - Wei Luo, Yuming Long, Zili Feng, Rui Li, Xiaojia Huang, Jiaxin Zhong, Dongyun Liu, Hongbo Zhao. A γ-glutamylcysteine ligase AcGCL alleviates cadmium-inhibited fructooligosaccharides metabolism by modulating glutathione level in Allium cepa L.
Journal of hazardous materials.
2021 10; 419(?):126255. doi:
10.1016/j.jhazmat.2021.126255
. [PMID: 34157465] - Yue Liu, Zheng Chen, Ben Li, Hua Yao, Martin Zarka, Jeffrey Welch, Perminder Sachdev, Wallace Bridge, Nady Braidy. Supplementation with γ-glutamylcysteine (γ-GC) lessens oxidative stress, brain inflammation and amyloid pathology and improves spatial memory in a murine model of AD.
Neurochemistry international.
2021 03; 144(?):104931. doi:
10.1016/j.neuint.2020.104931
. [PMID: 33276023] - Mayu Onozato, Kana Kobata, Tatsuya Sakamoto, Hideaki Ichiba, Takeshi Fukushima. LC-MS/MS Analysis of Thiol-Containing Amino Acids in Exosomal Fraction of Serum.
Journal of chromatographic science.
2020 Jul; 58(7):636-640. doi:
10.1093/chromsci/bmaa028
. [PMID: 32577740] - Sho Kobayashi, Yoshitaka Ikeda, Yuhei Shigeno, Hiroyuki Konno, Junichi Fujii. γ-Glutamylcysteine synthetase and γ-glutamyl transferase as differential enzymatic sources of γ-glutamylpeptides in mice.
Amino acids.
2020 Apr; 52(4):555-566. doi:
10.1007/s00726-020-02835-2
. [PMID: 32170467] - Nahid Tamanna, Kathryn Kroeker, Kristen Braun, Sheena Banh, Jason R Treberg. The effect of short-term methionine restriction on glutathione synthetic capacity and antioxidant responses at the whole tissue and mitochondrial level in the rat liver.
Experimental gerontology.
2019 11; 127(?):110712. doi:
10.1016/j.exger.2019.110712
. [PMID: 31472257] - Samir A Salama, Hany H Arab, Memy H Hassan, Majed M Al Robaian, Ibrahim A Maghrabi. Cadmium-induced hepatocellular injury: Modulatory effects of γ-glutamyl cysteine on the biomarkers of inflammation, DNA damage, and apoptotic cell death.
Journal of trace elements in medicine and biology : organ of the Society for Minerals and Trace Elements (GMS).
2019 Mar; 52(?):74-82. doi:
10.1016/j.jtemb.2018.12.003
. [PMID: 30732903] - Yang Yang, Ling Li, Qiyun Hang, Yuan Fang, Xiaoliang Dong, Peng Cao, Zhimin Yin, Lan Luo. γ-glutamylcysteine exhibits anti-inflammatory effects by increasing cellular glutathione level.
Redox biology.
2019 01; 20(?):157-166. doi:
10.1016/j.redox.2018.09.019
. [PMID: 30326393] - Guirong Tang, Shenghui Xing, Sunjun Wang, Liangliang Yu, Xuan Li, Christian Staehelin, Menghua Yang, Li Luo. Regulation of cysteine residues in LsrB proteins from Sinorhizobium meliloti under free-living and symbiotic oxidative stress.
Environmental microbiology.
2017 Dec; 19(12):5130-5145. doi:
10.1111/1462-2920.13992
. [PMID: 29124841] - Yu Jiang, Rongsheng Tao, Zhengquan Shen, Liangdong Sun, Fuyun Zhu, Sheng Yang. Enzymatic Production of Glutathione by Bifunctional γ-Glutamylcysteine Synthetase/Glutathione Synthetase Coupled with In Vitro Acetate Kinase-Based ATP Generation.
Applied biochemistry and biotechnology.
2016 Dec; 180(7):1446-1455. doi:
10.1007/s12010-016-2178-5
. [PMID: 27380420] - Samir A Salama, Hany H Arab, Ibrahim A Maghrabi, Memy H Hassan, Mohammed S AlSaeed. Gamma-Glutamyl Cysteine Attenuates Tissue Damage and Enhances Tissue Regeneration in a rat Model of Lead-Induced Nephrotoxicity.
Biological trace element research.
2016 Sep; 173(1):96-107. doi:
10.1007/s12011-016-0624-4
. [PMID: 26767370] - Jian Yang, Ming-Xing Gao, Han Hu, Xiao-Meng Ding, Hong-Wei Lin, Lei Wang, Ji-Ming Xu, Chuan-Zao Mao, Fang-Jie Zhao, Zhong-Chang Wu. OsCLT1, a CRT-like transporter 1, is required for glutathione homeostasis and arsenic tolerance in rice.
The New phytologist.
2016 07; 211(2):658-70. doi:
10.1111/nph.13908
. [PMID: 26918637] - Sultan Alqahtani, Ayman M Mahmoud. Gamma-Glutamylcysteine Ethyl Ester Protects against Cyclophosphamide-Induced Liver Injury and Hematologic Alterations via Upregulation of PPARγ and Attenuation of Oxidative Stress, Inflammation, and Apoptosis.
Oxidative medicine and cellular longevity.
2016; 2016(?):4016209. doi:
10.1155/2016/4016209
. [PMID: 28074115] - Hsin-Ho Wei, Martha Rowe, Jean-Jack M Riethoven, Ryan Grove, Jiri Adamec, Yusuke Jikumaru, Paul Staswick. Overaccumulation of γ-Glutamylcysteine in a Jasmonate-Hypersensitive Arabidopsis Mutant Causes Jasmonate-Dependent Growth Inhibition.
Plant physiology.
2015 Oct; 169(2):1371-81. doi:
10.1104/pp.15.00999
. [PMID: 26282239] - Chuanxin Ma, Sudesh Chhikara, Rakesh Minocha, Stephanie Long, Craig Musante, Jason C White, Baoshan Xing, Om Parkash Dhankher. Reduced Silver Nanoparticle Phytotoxicity in Crambe abyssinica with Enhanced Glutathione Production by Overexpressing Bacterial γ-Glutamylcysteine Synthase.
Environmental science & technology.
2015 Aug; 49(16):10117-26. doi:
10.1021/acs.est.5b02007
. [PMID: 26186015] - Samir A Salama, Mohammad S Al-Harbi, Mohamed S Abdel-Bakky, Hany A Omar. Glutamyl cysteine dipeptide suppresses ferritin expression and alleviates liver injury in iron-overload rat model.
Biochimie.
2015 Aug; 115(?):203-11. doi:
10.1016/j.biochi.2015.06.006
. [PMID: 26093100] - Hui Chan Kwak, Young-Mi Kim, Soo Jin Oh, Sang Kyum Kim. Sulfur amino acid metabolism in Zucker diabetic fatty rats.
Biochemical pharmacology.
2015 Aug; 96(3):256-66. doi:
10.1016/j.bcp.2015.05.014
. [PMID: 26047850] - Nsisong Ikpa, Rachel Forman, Kendra Garchow, Ernest Sukowski, Darryl R Peterson. In Vitro Studies on Degradation of Gamma-L-Glutamyl-L-Cysteine and Gamma-L-Glutamyl-D-Cysteine in Blood: Implications for Treatment of Stroke.
American journal of therapeutics.
2015 Jul; 22(4):e97-e106. doi:
10.1097/mjt.0000000000000246
. [PMID: 25844481] - Dehong Tan, Yao Zhang, Lulu Chen, Ling Liu, Xuan Zhang, Zhaoxia Wu, Bing Bai, Shujuan Ji. Decreased glycation and structural protection properties of γ-glutamyl-S-allyl-cysteine peptide isolated from fresh garlic scales (Allium sativum L.).
Natural product research.
2015; 29(23):2219-22. doi:
10.1080/14786419.2014.1003065
. [PMID: 25631559] - Jiali He, Hong Li, Chaofeng Ma, Yanli Zhang, Andrea Polle, Heinz Rennenberg, Xingqi Cheng, Zhi-Bin Luo. Overexpression of bacterial γ-glutamylcysteine synthetase mediates changes in cadmium influx, allocation and detoxification in poplar.
The New phytologist.
2015 Jan; 205(1):240-54. doi:
10.1111/nph.13013
. [PMID: 25229726] - Amit Kumar, Rana Pratap Singh, Pradyumna Kumar Singh, Surabhi Awasthi, Debasis Chakrabarty, Prabodh Kumar Trivedi, Rudra Deo Tripathi. Selenium ameliorates arsenic induced oxidative stress through modulation of antioxidant enzymes and thiols in rice (Oryza sativa L.).
Ecotoxicology (London, England).
2014 Sep; 23(7):1153-63. doi:
10.1007/s10646-014-1257-z
. [PMID: 24985886] - Yue-Qin Cai, Li-Zong Zhang, De-Jun Wang, Fang-Ming Chen, Zhi-Yun Chen, Ke-Yan Zhu, Jian-Shuang Li, Mao-Xiang Yan. [Effect of Nrf2 and related factors on the progression of nonalcoholic steatohepatitis].
Zhongguo ying yong sheng li xue za zhi = Zhongguo yingyong shenglixue zazhi = Chinese journal of applied physiology.
2014 Sep; 30(5):465-70. doi:
NULL
. [PMID: 25571645] - Yumiko Kono, Hideaki Iizuka, Muneki Isokawa, Makoto Tsunoda, Hideaki Ichiba, Kiyomi Sadamoto, Takeshi Fukushima. HPLC-fluorescence determination of thiol compounds in the serum of human male and female subjects using HILIC-mode column.
Biomedical chromatography : BMC.
2014 May; 28(5):589-93. doi:
10.1002/bmc.3086
. [PMID: 24500895] - Noor Nahar, Aminur Rahman, Maria Moś, Tomasz Warzecha, Sibdas Ghosh, Khaled Hossain, Neelu N Nawani, Abul Mandal. In silico and in vivo studies of molecular structures and mechanisms of AtPCS1 protein involved in binding arsenite and/or cadmium in plant cells.
Journal of molecular modeling.
2014 Mar; 20(3):2104. doi:
10.1007/s00894-014-2104-0
. [PMID: 24554125] - Deepak Kumar, Riddhi Datta, Ragini Sinha, Aparupa Ghosh, Sharmila Chattopadhyay. Proteomic profiling of γ-ECS overexpressed transgenic Nicotiana in response to drought stress.
Plant signaling & behavior.
2014; 9(8):e29246. doi:
10.4161/psb.29246
. [PMID: 25763614] - Takeshi Fukushima, Hideaki Iizuka, Ayaka Yokota, Takehiro Suzuki, Chihiro Ohno, Yumiko Kono, Minami Nishikiori, Ayaka Seki, Hideaki Ichiba, Yoshinori Watanabe, Seiji Hongo, Mamoru Utsunomiya, Masaki Nakatani, Kiyomi Sadamoto, Takashi Yoshio. Quantitative analyses of schizophrenia-associated metabolites in serum: serum D-lactate levels are negatively correlated with gamma-glutamylcysteine in medicated schizophrenia patients.
PloS one.
2014; 9(7):e101652. doi:
10.1371/journal.pone.0101652
. [PMID: 25004141] - Victoria Pastor, Estrella Luna, Jurriaan Ton, Miguel Cerezo, Pilar García-Agustín, Victor Flors. Fine tuning of reactive oxygen species homeostasis regulates primed immune responses in Arabidopsis.
Molecular plant-microbe interactions : MPMI.
2013 Nov; 26(11):1334-44. doi:
10.1094/mpmi-04-13-0117-r
. [PMID: 24088017] - Darryl R Peterson, Ernest J Sukowski, Demetrios Zikos. Blood-brain barrier transport pathways for cytoprotective thiols.
American journal of therapeutics.
2013 Sep; 20(5):469-79. doi:
10.1097/mjt.0b013e31829e8b7f
. [PMID: 24670783] - Bin Hu, Judy Simon, Heinz Rennenberg. Drought and air warming affect the species-specific levels of stress-related foliar metabolites of three oak species on acidic and calcareous soil.
Tree physiology.
2013 May; 33(5):489-504. doi:
10.1093/treephys/tpt025
. [PMID: 23619385] - Yansen Li, Yi Huang, Yuanguo Piao, Kentaro Nagaoka, Gen Watanabe, Kazuyoshi Taya, ChunMei Li. Protective effects of nuclear factor erythroid 2-related factor 2 on whole body heat stress-induced oxidative damage in the mouse testis.
Reproductive biology and endocrinology : RB&E.
2013 Mar; 11(?):23. doi:
10.1186/1477-7827-11-23
. [PMID: 23514035] - Kang Uk Yun, Chang Seon Ryu, Ji-Yoon Lee, Jung-Ran Noh, Chul-Ho Lee, Hyun-Sun Lee, Jong Soon Kang, Song Kyu Park, Bong-Hee Kim, Sang Kyum Kim. Hepatic metabolism of sulfur amino acids in db/db mice.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2013 Mar; 53(?):180-6. doi:
10.1016/j.fct.2012.11.046
. [PMID: 23220616] - Kang Uk Yun, Chang Seon Ryu, Jung Min Oh, Chung Hyun Kim, Kye Sook Lee, Chul-Ho Lee, Hyun-Sun Lee, Bong-Hee Kim, Sang Kyum Kim. Plasma homocysteine level and hepatic sulfur amino acid metabolism in mice fed a high-fat diet.
European journal of nutrition.
2013 Feb; 52(1):127-34. doi:
10.1007/s00394-011-0294-0
. [PMID: 22209966] - S D Chandler, M H Zarka, S N Vinaya Babu, Y S Suhas, K R Raghunatha Reddy, W J Bridge. Safety assessment of gamma-glutamylcysteine sodium salt.
Regulatory toxicology and pharmacology : RTP.
2012 Oct; 64(1):17-25. doi:
10.1016/j.yrtph.2012.05.008
. [PMID: 22698997] - Kenneth K C Au, José Pérez-Gómez, Hélia Neto, Christopher Müller, Andreas J Meyer, Mark D Fricker, Ian Moore. A perturbation in glutathione biosynthesis disrupts endoplasmic reticulum morphology and secretory membrane traffic in Arabidopsis thaliana.
The Plant journal : for cell and molecular biology.
2012 Sep; 71(6):881-94. doi:
10.1111/j.1365-313x.2012.05022.x
. [PMID: 22507191] - E Gismondi, C Cossu-Leguille, J-N Beisel. Does the acanthocephalan parasite Polymorphus minutus modify the energy reserves and antitoxic defences of its intermediate host Gammarus roeseli?.
Parasitology.
2012 Jul; 139(8):1054-61. doi:
10.1017/s0031182012000315
. [PMID: 22405348] - Wei Zhao, Jun-Jie Li, Shu-Qiang Yue, Lin-Ying Zhang, Ke-Feng Dou. Antioxidant activity and hepatoprotective effect of a polysaccharide from Bei Chaihu (Bupleurum chinense DC).
Carbohydrate polymers.
2012 Jun; 89(2):448-52. doi:
10.1016/j.carbpol.2012.03.027
. [PMID: 24750742] - Jung Min Oh, Young Suk Jung, Byung Suk Jeon, Byung Il Yoon, Kye Sook Lee, Bong Hee Kim, Soo Jin Oh, Sang Kyum Kim. Evaluation of hepatotoxicity and oxidative stress in rats treated with tert-butyl hydroperoxide.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2012 May; 50(5):1215-21. doi:
10.1016/j.fct.2012.01.031
. [PMID: 22326806] - Chava B Pocernich, D Allan Butterfield. Elevation of glutathione as a therapeutic strategy in Alzheimer disease.
Biochimica et biophysica acta.
2012 May; 1822(5):625-30. doi:
10.1016/j.bbadis.2011.10.003
. [PMID: 22015471] - R Renjini, N Gayathri, A Nalini, M M Srinivas Bharath. Oxidative damage in muscular dystrophy correlates with the severity of the pathology: role of glutathione metabolism.
Neurochemical research.
2012 Apr; 37(4):885-98. doi:
10.1007/s11064-011-0683-z
. [PMID: 22219131] - Mikael Brosché, Jaakko Kangasjärvi. Low antioxidant concentrations impact on multiple signalling pathways in Arabidopsis thaliana partly through NPR1.
Journal of experimental botany.
2012 Mar; 63(5):1849-61. doi:
10.1093/jxb/err358
. [PMID: 22213815] - Stefanie Volland, Cornelius Lütz, Bernhard Michalke, Ursula Lütz-Meindl. Intracellular chromium localization and cell physiological response in the unicellular alga Micrasterias.
Aquatic toxicology (Amsterdam, Netherlands).
2012 Mar; 109(?):59-69. doi:
10.1016/j.aquatox.2011.11.013
. [PMID: 22204989] - Patrick M Finnegan, Weihua Chen. Arsenic toxicity: the effects on plant metabolism.
Frontiers in physiology.
2012; 3(?):182. doi:
10.3389/fphys.2012.00182
. [PMID: 22685440] - András Szarka, Bálint Tomasskovics, Gábor Bánhegyi. The ascorbate-glutathione-α-tocopherol triad in abiotic stress response.
International journal of molecular sciences.
2012; 13(4):4458-4483. doi:
10.3390/ijms13044458
. [PMID: 22605990] - Fabien Baldacci-Cresp, Christine Chang, Mickaël Maucourt, Catherine Deborde, Julie Hopkins, Philippe Lecomte, Stéphane Bernillon, Renaud Brouquisse, Annick Moing, Pierre Abad, Didier Hérouart, Alain Puppo, Bruno Favery, Pierre Frendo. (Homo)glutathione deficiency impairs root-knot nematode development in Medicago truncatula.
PLoS pathogens.
2012 Jan; 8(1):e1002471. doi:
10.1371/journal.ppat.1002471
. [PMID: 22241996] - Barbara Eva Koffler, Romana Maier, Bernd Zechmann. Subcellular distribution of glutathione precursors in Arabidopsis thaliana.
Journal of integrative plant biology.
2011 Dec; 53(12):930-41. doi:
10.1111/j.1744-7909.2011.01085.x
. [PMID: 22050910] - Ana M Fortes, Patricia Agudelo-Romero, Marta S Silva, Kashif Ali, Lisete Sousa, Federica Maltese, Young H Choi, Jerome Grimplet, José M Martinez-Zapater, Robert Verpoorte, Maria S Pais. Transcript and metabolite analysis in Trincadeira cultivar reveals novel information regarding the dynamics of grape ripening.
BMC plant biology.
2011 Nov; 11(?):149. doi:
10.1186/1471-2229-11-149
. [PMID: 22047180] - Neal S Gould, Elysia Min, Steve Gauthier, Richard J Martin, Brian J Day. Lung glutathione adaptive responses to cigarette smoke exposure.
Respiratory research.
2011 Oct; 12(?):133. doi:
10.1186/1465-9921-12-133
. [PMID: 21982222] - Eman Noaman Ali, Somaya Zakaria Mansour. Boswellic acids extract attenuates pulmonary fibrosis induced by bleomycin and oxidative stress from gamma irradiation in rats.
Chinese medicine.
2011 Sep; 6(?):36. doi:
10.1186/1749-8546-6-36
. [PMID: 21961991] - Elena Chekmeneva, Rui Gusmão, José Manuel Díaz-Cruz, Cristina Ariño, Miquel Esteban. From cysteine to longer chain thiols: thermodynamic analysis of cadmium binding by phytochelatins and their fragments.
Metallomics : integrated biometal science.
2011 Aug; 3(8):838-46. doi:
10.1039/c1mt00028d
. [PMID: 21687859] - Melissa S LeBlanc, Amparo Lima, Paul Montello, Tehryoung Kim, Richard B Meagher, Scott Merkle. Enhanced arsenic tolerance of transgenic eastern cottonwood plants expressing gamma-glutamylcysteine synthetase.
International journal of phytoremediation.
2011 Aug; 13(7):657-73. doi:
10.1080/15226514.2010.499917
. [PMID: 21972493] - Srijani Ghanta, Dipto Bhattacharyya, Ragini Sinha, Anindita Banerjee, Sharmila Chattopadhyay. Nicotiana tabacum overexpressing γ-ECS exhibits biotic stress tolerance likely through NPR1-dependent salicylic acid-mediated pathway.
Planta.
2011 May; 233(5):895-910. doi:
10.1007/s00425-011-1349-4
. [PMID: 21234598] - Hong Lin, Binghai Lou, Jonathan M Glynn, Harshavardhan Doddapaneni, Edwin L Civerolo, Chuanwu Chen, Yongping Duan, Lijuan Zhou, Cheryl M Vahling. The complete genome sequence of 'Candidatus Liberibacter solanacearum', the bacterium associated with potato zebra chip disease.
PloS one.
2011 Apr; 6(4):e19135. doi:
10.1371/journal.pone.0019135
. [PMID: 21552483] - Bülent Soyalan, Jutta Minn, Hans J Schmitz, Dieter Schrenk, Frank Will, Helmut Dietrich, Matthias Baum, Gerhard Eisenbrand, Christine Janzowski. Apple juice intervention modulates expression of ARE-dependent genes in rat colon and liver.
European journal of nutrition.
2011 Mar; 50(2):135-43. doi:
10.1007/s00394-010-0124-9
. [PMID: 20652274] - Faouzi Horchani, Marianne Prévot, Alexandre Boscari, Edouard Evangelisti, Eliane Meilhoc, Claude Bruand, Philippe Raymond, Eric Boncompagni, Samira Aschi-Smiti, Alain Puppo, Renaud Brouquisse. Both plant and bacterial nitrate reductases contribute to nitric oxide production in Medicago truncatula nitrogen-fixing nodules.
Plant physiology.
2011 Feb; 155(2):1023-36. doi:
10.1104/pp.110.166140
. [PMID: 21139086] - Shilpa Chakravarty, Syed Ibrahim Rizvi. Day and Night GSH and MDA Levels in Healthy Adults and Effects of Different Doses of Melatonin on These Parameters.
International journal of cell biology.
2011; 2011(?):404591. doi:
10.1155/2011/404591
. [PMID: 21647290] - Claire M Payne, Cheray Crowley-Skillicorn, Carol Bernstein, Hana Holubec, Harris Bernstein. Molecular and cellular pathways associated with chromosome 1p deletions during colon carcinogenesis.
Clinical and experimental gastroenterology.
2011; 4(?):75-119. doi:
10.2147/ceg.s17114
. [PMID: 21753893] - Atsushi Goto, Yiqing Song, Brian H Chen, JoAnn E Manson, Julie E Buring, Simin Liu. Coffee and caffeine consumption in relation to sex hormone-binding globulin and risk of type 2 diabetes in postmenopausal women.
Diabetes.
2011 Jan; 60(1):269-75. doi:
10.2337/db10-1193
. [PMID: 21030499] - Mahaneem Mohamed, Siti Amrah Sulaiman, Hasnan Jaafar, Kuttulebbai Nainamohamed Salam Sirajudeen. Antioxidant protective effect of honey in cigarette smoke-induced testicular damage in rats.
International journal of molecular sciences.
2011; 12(9):5508-21. doi:
10.3390/ijms12095508
. [PMID: 22016605] - Ashley Galant, Mary L Preuss, Jeffrey C Cameron, Joseph M Jez. Plant glutathione biosynthesis: diversity in biochemical regulation and reaction products.
Frontiers in plant science.
2011; 2(?):45. doi:
10.3389/fpls.2011.00045
. [PMID: 22645536] - Anirudha R Dixit, Om Parkash Dhankher. A novel stress-associated protein 'AtSAP10' from Arabidopsis thaliana confers tolerance to nickel, manganese, zinc, and high temperature stress.
PloS one.
2011; 6(6):e20921. doi:
10.1371/journal.pone.0020921
. [PMID: 21695274] - Shasha Gao, Tingyu Qin, Zhenzhen Liu, Maria Andrea Caceres, Carlos F Ronchi, C-Y Oliver Chen, Kyung-Jin Yeum, Allen Taylor, Jeffery B Blumberg, Yizhi Liu, Fu Shang. Lutein and zeaxanthin supplementation reduces H2O2-induced oxidative damage in human lens epithelial cells.
Molecular vision.
2011; 17(?):3180-90. doi:
. [PMID: 22194644]
- Jeffrey C Cameron, Himadri B Pakrasi. Glutathione in Synechocystis 6803: a closer look into the physiology of a ∆gshB mutant.
Plant signaling & behavior.
2011 Jan; 6(1):89-92. doi:
10.4161/psb.6.1.14145
. [PMID: 21301218] - Gopinath S Palanisamy, Natalie M Kirk, David F Ackart, Crystal A Shanley, Ian M Orme, Randall J Basaraba. Evidence for oxidative stress and defective antioxidant response in guinea pigs with tuberculosis.
PloS one.
2011; 6(10):e26254. doi:
10.1371/journal.pone.0026254
. [PMID: 22028843] - Jeffrey C Cameron, Himadri B Pakrasi. Essential role of glutathione in acclimation to environmental and redox perturbations in the cyanobacterium Synechocystis sp. PCC 6803.
Plant physiology.
2010 Dec; 154(4):1672-85. doi:
10.1104/pp.110.162990
. [PMID: 20935175] - Laddawan Senggunprai, Veerapol Kukongviriyapan, Auemduan Prawan, Upa Kukongviriyapan. Consumption of Syzygium gratum promotes the antioxidant defense system in mice.
Plant foods for human nutrition (Dordrecht, Netherlands).
2010 Dec; 65(4):403-9. doi:
10.1007/s11130-010-0200-6
. [PMID: 21104319] - Sonali Dubey, Prashant Misra, Sanjay Dwivedi, Sandipan Chatterjee, Sumit K Bag, Shrikant Mantri, Mehar H Asif, Arti Rai, Smita Kumar, Manju Shri, Preeti Tripathi, Rudra D Tripathi, Prabodh K Trivedi, Debasis Chakrabarty, Rakesh Tuli. Transcriptomic and metabolomic shifts in rice roots in response to Cr (VI) stress.
BMC genomics.
2010 Nov; 11(?):648. doi:
10.1186/1471-2164-11-648
. [PMID: 21092124] - Guosheng Liu, Yuanyuan Ji, Nazmul H Bhuiyan, Guillaume Pilot, Gopalan Selvaraj, Jitao Zou, Yangdou Wei. Amino acid homeostasis modulates salicylic acid-associated redox status and defense responses in Arabidopsis.
The Plant cell.
2010 Nov; 22(11):3845-63. doi:
10.1105/tpc.110.079392
. [PMID: 21097712] - Qian Xiong, Ping Xie, Huiying Li, Le Hao, Guangyu Li, Tong Qiu, Ying Liu. Acute effects of microcystins exposure on the transcription of antioxidant enzyme genes in three organs (liver, kidney, and testis) of male Wistar rats.
Journal of biochemical and molecular toxicology.
2010 Nov; 24(6):361-7. doi:
10.1002/jbt.20347
. [PMID: 20665604] - Yan Zhang, Motoaki Sano, Ken Shinmura, Kayoko Tamaki, Yoshinori Katsumata, Tomohiro Matsuhashi, Shintaro Morizane, Hideyuki Ito, Takako Hishiki, Jin Endo, Heping Zhou, Shinsuke Yuasa, Ruri Kaneda, Makoto Suematsu, Keiichi Fukuda. 4-hydroxy-2-nonenal protects against cardiac ischemia-reperfusion injury via the Nrf2-dependent pathway.
Journal of molecular and cellular cardiology.
2010 Oct; 49(4):576-86. doi:
10.1016/j.yjmcc.2010.05.011
. [PMID: 20685357] - Sylwia Wojas, Anna Ruszczyńska, Ewa Bulska, Stephan Clemens, Danuta Maria Antosiewicz. The role of subcellular distribution of cadmium and phytochelatins in the generation of distinct phenotypes of AtPCS1- and CePCS3-expressing tobacco.
Journal of plant physiology.
2010 Aug; 167(12):981-8. doi:
10.1016/j.jplph.2010.02.010
. [PMID: 20381898] - Thomas Lettner, Ute Zeidler, Mario Gimona, Michael Hauser, Michael Breitenbach, Arnold Bito. Candida albicans AGE3, the ortholog of the S. cerevisiae ARF-GAP-encoding gene GCS1, is required for hyphal growth and drug resistance.
PloS one.
2010 Aug; 5(8):e11993. doi:
10.1371/journal.pone.0011993
. [PMID: 20700541] - Sara Nannizzi, Gareth J Veal, Elisa Giovannetti, Valentina Mey, Simona Ricciardi, Christopher J Ottley, Mario Del Tacca, Romano Danesi. Cellular and molecular mechanisms for the synergistic cytotoxicity elicited by oxaliplatin and pemetrexed in colon cancer cell lines.
Cancer chemotherapy and pharmacology.
2010 Aug; 66(3):547-58. doi:
10.1007/s00280-009-1195-2
. [PMID: 20020129] - Denise Young, Ming Z Fan, Yoshinori Mine. Egg yolk peptides up-regulate glutathione synthesis and antioxidant enzyme activities in a porcine model of intestinal oxidative stress.
Journal of agricultural and food chemistry.
2010 Jul; 58(13):7624-33. doi:
10.1021/jf1011598
. [PMID: 20540508] - Cornelia Herschbach, Luca Rizzini, Susanne Mult, Tanja Hartmann, Florian Busch, Andreas D Peuke, Stanislav Kopriva, Ingo Ensminger. Over-expression of bacterial gamma-glutamylcysteine synthetase (GSH1) in plastids affects photosynthesis, growth and sulphur metabolism in poplar (Populus tremula x Populus alba) dependent on the resulting gamma-glutamylcysteine and glutathione levels.
Plant, cell & environment.
2010 Jul; 33(7):1138-51. doi:
10.1111/j.1365-3040.2010.02135.x
. [PMID: 20199621] - Antonio Pinna, Angelo Zinellu, Flavia Franconi, Ciriaco Carru. Plasma thiols and taurine levels in central retinal vein occlusion.
Current eye research.
2010 Jul; 35(7):644-50. doi:
10.3109/02713681003698863
. [PMID: 20597650] - Yu Wu, Qing Zhao, Lei Gao, Xiao-Min Yu, Ping Fang, David J Oliver, Cheng-Bin Xiang. Isolation and characterization of low-sulphur-tolerant mutants of Arabidopsis.
Journal of experimental botany.
2010 Jul; 61(12):3407-22. doi:
10.1093/jxb/erq161
. [PMID: 20547563] - Neil R Kitteringham, Azman Abdullah, Joanne Walsh, Laura Randle, Rosalind E Jenkins, Rowena Sison, Christopher E P Goldring, Helen Powell, Christopher Sanderson, Samantha Williams, Larry Higgins, Masayuki Yamamoto, John Hayes, B Kevin Park. Proteomic analysis of Nrf2 deficient transgenic mice reveals cellular defence and lipid metabolism as primary Nrf2-dependent pathways in the liver.
Journal of proteomics.
2010 Jun; 73(8):1612-31. doi:
10.1016/j.jprot.2010.03.018
. [PMID: 20399915] - Cuizhu Zhao, Meng Qiao, Yanchong Yu, Guangmin Xia, Fengning Xiang. The effect of the heterologous expression of Phragmites australis gamma-glutamylcysteine synthetase on the Cd2+ accumulation of Agrostis palustris.
Plant, cell & environment.
2010 Jun; 33(6):877-87. doi:
10.1111/j.1365-3040.2009.02113.x
. [PMID: 20051038] - Corinna Brandsch, Tobias Schmidt, Diana Behn, Kristin Weisse, Andreas S Mueller, Gabriele I Stangl. Glutathione deficiency down-regulates hepatic lipogenesis in rats.
Lipids in health and disease.
2010 May; 9(?):50. doi:
10.1186/1476-511x-9-50
. [PMID: 20482862] - Ralph Blum, Katrin C Meyer, Jana Wünschmann, Klaus J Lendzian, Erwin Grill. Cytosolic action of phytochelatin synthase.
Plant physiology.
2010 May; 153(1):159-69. doi:
10.1104/pp.109.149922
. [PMID: 20304971] - David Weisman, Merianne Alkio, Adán Colón-Carmona. Transcriptional responses to polycyclic aromatic hydrocarbon-induced stress in Arabidopsis thaliana reveal the involvement of hormone and defense signaling pathways.
BMC plant biology.
2010 Apr; 10(?):59. doi:
10.1186/1471-2229-10-59
. [PMID: 20377843] - Avnish K Upadhyay, Kaushal Kumar, Arvind Kumar, Hari S Mishra. Tinospora cordifolia (Willd.) Hook. f. and Thoms. (Guduchi) - validation of the Ayurvedic pharmacology through experimental and clinical studies.
International journal of Ayurveda research.
2010 Apr; 1(2):112-21. doi:
10.4103/0974-7788.64405
. [PMID: 20814526] - Chung-Wei Chang, Wei-Lung Tseng. Gold nanoparticle extraction followed by capillary electrophoresis to determine the total, free, and protein-bound aminothiols in plasma.
Analytical chemistry.
2010 Apr; 82(7):2696-702. doi:
10.1021/ac902342c
. [PMID: 20201506] - Patricia Huebbe, Anika E Wagner, Christine Boesch-Saadatmandi, Frederike Sellmer, Siegfried Wolffram, Gerald Rimbach. Effect of dietary quercetin on brain quercetin levels and the expression of antioxidant and Alzheimer's disease relevant genes in mice.
Pharmacological research.
2010 Mar; 61(3):242-6. doi:
10.1016/j.phrs.2009.08.006
. [PMID: 19720149] - S H Mousavi, N Z Tayarani, H Parsaee. Protective effect of saffron extract and crocin on reactive oxygen species-mediated high glucose-induced toxicity in PC12 cells.
Cellular and molecular neurobiology.
2010 Mar; 30(2):185-91. doi:
10.1007/s10571-009-9441-z
. [PMID: 19711182] - Sylwia Wojas, Stephan Clemens, Aleksandra Skłodowska, Danuta Maria Antosiewicz. Arsenic response of AtPCS1- and CePCS-expressing plants - effects of external As(V) concentration on As-accumulation pattern and NPT metabolism.
Journal of plant physiology.
2010 Feb; 167(3):169-75. doi:
10.1016/j.jplph.2009.07.017
. [PMID: 19765857] - Yasuhiro Takagi, Shigekazu Kurihara, Natsumi Higashi, Saeko Morikawa, Tetsuo Kase, Akiko Maeda, Harumi Arisaka, Susumu Shibahara, Yukio Akiyama. Combined administration of (L)-cystine and (L)-theanine enhances immune functions and protects against influenza virus infection in aged mice.
The Journal of veterinary medical science.
2010 Feb; 72(2):157-65. doi:
10.1292/jvms.09-0067
. [PMID: 19940390] - Manuel A Matamoros, Jorge Loscos, Karl-Josef Dietz, Pedro M Aparicio-Tejo, Manuel Becana. Function of antioxidant enzymes and metabolites during maturation of pea fruits.
Journal of experimental botany.
2010; 61(1):87-97. doi:
10.1093/jxb/erp285
. [PMID: 19822534] - K A Shah, M B Patel, R J Patel, P K Parmar. Mangifera indica (mango).
Pharmacognosy reviews.
2010 Jan; 4(7):42-8. doi:
10.4103/0973-7847.65325
. [PMID: 22228940] - Jana Wünschmann, Matthias Krajewski, Thomas Letzel, Eva M Huber, Alexander Ehrmann, Erwin Grill, Klaus J Lendzian. Dissection of glutathione conjugate turnover in yeast.
Phytochemistry.
2010 Jan; 71(1):54-61. doi:
10.1016/j.phytochem.2009.09.034
. [PMID: 19897216] - Ajay Goel, Bharat B Aggarwal. Curcumin, the golden spice from Indian saffron, is a chemosensitizer and radiosensitizer for tumors and chemoprotector and radioprotector for normal organs.
Nutrition and cancer.
2010; 62(7):919-30. doi:
10.1080/01635581.2010.509835
. [PMID: 20924967] - Ursula Scheerer, Robert Haensch, Ralf R Mendel, Stanislav Kopriva, Heinz Rennenberg, Cornelia Herschbach. Sulphur flux through the sulphate assimilation pathway is differently controlled by adenosine 5'-phosphosulphate reductase under stress and in transgenic poplar plants overexpressing gamma-ECS, SO, or APR.
Journal of experimental botany.
2010; 61(2):609-22. doi:
10.1093/jxb/erp327
. [PMID: 19923196] - Ulisse Garbin, Anna Fratta Pasini, Chiara Stranieri, Mattia Cominacini, Andrea Pasini, Stefania Manfro, Fabio Lugoboni, Chiara Mozzini, GianCesare Guidi, Giovanni Faccini, Luciano Cominacini. Cigarette smoking blocks the protective expression of Nrf2/ARE pathway in peripheral mononuclear cells of young heavy smokers favouring inflammation.
PloS one.
2009 Dec; 4(12):e8225. doi:
10.1371/journal.pone.0008225
. [PMID: 20011043] - Andriana C Kaliora, Aggeliki M Kountouri, Vaios T Karathanos. Antioxidant properties of raisins (Vitis vinifera L.).
Journal of medicinal food.
2009 Dec; 12(6):1302-9. doi:
10.1089/jmf.2008.0227
. [PMID: 20041785] - Ashley Galant, Kiani A J Arkus, Chloe Zubieta, Rebecca E Cahoon, Joseph M Jez. Structural basis for evolution of product diversity in soybean glutathione biosynthesis.
The Plant cell.
2009 Nov; 21(11):3450-8. doi:
10.1105/tpc.109.071183
. [PMID: 19948790] - Juan Sobrino-Plata, Cristina Ortega-Villasante, M Laura Flores-Cáceres, Carolina Escobar, Francisca F Del Campo, Luis E Hernández. Differential alterations of antioxidant defenses as bioindicators of mercury and cadmium toxicity in alfalfa.
Chemosphere.
2009 Nov; 77(7):946-54. doi:
10.1016/j.chemosphere.2009.08.007
. [PMID: 19732935] - Rajat Singh, Yongjun Wang, Jörn M Schattenberg, Youqing Xiang, Mark J Czaja. Chronic oxidative stress sensitizes hepatocytes to death from 4-hydroxynonenal by JNK/c-Jun overactivation.
American journal of physiology. Gastrointestinal and liver physiology.
2009 Nov; 297(5):G907-17. doi:
10.1152/ajpgi.00151.2009
. [PMID: 20501438] - Lu Tang, Fan Chen, Limin Yang, Qiuquan Wang. The determination of low-molecular-mass thiols with 4-(hydroxymercuric)benzoic acid as a tag using HPLC coupled online with UV/HCOOH-induced cold vapor generation AFS.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2009 Oct; 877(28):3428-33. doi:
10.1016/j.jchromb.2009.05.053
. [PMID: 19524490]