Alpha-ketobutyrate (BioDeep_00000002861)
Secondary id: BioDeep_00000400465
natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite BioNovoGene_Lab2019
代谢物信息卡片
化学式: C4H6O3 (102.0316926)
中文名称: 2-丁酮酸, 2-酮丁酸, 2-酮丁酸, 2-酮丁酸, 2-酮丁酸
谱图信息:
最多检出来源 Homo sapiens(blood) 0.53%
Last reviewed on 2024-09-13.
Cite this Page
Alpha-ketobutyrate. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/alpha-ketobutyrate (retrieved
2024-11-05) (BioDeep RN: BioDeep_00000002861). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C(=O)(C(=O)O)CC
InChI: InChI=1S/C4H6O3/c1-2-3(5)4(6)7/h2H2,1H3,(H,6,7)
描述信息
3-methyl pyruvic acid, also known as alpha-ketobutyric acid or 2-oxobutyric acid, belongs to short-chain keto acids and derivatives class of compounds. Those are keto acids with an alkyl chain the contains less than 6 carbon atoms. Thus, 3-methyl pyruvic acid is considered to be a fatty acid lipid molecule. 3-methyl pyruvic acid is soluble (in water) and a weakly acidic compound (based on its pKa). 3-methyl pyruvic acid can be found in a number of food items such as pepper (c. baccatum), triticale, european plum, and black walnut, which makes 3-methyl pyruvic acid a potential biomarker for the consumption of these food products. 3-methyl pyruvic acid can be found primarily in blood, cerebrospinal fluid (CSF), saliva, and urine. 3-methyl pyruvic acid exists in all living species, ranging from bacteria to humans. In humans, 3-methyl pyruvic acid is involved in several metabolic pathways, some of which include methionine metabolism, homocysteine degradation, threonine and 2-oxobutanoate degradation, and propanoate metabolism. 3-methyl pyruvic acid is also involved in several metabolic disorders, some of which include dimethylglycine dehydrogenase deficiency, methylenetetrahydrofolate reductase deficiency (MTHFRD), s-adenosylhomocysteine (SAH) hydrolase deficiency, and hyperglycinemia, non-ketotic.
2-Ketobutyric acid, also known as alpha-ketobutyrate or 2-oxobutyrate, belongs to the class of organic compounds known as short-chain keto acids and derivatives. These are keto acids with an alkyl chain the contains less than 6 carbon atoms. 2-Ketobutyric acid is a substance that is involved in the metabolism of many amino acids (glycine, methionine, valine, leucine, serine, threonine, isoleucine) as well as propanoate metabolism and C-5 branched dibasic acid metabolism. It is also one of the degradation products of threonine. It can be converted into propionyl-CoA (and subsequently methylmalonyl CoA, which can be converted into succinyl CoA, a citric acid cycle intermediate), and thus enter the citric acid cycle. More specifically, 2-ketobutyric acid is a product of the lysis of cystathionine.
2-Oxobutanoic acid is a product in the enzymatic cleavage of cystathionine.
同义名列表
46 个代谢物同义名
alpha-Ketobutyric acid, sodium salt; alpha-Keto-N-butyric acid; alpha-oxo-N-Butyric acid; alpha-Ketobutyric acid; 3-methyl pyruvic acid; alpha-Oxobutyric acid; Propionyl-formic acid; alpha-Ketobutric acid; a-Keto-N-butyric acid; alpha-Keto-N-butyrate; Sodium 2-Oxobutyrate; Α-oxo-N-butyric acid; 3-Methylpyruvic acid; alpha-oxo-N-Butyrate; 2-oxo-N-Butyric acid; a-oxo-N-Butyric acid; 2-Ketobutanoic acid; 2-oxo-butanoic acid; Methyl-pyruvic acid; Α-ketobutyric acid; 2-Ketobutyric acid; 2-oxobutanoic acid; 2-oxo-Butyric acid; a-Ketobutyric acid; alpha-Ketobutyrate; 2-Oxobutyric acid; a-Oxobutyric acid; a-Keto-N-butyrate; Propionyl-formate; 3-Methyl pyruvate; alpha-Oxobutyrate; 3-Methylpyruvate; a-oxo-N-Butyrate; 2-oxo-N-Butyrate; Α-oxo-N-butyrate; 2-Ketobutanoate; Methyl-pyruvate; 2-oxo-Butanoate; 2-Ketobutyrate; Α-ketobutyrate; a-Ketobutyrate; 2-Oxobutanoate; 2-oxo-Butyrate; 2-Oxobutyrate; a-Oxobutyrate; FA 4:1;O
数据库引用编号
28 个数据库交叉引用编号
- ChEBI: CHEBI:30831
- KEGG: C00109
- PubChem: 58
- HMDB: HMDB0000005
- Metlin: METLIN481
- DrugBank: DB04553
- ChEMBL: CHEMBL171246
- Wikipedia: Alpha-Ketobutyric_acid
- LipidMAPS: LMFA01060002
- MetaCyc: 2-OXOBUTANOATE
- KNApSAcK: C00019675
- foodb: FDB030356
- chemspider: 57
- CAS: 600-18-0
- MoNA: PR100863
- MoNA: PS101801
- MoNA: PS062301
- MoNA: PS062302
- MoNA: PS101807
- PMhub: MS000006705
- ChEBI: CHEBI:16763
- PDB-CCD: 2KT
- 3DMET: B00028
- NIKKAJI: J2.726J
- RefMet: 3-Methyl pyruvic acid
- medchemexpress: HY-W007926
- LOTUS: LTS0020159
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-439
分类词条
相关代谢途径
Reactome(10)
- Metabolism
- Amino acid and derivative metabolism
- Mycobacterium tuberculosis biological processes
- Sulfur compound metabolism
- Selenoamino acid metabolism
- Metabolism of ingested SeMet, Sec, MeSec into H2Se
- Sulfur amino acid metabolism
- Cysteine formation from homocysteine
- Degradation of cysteine and homocysteine
- Threonine catabolism
PlantCyc(0)
代谢反应
541 个相关的代谢反应过程信息。
Reactome(107)
- Mycobacterium tuberculosis biological processes:
CYSTA + H2O ⟶ 2OBUTA + L-Cys + ammonia
- Sulfur compound metabolism:
CYSTA + H2O ⟶ 2OBUTA + L-Cys + ammonia
- Sulfur amino acid metabolism:
CYSTA + H2O ⟶ 2OBUTA + L-Cys + ammonia
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Selenoamino acid metabolism:
H2O + SeMet ⟶ 2OBUTA + MeSeH + ammonia
- Metabolism of ingested SeMet, Sec, MeSec into H2Se:
H2O + SeMet ⟶ 2OBUTA + MeSeH + ammonia
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Cysteine formation from homocysteine:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Cysteine formation from homocysteine:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Cysteine formation from homocysteine:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Cysteine formation from homocysteine:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Cysteine formation from homocysteine:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Cysteine formation from homocysteine:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Cysteine formation from homocysteine:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Cysteine formation from homocysteine:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Cysteine formation from homocysteine:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Cysteine formation from homocysteine:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Cysteine formation from homocysteine:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Cysteine formation from homocysteine:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Metabolism:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Amino acid and derivative metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Cysteine formation from homocysteine:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Amino acid and derivative metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Cysteine formation from homocysteine:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Sulfur amino acid metabolism:
MTAD + Pi ⟶ Ade + MTRIBP
- Cysteine formation from homocysteine:
HCYS + Ser ⟶ H2O + L-Cystathionine
- Cysteine formation from homocysteine:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Cysteine formation from homocysteine:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Threonine catabolism:
2AA ⟶ 2OBUTA + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Threonine catabolism:
2AA ⟶ 2OBUTA + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Threonine catabolism:
2AA ⟶ 2OBUTA + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Threonine catabolism:
2AA ⟶ 2OBUTA + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Threonine catabolism:
2AA ⟶ 2OBUTA + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Threonine catabolism:
2AA ⟶ 2OBUTA + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Threonine catabolism:
2AA ⟶ 2OBUTA + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Threonine catabolism:
2AA ⟶ 2OBUTA + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Threonine catabolism:
2AA ⟶ 2OBUTA + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Threonine catabolism:
2AA ⟶ 2OBUTA + ammonia
- Threonine catabolism:
2AA ⟶ 2OBUTA + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Threonine catabolism:
2AA ⟶ 2OBUTA + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Threonine catabolism:
L-Thr ⟶ 2AA + H2O
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Threonine catabolism:
2AA ⟶ 2OBUTA + ammonia
- Degradation of cysteine and homocysteine:
GSH + H+ + S2O3(2-) ⟶ GSSG + H2S + sulfite
- Threonine catabolism:
2AA ⟶ 2OBUTA + ammonia
- Threonine catabolism:
2AA ⟶ 2OBUTA + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Threonine catabolism:
L-Thr ⟶ 2AA + H2O
BioCyc(4)
- superpathway of leucine, valine, and isoleucine biosynthesis:
L-threonine ⟶ 2-oxobutanoate + ammonia
- isoleucine biosynthesis:
L-threonine ⟶ 2-oxobutanoate + ammonia
- threonine degradation:
2-oxobutanoate + ammonia + succinate ⟶ H2O + O-succinyl-L-homoserine
- cysteine and homocysteine interconversion:
H2O + cystathionine ⟶ 2-oxobutanoate + L-cysteine + ammonia
WikiPathways(0)
Plant Reactome(324)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
2OBUTA + PYR ⟶ 2-aceto-2-hydroxy-butyrate + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid biosynthesis:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
2OBUTA + PYR ⟶ 2-aceto-2-hydroxy-butyrate + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid biosynthesis:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
2OBUTA + PYR ⟶ 2-aceto-2-hydroxy-butyrate + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Amino acid metabolism:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Amino acid biosynthesis:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid biosynthesis:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
INOH(4)
- Glycine and Serine metabolism ( Glycine and Serine metabolism ):
Guanidino-acetic acid + S-Adenosyl-L-methionine ⟶ Creatine + S-Adenosyl-L-homocysteine
- Methionine and Cysteine metabolism ( Methionine and Cysteine metabolism ):
H2O + L-Cystathionine ⟶ 2-Oxo-butanoic acid + L-Cysteine + NH3
- Propanoate metabolism ( Propanoate metabolism ):
ATP + CoA + Propanoic acid ⟶ AMP + Propanoyl-CoA + Pyrophosphate
- NAD+ + 2-Hydroxy-butanoic acid = NADH + 2-Oxo-butanoic acid ( Propanoate metabolism ):
2-Hydroxy-butanoic acid + NAD+ ⟶ 2-Oxo-butanoic acid + NADH
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(102)
- Isoleucine Biosynthesis:
2-iminobutanoate + Hydrogen Ion + Water ⟶ 2-Ketobutyric acid + Ammonium
- Isoleucine Biosynthesis:
2-iminobutanoate + Hydrogen Ion + Water ⟶ 2-Ketobutyric acid + Ammonium
- Isoleucine Biosynthesis:
2-iminobutanoate + Hydrogen Ion + Water ⟶ 2-Ketobutyric acid + Ammonium
- Isoleucine Biosynthesis:
2-Ketobutyric acid + Hydrogen Ion + Pyruvic acid ⟶ (S)-2-Aceto-2-hydroxybutanoic acid + Carbon dioxide
- Selenocompound Metabolism:
Selenomethionine + Water ⟶ 2-Ketobutyric acid + Ammonia + methylselenol
- Methionine Metabolism and Salvage:
2-Oxo-4-methylthiobutanoic acid + L-Phenylalanine ⟶ 2-Ketobutyric acid + L-Methionine
- Propanoate Metabolism:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Threonine and 2-Oxobutanoate Degradation:
L-Threonine ⟶ 2-Ketobutyric acid + Ammonia
- Malonic Aciduria:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Methylmalonic Aciduria Due to Cobalamin-Related Disorders:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Malonyl-CoA Decarboxylase Deficiency:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Propanoate Metabolism:
2-iminobutanoate + Hydrogen Ion + Water ⟶ 2-Ketobutyric acid + Ammonium
- Propanoate Metabolism:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Threonine and 2-Oxobutanoate Degradation:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Malonic Aciduria:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Methylmalonic Aciduria Due to Cobalamin-Related Disorders:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Malonyl-CoA Decarboxylase Deficiency:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Propanoate Metabolism:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Threonine and 2-Oxobutanoate Degradation:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Propanoate Metabolism:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Threonine and 2-Oxobutanoate Degradation:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Propanoate Metabolism:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Threonine and 2-Oxobutanoate Degradation:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Propanoate Metabolism:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Threonine and 2-Oxobutanoate Degradation:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Malonic Aciduria:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Methylmalonic Aciduria Due to Cobalamin-Related Disorders:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Malonyl-CoA Decarboxylase Deficiency:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Propanoate Metabolism:
2-Ketobutyric acid + Coenzyme A ⟶ Formic acid + Propionyl-CoA
- Cysteine Metabolism:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + Ammonium + L-Cysteine
- Sulfur Metabolism:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + Ammonium + L-Cysteine
- Methionine Metabolism:
2-iminobutanoate + Hydrogen Ion + Water ⟶ 2-Ketobutyric acid + Ammonium
- Threonine Metabolism:
2-iminobutanoate + Hydrogen Ion + Water ⟶ 2-Ketobutyric acid + Ammonium
- Selenoamino Acid Metabolism:
Selenocystathionine + Water ⟶ 2-Ketobutyric acid + Ammonia + Selenocysteine
- Selenoamino Acid Metabolism:
Selenocystathionine + Water ⟶ 2-Ketobutyric acid + Ammonia + Selenocysteine
- Selenoamino Acid Metabolism:
Selenocystathionine + Water ⟶ 2-Ketobutyric acid + Ammonia + Selenocysteine
- Selenoamino Acid Metabolism:
Selenocystathionine + Water ⟶ 2-Ketobutyric acid + Ammonia + Selenocysteine
- Selenoamino Acid Metabolism:
Selenocystathionine + Water ⟶ 2-Ketobutyric acid + Ammonia + Selenocysteine
- Selenoamino Acid Metabolism:
Selenocystathionine + Water ⟶ 2-Ketobutyric acid + Ammonia + Selenocysteine
- Glycine and Serine Metabolism:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Methionine Metabolism:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Homocysteine Degradation:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + Ammonia + L-Cysteine
- Cystathionine beta-Synthase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Hypermethioninemia:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- S-Adenosylhomocysteine (SAH) Hydrolase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Glycine N-Methyltransferase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Methylenetetrahydrofolate Reductase Deficiency (MTHFRD):
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Methionine Adenosyltransferase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Dimethylglycine Dehydrogenase Deficiency:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Dihydropyrimidine Dehydrogenase Deficiency (DHPD):
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Sarcosinemia:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Non-Ketotic Hyperglycinemia:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Dimethylglycine Dehydrogenase Deficiency:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Hyperglycinemia, Non-Ketotic:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- gamma-Cystathionase Deficiency (CTH):
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + Ammonia + L-Cysteine
- Homocystinuria, Cystathionine beta-Synthase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + Ammonia + L-Cysteine
- Homocystinuria-Megaloblastic Anemia Due to Defect in Cobalamin Metabolism, cblG Complementation Type:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- 3-Phosphoglycerate Dehydrogenase Deficiency:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Glycine and Serine Metabolism:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Homocysteine Degradation:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + Ammonia + L-Cysteine
- Methionine Metabolism:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- 3-Phosphoglycerate Dehydrogenase Deficiency:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Cystathionine beta-Synthase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Dihydropyrimidine Dehydrogenase Deficiency (DHPD):
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Dimethylglycine Dehydrogenase Deficiency:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Glycine N-Methyltransferase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Hypermethioninemia:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Methionine Adenosyltransferase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Sarcosinemia:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- S-Adenosylhomocysteine (SAH) Hydrolase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Non-Ketotic Hyperglycinemia:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Hyperglycinemia, Non-Ketotic:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- gamma-Cystathionase Deficiency (CTH):
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + Ammonia + L-Cysteine
- Homocystinuria, Cystathionine beta-Synthase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + Ammonia + L-Cysteine
- Homocystinuria-Megaloblastic Anemia Due to Defect in Cobalamin Metabolism, cblG Complementation Type:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- 3-Phosphoglycerate Dehydrogenase Deficiency:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Homocysteine Degradation:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + Ammonia + L-Cysteine
- Glycine and Serine Metabolism:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Methionine Metabolism:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Homocysteine Degradation:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + Ammonia + L-Cysteine
- Glycine and Serine Metabolism:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Methionine Metabolism:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Homocysteine Degradation:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + Ammonia + L-Cysteine
- Glycine and Serine Metabolism:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Methionine Metabolism:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Homocysteine Degradation:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + Ammonia + L-Cysteine
- Glycine and Serine Metabolism:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Methionine Metabolism:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Cystathionine beta-Synthase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Dihydropyrimidine Dehydrogenase Deficiency (DHPD):
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Dimethylglycine Dehydrogenase Deficiency:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Glycine N-Methyltransferase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Hypermethioninemia:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Methionine Adenosyltransferase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Sarcosinemia:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- S-Adenosylhomocysteine (SAH) Hydrolase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Non-Ketotic Hyperglycinemia:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Hyperglycinemia, Non-Ketotic:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- gamma-Cystathionase Deficiency (CTH):
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + Ammonia + L-Cysteine
- Homocystinuria, Cystathionine beta-Synthase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + Ammonia + L-Cysteine
- Homocystinuria-Megaloblastic Anemia Due to Defect in Cobalamin Metabolism, cblG Complementation Type:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- C5-Branched Dibasic Acid Metabolism:
D-Erythro-3-Methylmalate + NAD ⟶ 2-Ketobutyric acid + Carbon dioxide + Hydrogen Ion + NADH
PharmGKB(0)
30 个相关的物种来源信息
- 2 - Bacteria: LTS0020159
- 7711 - Chordata: LTS0020159
- 543 - Enterobacteriaceae: LTS0020159
- 561 - Escherichia: LTS0020159
- 562 - Escherichia coli: LTS0020159
- 3039 - Euglena gracilis: 10.3389/FBIOE.2021.662655
- 33682 - Euglenozoa: LTS0020159
- 2759 - Eukaryota: LTS0020159
- 1236 - Gammaproteobacteria: LTS0020159
- 9604 - Hominidae: LTS0020159
- 9605 - Homo: LTS0020159
- 9606 - Homo sapiens:
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S11306-012-0464-Y
- 9606 - Homo sapiens: LTS0020159
- 5653 - Kinetoplastea: LTS0020159
- 3398 - Magnoliopsida: LTS0020159
- 40674 - Mammalia: LTS0020159
- 33208 - Metazoa: LTS0020159
- 4070 - Solanaceae: LTS0020159
- 4107 - Solanum: LTS0020159
- 4081 - Solanum lycopersicum: 10.1038/SDATA.2014.29
- 4081 - Solanum lycopersicum: LTS0020159
- 35493 - Streptophyta: LTS0020159
- 58023 - Tracheophyta: LTS0020159
- 5690 - Trypanosoma: LTS0020159
- 5691 - Trypanosoma brucei: 10.1371/JOURNAL.PNTD.0001618
- 5691 - Trypanosoma brucei: LTS0020159
- 5654 - Trypanosomatidae: LTS0020159
- 33090 - Viridiplantae: LTS0020159
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Fangfang Chen, Yu-Pei Chen, Hongtan Wu, Ya Li, Shudi Zhang, Jincheng Ke, Jeng-Yuan Yao. Characterization of tea (Camellia sinensis L.) flower extract and insights into its antifungal susceptibilities of Aspergillus flavus.
BMC complementary medicine and therapies.
2023 Aug; 23(1):286. doi:
10.1186/s12906-023-04122-5
. [PMID: 37580785] - Charles Ar Cotton, Iria Bernhardsgrütter, Hai He, Simon Burgener, Luca Schulz, Nicole Paczia, Beau Dronsella, Alexander Erban, Stepan Toman, Marian Dempfle, Alberto De Maria, Joachim Kopka, Steffen N Lindner, Tobias J Erb, Arren Bar-Even. Underground isoleucine biosynthesis pathways in E. coli.
eLife.
2020 08; 9(?):. doi:
10.7554/elife.54207
. [PMID: 32831171] - Cornelius von Morze, Robert A Bok, Michael A Ohliger, Zihan Zhu, Daniel B Vigneron, John Kurhanewicz. Hyperpolarized [(13)C]ketobutyrate, a molecular analog of pyruvate with modified specificity for LDH isoforms.
Magnetic resonance in medicine.
2016 May; 75(5):1894-900. doi:
10.1002/mrm.25716
. [PMID: 26059096] - Muhammad Zafar-Ul-Hye, Hafiz Muhammad Farooq, Mubshar Hussain. Bacteria in combination with fertilizers promote root and shoot growth of maize in saline-sodic soil.
Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology].
2015 Mar; 46(1):97-102. doi:
10.1590/s1517-838220131135
. [PMID: 26221093] - Thomas D Niehaus, Thuy N D Nguyen, Satinder K Gidda, Mona ElBadawi-Sidhu, Jennifer A Lambrecht, Donald R McCarty, Diana M Downs, Arthur J L Cooper, Oliver Fiehn, Robert T Mullen, Andrew D Hanson. Arabidopsis and maize RidA proteins preempt reactive enamine/imine damage to branched-chain amino acid biosynthesis in plastids.
The Plant cell.
2014 Jul; 26(7):3010-22. doi:
10.1105/tpc.114.126854
. [PMID: 25070638] - Kenneth N Maclean, Lori S Greiner, Jeffrey R Evans, Sudesh K Sood, Sarka Lhotak, Neil E Markham, Sally P Stabler, Robert H Allen, Richard C Austin, Vivek Balasubramaniam, Hua Jiang. Cystathionine protects against endoplasmic reticulum stress-induced lipid accumulation, tissue injury, and apoptotic cell death.
The Journal of biological chemistry.
2012 Sep; 287(38):31994-2005. doi:
10.1074/jbc.m112.355172
. [PMID: 22854956] - Chaitanya Kumar Jha, Kannepalli Annapurna, Meenu Saraf. Isolation of Rhizobacteria from Jatropha curcas and characterization of produced ACC deaminase.
Journal of basic microbiology.
2012 Jun; 52(3):285-95. doi:
10.1002/jobm.201100113
. [PMID: 21953604] - Lay Ching Chai, Boon Hong Kong, Omar Ismail Elemfareji, Kwai Lin Thong. Variable carbon catabolism among Salmonella enterica serovar Typhi isolates.
PloS one.
2012; 7(5):e36201. doi:
10.1371/journal.pone.0036201
. [PMID: 22662115] - Isabel Bondia-Pons, Emilia Nordlund, Ismo Mattila, Kati Katina, Anna-Marja Aura, Marjukka Kolehmainen, Matej Orešič, Hannu Mykkänen, Kaisa Poutanen. Postprandial differences in the plasma metabolome of healthy Finnish subjects after intake of a sourdough fermented endosperm rye bread versus white wheat bread.
Nutrition journal.
2011 Oct; 10(?):116. doi:
10.1186/1475-2891-10-116
. [PMID: 22011443] - Rc Venu, Mv Sreerekha, Kan Nobuta, André Beló, Yuese Ning, Gynheung An, Blake C Meyers, Guo-Liang Wang. Deep sequencing reveals the complex and coordinated transcriptional regulation of genes related to grain quality in rice cultivars.
BMC genomics.
2011 Apr; 12(?):190. doi:
10.1186/1471-2164-12-190
. [PMID: 21492454] - Youai Hao, Trevor C Charles, Bernard R Glick. ACC deaminase activity in avirulent Agrobacterium tumefaciens D3.
Canadian journal of microbiology.
2011 Apr; 57(4):278-86. doi:
10.1139/w11-006
. [PMID: 21491979] - Jan-Willem de Kraker, Jonathan Gershenzon. From amino acid to glucosinolate biosynthesis: protein sequence changes in the evolution of methylthioalkylmalate synthase in Arabidopsis.
The Plant cell.
2011 Jan; 23(1):38-53. doi:
10.1105/tpc.110.079269
. [PMID: 21205930] - Oliver Fiehn, W Timothy Garvey, John W Newman, Kerry H Lok, Charles L Hoppel, Sean H Adams. Plasma metabolomic profiles reflective of glucose homeostasis in non-diabetic and type 2 diabetic obese African-American women.
PloS one.
2010 Dec; 5(12):e15234. doi:
10.1371/journal.pone.0015234
. [PMID: 21170321] - Kenneth N Maclean, Jakub Sikora, Viktor Kožich, Hua Jiang, Lori S Greiner, Eva Kraus, Jakub Krijt, Linda S Crnic, Robert H Allen, Sally P Stabler, Milan Elleder, Jan P Kraus. Cystathionine beta-synthase null homocystinuric mice fail to exhibit altered hemostasis or lowering of plasma homocysteine in response to betaine treatment.
Molecular genetics and metabolism.
2010 Oct; 101(2-3):163-71. doi:
10.1016/j.ymgme.2010.06.007
. [PMID: 20638882] - Davoud Farajzadeh, Naser Aliasgharzad, Nemat Sokhandan Bashir, Bagher Yakhchali. Cloning and characterization of a plasmid encoded ACC deaminase from an indigenous Pseudomonas fluorescens FY32.
Current microbiology.
2010 Jul; 61(1):37-43. doi:
10.1007/s00284-009-9573-x
. [PMID: 20049599] - Walter E Gall, Kirk Beebe, Kay A Lawton, Klaus-Peter Adam, Matthew W Mitchell, Pamela J Nakhle, John A Ryals, Michael V Milburn, Monica Nannipieri, Stefania Camastra, Andrea Natali, Ele Ferrannini. alpha-hydroxybutyrate is an early biomarker of insulin resistance and glucose intolerance in a nondiabetic population.
PloS one.
2010 May; 5(5):e10883. doi:
10.1371/journal.pone.0010883
. [PMID: 20526369] - Seralathan Kamala-Kannan, Kui-Jae Lee, Seung-Moon Park, Jong-Chan Chae, Bong-Sik Yun, Yong Hoon Lee, Yool-Jin Park, Byung-Taek Oh. Characterization of ACC deaminase gene in Pseudomonas entomophila strain PS-PJH isolated from the rhizosphere soil.
Journal of basic microbiology.
2010 Apr; 50(2):200-5. doi:
10.1002/jobm.200900171
. [PMID: 20082369] - Yves A Millet, Cristian H Danna, Nicole K Clay, Wisuwat Songnuan, Matthew D Simon, Danièle Werck-Reichhart, Frederick M Ausubel. Innate immune responses activated in Arabidopsis roots by microbe-associated molecular patterns.
The Plant cell.
2010 Mar; 22(3):973-90. doi:
10.1105/tpc.109.069658
. [PMID: 20348432] - ". Genome sequence of the pea aphid Acyrthosiphon pisum.
PLoS biology.
2010 Feb; 8(2):e1000313. doi:
10.1371/journal.pbio.1000313
. [PMID: 20186266] - Bing Wu, Baichen Zhang, Xueyang Feng, Jacob R Rubens, Rick Huang, Leslie M Hicks, Himadri B Pakrasi, Yinjie J Tang. Alternative isoleucine synthesis pathway in cyanobacterial species.
Microbiology (Reading, England).
2010 Feb; 156(Pt 2):596-602. doi:
10.1099/mic.0.031799-0
. [PMID: 19875435] - Suryadevara S Rao, Lewamy Mamadou, Matt McConnell, Raghuveer Polisetty, Prachuab Kwanyuen, David Hildebrand. Non-antibiotic selection systems for soybean somatic embryos: the lysine analog aminoethyl-cysteine as a selection agent.
BMC biotechnology.
2009 Nov; 9(?):94. doi:
10.1186/1472-6750-9-94
. [PMID: 19922622] - Tanja Knill, Michael Reichelt, Christian Paetz, Jonathan Gershenzon, Stefan Binder. Arabidopsis thaliana encodes a bacterial-type heterodimeric isopropylmalate isomerase involved in both Leu biosynthesis and the Met chain elongation pathway of glucosinolate formation.
Plant molecular biology.
2009 Oct; 71(3):227-39. doi:
10.1007/s11103-009-9519-5
. [PMID: 19597944] - Vijay Joshi, Georg Jander. Arabidopsis methionine gamma-lyase is regulated according to isoleucine biosynthesis needs but plays a subordinate role to threonine deaminase.
Plant physiology.
2009 Sep; 151(1):367-78. doi:
10.1104/pp.109.138651
. [PMID: 19571310] - T Nguyen, A-M Drotar, R K Monson, R Fall. A high affinity pyruvate decarboxylase is present in cottonwood leaf veins and petioles: a second source of leaf acetaldehyde emission?.
Phytochemistry.
2009 Jul; 70(10):1217-21. doi:
10.1016/j.phytochem.2009.07.015
. [PMID: 19698964] - D T Loots. Abnormal tricarboxylic acid cycle metabolites in isovaleric acidaemia.
Journal of inherited metabolic disease.
2009 Jun; 32(3):403-11. doi:
10.1007/s10545-009-1071-6
. [PMID: 19343532] - Hadar Less, Gad Galili. Coordinations between gene modules control the operation of plant amino acid metabolic networks.
BMC systems biology.
2009 Jan; 3(?):14. doi:
10.1186/1752-0509-3-14
. [PMID: 19171064] - Gilles Curien, Olivier Bastien, Mylène Robert-Genthon, Athel Cornish-Bowden, María Luz Cárdenas, Renaud Dumas. Understanding the regulation of aspartate metabolism using a model based on measured kinetic parameters.
Molecular systems biology.
2009; 5(?):271. doi:
10.1038/msb.2009.29
. [PMID: 19455135] - Biljana Todorovic, Bernard R Glick. The interconversion of ACC deaminase and D-cysteine desulfhydrase by directed mutagenesis.
Planta.
2008 Dec; 229(1):193-205. doi:
10.1007/s00425-008-0820-3
. [PMID: 18825405] - R Anandham, P Indira Gandhi, M Madhaiyan, Tongmin Sa. Potential plant growth promoting traits and bioacidulation of rock phosphate by thiosulfate oxidizing bacteria isolated from crop plants.
Journal of basic microbiology.
2008 Dec; 48(6):439-47. doi:
10.1002/jobm.200700380
. [PMID: 18785656] - Hoang Hoa Long, Dominik D Schmidt, Ian T Baldwin. Native bacterial endophytes promote host growth in a species-specific manner; phytohormone manipulations do not result in common growth responses.
PloS one.
2008 Jul; 3(7):e2702. doi:
10.1371/journal.pone.0002702
. [PMID: 18628963] - Melkam Kebede, Jenny Favaloro, Jenny E Gunton, D Ross Laybutt, Margaret Shaw, Nicole Wong, Barbara C Fam, Kathryn Aston-Mourney, Christian Rantzau, Anthony Zulli, Joseph Proietto, Sofianos Andrikopoulos. Fructose-1,6-bisphosphatase overexpression in pancreatic beta-cells results in reduced insulin secretion: a new mechanism for fat-induced impairment of beta-cell function.
Diabetes.
2008 Jul; 57(7):1887-95. doi:
10.2337/db07-1326
. [PMID: 18375435] - Baby Shaharoona, Muhammad Naveed, Muhammad Arshad, Zahir A Zahir. Fertilizer-dependent efficiency of Pseudomonads for improving growth, yield, and nutrient use efficiency of wheat (Triticum aestivum L.).
Applied microbiology and biotechnology.
2008 May; 79(1):147-55. doi:
10.1007/s00253-008-1419-0
. [PMID: 18340443] - Jinsong Wu, Lei Wang, Ian T Baldwin. Methyl jasmonate-elicited herbivore resistance: does MeJA function as a signal without being hydrolyzed to JA?.
Planta.
2008 Apr; 227(5):1161-8. doi:
10.1007/s00425-008-0690-8
. [PMID: 18214527] - Yeonyee Oh, Nicole Donofrio, Huaqin Pan, Sean Coughlan, Douglas E Brown, Shaowu Meng, Thomas Mitchell, Ralph A Dean. Transcriptome analysis reveals new insight into appressorium formation and function in the rice blast fungus Magnaporthe oryzae.
Genome biology.
2008; 9(5):R85. doi:
10.1186/gb-2008-9-5-r85
. [PMID: 18492280] - Youai Hao, Trevor C Charles, Bernard R Glick. ACC deaminase from plant growth-promoting bacteria affects crown gall development.
Canadian journal of microbiology.
2007 Dec; 53(12):1291-9. doi:
10.1139/w07-099
. [PMID: 18059561] - Muhammad Saleem, Muhammad Arshad, Sarfraz Hussain, Ahmad Saeed Bhatti. Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture.
Journal of industrial microbiology & biotechnology.
2007 Oct; 34(10):635-48. doi:
10.1007/s10295-007-0240-6
. [PMID: 17665234] - Muhammad Arshad, Muhammad Saleem, Sarfraz Hussain. Perspectives of bacterial ACC deaminase in phytoremediation.
Trends in biotechnology.
2007 Aug; 25(8):356-62. doi:
10.1016/j.tibtech.2007.05.005
. [PMID: 17573137] - Elinor Scott, Francisc Peter, Johan Sanders. Biomass in the manufacture of industrial products--the use of proteins and amino acids.
Applied microbiology and biotechnology.
2007 Jun; 75(4):751-62. doi:
10.1007/s00253-007-0932-x
. [PMID: 17387469] - Aymeric Goyer, Eva Collakova, Yair Shachar-Hill, Andrew D Hanson. Functional characterization of a methionine gamma-lyase in Arabidopsis and its implication in an alternative to the reverse trans-sulfuration pathway.
Plant & cell physiology.
2007 Feb; 48(2):232-42. doi:
10.1093/pcp/pcl055
. [PMID: 17169919] - Jin-Ho Kang, Lei Wang, Ashok Giri, Ian T Baldwin. Silencing threonine deaminase and JAR4 in Nicotiana attenuata impairs jasmonic acid-isoleucine-mediated defenses against Manduca sexta.
The Plant cell.
2006 Nov; 18(11):3303-20. doi:
10.1105/tpc.106.041103
. [PMID: 17085687] - B Shaharoona, M Arshad, Z A Zahir. Effect of plant growth promoting rhizobacteria containing ACC-deaminase on maize (Zea mays L.) growth under axenic conditions and on nodulation in mung bean (Vigna radiata L.).
Letters in applied microbiology.
2006 Feb; 42(2):155-9. doi:
10.1111/j.1472-765x.2005.01827.x
. [PMID: 16441381] - Monica Buzzai, Daniel E Bauer, Russell G Jones, Ralph J Deberardinis, Georgia Hatzivassiliou, Rebecca L Elstrom, Craig B Thompson. The glucose dependence of Akt-transformed cells can be reversed by pharmacologic activation of fatty acid beta-oxidation.
Oncogene.
2005 Jun; 24(26):4165-73. doi:
10.1038/sj.onc.1208622
. [PMID: 15806154] - Marit S Bratlie, Finn Drabløs. Bioinformatic mapping of AlkB homology domains in viruses.
BMC genomics.
2005 Jan; 6(?):1. doi:
10.1186/1471-2164-6-1
. [PMID: 15627404] - Joachim Schuster, Stefan Binder. The mitochondrial branched-chain aminotransferase (AtBCAT-1) is capable to initiate degradation of leucine, isoleucine and valine in almost all tissues in Arabidopsis thaliana.
Plant molecular biology.
2005 Jan; 57(2):241-54. doi:
10.1007/s11103-004-7533-1
. [PMID: 15821880] - Nikos Hontzeas, Jérôme Zoidakis, Bernard R Glick, Mahdi M Abu-Omar. Expression and characterization of 1-aminocyclopropane-1-carboxylate deaminase from the rhizobacterium Pseudomonas putida UW4: a key enzyme in bacterial plant growth promotion.
Biochimica et biophysica acta.
2004 Dec; 1703(1):11-9. doi:
10.1016/j.bbapap.2004.09.015
. [PMID: 15588698] - Aiko Fujino, Toyouki Ose, Min Yao, Tetsuo Tokiwano, Mamoru Honma, Nobuhisa Watanabe, Isao Tanaka. Structural and enzymatic properties of 1-aminocyclopropane-1-carboxylate deaminase homologue from Pyrococcus horikoshii.
Journal of molecular biology.
2004 Aug; 341(4):999-1013. doi:
10.1016/j.jmb.2004.06.062
. [PMID: 15328614] - A Ebmeier, L Allison, H Cerutti, T Clemente. Evaluation of the Escherichia coli threonine deaminase gene as a selectable marker for plant transformation.
Planta.
2004 Mar; 218(5):751-8. doi:
10.1007/s00425-003-1129-x
. [PMID: 14673650] - R Hirota, Y Kusumi, H Takahashi, S Nakagawa. Effect of alpha-ketobutyrate on microvascular thickness in the diabetic rat kidney.
Experimental and clinical endocrinology & diabetes : official journal, German Society of Endocrinology [and] German Diabetes Association.
2003 Dec; 111(8):499-504. doi:
10.1055/s-2003-44710
. [PMID: 14714272] - Christopher L Sprague, Adnan A Elfarra. Detection of carboxylic acids and inhibition of hippuric acid formation in rats treated with 3-butene-1,2-diol, a major metabolite of 1,3-butadiene.
Drug metabolism and disposition: the biological fate of chemicals.
2003 Aug; 31(8):986-92. doi:
10.1124/dmd.31.8.986
. [PMID: 12867486] - Wenbo Ma, Donna M Penrose, Bernard R Glick. Strategies used by rhizobia to lower plant ethylene levels and increase nodulation.
Canadian journal of microbiology.
2002 Nov; 48(11):947-54. doi:
10.1139/w02-100
. [PMID: 12556122] - F K Tavaria, S Dahl, F J Carballo, F X Malcata. Amino acid catabolism and generation of volatiles by lactic acid bacteria.
Journal of dairy science.
2002 Oct; 85(10):2462-70. doi:
10.3168/jds.s0022-0302(02)74328-2
. [PMID: 12416797] - Gary B Quistad, Daniel K Nomura, Susan E Sparks, Yoffi Segall, John E Casida. Cannabinoid CB1 receptor as a target for chlorpyrifos oxon and other organophosphorus pesticides.
Toxicology letters.
2002 Sep; 135(1-2):89-93. doi:
10.1016/s0378-4274(02)00251-5
. [PMID: 12243867] - B Houshaymi, T Tekleghiorghis, A J Wilsmore, R J Miles, R A J Nicholas. Investigations of outbreaks of contagious caprine pleuropneumonia in Eritrea.
Tropical animal health and production.
2002 Sep; 34(5):383-9. doi:
10.1023/a:1020087924433
. [PMID: 12379056] - Alasdair J Edgar. Molecular cloning and tissue distribution of mammalian L-threonine 3-dehydrogenases.
BMC biochemistry.
2002 Jun; 3(?):19. doi:
10.1186/1471-2091-3-19
. [PMID: 12097150] - S Ebara, S Toyoshima, T Matsumura, S Adachi, S Takenaka, R Yamaji, F Watanabe, K Miyatake, H Inui, Y Nakano. Cobalamin deficiency results in severe metabolic disorder of serine and threonine in rats.
Biochimica et biophysica acta.
2001 Dec; 1568(2):111-7. doi:
10.1016/s0304-4165(01)00207-0
. [PMID: 11750758] - Y Kakuta, T Igarashi, T Murakami, H Ito, H Matsui, M Honma. 1-Aminocyclopropane-1-carboxylate synthase of Penicillium citrinum: primary structure and expression in Escherichia coli and Saccharomyces cerevisiae.
Bioscience, biotechnology, and biochemistry.
2001 Jul; 65(7):1511-8. doi:
10.1271/bbb.65.1511
. [PMID: 11515533] - Y Y Chang, J E Cronan. Conversion of Escherichia coli pyruvate oxidase to an 'alpha-ketobutyrate oxidase'.
The Biochemical journal.
2000 Dec; 352 Pt 3(?):717-24. doi:
. [PMID: 11104678]
- J E Manning Fox, D Meredith, A P Halestrap. Characterisation of human monocarboxylate transporter 4 substantiates its role in lactic acid efflux from skeletal muscle.
The Journal of physiology.
2000 Dec; 529 Pt 2(?):285-93. doi:
10.1111/j.1469-7793.2000.00285.x
. [PMID: 11101640] - L Feng, J F Kirsch. L-Vinylglycine is an alternative substrate as well as a mechanism-based inhibitor of 1-aminocyclopropane-1-carboxylate synthase.
Biochemistry.
2000 Mar; 39(10):2436-44. doi:
10.1021/bi9922704
. [PMID: 10704193] - S Slater, T A Mitsky, K L Houmiel, M Hao, S E Reiser, N B Taylor, M Tran, H E Valentin, D J Rodriguez, D A Stone, S R Padgette, G Kishore, K J Gruys. Metabolic engineering of Arabidopsis and Brassica for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer production.
Nature biotechnology.
1999 Oct; 17(10):1011-6. doi:
10.1038/13711
. [PMID: 10504704] - A C Eschenlauer, S K Stoup, F Srienc, D A Somers. Production of heteropolymeric polyhydroxyalkanoate in Escherichia coli from a single carbon source.
International journal of biological macromolecules.
1996 Aug; 19(2):121-30. doi:
10.1016/0141-8130(96)01114-2
. [PMID: 8842775] - S Peldszus, P M Huck, S A Andrews. Determination of short-chain aliphatic, oxo- and hydroxy-acids in drinking water at low microgram per liter concentrations.
Journal of chromatography. A.
1996 Feb; 723(1):27-34. doi:
10.1016/0021-9673(95)00838-1
. [PMID: 8819819] - N Le Floc'h, C Obled, B Sève. In vivo threonine oxidation rate is dependent on threonine dietary supply in growing pigs fed low to adequate levels.
The Journal of nutrition.
1995 Oct; 125(10):2550-62. doi:
10.1093/jn/125.10.2550
. [PMID: 7562090] - S Chakrabarti, M A Malick. In vivo nephrotoxic action of an isomeric mixture of S-(1-phenyl-2-hydroxyethyl)glutathione and S-(2-phenyl-2-hydroxyethyl)glutathione in Fischer-344 rats.
Toxicology.
1991 Mar; 67(1):15-27. doi:
10.1016/0300-483x(91)90160-3
. [PMID: 1673268] - M I Gomes, W J Kim, M K Lively, H Amos. Heat-shock treatment lethal for mammalian cells deprived of glucose and glutamine: protection by alpha-keto acids.
Biochemical and biophysical research communications.
1985 Sep; 131(2):1013-9. doi:
10.1016/0006-291x(85)91340-3
. [PMID: 4052064] - W Yang, K S Roth. Defect in alpha-ketobutyrate metabolism: a new inborn error.
Clinica chimica acta; international journal of clinical chemistry.
1985 Jan; 145(2):173-82. doi:
10.1016/0009-8981(85)90284-0
. [PMID: 3918815] - R D Steele, H Weber, J I Patterson. Characterization of alpha-ketobutyrate metabolism in rat tissues: effects of dietary protein and fasting.
The Journal of nutrition.
1984 Apr; 114(4):701-10. doi:
10.1093/jn/114.4.701
. [PMID: 6716171] - N M Merkle, H Wiedeck, C Herfarth, A Grünert. [Immediate postoperative enteral tube feeding following resection of the large intestine. Experiences with a controlled clinical study].
Der Chirurg; Zeitschrift fur alle Gebiete der operativen Medizen.
1984 Apr; 55(4):267-74. doi:
NULL
. [PMID: 6426893] - M R Dessì, G Floris. [Oxidative deamination of beta-methylaspartic acid].
Bollettino della Societa italiana di biologia sperimentale.
1979 Jul; 55(12):1189-95. doi:
NULL
. [PMID: 553534] - D R Wybenga, F A Ibbott, D C Cannon. Determination of ionized calcium in serum that has been exposed to air.
Clinical chemistry.
1976 Jul; 22(7):1009-11. doi:
NULL
. [PMID: 6166] - S EICH, L R CERECEDO. Effects of certain thiamine analogs on the enzymatic decarboxylation of alpha-ketobutyric acid.
Archives of biochemistry and biophysics.
1955 Aug; 57(2):285-7. doi:
10.1016/0003-9861(55)90290-3
. [PMID: 13259644]