Cytidine (BioDeep_00000398587)
Main id: BioDeep_00000000364
natural product PANOMIX_OTCML-2023 BioNovoGene_Lab2019 Volatile Flavor Compounds
代谢物信息卡片
化学式: C9H13N3O5 (243.0855168)
中文名称: 胞嘧啶核苷, 胞苷
谱图信息:
最多检出来源 Homo sapiens(blood) 0.09%
分子结构信息
SMILES: C1=CN(C(=O)N=C1N)C2C(C(C(O2)CO)O)O
InChI: InChI=1S/C9H13N3O5/c10-5-1-2-12(9(16)11-5)8-7(15)6(14)4(3-13)17-8/h1-2,4,6-8,13-15H,3H2,(H2,10,11,16)
描述信息
MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; UHDGCWIWMRVCDJ_STSL_0155_Cytidine_8000fmol_180506_S2_LC02_MS02_107; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I.
MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I.
relative retention time with respect to 9-anthracene Carboxylic Acid is 0.054
relative retention time with respect to 9-anthracene Carboxylic Acid is 0.051
relative retention time with respect to 9-anthracene Carboxylic Acid is 0.053
Cytidine is a pyrimidine nucleoside and acts as a component of RNA. Cytidine is a precursor of uridine. Cytidine controls neuronal-glial glutamate cycling, affecting cerebral phospholipid metabolism, catecholamine synthesis, and mitochondrial function[1][2][3].
Cytidine is a pyrimidine nucleoside and acts as a component of RNA. Cytidine is a precursor of uridine. Cytidine controls neuronal-glial glutamate cycling, affecting cerebral phospholipid metabolism, catecholamine synthesis, and mitochondrial function[1][2][3].
Cytidine is a pyrimidine nucleoside and acts as a component of RNA. Cytidine is a precursor of uridine. Cytidine controls neuronal-glial glutamate cycling, affecting cerebral phospholipid metabolism, catecholamine synthesis, and mitochondrial function[1][2][3].
同义名列表
数据库引用编号
73 个数据库交叉引用编号
- ChEBI: CHEBI:17562
- KEGG: C00475
- PubChem: 6175
- DrugBank: DB02097
- ChEMBL: CHEMBL95606
- MeSH: Cytidine
- CAS: 65-46-3
- MoNA: Bruker_HCD_library000237
- MoNA: CCMSLIB00000479614
- MoNA: CCMSLIB00005464325
- MoNA: CCMSLIB00005464326
- MoNA: CCMSLIB00005720602
- MoNA: CCMSLIB00005720622
- MoNA: MoNA038562
- MoNA: MoNA037889
- MoNA: MoNA037174
- MoNA: MoNA036050
- MoNA: MoNA036051
- MoNA: MoNA036049
- MoNA: MoNA034075
- MoNA: MoNA034073
- MoNA: MoNA034074
- MoNA: MoNA032123
- MoNA: MoNA032121
- MoNA: MoNA032120
- MoNA: MoNA024300
- MoNA: MoNA024264
- MoNA: EMBL-MCF_spec208955
- MoNA: EMBL-MCF_spec208949
- MoNA: EMBL-MCF_spec208943
- MoNA: EMBL-MCF_spec208938
- MoNA: EMBL-MCF_spec208924
- MoNA: EMBL-MCF_spec22986
- MoNA: MoNA016854
- MoNA: MoNA016682
- MoNA: MoNA016587
- MoNA: VF-NPL-QTOF007248
- MoNA: VF-NPL-QTOF007247
- MoNA: VF-NPL-QTOF007246
- MoNA: MoNA010704
- MoNA: MoNA010703
- MoNA: MoNA010702
- MoNA: MoNA010701
- MoNA: MoNA010700
- MoNA: MoNA010699
- MoNA: MoNA001766
- MoNA: MoNA001765
- MoNA: MoNA001764
- MoNA: FiehnHILIC002655
- MoNA: FiehnHILIC001864
- MoNA: FiehnHILIC001138
- MoNA: FiehnHILIC000294
- MoNA: PT201880
- MoNA: PT101883
- MoNA: PT101880
- MoNA: BML81023
- MoNA: BML81022
- MoNA: BML81021
- MoNA: BML81020
- MoNA: BML01031
- MoNA: BML01023
- MoNA: BML01015
- MoNA: BML01007
- PubChem: 3758
- KNApSAcK: C00042440
- PDB-CCD: CTN
- 3DMET: B01256
- NIKKAJI: J4.837B
- RefMet: Cytidine
- medchemexpress: HY-B0158
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-13
- KNApSAcK: 17562
- LOTUS: LTS0075123
分类词条
相关代谢途径
Reactome(0)
BioCyc(14)
- salvage pathways of pyrimidine ribonucleotides
- superpathway of ribose and deoxyribose phosphate degradation
- (deoxy)ribose phosphate degradation
- pyrimidine ribonucleosides degradation I
- pyrimidine ribonucleosides degradation
- nucleoside and nucleotide degradation (archaea)
- superpathway of pyrimidine ribonucleosides salvage
- pyrimidine ribonucleosides salvage I
- pyrimidine ribonucleosides salvage II
- superpathway of pyrimidine ribonucleosides degradation
- UTP and CTP dephosphorylation I
- pyrimidine ribonucleosides degradation II
- salvage pathways of purine and pyrimidine nucleotides
- purine and pyrimidine metabolism
PlantCyc(4)
代谢反应
0 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
78 个相关的物种来源信息
- 654 - Aeromonas veronii: 10.3389/FCIMB.2020.00044
- 155619 - Agaricomycetes: LTS0075123
- 65355 - Albuginaceae: LTS0075123
- 65356 - Albugo: LTS0075123
- 65357 - Albugo candida: LTS0075123
- 3701 - Arabidopsis: LTS0075123
- 3702 - Arabidopsis thaliana: 10.1074/JBC.RA118.003351
- 3702 - Arabidopsis thaliana: LTS0075123
- 6656 - Arthropoda: LTS0075123
- 4890 - Ascomycota: LTS0075123
- 2 - Bacteria: LTS0075123
- 5204 - Basidiomycota: LTS0075123
- 5368 - Boletaceae: LTS0075123
- 5369 - Boletus: LTS0075123
- 3711 - Brassica rapa: 10.1016/S0031-9422(97)00362-2
- 3700 - Brassicaceae: LTS0075123
- 4071 - Capsicum: LTS0075123
- 4072 - Capsicum annuum: 10.1271/BBB.60482
- 4072 - Capsicum annuum: LTS0075123
- 114815 - Castanopsis: LTS0075123
- 167387 - Castanopsis fissa: 10.1016/J.PHYTOCHEM.2011.07.007
- 167387 - Castanopsis fissa: LTS0075123
- 7711 - Chordata: LTS0075123
- 30102 - Cicadellidae: LTS0075123
- 7227 - Drosophila melanogaster: 10.1038/S41467-019-11933-Z
- 543 - Enterobacteriaceae: LTS0075123
- 561 - Escherichia: LTS0075123
- 562 - Escherichia coli: LTS0075123
- 3039 - Euglena gracilis: 10.3389/FBIOE.2021.662655
- 33682 - Euglenozoa: LTS0075123
- 2759 - Eukaryota: LTS0075123
- 3503 - Fagaceae: LTS0075123
- 59070 - Fritillaria: LTS0075123
- 108546 - Fritillaria thunbergii: 10.1002/JSSC.200900866
- 108546 - Fritillaria thunbergii: LTS0075123
- 4751 - Fungi: LTS0075123
- 1236 - Gammaproteobacteria: LTS0075123
- 9604 - Hominidae: LTS0075123
- 9605 - Homo: LTS0075123
- 9606 - Homo sapiens:
- 9606 - Homo sapiens: 10.1038/NBT.2488
- 9606 - Homo sapiens: LTS0075123
- 50557 - Insecta: LTS0075123
- 5653 - Kinetoplastea: LTS0075123
- 4677 - Liliaceae: LTS0075123
- 4447 - Liliopsida: LTS0075123
- 3398 - Magnoliopsida: LTS0075123
- 40674 - Mammalia: LTS0075123
- 33208 - Metazoa: LTS0075123
- 43521 - Morinda: LTS0075123
- 43522 - Morinda citrifolia:
- 43522 - Morinda citrifolia: 10.1021/NP0495985
- 43522 - Morinda citrifolia: 10.1021/NP0495985.S001
- 43522 - Morinda citrifolia: LTS0075123
- 10066 - Muridae: LTS0075123
- 10088 - Mus: LTS0075123
- 10090 - Mus musculus: LTS0075123
- 10090 - Mus musculus: NA
- 4762 - Oomycota: LTS0075123
- 24966 - Rubiaceae: LTS0075123
- 4895 - Schizosaccharomyces: LTS0075123
- 4896 - Schizosaccharomyces pombe: 10.1039/C4MB00346B
- 4896 - Schizosaccharomyces pombe: LTS0075123
- 4894 - Schizosaccharomycetaceae: LTS0075123
- 147554 - Schizosaccharomycetes: LTS0075123
- 4070 - Solanaceae: LTS0075123
- 35493 - Streptophyta: LTS0075123
- 58023 - Tracheophyta: LTS0075123
- 5690 - Trypanosoma: LTS0075123
- 5691 - Trypanosoma brucei: 10.1371/JOURNAL.PNTD.0001618
- 5691 - Trypanosoma brucei: LTS0075123
- 5654 - Trypanosomatidae: LTS0075123
- 33090 - Viridiplantae: LTS0075123
- 29760 - Vitis vinifera: 10.1016/J.DIB.2020.106469
- 5385 - Xerocomus: LTS0075123
- 222706 - Xerocomus nigromaculatus: 10.1248/CPB.40.1313
- 222706 - Xerocomus nigromaculatus: LTS0075123
- 569774 - 金线莲: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Bei Zheng, Qinqin Zhao, Wenjuan Yang, Pinpin Feng, Chuanwei Xin, Yin Ying, Bo Yang, Bing Han, Jun Zhu, Meiling Zhang, Gonghua Li. Small-molecule antiviral treatments for COVID-19: A systematic review and network meta-analysis.
International journal of antimicrobial agents.
2024 Mar; 63(3):107096. doi:
10.1016/j.ijantimicag.2024.107096
. [PMID: 38244811] - Nagi M El-Shafai, Yasser S Mostafa, Mohamed S Ramadan, Ibrahim M El-Mehasseb. Enhancement efficiency delivery of antiviral Molnupiravir-drug via the loading with self-assembly nanoparticles of pycnogenol and cellulose which are decorated by zinc oxide nanoparticles for COVID-19 therapy.
Bioorganic chemistry.
2024 Feb; 143(?):107028. doi:
10.1016/j.bioorg.2023.107028
. [PMID: 38086240] - Elena Lesch, Maike Simone Stempel, Vanessa Dressnandt, Bastian Oldenkott, Volker Knoop, Mareike Schallenberg-Rüdinger. Conservation of the moss RNA editing factor PPR78 despite the loss of its known C-to-U editing sites is explained by a hidden extra target.
The Plant cell.
2023 Nov; ?(?):. doi:
10.1093/plcell/koad292
. [PMID: 38000897] - Chen Wang, Guangming Ma, Shanqi Zhang, Kunhong Zhao, Xiangyang Li. Study on the binding of ningnanmycin to the helicase of Tobamovirus virus.
Pesticide biochemistry and physiology.
2023 Aug; 194(?):105494. doi:
10.1016/j.pestbp.2023.105494
. [PMID: 37532353] - Wenlei Wang, Huijie Liu, Feifei Wang, Xiaoye Liu, Yu Sun, Jie Zhao, Changhua Zhu, Lijun Gan, Jinping Yu, Claus-Peter Witte, Mingjia Chen. N4-acetylation of cytidine in (m)RNA plays essential roles in plants.
The Plant cell.
2023 Jun; ?(?):. doi:
10.1093/plcell/koad189
. [PMID: 37367221] - Bin Li, Donghao Li, Linjun Cai, Qiting Zhou, Cong Liu, Jianzhong Lin, Yixing Li, Xiaoying Zhao, Li Li, Xuanming Liu, Chongsheng He. Transcriptome-wide profiling of RNA N4-cytidine acetylation in Arabidopsis thaliana and Oryza sativa.
Molecular plant.
2023 06; 16(6):1082-1098. doi:
10.1016/j.molp.2023.04.009
. [PMID: 37073130] - Kaixia Niu, Pengpeng Bai, Junyang Zhang, Xinchi Feng, Feng Qiu. Cytidine Alleviates Dyslipidemia and Modulates the Gut Microbiota Composition in ob/ob Mice.
Nutrients.
2023 Feb; 15(5):. doi:
10.3390/nu15051147
. [PMID: 36904146] - Wen Wen, Chen Chen, Jiake Tang, Chunyi Wang, Mengyun Zhou, Yongran Cheng, Xiang Zhou, Qi Wu, Xingwei Zhang, Zhanhui Feng, Mingwei Wang, Qin Mao. Efficacy and safety of three new oral antiviral treatment (molnupiravir, fluvoxamine and Paxlovid) for COVID-19:a meta-analysis.
Annals of medicine.
2022 12; 54(1):516-523. doi:
10.1080/07853890.2022.2034936
. [PMID: 35118917] - Muhammad Jawad Akbar Awan, Komal Pervaiz, Awais Rasheed, Imran Amin, Nasir A Saeed, Kanwarpal S Dhugga, Shahid Mansoor. Genome edited wheat- current advances for the second green revolution.
Biotechnology advances.
2022 11; 60(?):108006. doi:
10.1016/j.biotechadv.2022.108006
. [PMID: 35732256] - Husheem Michael, Vishal Srivastava, Loic Deblais, Joshua O Amimo, Juliet Chepngeno, Linda J Saif, Gireesh Rajashekara, Anastasia N Vlasova. The Combined Escherichia coli Nissle 1917 and Tryptophan Treatment Modulates Immune and Metabolome Responses to Human Rotavirus Infection in a Human Infant Fecal Microbiota-Transplanted Malnourished Gnotobiotic Pig Model.
mSphere.
2022 Oct; 7(5):e0027022. doi:
10.1128/msphere.00270-22
. [PMID: 36073800] - Elena Lesch, Maximilian T Schilling, Sarah Brenner, Yingying Yang, Oliver J Gruss, Volker Knoop, Mareike Schallenberg-Rüdinger. Plant mitochondrial RNA editing factors can perform targeted C-to-U editing of nuclear transcripts in human cells.
Nucleic acids research.
2022 09; 50(17):9966-9983. doi:
10.1093/nar/gkac752
. [PMID: 36107771] - Mizuho Ichinose, Masuyo Kawabata, Yumi Akaiwa, Yasuka Shimajiri, Izumi Nakamura, Takayuki Tamai, Takahiro Nakamura, Yusuke Yagi, Bernard Gutmann. U-to-C RNA editing by synthetic PPR-DYW proteins in bacteria and human culture cells.
Communications biology.
2022 09; 5(1):968. doi:
10.1038/s42003-022-03927-3
. [PMID: 36109586] - Mahmood Hassan Dalhat, Mohammed Razeeth Shait Mohammed, Hind Ali Alkhatabi, Mohd Rehan, Aamir Ahmad, Hani Choudhry, Mohammad Imran Khan. NAT10: An RNA cytidine transferase regulates fatty acid metabolism in cancer cells.
Clinical and translational medicine.
2022 09; 12(9):e1045. doi:
10.1002/ctm2.1045
. [PMID: 36149760] - Pal Maliga. Engineering the plastid and mitochondrial genomes of flowering plants.
Nature plants.
2022 09; 8(9):996-1006. doi:
10.1038/s41477-022-01227-6
. [PMID: 36038655] - Ayako Maeda, Sachi Takenaka, Tenghua Wang, Brody Frink, Toshiharu Shikanai, Mizuki Takenaka. DYW deaminase domain has a distinct preference for neighboring nucleotides of the target RNA editing sites.
The Plant journal : for cell and molecular biology.
2022 08; 111(3):756-767. doi:
10.1111/tpj.15850
. [PMID: 35652245] - Junhua Kong, Virginie Garcia, Enric Zehraoui, Linda Stammitti, Ghislaine Hilbert, Christel Renaud, Stéphane Maury, Alain Delaunay, Stéphanie Cluzet, Fatma Lecourieux, David Lecourieux, Emeline Teyssier, Philippe Gallusci. Zebularine, a DNA Methylation Inhibitor, Activates Anthocyanin Accumulation in Grapevine Cells.
Genes.
2022 07; 13(7):. doi:
10.3390/genes13071256
. [PMID: 35886036] - Kyle Rosenke, Atsushi Okumura, Matthew C Lewis, Friederike Feldmann, Kimberly Meade-White, W Forrest Bohler, Amanda Griffin, Rebecca Rosenke, Carl Shaia, Michael A Jarvis, Heinz Feldmann. Molnupiravir inhibits SARS-CoV-2 variants including Omicron in the hamster model.
JCI insight.
2022 Jul; 7(13):. doi:
10.1172/jci.insight.160108
. [PMID: 35579953] - Hardik Goswami, Adnan Alsumali, Yiling Jiang, Matthias Schindler, Elizabeth R Duke, Joshua Cohen, Andrew Briggs, Amy Puenpatom. Cost-Effectiveness Analysis of Molnupiravir Versus Best Supportive Care for the Treatment of Outpatient COVID-19 in Adults in the US.
PharmacoEconomics.
2022 Jul; 40(7):699-714. doi:
10.1007/s40273-022-01168-0
. [PMID: 35779197] - Prajakta Kulkarni, Sriram Padmanabhan. A novel property of hexokinase inhibition by Favipiravir and proposed advantages over Molnupiravir and 2 Deoxy D glucose in treating COVID-19.
Biotechnology letters.
2022 Jul; 44(7):831-843. doi:
10.1007/s10529-022-03259-6
. [PMID: 35608787] - Ryuta Uraki, Maki Kiso, Shun Iida, Masaki Imai, Emi Takashita, Makoto Kuroda, Peter J Halfmann, Samantha Loeber, Tadashi Maemura, Seiya Yamayoshi, Seiichiro Fujisaki, Zhongde Wang, Mutsumi Ito, Michiko Ujie, Kiyoko Iwatsuki-Horimoto, Yuri Furusawa, Ryan Wright, Zhenlu Chong, Seiya Ozono, Atsuhiro Yasuhara, Hiroshi Ueki, Yuko Sakai-Tagawa, Rong Li, Yanan Liu, Deanna Larson, Michiko Koga, Takeya Tsutsumi, Eisuke Adachi, Makoto Saito, Shinya Yamamoto, Masao Hagihara, Keiko Mitamura, Tetsuro Sato, Masayuki Hojo, Shin-Ichiro Hattori, Kenji Maeda, Riccardo Valdez, Moe Okuda, Jurika Murakami, Calvin Duong, Sucheta Godbole, Daniel C Douek, Ken Maeda, Shinji Watanabe, Aubree Gordon, Norio Ohmagari, Hiroshi Yotsuyanagi, Michael S Diamond, Hideki Hasegawa, Hiroaki Mitsuya, Tadaki Suzuki, Yoshihiro Kawaoka. Characterization and antiviral susceptibility of SARS-CoV-2 Omicron BA.2.
Nature.
2022 07; 607(7917):119-127. doi:
10.1038/s41586-022-04856-1
. [PMID: 35576972] - Sri Masyeni, Muhammad Iqhrammullah, Andri Frediansyah, Firzan Nainu, Trina Tallei, Talha Bin Emran, Youdiil Ophinni, Kuldeep Dhama, Harapan Harapan. Molnupiravir: A lethal mutagenic drug against rapidly mutating severe acute respiratory syndrome coronavirus 2-A narrative review.
Journal of medical virology.
2022 Jul; 94(7):3006-3016. doi:
10.1002/jmv.27730
. [PMID: 35315098] - Ashley Jia Wen Yip, Zheng Yao Low, Vincent T K Chow, Sunil K Lal. Repurposing Molnupiravir for COVID-19: The Mechanisms of Antiviral Activity.
Viruses.
2022 06; 14(6):. doi:
10.3390/v14061345
. [PMID: 35746815] - Hulda R Jonsdottir, Denise Siegrist, Thomas Julien, Blandine Padey, Mendy Bouveret, Olivier Terrier, Andres Pizzorno, Song Huang, Kirandeep Samby, Timothy N C Wells, Bernadett Boda, Manuel Rosa-Calatrava, Olivier B Engler, Samuel Constant. Molnupiravir combined with different repurposed drugs further inhibits SARS-CoV-2 infection in human nasal epithelium in vitro.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2022 Jun; 150(?):113058. doi:
10.1016/j.biopha.2022.113058
. [PMID: 35658229] - Anmar Al-Taie, Fatma Rana Denkdemir, Zaineb Sharief, Ayse Seyma Buyuk, Semra Şardaş. The Long View on COVID-19 Theranostics and Oral Antivirals: Living with Endemic Disease and Lessons from Molnupiravir.
Omics : a journal of integrative biology.
2022 Jun; 26(6):324-328. doi:
10.1089/omi.2022.0045
. [PMID: 35580151] - Fatima Kayali, Marco Shiu Tsun Leung, Wilson Wong, Kara Pittendrigh Morgan, Amer Harky. What impact can molnupiravir have on the treatment of SARS-CoV-2 infection?.
Expert opinion on pharmacotherapy.
2022 06; 23(8):865-868. doi:
10.1080/14656566.2022.2057795
. [PMID: 35341442] - Tuba Reçber, Selin Seda Timur, Sevilay Erdoğan Kablan, Fatma Yalçın, Tutku Ceren Karabulut, R Neslihan Gürsoy, Hakan Eroğlu, Sedef Kır, Emirhan Nemutlu. A stability indicating RP-HPLC method for determination of the COVID-19 drug molnupiravir applied using nanoformulations in permeability studies.
Journal of pharmaceutical and biomedical analysis.
2022 May; 214(?):114693. doi:
10.1016/j.jpba.2022.114693
. [PMID: 35276385] - Wendong Jia, Chengzhen Hu, Yuqin Wang, Panke Zhang, Hong-Yuan Chen, Shuo Huang. A Nanopore Based Molnupiravir Sensor.
ACS sensors.
2022 05; 7(5):1564-1571. doi:
10.1021/acssensors.2c00447
. [PMID: 35427117] - Yuexiang Li, Miaomiao Liu, Yunzheng Yan, Zhuang Wang, Qingsong Dai, Xiaotong Yang, Xiaojia Guo, Wei Li, Xingjuan Chen, Ruiyuan Cao, Wu Zhong. Molnupiravir and Its Active Form, EIDD-1931, Show Potent Antiviral Activity against Enterovirus Infections In Vitro and In Vivo.
Viruses.
2022 05; 14(6):. doi:
10.3390/v14061142
. [PMID: 35746614] - K B Wallace, J A Bjork. Molnupiravir; molecular and functional descriptors of mitochondrial safety.
Toxicology and applied pharmacology.
2022 05; 442(?):116003. doi:
10.1016/j.taap.2022.116003
. [PMID: 35358570] - Andy Extance. Covid-19: What is the evidence for the antiviral molnupiravir?.
BMJ (Clinical research ed.).
2022 04; 377(?):o926. doi:
10.1136/bmj.o926
. [PMID: 35418477] - Yuan Bai, Mingwang Shen, Lei Zhang. Antiviral Efficacy of Molnupiravir for COVID-19 Treatment.
Viruses.
2022 04; 14(4):. doi:
10.3390/v14040763
. [PMID: 35458493] - Yasmine Ahmed Sharaf, Sami El Deeb, Adel Ehab Ibrahim, Ahmed Al-Harrasi, Rania Adel Sayed. Two Green Micellar HPLC and Mathematically Assisted UV Spectroscopic Methods for the Simultaneous Determination of Molnupiravir and Favipiravir as a Novel Combined COVID-19 Antiviral Regimen.
Molecules (Basel, Switzerland).
2022 Apr; 27(7):. doi:
10.3390/molecules27072330
. [PMID: 35408729] - David C Schultz, Robert M Johnson, Kasirajan Ayyanathan, Jesse Miller, Kanupriya Whig, Brinda Kamalia, Mark Dittmar, Stuart Weston, Holly L Hammond, Carly Dillen, Jeremy Ardanuy, Louis Taylor, Jae Seung Lee, Minghua Li, Emily Lee, Clarissa Shoffler, Christopher Petucci, Samuel Constant, Marc Ferrer, Christoph A Thaiss, Matthew B Frieman, Sara Cherry. Pyrimidine inhibitors synergize with nucleoside analogues to block SARS-CoV-2.
Nature.
2022 04; 604(7904):134-140. doi:
10.1038/s41586-022-04482-x
. [PMID: 35130559] - Henry S Sacks. In nonhospitalized, unvaccinated adults with COVID-19, molnupiravir reduced hospitalization or death at 29 d.
Annals of internal medicine.
2022 04; 175(4):JC40. doi:
10.7326/j22-0017
. [PMID: 35377719] - Ismail Celik, Trina E Tallei. A computational comparative analysis of the binding mechanism of molnupiravir's active metabolite to RNA-dependent RNA polymerase of wild-type and Delta subvariant AY.4 of SARS-CoV-2.
Journal of cellular biochemistry.
2022 04; 123(4):807-818. doi:
10.1002/jcb.30226
. [PMID: 35132671] - Dominique Roberfroid, Vicky Jespers, Frank Hulstaert. Molnupiravir for Covid-19 in Nonhospitalized Patients.
The New England journal of medicine.
2022 03; 386(13):e32. doi:
10.1056/nejmc2201612
. [PMID: 35294807] - Carisa De Anda, Matthew G Johnson, Alison Pedley. Molnupiravir for Covid-19 in Nonhospitalized Patients. Reply.
The New England journal of medicine.
2022 03; 386(13):e32. doi:
10.1056/nejmc2201612
. [PMID: 35294808] - Pablo Selvi-Sabater, Juan Abellon-Ruiz. Molnupiravir for Covid-19 in Nonhospitalized Patients.
The New England journal of medicine.
2022 03; 386(13):e32. doi:
10.1056/nejmc2201612
. [PMID: 35294805] - Kristian Thorlund, Kyle Sheldrick, Edward Mills. Molnupiravir for Covid-19 in Nonhospitalized Patients.
The New England journal of medicine.
2022 03; 386(13):e32. doi:
10.1056/nejmc2201612
. [PMID: 35294804] - Susan Levenstein. Molnupiravir for Covid-19 in Nonhospitalized Patients.
The New England journal of medicine.
2022 03; 386(13):e32. doi:
10.1056/nejmc2201612
. [PMID: 35294806] - Ravi Mehta, Elena Chekmeneva, Heather Jackson, Caroline Sands, Ewurabena Mills, Dominique Arancon, Ho Kwong Li, Paul Arkell, Timothy M Rawson, Robert Hammond, Maisarah Amran, Anna Haber, Graham S Cooke, Mahdad Noursadeghi, Myrsini Kaforou, Matthew R Lewis, Zoltan Takats, Shiranee Sriskandan. Antiviral metabolite 3'-deoxy-3',4'-didehydro-cytidine is detectable in serum and identifies acute viral infections including COVID-19.
Med (New York, N.Y.).
2022 Mar; 3(3):204-215.e6. doi:
10.1016/j.medj.2022.01.009
. [PMID: 35128501] - Ashleigh J Burke, William R Birmingham, Ying Zhuo, Thomas W Thorpe, Bruna Zucoloto da Costa, Rebecca Crawshaw, Ian Rowles, James D Finnigan, Carl Young, Gregory M Holgate, Mark P Muldowney, Simon J Charnock, Sarah L Lovelock, Nicholas J Turner, Anthony P Green. An Engineered Cytidine Deaminase for Biocatalytic Production of a Key Intermediate of the Covid-19 Antiviral Molnupiravir.
Journal of the American Chemical Society.
2022 03; 144(9):3761-3765. doi:
10.1021/jacs.1c11048
. [PMID: 35224970] - James M Brophy. Molnupiravir's authorisation was premature.
BMJ (Clinical research ed.).
2022 03; 376(?):o443. doi:
10.1136/bmj.o443
. [PMID: 35241455] - NULL. Molnupiravir in unvaccinated patients with COVID-19.
Drug and therapeutics bulletin.
2022 Mar; 60(3):35. doi:
10.1136/dtb.2022.000002
. [PMID: 35101888] - Yahiya Y Syed. Molnupiravir: First Approval.
Drugs.
2022 Mar; 82(4):455-460. doi:
10.1007/s40265-022-01684-5
. [PMID: 35184266] - Pengfei Li, Yining Wang, Marla Lavrijsen, Mart M Lamers, Annemarie C de Vries, Robbert J Rottier, Marco J Bruno, Maikel P Peppelenbosch, Bart L Haagmans, Qiuwei Pan. SARS-CoV-2 Omicron variant is highly sensitive to molnupiravir, nirmatrelvir, and the combination.
Cell research.
2022 03; 32(3):322-324. doi:
10.1038/s41422-022-00618-w
. [PMID: 35058606] - Heidi Ledford. Hundreds of COVID trials could provide a deluge of new drugs.
Nature.
2022 03; 603(7899):25-27. doi:
10.1038/d41586-022-00562-0
. [PMID: 35233098] - Sajad Khiali, Elnaz Khani, Samineh B Rouy, Taher Entezari-Maleki. Comprehensive review on molnupiravir in COVID-19: a novel promising antiviral to combat the pandemic.
Future microbiology.
2022 03; 17(?):377-391. doi:
10.2217/fmb-2021-0252
. [PMID: 35199608] - Rajesh T Gandhi, Preeti N Malani, Carlos Del Rio. COVID-19 Therapeutics for Nonhospitalized Patients.
JAMA.
2022 02; 327(7):617-618. doi:
10.1001/jama.2022.0335
. [PMID: 35029659] - Richard Whitley. Molnupiravir - A Step toward Orally Bioavailable Therapies for Covid-19.
The New England journal of medicine.
2022 02; 386(6):592-593. doi:
10.1056/nejme2117814
. [PMID: 34914869] - Angélica Jayk Bernal, Monica M Gomes da Silva, Dany B Musungaie, Evgeniy Kovalchuk, Antonio Gonzalez, Virginia Delos Reyes, Alejandro Martín-Quirós, Yoseph Caraco, Angela Williams-Diaz, Michelle L Brown, Jiejun Du, Alison Pedley, Christopher Assaid, Julie Strizki, Jay A Grobler, Hala H Shamsuddin, Robert Tipping, Hong Wan, Amanda Paschke, Joan R Butterton, Matthew G Johnson, Carisa De Anda. Molnupiravir for Oral Treatment of Covid-19 in Nonhospitalized Patients.
The New England journal of medicine.
2022 02; 386(6):509-520. doi:
10.1056/nejmoa2116044
. [PMID: 34914868] - NULL. Treatment of COVID-19 in high-risk outpatients.
The Medical letter on drugs and therapeutics.
2022 Feb; 64(1643):e1. doi:
NULL
. [PMID: 35134051] - Ronald Swanstrom, Raymond F Schinazi. Lethal mutagenesis as an antiviral strategy.
Science (New York, N.Y.).
2022 Feb; 375(6580):497-498. doi:
10.1126/science.abn0048
. [PMID: 35113690] - Eric K Johnson. A Comment on 'Remdesivir and EIDD-1931 Interact with Human Equilibrative Nucleoside Transporters 1 and 2: Implications for Reaching SARS-CoV-2 Viral Sanctuary Sites'.
Molecular pharmacology.
2022 02; 101(2):120. doi:
10.1124/molpharm.121.000425
. [PMID: 35105678] - Laura Vangeel, Winston Chiu, Steven De Jonghe, Piet Maes, Bram Slechten, Joren Raymenants, Emmanuel André, Pieter Leyssen, Johan Neyts, Dirk Jochmans. Remdesivir, Molnupiravir and Nirmatrelvir remain active against SARS-CoV-2 Omicron and other variants of concern.
Antiviral research.
2022 02; 198(?):105252. doi:
10.1016/j.antiviral.2022.105252
. [PMID: 35085683] - Awadhesh Kumar Singh, Akriti Singh, Ritu Singh, Anoop Misra. An updated practical guideline on use of molnupiravir and comparison with agents having emergency use authorization for treatment of COVID-19.
Diabetes & metabolic syndrome.
2022 Feb; 16(2):102396. doi:
10.1016/j.dsx.2022.102396
. [PMID: 35051686] - Siennah R Miller, Meghan E McGrath, Kimberley M Zorn, Sean Ekins, Stephen H Wright, Nathan J Cherrington. Response to Comments on 'Remdesivir and EIDD-1931 Interact with Human Equilibrative Nucleoside Transporters 1 and 2: Implications for Reaching SARS-CoV-2 Viral Sanctuary Sites'.
Molecular pharmacology.
2022 02; 101(2):121-122. doi:
10.1124/molpharm.121.000448
. [PMID: 35105679] - Seyed Mohammad Reza Hashemian, Mohammad Hossein Pourhanifeh, Michael R Hamblin, Mohammad Karim Shahrzad, Hamed Mirzaei. RdRp inhibitors and COVID-19: Is molnupiravir a good option?.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2022 Feb; 146(?):112517. doi:
10.1016/j.biopha.2021.112517
. [PMID: 34902743] - Simar Singh Bajaj, Fatima Cody Stanford. COVID-19: LMICs need antivirals as well as vaccines.
Nature.
2022 02; 602(7895):33. doi:
10.1038/d41586-022-00220-5
. [PMID: 35105995] - Fariba Pourkarim, Samira Pourtaghi-Anvarian, Haleh Rezaee. Molnupiravir: A new candidate for COVID-19 treatment.
Pharmacology research & perspectives.
2022 02; 10(1):e00909. doi:
10.1002/prp2.909
. [PMID: 34968008] - Jacek Mrukowicz, Bram Rochwerg, Roman Jaeschke. Will molnupiravir be a game changer in our efforts to safe COVID-19 outpatients?.
Polish archives of internal medicine.
2022 01; 132(1):. doi:
10.20452/pamw.16183
. [PMID: 34978394] - Artem V Sharov, Tatyana M Burkhanova, Tugba Taskın Tok, Maria G Babashkina, Damir A Safin. Computational Analysis of Molnupiravir.
International journal of molecular sciences.
2022 Jan; 23(3):. doi:
10.3390/ijms23031508
. [PMID: 35163429] - NULL. Molnupiravir for treatment of COVID-19.
The Medical letter on drugs and therapeutics.
2022 Jan; 64(1642):10-11. doi:
NULL
. [PMID: 35134041] - William A Fischer, Joseph J Eron, Wayne Holman, Myron S Cohen, Lei Fang, Laura J Szewczyk, Timothy P Sheahan, Ralph Baric, Katie R Mollan, Cameron R Wolfe, Elizabeth R Duke, Masoud M Azizad, Katyna Borroto-Esoda, David A Wohl, Robert W Coombs, Amy James Loftis, Paul Alabanza, Felicia Lipansky, Wendy P Painter. A phase 2a clinical trial of molnupiravir in patients with COVID-19 shows accelerated SARS-CoV-2 RNA clearance and elimination of infectious virus.
Science translational medicine.
2022 Jan; 14(628):eabl7430. doi:
10.1126/scitranslmed.abl7430
. [PMID: 34941423] - Luciana L Borio, Rick A Bright, Ezekiel J Emanuel. A National Strategy for COVID-19 Medical Countermeasures: Vaccines and Therapeutics.
JAMA.
2022 Jan; 327(3):215-216. doi:
10.1001/jama.2021.24165
. [PMID: 34989782] - Sraa Abu-Melha, Mastoura Mohamed Edrees, Musa A Said, Sayed M Riyadh, Nadia S Al-Kaff, Sobhi M Gomha. Potential COVID-19 Drug Candidates Based on Diazinyl-Thiazol-Imine Moieties: Synthesis and Greener Pastures Biological Study.
Molecules (Basel, Switzerland).
2022 Jan; 27(2):. doi:
10.3390/molecules27020488
. [PMID: 35056802] - Klara Prochazkova, Andreas Finke, Eva Dvořák Tomaštíková, Jaroslav Filo, Heinrich Bente, Petr Dvořák, Miroslav Ovečka, Jozef Šamaj, Ales Pecinka. Zebularine induces enzymatic DNA-protein crosslinks in 45S rDNA heterochromatin of Arabidopsis nuclei.
Nucleic acids research.
2022 01; 50(1):244-258. doi:
10.1093/nar/gkab1218
. [PMID: 34904670] - Zhentian Ni, Xiaoli Nie, Hairong Zhang, Lingquan Wang, Zixiang Geng, Xiling Du, Haiyang Qian, Wentao Liu, Te Liu. Atranorin driven by nano materials SPION lead to ferroptosis of gastric cancer stem cells by weakening the mRNA 5-hydroxymethylcytidine modification of the Xc-/GPX4 axis and its expression.
International journal of medical sciences.
2022; 19(11):1680-1694. doi:
10.7150/ijms.73701
. [PMID: 36237989] - Lili Tian, Zehan Pang, Maochen Li, Fuxing Lou, Xiaoping An, Shaozhou Zhu, Lihua Song, Yigang Tong, Huahao Fan, Junfen Fan. Molnupiravir and Its Antiviral Activity Against COVID-19.
Frontiers in immunology.
2022; 13(?):855496. doi:
10.3389/fimmu.2022.855496
. [PMID: 35444647] - Nada A Ashour, Ayman Abo Elmaaty, Amany A Sarhan, Eslam B Elkaeed, Ahmed M Moussa, Ibrahim Ali Erfan, Ahmed A Al-Karmalawy. A Systematic Review of the Global Intervention for SARS-CoV-2 Combating: From Drugs Repurposing to Molnupiravir Approval.
Drug design, development and therapy.
2022; 16(?):685-715. doi:
10.2147/dddt.s354841
. [PMID: 35321497] - Dinah V Parums. Editorial: Current Status of Oral Antiviral Drug Treatments for SARS-CoV-2 Infection in Non-Hospitalized Patients.
Medical science monitor : international medical journal of experimental and clinical research.
2022 Jan; 28(?):e935952. doi:
10.12659/msm.935952
. [PMID: 34972812] - Michael D Waters, Stafford Warren, Claude Hughes, Philip Lewis, Fengyu Zhang. Human genetic risk of treatment with antiviral nucleoside analog drugs that induce lethal mutagenesis: The special case of molnupiravir.
Environmental and molecular mutagenesis.
2022 01; 63(1):37-63. doi:
10.1002/em.22471
. [PMID: 35023215] - NULL. COVID is here to stay: countries must decide how to adapt.
Nature.
2022 01; 601(7892):165. doi:
10.1038/d41586-022-00057-y
. [PMID: 35013606] - Max Kozlov. Why scientists are racing to develop more COVID antivirals.
Nature.
2022 01; 601(7894):496. doi:
10.1038/d41586-022-00112-8
. [PMID: 35064230] - Eric J Rubin, Lindsey R Baden, Stephen Morrissey. Audio Interview: A Potential New Agent to Treat Covid-19.
The New England journal of medicine.
2021 Dec; 385(26):e101. doi:
10.1056/nejme2119792
. [PMID: 34936745] - Yuxi Zhao, Gu He, Wei Huang. A novel model of molnupiravir against SARS-CoV-2 replication: accumulated RNA mutations to induce error catastrophe.
Signal transduction and targeted therapy.
2021 12; 6(1):410. doi:
10.1038/s41392-021-00837-4
. [PMID: 34857753] - NULL. Looking back at 2021.
Nature structural & molecular biology.
2021 12; 28(12):957. doi:
10.1038/s41594-021-00704-4
. [PMID: 34873325] - Siennah R Miller, Meghan E McGrath, Kimberley M Zorn, Sean Ekins, Stephen H Wright, Nathan J Cherrington. Remdesivir and EIDD-1931 Interact with Human Equilibrative Nucleoside Transporters 1 and 2: Implications for Reaching SARS-CoV-2 Viral Sanctuary Sites.
Molecular pharmacology.
2021 12; 100(6):548-557. doi:
10.1124/molpharm.121.000333
. [PMID: 34503974] - Philippine Eloy, Roger Le Grand, Denis Malvy, Jérémie Guedj. Combined treatment of molnupiravir and favipiravir against SARS-CoV-2 infection: One + zero equals two?.
EBioMedicine.
2021 Dec; 74(?):103663. doi:
10.1016/j.ebiom.2021.103663
. [PMID: 34768087] - Alieu Amara, Sujan Dilly Penchala, Laura Else, Colin Hale, Richard FitzGerald, Lauren Walker, Rebecca Lyons, Tom Fletcher, Saye Khoo. The development and validation of a novel LC-MS/MS method for the simultaneous quantification of Molnupiravir and its metabolite ß-d-N4-hydroxycytidine in human plasma and saliva.
Journal of pharmaceutical and biomedical analysis.
2021 Nov; 206(?):114356. doi:
10.1016/j.jpba.2021.114356
. [PMID: 34509661] - Rohit Ramchandani, Michel Kazatchkine, Joanne Liu, Preeti Sudan, Mark Dybul, Precious Matsoso, Anders Nordström, Alexandra Phelan, Helena Legido-Quigley, Sudhvir Singh, Shunsuke Mabuchi. Vaccines, therapeutics, and diagnostics for covid-19: redesigning systems to improve pandemic response.
BMJ (Clinical research ed.).
2021 11; 375(?):e067488. doi:
10.1136/bmj-2021-067488
. [PMID: 34840135] - Jennifer Couzin-Frankel. Antiviral pills could change pandemic's course.
Science (New York, N.Y.).
2021 Nov; 374(6569):799-800. doi:
10.1126/science.acx9605
. [PMID: 34762459] - Johan M van Schalkwyk. Buyer beware: molnupiravir may damage DNA.
BMJ (Clinical research ed.).
2021 11; 375(?):n2663. doi:
10.1136/bmj.n2663
. [PMID: 34737196] - Awadhesh Kumar Singh, Akriti Singh, Ritu Singh, Anoop Misra. Molnupiravir in COVID-19: A systematic review of literature.
Diabetes & metabolic syndrome.
2021 Nov; 15(6):102329. doi:
10.1016/j.dsx.2021.102329
. [PMID: 34742052] - Abdullahi Tsanni. African scientists race to test COVID drugs - but face major hurdles.
Nature.
2021 11; 599(7883):25-27. doi:
10.1038/d41586-021-02995-5
. [PMID: 34732862] - The Lancet Infectious Diseases. Unmet need for COVID-19 therapies in community settings.
The Lancet. Infectious diseases.
2021 11; 21(11):1471. doi:
10.1016/s1473-3099(21)00633-2
. [PMID: 34656186] - Hyeonseok Jeong, Sujung Yoon, Young-Hoon Sung, Jungyoon Kim, In Kyoon Lyoo, Deborah A Yurgelun-Todd, Perry F Renshaw. Effects of cytidine-5'-diphosphate choline on gray matter volumes in methamphetamine-dependent patients: A randomized, double-blind, placebo-controlled study.
Journal of psychiatric research.
2021 11; 143(?):215-221. doi:
10.1016/j.jpsychires.2021.09.006
. [PMID: 34507102] - David B Sidebottom, David D Smith, Dipender Gill. Safety and efficacy of antivirals against SARS-CoV-2.
BMJ (Clinical research ed.).
2021 10; 375(?):n2611. doi:
10.1136/bmj.n2611
. [PMID: 34711614] - David Roquis, Marta Robertson, Liang Yu, Michael Thieme, Magdalena Julkowska, Etienne Bucher. Genomic impact of stress-induced transposable element mobility in Arabidopsis.
Nucleic acids research.
2021 10; 49(18):10431-10447. doi:
10.1093/nar/gkab828
. [PMID: 34551439] - George R Painter, Michael G Natchus, Oren Cohen, Wendy Holman, Wendy P Painter. Developing a direct acting, orally available antiviral agent in a pandemic: the evolution of molnupiravir as a potential treatment for COVID-19.
Current opinion in virology.
2021 10; 50(?):17-22. doi:
10.1016/j.coviro.2021.06.003
. [PMID: 34271264] - J Reina. [Plitidepsin, an inhibitor of the cell elongation factor eEF1a, and molnupiravir an analogue of the ribonucleoside cytidine, two new chemical compounds with intense activity against SARS-CoV-2].
Revista espanola de quimioterapia : publicacion oficial de la Sociedad Espanola de Quimioterapia.
2021 Oct; 34(5):402-407. doi:
10.37201/req/042.2021
. [PMID: 33902254] - Teresa L Parsons, Lindsay A Kryszak, Mark A Marzinke. Development and validation of assays for the quantification of β-D-N4-hydroxycytidine in human plasma and β-D-N4-hydroxycytidine-triphosphate in peripheral blood mononuclear cell lysates.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2021 Oct; 1182(?):122921. doi:
10.1016/j.jchromb.2021.122921
. [PMID: 34555541] - Rana Abdelnabi, Caroline S Foo, Suzanne J F Kaptein, Xin Zhang, Thuc Nguyen Dan Do, Lana Langendries, Laura Vangeel, Judith Breuer, Juanita Pang, Rachel Williams, Valentijn Vergote, Elisabeth Heylen, Pieter Leyssen, Kai Dallmeier, Lotte Coelmont, Arnab K Chatterjee, Raf Mols, Patrick Augustijns, Steven De Jonghe, Dirk Jochmans, Birgit Weynand, Johan Neyts. The combined treatment of Molnupiravir and Favipiravir results in a potentiation of antiviral efficacy in a SARS-CoV-2 hamster infection model.
EBioMedicine.
2021 Oct; 72(?):103595. doi:
10.1016/j.ebiom.2021.103595
. [PMID: 34571361] - Rui Yang, Shilong Jiang, Xiaodong Wen, Xingchen Song, Xue Wang, Dongxue Li, Qiaoxiu Yin, Xian Wu, Delu Wang, Zhuo Chen. Antifungal Activity and Possible Mode of Action of Ningnanmycin Against Tea Gray Blight Disease Pathogen Pseudopestalotiopsis camelliae-sinensis.
Phytopathology.
2021 Oct; 111(10):1735-1742. doi:
10.1094/phyto-09-20-0382-r
. [PMID: 33687271] - Mohd Imran, Mandeep Kumar Arora, Syed Mohammed Basheeruddin Asdaq, Shah Alam Khan, Saleh I Alaqel, Mohammed Kanan Alshammari, Mohammed M Alshehri, Ahmed Subeh Alshrari, Alreshidi Mateq Ali, Ahmed Muteb Al-Shammeri, Bushra Dhuhayyan Alhazmi, Aishah Ali Harshan, Md Tauquir Alam, Abida. Discovery, Development, and Patent Trends on Molnupiravir: A Prospective Oral Treatment for COVID-19.
Molecules (Basel, Switzerland).
2021 Sep; 26(19):. doi:
10.3390/molecules26195795
. [PMID: 34641339] - Florian Kabinger, Carina Stiller, Jana Schmitzová, Christian Dienemann, Goran Kokic, Hauke S Hillen, Claudia Höbartner, Patrick Cramer. Mechanism of molnupiravir-induced SARS-CoV-2 mutagenesis.
Nature structural & molecular biology.
2021 09; 28(9):740-746. doi:
10.1038/s41594-021-00651-0
. [PMID: 34381216] - Brandon Malone, Elizabeth A Campbell. Molnupiravir: coding for catastrophe.
Nature structural & molecular biology.
2021 09; 28(9):706-708. doi:
10.1038/s41594-021-00657-8
. [PMID: 34518697] - Rana Abdelnabi, Caroline S Foo, Steven De Jonghe, Piet Maes, Birgit Weynand, Johan Neyts. Molnupiravir Inhibits Replication of the Emerging SARS-CoV-2 Variants of Concern in a Hamster Infection Model.
The Journal of infectious diseases.
2021 09; 224(5):749-753. doi:
10.1093/infdis/jiab361
. [PMID: 34244768] - Wendy Holman, Wayne Holman, Stacy McIntosh, Wendy Painter, George Painter, Jim Bush, Oren Cohen. Accelerated first-in-human clinical trial of EIDD-2801/MK-4482 (molnupiravir), a ribonucleoside analog with potent antiviral activity against SARS-CoV-2.
Trials.
2021 Aug; 22(1):561. doi:
10.1186/s13063-021-05538-5
. [PMID: 34425873]