Deoxycarnitine (BioDeep_00000018396)
Secondary id: BioDeep_00000625019, BioDeep_00001871872
human metabolite Endogenous blood metabolite
代谢物信息卡片
化学式: C7H15NO2 (145.1103)
中文名称: (3-羧丙基)三甲基氯化铵
谱图信息:
最多检出来源 Homo sapiens(blood) 19.25%
Last reviewed on 2024-09-13.
Cite this Page
Deoxycarnitine. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/deoxycarnitine (retrieved
2024-12-26) (BioDeep RN: BioDeep_00000018396). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C[N+](C)(C)CCCC(=O)[O-]
InChI: InChI=1S/C7H15NO2/c1-8(2,3)6-4-5-7(9)10/h4-6H2,1-3H3
描述信息
4-Trimethylammoniobutanoic acid, also known as gamma-butyrobetaine (GBB) or 3-dehydroxycarnitine, is a highly water-soluble derivative of gamma-aminobutyric acid (GABA). It is also a precursor of L-carnitine. It is a substrate of gamma butyrobetaine hydroxylase/dioxygenase (also known as BBOX) which catalyzes the formation of L-carnitine from gamma-butyrobetaine, the last step in the L-carnitine biosynthesis pathway. Carnitine is essential for the transport of activated fatty acids across the mitochondrial membrane during mitochondrial beta-oxidation. Numerous disorders have been described that lead to disturbances in energy production and in intermediary metabolism which are characterized by the production and excretion of unusual acylcarnitines. A mutation in the gene coding for carnitine-acylcarnitine translocase, or the OCTN2 transporter aetiologically, causes a carnitine deficiency that results in poor intestinal absorption of dietary L-carnitine, impaired reabsorption by the kidney, and increased urinary loss. Determination of the qualitative pattern of acylcarnitines can be of diagnostic and therapeutic importance. The betaine structure of carnitine requires special analytical procedures for recording. The ionic nature of L-carnitine causes a high water solubility which decreases with increasing chain length of the ester group in the acylcarnitines. Therefore, the distribution of L-carnitine and acylcarnitines in various organs is defined by their function and their physicochemical properties as well. High-performance liquid chromatography (HPLC) permits screening for free and total carnitine, as well as complete quantitative acylcarnitine determination, including the long-chain acylcarnitine profile (PMID: 17508264, Monatshefte fuer Chemie (2005), 136(8), 1279-1291., Int J Mass Spectrom. 1999;188:39-52.).
3-Dehydroxycarnitine is an acylcarnitine. Numerous disorders have been described that lead to disturbances in energy production and in intermediary metabolism in the organism which are characterized by the production and excretion of unusual acylcarnitines. A mutation in the gene coding for carnitine-acylcarnitine translocase or the OCTN2 transporter aetiologically causes a carnitine deficiency that results in poor intestinal absorption of dietary L-carnitine, its impaired reabsorption by the kidney and, consequently, in increased urinary loss of L-carnitine. Determination of the qualitative pattern of acylcarnitines can be of diagnostic and therapeutic importance. The betaine structure of carnitine requires special analytical procedures for recording. The ionic nature of L-carnitine causes a high water solubility which decreases with increasing chain length of the ester group in the acylcarnitines. Therefore, the distribution of L-carnitine and acylcarnitines in various organs is defined by their function and their physico-chemical properties as well. High performance liquid chromatography (HPLC) permits screening for free and total carnitine, as well as complete quantitative acylcarnitine determination, including the long-chain acylcarnitine profile. (PMID: 17508264, Monatshefte fuer Chemie (2005), 136(8), 1279-1291., Int J Mass Spectrom. 1999;188:39-52.) [HMDB]
COVID info from COVID-19 Disease Map
Corona-virus
Coronavirus
SARS-CoV-2
COVID-19
SARS-CoV
COVID19
SARS2
SARS
同义名列表
22 个代谢物同义名
4-(N-Trimethylamino)butyric acid; 4-(Trimethylamino)butanoic acid; 4-(trimethylazaniumyl)butanoate; 4-Trimethylammoniobutanoic acid; 4-N-Trimethylammonium butyrate; 4-(Trimethylammonio)butanoate; 4-(N-Trimethylamino)butyrate; 4-Trimethylammoniobutanoate; 4-(Trimethylamino)butanoate; 4-Trimethylaminobutyrate; 3-Dehydroxycarnitine; gamma-Butyrobetaine; gamma-Butyrobetain; Γ-butyrobetaine; Deoxy-carnitine; 4-Butyrobetaine; g-Butyrobetaine; g-Butyrobetain; Γ-butyrobetain; Deoxycarnitine; Butyrobetaine; Actinine
数据库引用编号
13 个数据库交叉引用编号
- ChEBI: CHEBI:16244
- PubChem: 725
- HMDB: HMDB0001161
- ChEMBL: CHEMBL2074645
- MetaCyc: GAMMA-BUTYROBETAINE
- foodb: FDB024107
- chemspider: 705
- CAS: 407-64-7
- PMhub: MS000007660
- RefMet: 3-Dehydroxycarnitine
- CAS: 6249-56-5
- LOTUS: LTS0209324
- wikidata: Q27073962
分类词条
相关代谢途径
PlantCyc(0)
代谢反应
69 个相关的代谢反应过程信息。
Reactome(48)
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Branched-chain amino acid catabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Carnitine synthesis:
2OG + Oxygen + TMLYS ⟶ HTMLYS + SUCCA + carbon dioxide
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Branched-chain amino acid catabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Carnitine synthesis:
H2O + NAD + TEABL ⟶ H+ + NADH + TEABT
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Carnitine synthesis:
2OG + Oxygen + TMLYS ⟶ HTMLYS + SUCCA + carbon dioxide
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Carnitine synthesis:
2OG + Oxygen + TMLYS ⟶ HTMLYS + SUCCA + carbon dioxide
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Carnitine synthesis:
2OG + Oxygen + TMLYS ⟶ HTMLYS + SUCCA + carbon dioxide
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Carnitine synthesis:
2OG + Oxygen + TMLYS ⟶ HTMLYS + SUCCA + carbon dioxide
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Carnitine synthesis:
2OG + Oxygen + TMLYS ⟶ HTMLYS + SUCCA + carbon dioxide
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Carnitine synthesis:
2OG + Oxygen + TMLYS ⟶ HTMLYS + SUCCA + carbon dioxide
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Carnitine synthesis:
2OG + Oxygen + TMLYS ⟶ HTMLYS + SUCCA + carbon dioxide
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Branched-chain amino acid catabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Carnitine synthesis:
H2O + NAD + TEABL ⟶ H+ + NADH + TEABT
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Carnitine synthesis:
2OG + Oxygen + TMLYS ⟶ HTMLYS + SUCCA + carbon dioxide
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Carnitine synthesis:
2OG + Oxygen + TMLYS ⟶ HTMLYS + SUCCA + carbon dioxide
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Carnitine synthesis:
2OG + Oxygen + TMLYS ⟶ HTMLYS + SUCCA + carbon dioxide
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Carnitine synthesis:
2OG + Oxygen + TMLYS ⟶ HTMLYS + SUCCA + carbon dioxide
- Metabolism:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Amino acid and derivative metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Carnitine synthesis:
2OG + Oxygen + TEABT ⟶ CAR + SUCCA + carbon dioxide
BioCyc(14)
- γ-butyrobetaine degradation:
L-carnitine + NAD+ ⟶ 3-dehydrocarnitine + H+ + NADH
- L-carnitine degradation I:
ATP + L-carnitine + coenzyme A ⟶ AMP + L-carnitinyl-CoA + diphosphate
- L-carnitine degradation I:
γ-butyrobetainyl-CoA + L-carnitine ⟶ γ-butyrobetaine + L-carnitinyl-CoA
- L-carnitine degradation I:
ATP + L-carnitine + coenzyme A ⟶ AMP + L-carnitinyl-CoA + diphosphate
- carnitine degradation I:
γ-butyrobetainyl-CoA + L-carnitine ⟶ γ-butyrobetaine + L-carnitinyl-CoA
- carnitine degradation I:
γ-butyrobetainyl-CoA + L-carnitine ⟶ γ-butyrobetaine + L-carnitinyl-CoA
- L-carnitine degradation I:
γ-butyrobetainyl-CoA + L-carnitine ⟶ γ-butyrobetaine + L-carnitinyl-CoA
- L-carnitine degradation I:
ATP + L-carnitine + coenzyme A ⟶ AMP + L-carnitinyl-CoA + diphosphate
- γ-butyrobetaine degradation:
L-carnitine + NAD+ ⟶ 3-dehydrocarnitine + H+ + NADH
- L-carnitine degradation I:
ATP + L-carnitine + coenzyme A ⟶ AMP + L-carnitinyl-CoA + diphosphate
- L-carnitine biosynthesis:
γ-butyrobetaine + 2-oxoglutarate + O2 ⟶ CO2 + L-carnitine + succinate
- L-carnitine biosynthesis:
3-hydroxy-N6,N6,N6-trimethyl-L-lysine ⟶ 4-trimethylammoniobutanal + gly
- L-carnitine biosynthesis:
γ-butyrobetaine + 2-oxoglutarate + O2 ⟶ CO2 + L-carnitine + succinate
- L-carnitine biosynthesis:
γ-butyrobetaine + 2-oxoglutarate + O2 ⟶ CO2 + L-carnitine + succinate
Plant Reactome(0)
INOH(0)
PlantCyc(3)
- L-carnitine biosynthesis:
γ-butyrobetaine + 2-oxoglutarate + O2 ⟶ CO2 + L-carnitine + succinate
- L-carnitine biosynthesis:
γ-butyrobetaine + 2-oxoglutarate + O2 ⟶ CO2 + L-carnitine + succinate
- L-carnitine biosynthesis:
γ-butyrobetaine + 2-oxoglutarate + O2 ⟶ CO2 + L-carnitine + succinate
COVID-19 Disease Map(1)
- @COVID-19 Disease
Map["name"]:
2-Methyl-3-acetoacetyl-CoA + Coenzyme A ⟶ Acetyl-CoA + Propanoyl-CoA
PathBank(2)
- L-Carnitine Degradation I:
Adenosine triphosphate + Coenzyme A + L-Carnitine ⟶ Adenosine monophosphate + L-Carnitinyl-CoA + diphosphate
- L-Carnitine Degradation I:
Adenosine triphosphate + Coenzyme A + L-Carnitine ⟶ Adenosine monophosphate + L-Carnitinyl-CoA + diphosphate
PharmGKB(0)
6 个相关的物种来源信息
- 9646 - Ailuropoda melanoleuca: 10.1371/JOURNAL.PONE.0143417
- 7227 - Drosophila melanogaster: 10.1038/S41467-019-11933-Z
- 9606 - Homo sapiens:
- 9606 - Homo sapiens: -
- 5691 - Trypanosoma brucei: 10.1371/JOURNAL.PNTD.0001618
- 29760 - Vitis vinifera: 10.1016/J.DIB.2020.106469
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
亚细胞结构定位 | 关联基因列表 |
---|
文献列表
- Haoran Wei, Mingming Zhao, Junfang Wu, Chenze Li, Man Huang, Jianing Gao, Qi Zhang, Liang Ji, Yan Wang, Chunxia Zhao, Erdan Dong, Lemin Zheng, Dao Wen Wang. Association of Systemic Trimethyllysine With Heart Failure With Preserved Ejection Fraction and Cardiovascular Events.
The Journal of clinical endocrinology and metabolism.
2022 11; 107(12):e4360-e4370. doi:
10.1210/clinem/dgac519
. [PMID: 36062477] - Muhammad Zubair Israr, Dennis Bernieh, Andrea Salzano, Shabana Cassambai, Yoshiyuki Yazaki, Liam M Heaney, Donald J L Jones, Leong L Ng, Toru Suzuki. Association of gut-related metabolites with outcome in acute heart failure.
American heart journal.
2021 04; 234(?):71-80. doi:
10.1016/j.ahj.2021.01.006
. [PMID: 33454370] - Florian Jacques, Yingjuan Zhao, Martina Kopečná, Radka Končitíková, David Kopečný, Sonia Rippa, Yolande Perrin. Roles for ALDH10 enzymes in γ-butyrobetaine synthesis, seed development, germination, and salt tolerance in Arabidopsis.
Journal of experimental botany.
2020 12; 71(22):7088-7102. doi:
10.1093/jxb/eraa394
. [PMID: 32845293] - Lu Chen, Yong Chen, Mingming Zhao, Lemin Zheng, Dongsheng Fan. Changes in the concentrations of trimethylamine N-oxide (TMAO) and its precursors in patients with amyotrophic lateral sclerosis.
Scientific reports.
2020 09; 10(1):15198. doi:
10.1038/s41598-020-72184-3
. [PMID: 32938991] - Nesrin Damla Eyupoglu, Ezgi Caliskan Guzelce, Aylin Acikgoz, Esra Uyanik, Bodil Bjørndal, Rolf K Berge, Asbjørn Svardal, Bulent Okan Yildiz. Circulating gut microbiota metabolite trimethylamine N-oxide and oral contraceptive use in polycystic ovary syndrome.
Clinical endocrinology.
2019 12; 91(6):810-815. doi:
10.1111/cen.14101
. [PMID: 31556132] - Marius Trøseid, Cristiane C K Mayerhofer, Kaspar Broch, Satish Arora, Asbjørn Svardal, Johannes R Hov, Arne K Andreassen, Einar Gude, Kristjan Karason, Gøran Dellgren, Rolf K Berge, Lars Gullestad, Pål Aukrust, Thor Ueland. The carnitine-butyrobetaine-TMAO pathway after cardiac transplant: Impact on cardiac allograft vasculopathy and acute rejection.
The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation.
2019 10; 38(10):1097-1103. doi:
10.1016/j.healun.2019.06.003
. [PMID: 31301965] - Pascal Bazire, Nadia Perchat, Ekaterina Darii, Christophe Lechaplais, Marcel Salanoubat, Alain Perret. Characterization of l-Carnitine Metabolism in Sinorhizobium meliloti.
Journal of bacteriology.
2019 04; 201(7):. doi:
10.1128/jb.00772-18
. [PMID: 30670548] - Robert A Koeth, Betzabe Rachel Lam-Galvez, Jennifer Kirsop, Zeneng Wang, Bruce S Levison, Xiaodong Gu, Matthew F Copeland, David Bartlett, David B Cody, Hong J Dai, Miranda K Culley, Xinmin S Li, Xiaoming Fu, Yuping Wu, Lin Li, Joseph A DiDonato, W H Wilson Tang, Jose Carlos Garcia-Garcia, Stanley L Hazen. l-Carnitine in omnivorous diets induces an atherogenic gut microbial pathway in humans.
The Journal of clinical investigation.
2019 01; 129(1):373-387. doi:
10.1172/jci94601
. [PMID: 30530985] - Aarti Gautam, Seid Muhie, Nabarun Chakraborty, Allison Hoke, Duncan Donohue, Stacy Ann Miller, Rasha Hammamieh, Marti Jett. Metabolomic analyses reveal lipid abnormalities and hepatic dysfunction in non-human primate model for Yersinia pestis.
Metabolomics : Official journal of the Metabolomic Society.
2018 12; 15(1):2. doi:
10.1007/s11306-018-1457-2
. [PMID: 30830480] - Dorottya Nagy-Szakal, Dinesh K Barupal, Bohyun Lee, Xiaoyu Che, Brent L Williams, Ellie J R Kahn, Joy E Ukaigwe, Lucinda Bateman, Nancy G Klimas, Anthony L Komaroff, Susan Levine, Jose G Montoya, Daniel L Peterson, Bruce Levin, Mady Hornig, Oliver Fiehn, W Ian Lipkin. Insights into myalgic encephalomyelitis/chronic fatigue syndrome phenotypes through comprehensive metabolomics.
Scientific reports.
2018 07; 8(1):10056. doi:
10.1038/s41598-018-28477-9
. [PMID: 29968805] - Elin Strand, Eirik W Rebnord, Malin R Flygel, Vegard Lysne, Gard F T Svingen, Grethe S Tell, Kjetil H Løland, Rolf K Berge, Asbjørn Svardal, Ottar Nygård, Eva R Pedersen. Serum Carnitine Metabolites and Incident Type 2 Diabetes Mellitus in Patients With Suspected Stable Angina Pectoris.
The Journal of clinical endocrinology and metabolism.
2018 03; 103(3):1033-1041. doi:
10.1210/jc.2017-02139
. [PMID: 29325058] - Bridget M Stroup, Nivedita Nair, Sangita G Murali, Katarzyna Broniowska, Fran Rohr, Harvey L Levy, Denise M Ney. Metabolomic Markers of Essential Fatty Acids, Carnitine, and Cholesterol Metabolism in Adults and Adolescents with Phenylketonuria.
The Journal of nutrition.
2018 02; 148(2):194-201. doi:
10.1093/jn/nxx039
. [PMID: 29490096] - Yi-Ching Chen, Chia-Ju Tsai, Chia-Hsien Feng. Fluorescent derivatization combined with aqueous solvent-based dispersive liquid-liquid microextraction for determination of butyrobetaine, l-carnitine and acetyl-l-carnitine in human plasma.
Journal of chromatography. A.
2016 Sep; 1464(?):32-41. doi:
10.1016/j.chroma.2016.08.030
. [PMID: 27562416] - Marieke G Schooneman, Riekelt H Houtkooper, Carla E M Hollak, Ronald J A Wanders, Frédéric M Vaz, Maarten R Soeters, Sander M Houten. The impact of altered carnitine availability on acylcarnitine metabolism, energy expenditure and glucose tolerance in diet-induced obese mice.
Biochimica et biophysica acta.
2016 08; 1862(8):1375-82. doi:
10.1016/j.bbadis.2016.04.012
. [PMID: 27112275] - Marius Trøseid, Johannes R Hov, Torunn Kristin Nestvold, Hanne Thoresen, Rolf K Berge, Asbjørn Svardal, Knut Tore Lappegård. Major Increase in Microbiota-Dependent Proatherogenic Metabolite TMAO One Year After Bariatric Surgery.
Metabolic syndrome and related disorders.
2016 May; 14(4):197-201. doi:
10.1089/met.2015.0120
. [PMID: 27081744] - Karolina Skagen, Marius Trøseid, Thor Ueland, Sverre Holm, Azhar Abbas, Ida Gregersen, Martin Kummen, Vigdis Bjerkeli, Frode Reier-Nilsen, David Russell, Asbjørn Svardal, Tom Hemming Karlsen, Pål Aukrust, Rolf K Berge, Johannes E R Hov, Bente Halvorsen, Mona Skjelland. The Carnitine-butyrobetaine-trimethylamine-N-oxide pathway and its association with cardiovascular mortality in patients with carotid atherosclerosis.
Atherosclerosis.
2016 Apr; 247(?):64-9. doi:
10.1016/j.atherosclerosis.2016.01.033
. [PMID: 26868510] - Paul E Minkler, Maria S K Stoll, Stephen T Ingalls, Janos Kerner, Charles L Hoppel. Quantitative acylcarnitine determination by UHPLC-MS/MS--Going beyond tandem MS acylcarnitine "profiles".
Molecular genetics and metabolism.
2015 Dec; 116(4):231-41. doi:
10.1016/j.ymgme.2015.10.002
. [PMID: 26458767] - Solveiga Grinberga, Maija Dambrova, Gustavs Latkovskis, Ieva Strele, Ilze Konrade, Dace Hartmane, Eduards Sevostjanovs, Edgars Liepinsh, Osvalds Pugovics. Determination of trimethylamine-N-oxide in combination with L-carnitine and γ-butyrobetaine in human plasma by UPLC/MS/MS.
Biomedical chromatography : BMC.
2015 Nov; 29(11):1670-4. doi:
10.1002/bmc.3477
. [PMID: 25873316] - Paul E Minkler, Maria S K Stoll, Stephen T Ingalls, Janos Kerner, Charles L Hoppel. Validated method for the quantification of free and total carnitine, butyrobetaine, and acylcarnitines in biological samples.
Analytical chemistry.
2015 Sep; 87(17):8994-9001. doi:
10.1021/acs.analchem.5b02198
. [PMID: 26270397] - Reinis Vilskersts, Janis Kuka, Edgars Liepinsh, Marina Makrecka-Kuka, Kristine Volska, Elina Makarova, Eduards Sevostjanovs, Helena Cirule, Solveiga Grinberga, Maija Dambrova. Methyl-γ-butyrobetaine decreases levels of acylcarnitines and attenuates the development of atherosclerosis.
Vascular pharmacology.
2015 Sep; 72(?):101-7. doi:
10.1016/j.vph.2015.05.005
. [PMID: 25989106] - Janis Kuka, Edgars Liepinsh, Marina Makrecka-Kuka, Janis Liepins, Helena Cirule, Daina Gustina, Einars Loza, Olga Zharkova-Malkova, Solveiga Grinberga, Osvalds Pugovics, Maija Dambrova. Suppression of intestinal microbiota-dependent production of pro-atherogenic trimethylamine N-oxide by shifting L-carnitine microbial degradation.
Life sciences.
2014 Nov; 117(2):84-92. doi:
10.1016/j.lfs.2014.09.028
. [PMID: 25301199] - Takafumi Saito, Masahiro Sugimoto, Kaori Igarashi, Kaori Saito, Li Shao, Tomohiro Katsumi, Kyoko Tomita, Chikako Sato, Kazuo Okumoto, Yuko Nishise, Hisayoshi Watanabe, Masaru Tomita, Yoshiyuki Ueno, Tomoyoshi Soga. Dynamics of serum metabolites in patients with chronic hepatitis C receiving pegylated interferon plus ribavirin: a metabolomics analysis.
Metabolism: clinical and experimental.
2013 Nov; 62(11):1577-86. doi:
10.1016/j.metabol.2013.07.002
. [PMID: 23953890] - Jenna Pekkinen, Kaisa Olli, Anne Huotari, Kirsti Tiihonen, Pekka Keski-Rahkonen, Marko Lehtonen, Seppo Auriola, Marjukka Kolehmainen, Hannu Mykkänen, Kaisa Poutanen, Kati Hanhineva. Betaine supplementation causes increase in carnitine metabolites in the muscle and liver of mice fed a high-fat diet as studied by nontargeted LC-MS metabolomics approach.
Molecular nutrition & food research.
2013 Nov; 57(11):1959-68. doi:
10.1002/mnfr.201300142
. [PMID: 23868375] - Sonia Rippa, Yingjuan Zhao, Franck Merlier, Aurélie Charrier, Yolande Perrin. The carnitine biosynthetic pathway in Arabidopsis thaliana shares similar features with the pathway of mammals and fungi.
Plant physiology and biochemistry : PPB.
2012 Nov; 60(?):109-14. doi:
10.1016/j.plaphy.2012.08.001
. [PMID: 22922110] - Réjane Morand, Liliane Todesco, Massimiliano Donzelli, David Fischer-Barnicol, Peter J Mullen, Stephan Krähenbühl. Effect of short- and long-term treatment with valproate on carnitine homeostasis in humans.
Therapeutic drug monitoring.
2012 Aug; 34(4):406-14. doi:
10.1097/ftd.0b013e3182608e2f
. [PMID: 22743351] - Edgars Liepinsh, Ilze Konrade, Elina Skapare, Osvalds Pugovics, Solveiga Grinberga, Janis Kuka, Ivars Kalvinsh, Maija Dambrova. Mildronate treatment alters γ-butyrobetaine and l-carnitine concentrations in healthy volunteers.
The Journal of pharmacy and pharmacology.
2011 Sep; 63(9):1195-201. doi:
10.1111/j.2042-7158.2011.01325.x
. [PMID: 21827492] - Joseph Lemire, Ryan Mailloux, Rami Darwich, Christopher Auger, Vasu D Appanna. The disruption of L-carnitine metabolism by aluminum toxicity and oxidative stress promotes dyslipidemia in human astrocytic and hepatic cells.
Toxicology letters.
2011 Jun; 203(3):219-26. doi:
10.1016/j.toxlet.2011.03.019
. [PMID: 21439360] - Takeo Nakanishi, Yoko Fukuyama, Masaharu Fujita, Yoshiyuki Shirasaka, Ikumi Tamai. Carnitine precursor γ-butyrobetaine is a novel substrate of the Na(+)- and Cl(-)-dependent GABA transporter Gat2.
Drug metabolism and pharmacokinetics.
2011; 26(6):632-6. doi:
10.2133/dmpk.dmpk-11-nt-053
. [PMID: 21997971] - Sonja Primassin, Ute Spiekerkoetter. ESI-MS/MS measurement of free carnitine and its precursor γ-butyrobetaine in plasma and dried blood spots from patients with organic acidurias and fatty acid oxidation disorders.
Molecular genetics and metabolism.
2010 Oct; 101(2-3):141-5. doi:
10.1016/j.ymgme.2010.06.012
. [PMID: 20637671] - Sabrina Schulze, Stefan Köster, Ulrike Geldmacher, Anke C Terwisscha van Scheltinga, Werner Kühlbrandt. Structural basis of Na(+)-independent and cooperative substrate/product antiport in CaiT.
Nature.
2010 Sep; 467(7312):233-6. doi:
10.1038/nature09310
. [PMID: 20829798] - Robert Ringseis, Nicole Hanisch, Gregor Seliger, Klaus Eder. Low availability of carnitine precursors as a possible reason for the diminished plasma carnitine concentrations in pregnant women.
BMC pregnancy and childbirth.
2010 Apr; 10(?):17. doi:
10.1186/1471-2393-10-17
. [PMID: 20416111] - Edgars Liepinsh, Janis Kuka, Baiba Svalbe, Reinis Vilskersts, Elina Skapare, Helena Cirule, Osvalds Pugovics, Ivars Kalvinsh, Maija Dambrova. Effects of long-term mildronate treatment on cardiac and liver functions in rats.
Basic & clinical pharmacology & toxicology.
2009 Dec; 105(6):387-94. doi:
10.1111/j.1742-7843.2009.00461.x
. [PMID: 19663820] - Masaharu Fujita, Takeo Nakanishi, Yuta Shibue, Daisuke Kobayashi, Richard H Moseley, Yoshiyuki Shirasaka, Ikumi Tamai. Hepatic uptake of gamma-butyrobetaine, a precursor of carnitine biosynthesis, in rats.
American journal of physiology. Gastrointestinal and liver physiology.
2009 Oct; 297(4):G681-6. doi:
10.1152/ajpgi.00238.2009
. [PMID: 19679820] - U Keller, C van der Wal, G Seliger, C Scheler, F Röpke, K Eder. Carnitine status of pregnant women: effect of carnitine supplementation and correlation between iron status and plasma carnitine concentration.
European journal of clinical nutrition.
2009 Sep; 63(9):1098-105. doi:
10.1038/ejcn.2009.36
. [PMID: 19491916] - Maren Fischer, Janine Keller, Frank Hirche, Holger Kluge, Robert Ringseis, Klaus Eder. Activities of gamma-butyrobetaine dioxygenase and concentrations of carnitine in tissues of pigs.
Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.
2009 Jul; 153(3):324-31. doi:
10.1016/j.cbpa.2009.03.005
. [PMID: 19285565] - Lida Bagdoniene, Danute Labeikyte, Ivars Kalviņs, Veronika Borutinskaite, Aleksandrs Prokofjevs, Pēteris Trapencieris, Benediktas Juodka, Nikolajs Sjakste. Rat serum carboxylesterase partly hydrolyses gamma-butyrobetaine esters.
Arhiv za higijenu rada i toksikologiju.
2009 Jun; 60(2):147-56. doi:
10.2478/10004-1254-60-2009-1915
. [PMID: 19581207] - Reinis Vilskersts, Edgars Liepinsh, Lukasz Mateuszuk, Solveiga Grinberga, Ivars Kalvinsh, Stefan Chlopicki, Maija Dambrova. Mildronate, a regulator of energy metabolism, reduces atherosclerosis in apoE/LDLR-/- mice.
Pharmacology.
2009; 83(5):287-93. doi:
10.1159/000210015
. [PMID: 19325254] - Maren Fischer, Frank Hirche, Holger Kluge, Klaus Eder. A moderate excess of dietary lysine lowers plasma and tissue carnitine concentrations in pigs.
The British journal of nutrition.
2009 Jan; 101(2):190-6. doi:
10.1017/s0007114508994770
. [PMID: 18492302] - Edgars Liepinsh, Reinis Vilskersts, Elina Skapare, Baiba Svalbe, Janis Kuka, Helena Cirule, Osvalds Pugovics, Ivars Kalvinsh, Maija Dambrova. Mildronate decreases carnitine availability and up-regulates glucose uptake and related gene expression in the mouse heart.
Life sciences.
2008 Oct; 83(17-18):613-9. doi:
10.1016/j.lfs.2008.08.008
. [PMID: 18801379] - Maija Dambrova, Helena Cirule, Baiba Svalbe, Liga Zvejniece, Osvalds Pugovichs, Tatjana Zorenko, Ivars Kalvinsh, Edgars Liepinsh, Irina Belozertseva. Effect of inhibiting carnitine biosynthesis on male rat sexual performance.
Physiology & behavior.
2008 Oct; 95(3):341-7. doi:
10.1016/j.physbeh.2008.06.012
. [PMID: 18640137] - Sonja Primassin, Frank Ter Veld, Ertan Mayatepek, Ute Spiekerkoetter. Carnitine supplementation induces acylcarnitine production in tissues of very long-chain acyl-CoA dehydrogenase-deficient mice, without replenishing low free carnitine.
Pediatric research.
2008 Jun; 63(6):632-7. doi:
10.1203/pdr.0b013e31816ff6f0
. [PMID: 18317232] - Robert Ringseis, Sebastian Luci, Julia Spielmann, Holger Kluge, Maren Fischer, Stefanie Geissler, Gaiping Wen, Frank Hirche, Klaus Eder. Clofibrate treatment up-regulates novel organic cation transporter (OCTN)-2 in tissues of pigs as a model of non-proliferating species.
European journal of pharmacology.
2008 Mar; 583(1):11-7. doi:
10.1016/j.ejphar.2008.01.008
. [PMID: 18258227] - Alexander Koch, Bettina König, Gabriele I Stangl, Klaus Eder. PPAR alpha mediates transcriptional upregulation of novel organic cation transporters-2 and -3 and enzymes involved in hepatic carnitine synthesis.
Experimental biology and medicine (Maywood, N.J.).
2008 Mar; 233(3):356-65. doi:
10.3181/0706-rm-168
. [PMID: 18296741] - William R Wikoff, Jon A Gangoiti, Bruce A Barshop, Gary Siuzdak. Metabolomics identifies perturbations in human disorders of propionate metabolism.
Clinical chemistry.
2007 Dec; 53(12):2169-76. doi:
10.1373/clinchem.2007.089011
. [PMID: 17951291] - E M Sharipova, E V Salna, M I Dzintare, L I Lauberte, N I Sjakste, V S Gordiushina, I I Kalvinsh. [The effect of mildronate and related substances on levels of thyroid hormones and some intermediates of lipid and carbohidrate metabolism in the hyperthyroid and hypothyroid rats].
Biomeditsinskaia khimiia.
2007 Nov; 53(6):672-82. doi:
NULL
. [PMID: 18323152] - Robert Ringseis, Stefanie Pösel, Frank Hirche, Klaus Eder. Treatment with pharmacological peroxisome proliferator-activated receptor alpha agonist clofibrate causes upregulation of organic cation transporter 2 in liver and small intestine of rats.
Pharmacological research.
2007 Aug; 56(2):175-83. doi:
10.1016/j.phrs.2007.06.001
. [PMID: 17644405] - Edgars Liepinsh, Reinis Vilskersts, Dagnija Loca, Olga Kirjanova, Osvalds Pugovichs, Ivars Kalvinsh, Maija Dambrova. Mildronate, an inhibitor of carnitine biosynthesis, induces an increase in gamma-butyrobetaine contents and cardioprotection in isolated rat heart infarction.
Journal of cardiovascular pharmacology.
2006 Dec; 48(6):314-9. doi:
10.1097/01.fjc.0000250077.07702.23
. [PMID: 17204911] - Laurence Vernez, Michael Dickenmann, Jürg Steiger, Markus Wenk, Stephan Krähenbühl. Effect of L-carnitine on the kinetics of carnitine, acylcarnitines and butyrobetaine in long-term haemodialysis.
Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.
2006 Feb; 21(2):450-8. doi:
10.1093/ndt/gfi257
. [PMID: 16286428] - Nikolajs Sjakste, Larisa Baumane, Jean-Luc Boucher, Maija Dzintare, Dainuvite Meirena, Jelizaveta Sjakste, Lasma Lauberte, Ivars Kalvinsh. Effects of gamma-butyrobetaine and mildronate on nitric oxide production in lipopolysaccharide-treated rats.
Basic & clinical pharmacology & toxicology.
2004 Jan; 94(1):46-50. doi:
NULL
. [PMID: 14725614] - Piyasena Hewawasam, Min Ding, Nathan Chen, Dalton King, Jay Knipe, Lorraine Pajor, Astrid Ortiz, Valentin K Gribkoff, John Starrett. Synthesis of water-soluble prodrugs of BMS-191011: a maxi-K channel opener targeted for post-stroke neuroprotection.
Bioorganic & medicinal chemistry letters.
2003 May; 13(10):1695-8. doi:
10.1016/s0960-894x(03)00296-8
. [PMID: 12729644] - Y Higashi, K Yokogawa, N Takeuchi, I Tamai, M Nomura, N Hashimoto, J I Hayakawa, K I Miyamoto, A Tsuji. Effect of gamma-butyrobetaine on fatty liver in juvenile visceral steatosis mice.
The Journal of pharmacy and pharmacology.
2001 Apr; 53(4):527-33. doi:
10.1211/0022357011775631
. [PMID: 11341370] - I Tamai, R Ohashi, J I Nezu, Y Sai, D Kobayashi, A Oku, M Shimane, A Tsuji. Molecular and functional characterization of organic cation/carnitine transporter family in mice.
The Journal of biological chemistry.
2000 Dec; 275(51):40064-72. doi:
10.1074/jbc.m005340200
. [PMID: 11010964] - G P Janssens, M Hesta, V Debal, J Debraekeleer, R O De Wilde. L-carnitine supplementation in breeding pigeons: impact on zootechnical performance and carnitine metabolism.
Reproduction, nutrition, development.
2000 Nov; 40(6):535-48. doi:
10.1051/rnd:2000135
. [PMID: 11286283] - G M Fischer, B Nemeti, V Farkas, B Debreceni, A Laszlo, Z Schaffer, C Somogyi, A Sandor. Metabolism of carnitine in phenylacetic acid-treated rats and in patients with phenylketonuria.
Biochimica et biophysica acta.
2000 Jun; 1501(2-3):200-10. doi:
10.1016/s0925-4439(00)00023-5
. [PMID: 10838193] - S Krähenbühl, E P Brass, C L Hoppel. Decreased carnitine biosynthesis in rats with secondary biliary cirrhosis.
Hepatology (Baltimore, Md.).
2000 Jun; 31(6):1217-23. doi:
10.1053/jhep.2000.8105
. [PMID: 10827145] - X H Wu, X Chen, S L Zhang, L Pang, C To, T T Wang, T C Hohman, J G Filep, J S Chan. Molecular mechanism(s) of insulin action on the expression of the angiotensinogen gene in kidney proximal tubular cells.
Journal of the renin-angiotensin-aldosterone system : JRAAS.
2000 Jun; 1(2):166-74. doi:
10.3317/jraas.2000.021
. [PMID: 11967809] - H Nakajima, F Inoue, Z Kizaki, N Terada, M Okochi, A Kinugasa, T Sawada. Carnitine import to isolated hepatocytes and synthesis are accelerated in pivalate-treated rats.
The Journal of nutrition.
1999 Sep; 129(9):1688-91. doi:
10.1093/jn/129.9.1688
. [PMID: 10460205] - F Inoue, N Terada, H Nakajima, M Okochi, N Kodo, Z Kizaki, A Kinugasa, T Sawada. Effect of sports activity on carnitine metabolism. Measurement of free carnitine, gamma-butyrobetaine and acylcarnitines by tandem mass spectrometry.
Journal of chromatography. B, Biomedical sciences and applications.
1999 Aug; 731(1):83-8. doi:
10.1016/s0378-4347(99)00137-1
. [PMID: 10491992] - N Terada, F Inoue, M Okochi, H Nakajima, Z Kizaki, A Kinugasa, T Sawada. Measurement of carnitine precursors, epsilon-trimethyllysine and gamma-butyrobetaine in human serum by tandem mass spectrometry.
Journal of chromatography. B, Biomedical sciences and applications.
1999 Aug; 731(1):89-95. doi:
10.1016/s0378-4347(99)00112-7
. [PMID: 10491993] - F Scaglia, Y Wang, N Longo. Functional characterization of the carnitine transporter defective in primary carnitine deficiency.
Archives of biochemistry and biophysics.
1999 Apr; 364(1):99-106. doi:
10.1006/abbi.1999.1118
. [PMID: 10087170] - S Berardi, B Stieger, S Wachter, B O'Neill, S Krahenbühl. Characterization of a sodium-dependent transport system for butyrobetaine into rat liver plasma membrane vesicles.
Hepatology (Baltimore, Md.).
1998 Aug; 28(2):521-5. doi:
10.1002/hep.510280232
. [PMID: 9696019] - M Horiuchi, K Kobayashi, N Asaka, T Saheki. Secondary abnormality of carnitine biosynthesis results from carnitine reabsorptional system defect in juvenile visceral steatosis mice.
Biochimica et biophysica acta.
1997 Dec; 1362(2-3):263-8. doi:
10.1016/s0925-4439(97)00089-6
. [PMID: 9540857] - Z I Shutenko, D A Aparneva, D V Meirena, A V Strump, S G Venediktova, R A Ozola, I Y Kal'vinsh. [Comparative study of the antioxidant activity of gamma-butyrobetaine and its natural and synthetic derivatives in vitro].
Eksperimental'naia i klinicheskaia farmakologiia.
1997 May; 60(3):54-7. doi:
"
. [PMID: 9324401] - B Melegh, M Pap, I Bock, C J Rebouche. Relationship of carnitine and carnitine precursors lysine, epsilon-N-trimethyllysine, and gamma-butyrobetaine in drug-induced carnitine depletion.
Pediatric research.
1993 Oct; 34(4):460-4. doi:
10.1203/00006450-199310000-00015
. [PMID: 8255678] - S Krahenbuhl, P E Minkler, C L Hoppel. Derivatization of isolated endogenous butyrobetaine with 4'-bromophenacyl trifluoromethanesulfonate followed by high-performance liquid chromatography.
Journal of chromatography.
1992 Jan; 573(1):3-10. doi:
10.1016/0378-4347(92)80466-4
. [PMID: 1564104] - C J Rebouche. Quantitative estimation of absorption and degradation of a carnitine supplement by human adults.
Metabolism: clinical and experimental.
1991 Dec; 40(12):1305-10. doi:
10.1016/0026-0495(91)90033-s
. [PMID: 1961125] - A Sandor. Butyrobetaine is equal to L-carnitine in elevating L-carnitine levels in rats.
Biochimica et biophysica acta.
1991 May; 1083(2):135-8. doi:
10.1016/0005-2760(91)90033-e
. [PMID: 2036448] - C J Rebouche, C A Chenard. Metabolic fate of dietary carnitine in human adults: identification and quantification of urinary and fecal metabolites.
The Journal of nutrition.
1991 Apr; 121(4):539-46. doi:
10.1093/jn/121.4.539
. [PMID: 2007906] - A Sandor, J Cseko, G Kispal, I Alkonyi. Surplus acylcarnitines in the plasma of starved rats derive from the liver.
The Journal of biological chemistry.
1990 Dec; 265(36):22313-6. doi:
10.1016/s0021-9258(18)45706-7
. [PMID: 2266127] - I Alkonyi, J Cseko, A Sandor. Role of the liver in carnitine metabolism: the mechanism of development of carnitine-deficient status in guinea-pigs.
Journal of clinical chemistry and clinical biochemistry. Zeitschrift fur klinische Chemie und klinische Biochemie.
1990 May; 28(5):319-21. doi:
NULL
. [PMID: 2380669] - C J Rebouche, E P Bosch, C A Chenard, K J Schabold, S E Nelson. Utilization of dietary precursors for carnitine synthesis in human adults.
The Journal of nutrition.
1989 Dec; 119(12):1907-13. doi:
10.1093/jn/119.12.1907
. [PMID: 2516120] - L Sartorelli, G Mantovani, M Ciman. Carnitine and deoxycarnitine concentration in rat tissues and urine after their administration.
Biochimica et biophysica acta.
1989 Nov; 1006(1):15-8. doi:
10.1016/0005-2760(89)90317-2
. [PMID: 2804068] - A Sandor, P E Minkler, S T Ingalls, C L Hoppel. An enzymatic method for the determination of butyrobetaine via conversion to carnitine after isolation by high performance liquid chromatography.
Clinica chimica acta; international journal of clinical chemistry.
1988 Aug; 176(1):17-27. doi:
10.1016/0009-8981(88)90170-2
. [PMID: 3168290] - A L Olson, C J Rebouche. gamma-Butyrobetaine hydroxylase activity is not rate limiting for carnitine biosynthesis in the human infant.
The Journal of nutrition.
1987 Jun; 117(6):1024-31. doi:
10.1093/jn/117.6.1024
. [PMID: 3110383] - N Siliprandi, M Ciman, L Sartorelli. Myocardial carnitine transport.
Basic research in cardiology.
1987; 82 Suppl 1(?):53-62. doi:
10.1007/978-3-662-08390-1_7
. [PMID: 3311009] - T G Cooper, T W Gudermann, C H Yeung. Characteristics of the transport of carnitine into the cauda epididymidis of the rat as ascertained by luminal perfusion in vitro.
International journal of andrology.
1986 Oct; 9(5):348-58. doi:
10.1111/j.1365-2605.1986.tb00897.x
. [PMID: 3570531] - J Emmrich, H Seim. [Stimulation of leukocyte migration by L-carnitine].
Folia haematologica (Leipzig, Germany : 1928).
1985; 112(3):373-81. doi:
NULL
. [PMID: 2414165] - W A Dunn, G Rettura, E Seifter, S Englard. Carnitine biosynthesis from gamma-butyrobetaine and from exogenous protein-bound 6-N-trimethyl-L-lysine by the perfused guinea pig liver. Effect of ascorbate deficiency on the in situ activity of gamma-butyrobetaine hydroxylase.
The Journal of biological chemistry.
1984 Sep; 259(17):10764-70. doi:
10.1016/s0021-9258(18)90577-6
. [PMID: 6432788] - H Noël, R Parvin, S V Pande. gamma-butyrobetaine in tissues and serum of fed and starved rats determined by an enzymic radioisotopic procedure.
The Biochemical journal.
1984 Jun; 220(3):701-6. doi:
10.1042/bj2200701
. [PMID: 6466296] - E Holme, S Lindstedt, I Nordin. Uncoupling and isotope effects in gamma-butyrobetaine hydroxylation.
Bioscience reports.
1984 May; 4(5):433-40. doi:
10.1007/bf01122509
. [PMID: 6428486] - C J Rebouche. Effect of dietary carnitine isomers and gamma-butyrobetaine on L-carnitine biosynthesis and metabolism in the rat.
The Journal of nutrition.
1983 Oct; 113(10):1906-13. doi:
10.1093/jn/113.10.1906
. [PMID: 6619971] - S Englard. Hydroxylation of gamma-butyrobetaine to carnitine in human and monkey tissues.
FEBS letters.
1979 Jun; 102(2):297-300. doi:
10.1016/0014-5793(79)80022-8
. [PMID: 110620] - E A HOSEIN, M SMART, K HAWKINS. Aminoaciduria in rats after treatment with the ethyl ester of gamma-butyrobetaine.
Canadian journal of biochemistry and physiology.
1960 Aug; 38(?):837-43. doi:
NULL
. [PMID: 14403288] - . .
.
. doi:
. [PMID: 9685390]