PC 36:6 (BioDeep_00000410735)

 

Secondary id: BioDeep_00000027469, BioDeep_00001871883, BioDeep_00001892726

LipidSearch


代谢物信息卡片


1-(9E,11E,13E,15E-octadecatetraenoyl)-2-(9Z,12Z-octadecadienoyl)-sn-glycero-3-phosphocholine

化学式: C44H76NO8P (777.5308266)
中文名称:
谱图信息: 最多检出来源 Homo sapiens(blood) 0.11%

分子结构信息

SMILES: CCC=CCC=CCC=CCCCCCCCC(=O)OCC(COP(=O)([O-])OCC[N+](C)(C)C)OC(=O)CCCCCCCC=CCC=CCC=CCC
InChI: InChI=1S/C44H76NO8P/c1-6-8-10-12-14-16-18-20-22-24-26-28-30-32-34-36-43(46)50-40-42(41-52-54(48,49)51-39-38-45(3,4)5)53-44(47)37-35-33-31-29-27-25-23-21-19-17-15-13-11-9-7-2/h12-23,42H,6-11,24-41H2,1-5H3/b14-12+,15-13+,18-16+,19-17+,22-20+,23-21+/t42-/m1/s1

描述信息

Found in mouse liver; TwoDicalId=168; MgfFile=160824_Liver_EPA_Neg_09; MgfId=420
Found in mouse muscle; TwoDicalId=81; MgfFile=160824_Muscle_DHA_Neg_11; MgfId=680

同义名列表

46 个代谢物同义名

1-(7Z,10Z,13Z,16Z,19Z-docosapentaenoyl)-2-(9Z-tetradecenoyl)-sn-glycero-3-phosphocholine; PC(22:5(7Z,10Z,13Z,16Z,19Z)/14:1(9Z)); PC(14:1_22:5); PC(36:6); PC 36:6; 1-(4Z,7Z,10Z,13Z,16Z-docosapentaenoyl)-2-(9Z-tetradecenoyl)-sn-glycero-3-phosphocholine; PC(22:5(4Z,7Z,10Z,13Z,16Z)/14:1(9Z)); 1-(9Z-tetradecenoyl)-2-(7Z,10Z,13Z,16Z,19Z-docosapentaenoyl)-sn-glycero-3-phosphocholine; PC(14:1(9Z)/22:5(7Z,10Z,13Z,16Z,19Z)); 1-(9Z-tetradecenoyl)-2-(4Z,7Z,10Z,13Z,16Z-docosapentaenoyl)-sn-glycero-3-phosphocholine; PC(14:1(9Z)/22:5(4Z,7Z,10Z,13Z,16Z)); 1-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-2-tetradecanoyl-glycero-3-phosphocholine; PC(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/14:0); PC(14:0_22:6); 1-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-2-(9Z-hexadecenoyl)-glycero-3-phosphocholine; PC(20:5(5Z,8Z,11Z,14Z,17Z)/16:1(9Z)); PC(16:1_20:5); 1-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-2-(9Z,12Z-octadecadienoyl)-glycero-3-phosphocholine; PC(18:4(6Z,9Z,12Z,15Z)/18:2(9Z,12Z)); PC(18:2_18:4); 1-(9Z,12Z,15Z-octadecatrienoyl)-2-(6Z,9Z,12Z-octadecatrienoyl)-glycero-3-phosphocholine; PC(18:3(9Z,12Z,15Z)/18:3(6Z,9Z,12Z)); PC(18:3/18:3); 1-(6Z,9Z,12Z-octadecatrienoyl)-2-(9Z,12Z,15Z-octadecatrienoyl)-glycero-3-phosphocholine; PC(18:3(6Z,9Z,12Z)/18:3(9Z,12Z,15Z)); 1,2-di-(6Z,9Z,12Z-octadecatrienoyl)-sn-glycero-3-phosphocholine; PC(18:3(6Z,9Z,12Z)/18:3(6Z,9Z,12Z)); 1-(9Z,12Z-octadecadienoyl)-2-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-glycero-3-phosphocholine; PC(18:2(9Z,12Z)/18:4(6Z,9Z,12Z,15Z)); 1-(9Z-hexadecenoyl)-2-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-glycero-3-phosphocholine; PC(16:1(9Z)/20:5(5Z,8Z,11Z,14Z,17Z)); 1-(9E,11E,13E,15E-octadecatetraenoyl)-2-(9Z,12Z-octadecadienoyl)-sn-glycero-3-phosphocholine; PC(18:4(9E,11E,13E,15E)/18:2(9Z,12Z)); PC(18:4/18:2); 1,2-di-(9Z,12Z,15Z-octadecatrienoyl)-sn-glycero-3-phosphocholine; L-alpha-Di(cis,cis,cis-9,12,15-octadecatrienoyl) lecithin; L-alpha-Dilinolenoyl phosphatidylcholine; PC(18:3(9Z,12Z,15Z)/18:3(9Z,12Z,15Z)); L-Dilinolenoyl lecithin; 1,2-di-(9Z,11E,13E-octadecatrienoyl)-sn-glycero-3-phosphocholine; PC(18:3(9Z,11E,13E)/18:3(9Z,11E,13E)); 1,2-di-(9E,11E,13E-octadecatrienoyl)-sn-glycero-3-phosphocholine; PC(18:3(9E,11E,13E)/18:3(9E,11E,13E)); 1-tetradecanoyl-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-sn-glycero-3-phosphocholine; PC(14:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)); PC(14:0/22:6)



数据库引用编号

52 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

12 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Sagar Kamble, Snehal Patil, Venkata Ramana Murthy Appala. Nano-mechanical characterization of asymmetric DLPC/DSPC supported lipid bilayers. Chemistry and physics of lipids. 2021 01; 234(?):105007. doi: 10.1016/j.chemphyslip.2020.105007. [PMID: 33160952]
  • Jenieve Cumberland, Tetiana Lopatkina, Matthew Murachver, Piotr Popov, Viktor Kenderesi, Ágnes Buka, Elizabeth K Mann, Antal Jákli. Bending nematic liquid crystal membranes with phospholipids. Soft matter. 2018 Aug; 14(34):7003-7008. doi: 10.1039/c8sm01193a. [PMID: 30109339]
  • Dorottya Nagy-Szakal, Dinesh K Barupal, Bohyun Lee, Xiaoyu Che, Brent L Williams, Ellie J R Kahn, Joy E Ukaigwe, Lucinda Bateman, Nancy G Klimas, Anthony L Komaroff, Susan Levine, Jose G Montoya, Daniel L Peterson, Bruce Levin, Mady Hornig, Oliver Fiehn, W Ian Lipkin. Insights into myalgic encephalomyelitis/chronic fatigue syndrome phenotypes through comprehensive metabolomics. Scientific reports. 2018 07; 8(1):10056. doi: 10.1038/s41598-018-28477-9. [PMID: 29968805]
  • Larissa Socrier, Marie Rosselin, Fanny Choteau, Grégory Durand, Sandrine Morandat. Cholesterol-nitrone conjugates as protective agents against lipid oxidation: A model membrane study. Biochimica et biophysica acta. Biomembranes. 2017 Dec; 1859(12):2495-2504. doi: 10.1016/j.bbamem.2017.09.026. [PMID: 28982534]
  • Liliana G Toscano-Flores, Damián Jacinto-Méndez, Mauricio D Carbajal-Tinoco. Experimental Determination of High-Order Bending Elastic Constants of Lipid Bilayers. The journal of physical chemistry. B. 2016 06; 120(25):5655-61. doi: 10.1021/acs.jpcb.6b03983. [PMID: 27267752]
  • Manami Nishizawa, Kazuhisa Nishizawa. Potential of mean force analysis of the self-association of leucine-rich transmembrane α-helices: difference between atomistic and coarse-grained simulations. The Journal of chemical physics. 2014 Aug; 141(7):075101. doi: 10.1063/1.4891932. [PMID: 25149815]
  • Oksana Kel, Amr Tamimi, Megan C Thielges, Michael D Fayer. Ultrafast structural dynamics inside planar phospholipid multibilayer model cell membranes measured with 2D IR spectroscopy. Journal of the American Chemical Society. 2013 Jul; 135(30):11063-74. doi: 10.1021/ja403675x. [PMID: 23837718]
  • Matej Kanduč, Emanuel Schneck, Roland R Netz. Hydration interaction between phospholipid membranes: insight into different measurement ensembles from atomistic molecular dynamics simulations. Langmuir : the ACS journal of surfaces and colloids. 2013 Jul; 29(29):9126-37. doi: 10.1021/la401147b. [PMID: 23848998]
  • Timo Fischer, H Jelger Risselada, Richard L C Vink. Membrane lateral structure: the influence of immobilized particles on domain size. Physical chemistry chemical physics : PCCP. 2012 Nov; 14(42):14500-8. doi: 10.1039/c2cp41417a. [PMID: 22782576]
  • Ángel Piñeiro, Peter J Bond, Syma Khalid. Exploring the conformational dynamics and membrane interactions of PorB from C. glutamicum: a multi-scale molecular dynamics simulation study. Biochimica et biophysica acta. 2011 Jun; 1808(6):1746-52. doi: 10.1016/j.bbamem.2011.02.015. [PMID: 21354102]
  • Brian Cannon, Anthony Lewis, Pentti Somerharju, Jorma Virtanen, Juyang Huang, Kwan Hon Cheng. Acyl-chain mismatch driven superlattice arrangements in DPPC/DLPC/cholesterol bilayers. The journal of physical chemistry. B. 2010 Aug; 114(31):10105-13. doi: 10.1021/jp105104f. [PMID: 20684633]
  • Rumiana Koynova, Yury S Tarahovsky, Li Wang, Robert C MacDonald. Lipoplex formulation of superior efficacy exhibits high surface activity and fusogenicity, and readily releases DNA. Biochimica et biophysica acta. 2007 Feb; 1768(2):375-86. doi: 10.1016/j.bbamem.2006.10.016. [PMID: 17156744]
  • Hua-Jie Wang, Xin-Ming Liu, Li-Wen Ji, Dong-Lan Ma, Qiushi Ren, Jin-Ye Wang. Film from peroxidation of an amino phospholipid and its biocompatibility. Journal of biomedical materials research. Part B, Applied biomaterials. 2006 Nov; 79(2):411-9. doi: 10.1002/jbm.b.30555. [PMID: 16649174]
  • Chiara Nicolini, Anna Celli, Enrico Gratton, Roland Winter. Pressure tuning of the morphology of heterogeneous lipid vesicles: a two-photon-excitation fluorescence microscopy study. Biophysical journal. 2006 Oct; 91(8):2936-42. doi: 10.1529/biophysj.106.088716. [PMID: 16877511]
  • Antoaneta V Popova, Dirk K Hincha. Effects of the sugar headgroup of a glycoglycerolipid on the phase behavior of phospholipid model membranes in the dry state. Glycobiology. 2005 Nov; 15(11):1150-5. doi: 10.1093/glycob/cwj001. [PMID: 15972890]