Deoxycholic acid (BioDeep_00000000113)

 

Secondary id: BioDeep_00000017805, BioDeep_00000229610, BioDeep_00000398510, BioDeep_00000419324

natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite Bile acids PANOMIX LipidSearch BioNovoGene_Lab2019


Metabolite Card


(4R)-4-[(3R,5R,8R,9S,10S,12S,13R,14S,17R)-3,12-dihydroxy-10, 13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16, 17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoic acid

Formula: C24H40O4 (392.29264400000005)
Chinese Names: 去氧胆酸, 脱氧胆酸, 脱氧胆酸钠
Spectrum Hits: Top Source Homo sapiens(blood) 0.36%

Reviewed

Last reviewed on 2024-07-01.

Cite this Page

Deoxycholic acid. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/deoxycholic_acid (retrieved 2024-11-06) (BioDeep RN: BioDeep_00000000113). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

Molecular Structure

SMILES: C[C@@]1([C@@]2([H])[C@H](C)CCC(O)=O)[C@](CC2)([H])[C@@](CC[C@@]3([H])[C@@]4(CC[C@@H](O)C3)C)([H])[C@]4([H])C[C@@H]1O
InChI: InChI=1S/C24H40O4/c1-14(4-9-22(27)28)18-7-8-19-17-6-5-15-12-16(25)10-11-23(15,2)20(17)13-21(26)24(18,19)3/h14-21,25-26H,4-13H2,1-3H3,(H,27,28)/t14-,15-,16-,17+,18-,19+,20+,21+,23+,24-/m1/s1

Description

Deoxycholic acid is a bile acid that is 5beta-cholan-24-oic acid substituted by hydroxy groups at positions 3 and 12 respectively. It has a role as a human blood serum metabolite. It is a bile acid, a dihydroxy-5beta-cholanic acid and a C24-steroid. It is a conjugate acid of a deoxycholate.
Deoxycholic acid is a a bile acid which emulsifies and solubilizes dietary fats in the intestine, and when injected subcutaneously, it disrupts cell membranes in adipocytes and destroys fat cells in that tissue. In April 2015, deoxycholic acid was approved by the FDA for the treatment submental fat to improve aesthetic appearance and reduce facial fullness or convexity. It is marketed under the brand name Kybella by Kythera Biopharma and is the first pharmacological agent available for submental fat reduction, allowing for a safer and less invasive alternative than surgical procedures.
Deoxycholic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655).
Deoxycholic acid is a Cytolytic Agent. The physiologic effect of deoxycholic acid is by means of Decreased Cell Membrane Integrity.
Deoxycholic acid is a natural product found in Pseudomonas syringae and Homo sapiens with data available.
Deoxycholic Acid is a steroidal acid that is a secondary bile acid, with cytolytic activity. Upon subcutaneous administration, deoxycholic acid causes lysis of adipocytes and improves the appearance of fullness associated with submental fat. Also, it may potentially be able to reduce fat in other subcutaneous fatty tissues. Deoxycholic acid, naturally produced by the metabolism of cholic acid by intestinal bacteria, is involved in the emulsification of dietary fats in the intestine.
Deoxycholic acid is a bile acid formed by bacterial action from cholate. It is usually conjugated with glycine or taurine. Deoxycholic acid acts as a detergent to solubilize fats for intestinal absorption, is reabsorbed itself, and is used as a choleretic and detergent. Bile acids are steroid acids found predominantly in bile of mammals. The distinction between different bile acids is minute, depends only on presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g., membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues. (A3407, A3408, A3409, A3410).
A bile acid formed by bacterial action from cholate. It is usually conjugated with glycine or taurine. Deoxycholic acid acts as a detergent to solubilize fats for intestinal absorption, is reabsorbed itself, and is used as a choleretic and detergent.
Deoxycholic acid is a secondary bile acid produced in the liver and is usually conjugated with glycine or taurine. It facilitates fat absorption and cholesterol excretion. Bile acids are steroid acids found predominantly in the bile of mammals. The distinction between different bile acids is minute, and depends only on the presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine, and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH, and consequently require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g. membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487, 16037564, 12576301, 11907135). When present in sufficiently high levels, deoxycholic acid can act as a hepatotoxin, a metabotoxin, and an oncometabolite. A hepatotoxin causes damage to the liver or liver cells. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. An oncometabolite is a compound, when present at chronically high levels, that promotes tumour growth and survival. Among the primary bile acids, cholic acid is considered to be the least hepatotoxic while deoxycholic acid is the most hepatoxic (PMID: 1641875). The liver toxicity of bile acids appears to be due to their ability to peroxidate lipids and to lyse liver cells. High bile acid levels lead to the generation of reactive oxygen species and reactive nitrogen species, disruption of the cell membrane and mitochondria, induction of DNA damage, mutation and apoptosis, and the development of reduced apoptosis capability upon chronic exposure (PMID: 24884764). Chronically high levels of deoxycholic acid are associated with familial hypercholanemia. In hypercholanemia, bile acids, including deoxycholic acid, are elevated in the blood. This disease causes liver damage, extensive itching, poor fat absorption, and can lead to rickets due to lack of calcium in bones. The deficiency of normal bile acids in the intestines results in a deficiency of vitamin K, which also adversely affects clotting of the blood. The bile acid ursodiol (ursodeoxycholic acid) can improve symptoms associated with familial hypercholanemia. Chronically high levels of deoxycholic acid are also associated with several forms of cancer including colon cancer, pancreatic cancer, esophageal cancer, and many other GI cancers.
A bile acid that is 5beta-cholan-24-oic acid substituted by hydroxy groups at positions 3 and 12 respectively.

Deoxycholic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=83-44-3 (retrieved 2024-07-01) (CAS RN: 83-44-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Deoxycholic acid (cholanoic acid), a bile acid, is a by-product of intestinal metabolism, that activates the G protein-coupled bile acid receptorTGR5[1][2].
Deoxycholic acid (cholanoic acid), a bile acid, is a by-product of intestinal metabolism, that activates the G protein-coupled bile acid receptorTGR5[1][2].

Synonyms

167 synonym names

(4R)-4-((3R,5R,8R,9S,10S,12S,13R,14S,17R)-3,12-Dihydroxy-10,13-Dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-Tetradecahydro-1H-Cyclopenta(a)phenanthren-17-yl)Pentanoic Acid; (4R)-4-[(3R,5R,8R,9S,10S,12S,13R,14S,17R)-3,12-dihydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoic acid; (4R)-4-[(1R,3aS,3bR,5aR,7R,9aS,9bS,11S,11aR)-7,11-dihydroxy-9a,11a-dimethyl-hexadecahydro-1H-cyclopenta[a]phenanthren-1-yl]pentanoic acid; (4R)-4-[(1S,2S,5R,7R,10R,11S,14R,15R,16S)-5,16-dihydroxy-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecan-14-yl]pentanoic acid; (R)-4-((3R,5R,8R,9S,10S,12S,13R,14S,17R)-3,12-dihydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanoic acid; (4R)-4-((3R,8R,9S,10S,12S,13R,14S,17R)-3,12-dihydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanoic acid; Deoxycholic Acid (Desoxycholic Acid), United States Pharmacopeia (USP) Reference Standard; (3alpha,5alpha,8alpha,12alpha,14beta,17alpha)-3,12-dihydroxycholan-24-oic acid; l7-.beta.-(1-Methyl-3-carboxypropyl)-etiocholane-3-.alpha.,12-.alpha.-diol; 17.beta.-(1-Methyl-3-carboxypropyl)-etiocholane-3.alpha.,12.alpha.-diol; Cholan-24-oic acid, 3,12-dihydroxy-, (3-.alpha., 5-.beta.,12-.alpha.)-; 17-BETA-(1-METHYL-3-CARBOXYPROPYL)-ETIOCHOLANE-3-ALPHA, 12-ALPHA-DIOL; 17-beta-(1-Methyl-3-carboxypropyl)-etiocholane-3-alpha,12-alpha-diol; l7-beta-(1-Methyl-3-carboxypropyl)-etiocholane-3-alpha,12-alpha-diol; 3alpha,12alpha-Dihydroxy-5beta-cholan-24-oic Acid (Deoxycholic Acid); 3,12-Dihydroxycholan-24-oic acid, (3.alpha.,5.beta.,12.alpha.)- #; Cholan-24-oic acid,12-dihydroxy-, (3.alpha.,5.beta.,12.alpha.)-; Cholan-24-oic acid, 3,12-dihydroxy-, (3-alpha,5-beta,12-alpha)-; Cholan-24-oic acid, 3,12-dihydroxy-, (3alpha,5beta,12alpha)-; 3,12-Dihydroxycholan-24-oic acid, (3alpha,5beta,12alpha)-; 5.beta.-Cholan-24-oic acid, 3.alpha.,12.alpha.-dihydroxy-; (3ALPHA,5ALPHA,12ALPHA)-3,12-DIHYDROXYCHOLAN-24-OIC ACID; (3alpha,5beta,12alpha)-3,12-Dihydroxycholan-24-oic acid; 3.alpha.,12.alpha.-Dihydroxy-5.beta.-cholan-24-oic acid; Cholan-24-oic, 3,12-dihydroxy-(3alpha,5beta, 12alpha)-; 5-beta-Cholan-24-oic acid, 3-alpha,12-alpha-dihydroxy-; Cholan-24-oic, 3,12-dihydroxy-(3alpha,5beta,12alpha)-; (3alpha,5alpha,12alpha)-3,12-DIHYDROXYCHOLAN-24-Oate; (3alpha,5beta,12alpha)-3,12-Dihydroxycholan-oic Acid; 3-alpha,12-alpha-Dihydroxy-5-beta-cholan-24-oic acid; 3.alpha.,12.alpha.-Dihydroxy-5.beta.-cholanoic acid; (3alpha,5beta,12alpha)-3,12-Dihydroxycholan-24-Oate; 5beta-Cholan-24-oic acid, 3alpha,12alpha-dihydroxy-; 3.alpha.,12.alpha.-Dihydroxy-5.beta.-cholanic acid; Cholan-24-oic acid, 3,12-dihydroxy-, (3a,5b,12a)-; 3I+/-,12I+/--Dihydroxy-5I(2)-cholansA currencyure; 3alpha,12alpha-Dihydroxy-5beta-cholan-24-oic acid; 3-alpha,12-alpha-Dihydroxy-5-beta-cholanoic acid; 5.beta.-Cholan-24-oic acid,12.alpha.-dihydroxy-; 3-alpha,12-alpha-Dihydroxycholansaeure [German]; URSODEOXYCHOLIC ACID IMPURITY E (EP IMPURITY); 3alpha,12alpha-Dihydroxy-5beta-cholanoic acid; URSODEOXYCHOLIC ACID IMPURITY E [EP IMPURITY]; (3Α,5β,12α)-3,12-dihydroxycholan-24-Oic acid; (3a,5b,12a)-3,12-Dihydroxycholan-24-Oic acid; (3Α,5α,12α)-3,12-dihydroxycholan-24-Oic acid; (3a,5a,12a)-3,12-DIHYDROXYCHOLAN-24-Oic acid; Deoxycholic Acid, Sodium Salt, 12beta-Isomer; 4-10-00-01608 (Beilstein Handbook Reference); 3alpha,12alpha-Dihydroxy-5beta-cholanic acid; 3-.alpha.,12-.alpha.-Dihydroxycholansaeure; 3.alpha.,12.alpha.-Dihydroxycholanic acid; (3a,5a,12a)-3,12-DIHYDROXYCHOLAN-24-Oate; (3a,5b,12a)-3,12-Dihydroxycholan-24-Oate; (3Α,5α,12α)-3,12-dihydroxycholan-24-Oate; (3Α,5β,12α)-3,12-dihydroxycholan-24-Oate; 3alpha,12alpha-Dihydroxy-5beta-cholanate; Deoxycholic acid, BioXtra, >=98\\% (HPLC); 3-alpha,12-alpha-Dihydroxycholansaeure; Deoxycholic Acid, Magnesium (2:1) Salt; 3alpha,12alpha-Dihydroxycholanic acid; Deoxycholic Acid, Monopotassium Salt; Deoxycholic Acid, Monoammonium Salt; 3a,12a-Dihydroxy-5b-cholanic acid; 3Α,12α-dihydroxy-5β-cholanic acid; Deoxycholic Acid, Monosodium Salt; DEOXYCHOLIC ACID [USP MONOGRAPH]; DEOXYCHOLIC ACID (USP MONOGRAPH); Cholanoic Acid;Desoxycholic acid; Deoxycholic Acid, 12beta-Isomer; Deoxycholic Acid, 12beta Isomer; Deoxycholic acid, >=98\\% (HPLC); Deoxycholic Acid, Disodium Salt; Deoxycholic Acid, 5alpha-Isomer; Deoxycholic Acid, 5alpha Isomer; Acid, 5alpha-isomer deoxycholic; Deoxycholic acid, >=99.0\\% (T); 5alpha-Isomer Deoxycholic Acid; 12beta-Isomer Deoxycholic Acid; Deoxycholic Acid, 3beta Isomer; DEOXYCHOLIC ACID [ORANGE BOOK]; Deoxycholic Acid, 3beta-Isomer; DEOXYCHOLIC ACID (EP IMPURITY); DEOXYCHOLIC ACID [EP IMPURITY]; 3Α,12α-dihydroxy-5β-cholanate; 3a,12a-Dihydroxy-5b-cholanate; 3beta-Isomer Deoxycholic Acid; 5b-Cholanic acid-3a,12a-diol; Deoxycholic acid [USAN:INN]; 3,12-Dihydroxycholanic acid; DEOXYCHOLIC ACID [WHO-DD]; Desoxycholsaeure [German]; Deoxycholic acid (NF/INN); DEOXYCHOLIC ACID (USP-RS); DESOXYCHOLIC ACID [VANDF]; 7.alpha.-Deoxycholic acid; DEOXYCHOLIC ACID [USP-RS]; Acid, dihydroxycholanoic; 5-beta-Deoxycholic acid; DEOXYCHOLIC ACID [USAN]; DESOXYCHOLIC ACID [FCC]; DEOXYCHOLIC ACID [HSDB]; Dihydroxycholanoic acid; DEOXYCHOLIC ACID [INCI]; 7alpha-Deoxycholic acid; Deoxycholic acid [INN]; Desoxycholic acid [NF]; DEOXYCHOLIC ACID [II]; Acid, lagodeoxycholic; DEOXYCHOLIC ACID [MI]; DEOXYCHOLIC ACID (II); acidum deoxycholicum; Deoxycholate, Sodium; Lagodeoxycholic Acid; acide desoxycholique; 7alpha-Deoxycholate; 5b-Deoxycholic acid; 7a-Deoxycholic acid; 7Α-deoxycholic acid; Sodium Deoxycholate; 7-Desoxycholic acid; Cholic acid, deoxy-; Deoxycholatic acid; acido desoxicolico; 7-Deoxycholic acid; Acid, desoxycholic; Desoxycholic acid; Acid, deoxycholic; deoxy-Cholic acid; Deoxy cholic acid; Deoxycholic Acidc; Spectrum5_002007; Deoxycholic Acid; deoxycholic-acid; Desoxycholsaeure; Desoxycholsaure; 5b-Deoxycholate; 7a-Deoxycholate; 7Α-deoxycholate; Deoxycholatate; 7-Deoxycholate; Acid, choleic; Desoxycholate; deoxy-Cholate; de-oxycholate; Kybella (TN); Choleic acid; NCI60_041946; deoxycholate; Deoxycholic; Cholorebic; ST 24:1;O4; Cholerebic; Septochol; Droxolan; Pyrochol; Kybella; Degalol; D11AX24; 3alpha; 1e3v; DXC; (4R)-4-[(3R,5R,8R,9S,10S,12S,13R,14S,17R)-3,12-dihydroxy-10, 13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16, 17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoic acid; 3α, 12α-Dihydroxy-5&betal-cholanic acid; 3α, 12α-Dihydroxy-5&betal-cholanate; Deoxycholic acid (DCA); Cholanoic Acid



Cross Reference

44 cross reference id

Classification Terms

Related Pathways

Reactome(4)

BioCyc(0)

PlantCyc(0)

Biological Process

50 related biological process reactions.

Reactome(50)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

9 organism taxonomy source information

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



Literature Reference

  • Rulaiha Taylor, Zhenning Yang, Zakiyah Henry, Gina Capece, Vik Meadows, Katherine Otersen, Veronia Basaly, Anisha Bhattacharya, Stephanie Mera, Peihong Zhou, Laurie Joseph, Ill Yang, Anita Brinker, Brian Buckley, Bo Kong, Grace L Guo. Characterization of individual bile acids in vivo utilizing a novel low bile acid mouse model. Toxicological sciences : an official journal of the Society of Toxicology. 2024 May; 199(2):316-331. doi: 10.1093/toxsci/kfae029. [PMID: 38526215]
  • Annika Wahlström, Ariel Brumbaugh, Wilhelm Sjöland, Lisa Olsson, Hao Wu, Marcus Henricsson, Annika Lundqvist, Kassem Makki, Stanley L Hazen, Göran Bergström, Hanns-Ulrich Marschall, Michael A Fischbach, Fredrik Bäckhed. Production of deoxycholic acid by low-abundant microbial species is associated with impaired glucose metabolism. Nature communications. 2024 May; 15(1):4276. doi: 10.1038/s41467-024-48543-3. [PMID: 38769296]
  • Jiashu Pan, Jiaxuan Wu, Shengan Zhang, Kai Wang, Guang Ji, Wenjun Zhou, Yanqi Dang. Targeted metabolomics revealed the mechanisms underlying the role of Liansu capsule in ameliorating functional dyspepsia. Journal of ethnopharmacology. 2024 Mar; 321(?):117568. doi: 10.1016/j.jep.2023.117568. [PMID: 38092317]
  • Ana Clara Sabbione, María Cristina Añón, Adriana Scilingo. Characterization and Bile Acid Binding Capacity of Dietary Fiber Obtained from Three Different Amaranth Products. Plant foods for human nutrition (Dordrecht, Netherlands). 2024 Mar; 79(1):38-47. doi: 10.1007/s11130-023-01116-z. [PMID: 37938455]
  • Maryam Kouhjani, Arezoo Saberi, Farzin Hadizadeh, Elham Khodaverdi, Malihe Karimi, Elaheh Gholizadeh, Hossein Kamali, Ali Nokhodchi. Development of Sustained Release Formulations Based on Lipid-Liquid Crystal to Control the Release of Deoxycholate: In Vitro and In Vivo Assessment. AAPS PharmSciTech. 2023 Nov; 24(8):224. doi: 10.1208/s12249-023-02677-7. [PMID: 37946092]
  • Junliang Kuang, Jieyi Wang, Yitao Li, Mengci Li, Mingliang Zhao, Kun Ge, Dan Zheng, Kenneth C P Cheung, Boya Liao, Shouli Wang, Tianlu Chen, Yinan Zhang, Congrong Wang, Guang Ji, Peng Chen, Hongwei Zhou, Cen Xie, Aihua Zhao, Weiping Jia, Xiaojiao Zheng, Wei Jia. Hyodeoxycholic acid alleviates non-alcoholic fatty liver disease through modulating the gut-liver axis. Cell metabolism. 2023 Aug; ?(?):. doi: 10.1016/j.cmet.2023.07.011. [PMID: 37591244]
  • Yining Zhang, Tao Yan, Wei Mo, Bin Song, Yuehua Zhang, Fenghao Geng, Zhimin Hu, Daojiang Yu, Shuyu Zhang. Altered bile acid metabolism in skin tissues in response to ionizing radiation: deoxycholic acid (DCA) as a novel treatment for radiogenic skin injury. International journal of radiation biology. 2023 Aug; ?(?):1-16. doi: 10.1080/09553002.2023.2245461. [PMID: 37540505]
  • Yan Cao, Xiaoya Niu, Wenzheng Li, Wei Chen, Luyao Ren, Zheng Cao, Jun Li, Yuelin Song. Structural identification of in vitro metabolites for 23-nordeoxycholic acid by structural analogue matching. Analytical methods : advancing methods and applications. 2023 06; 15(21):2588-2598. doi: 10.1039/d3ay00313b. [PMID: 37226530]
  • Jincheng Zhao, Yating Luo, Yapeng Li, Ruyue Cheng, Xi Shen, Jianguo Chen, Xiaohong Kang, Zhouyong Li, Fang He. [Heat-inactivated Streptococcus thermophilus MN002 alleviate lipid metabolism of high fat diet-fed induced obese mice through modulating gut microbiota structure and bile acids]. Wei sheng yan jiu = Journal of hygiene research. 2023 Mar; 52(2):259-264. doi: 10.19813/j.cnki.weishengyanjiu.2023.02.014. [PMID: 37062689]
  • Marietta Sayegh, Qian Qian Ni, Viren Ranawana, Vassilis Raikos, Nicholas J Hayward, Helen Hayes, Gary Duncan, Louise Cantlay, Freda Farquharson, Michael Solvang, Graham Horgan, Petra Louis, Wendy Russell, Miriam Clegg, Frank Thies, Madalina Neacsu. Habitual consumption of high-fibre bread fortified with bean hulls increased plasma indole-3-propionic concentration and decreased putrescine and deoxycholic acid faecal concentrations in healthy volunteers. The British journal of nutrition. 2023 Feb; ?(?):1-36. doi: 10.1017/s0007114523000491. [PMID: 36847278]
  • Letícia Kraft, Victoria Stadler Tasca Ribeiro, Geiziane Aparecida Gonçalves, Paula Hansen Suss, Felipe Francisco Tuon. Comparison of amphotericin B lipid complex, deoxycholate amphotericin B, fluconazole, and anidulafungin activity against Candida albicans biofilm isolated from breakthrough candidemia. Enfermedades infecciosas y microbiologia clinica (English ed.). 2023 Jan; ?(?):. doi: 10.1016/j.eimce.2022.07.009. [PMID: 36707288]
  • Daniel Gonzalez Izundegui, Patricia E Miller, Ravi V Shah, Clary B Clish, Maura E Walker, Gary F Mitchell, Robert E Gerszten, Martin G Larson, Ramachandran S Vasan, Matthew Nayor. Response of circulating metabolites to an oral glucose challenge and risk of cardiovascular disease and mortality in the community. Cardiovascular diabetology. 2022 10; 21(1):213. doi: 10.1186/s12933-022-01647-w. [PMID: 36243866]
  • Joshua N Bernard, Vikram Chinnaiyan, Thomas Andl, Gregoire F Le Bras, M Nasar Qureshi, Deborah A Altomare, Claudia D Andl. Augmented CPT1A Expression Is Associated with Proliferation and Colony Formation during Barrett's Tumorigenesis. International journal of molecular sciences. 2022 Oct; 23(19):. doi: 10.3390/ijms231911745. [PMID: 36233047]
  • Yuetao Liu, Congcong Cai, Xuemei Qin. Regulation of gut microbiota of Astragali Radix in treating for chronic atrophic gastritis rats based on metabolomics coupled with 16S rRNA gene sequencing. Chemico-biological interactions. 2022 Sep; 365(?):110063. doi: 10.1016/j.cbi.2022.110063. [PMID: 35872051]
  • Leqi Wang, Qi Liu, Xinping Hu, Chuhang Zhou, Yining Ma, Xiaoxiao Wang, Yingwei Tang, Kanghao Chen, Xinyu Wang, Yan Liu. Enhanced Oral Absorption and Liver Distribution of Polymeric Nanoparticles through Traveling the Enterohepatic Circulation Pathways of Bile Acid. ACS applied materials & interfaces. 2022 Sep; 14(37):41712-41725. doi: 10.1021/acsami.2c10322. [PMID: 36069201]
  • Zhishi Xu, Yu Hou, Jiang Sun, Lin Zhu, Qibin Zhang, Wenjie Yao, Xudong Fan, Ke Zhang, Ji-Gang Piao, Yinghui Wei. Deoxycholic acid-chitosan coated liposomes combined with in situ colonic gel enhances renal fibrosis therapy of emodin. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2022 Jul; 101(?):154110. doi: 10.1016/j.phymed.2022.154110. [PMID: 35487039]
  • Han Zhu, Yuyan Bai, Gaorui Wang, Yousong Su, Yanlin Tao, Lupeng Wang, Liu Yang, Hui Wu, Fei Huang, Hailian Shi, Xiaojun Wu. Hyodeoxycholic acid inhibits lipopolysaccharide-induced microglia inflammatory responses through regulating TGR5/AKT/NF-κB signaling pathway. Journal of psychopharmacology (Oxford, England). 2022 07; 36(7):849-859. doi: 10.1177/02698811221089041. [PMID: 35475391]
  • QingLiang Wu, YiTing Hu, CuiTong Wang, Wei Wei, LanLan Gui, WuShuang Zeng, Changxiao Liu, Wei Jia, Jia Miao, Ke Lan. Reevaluate In Vitro CYP3A Index Reactions of Benzodiazepines and Steroids between Humans and Dogs. Drug metabolism and disposition: the biological fate of chemicals. 2022 06; 50(6):741-749. doi: 10.1124/dmd.122.000864. [PMID: 35351776]
  • Yuxia Yao, Xiangji Li, Baohong Xu, Li Luo, Qingdong Guo, Xingyu Wang, Lan Sun, Zheng Zhang, Peng Li. Cholecystectomy promotes colon carcinogenesis by activating the Wnt signaling pathway by increasing the deoxycholic acid level. Cell communication and signaling : CCS. 2022 05; 20(1):71. doi: 10.1186/s12964-022-00890-8. [PMID: 35614513]
  • Mark D Muthiah, Ekaterina Smirnova, Puneet Puri, Naga Chalasani, Vijay H Shah, Calvin Kiani, Stephanie Taylor, Faridoddin Mirshahi, Arun J Sanyal. Development of Alcohol-Associated Hepatitis Is Associated With Specific Changes in Gut-Modified Bile Acids. Hepatology communications. 2022 05; 6(5):1073-1089. doi: 10.1002/hep4.1885. [PMID: 34984859]
  • Anna Jovanovich, Xuan Cai, Rebecca Frazier, Josh D Bundy, Jiang He, Panduranga Rao, Claudia Lora, Mirela Dobre, Alan Go, Tariq Shafi, Harold I Feldman, Eugene P Rhee, Makoto Miyazaki, Tamara Isakova, Michel Chonchol. Deoxycholic Acid and Coronary Artery Calcification in the Chronic Renal Insufficiency Cohort. Journal of the American Heart Association. 2022 04; 11(7):e022891. doi: 10.1161/jaha.121.022891. [PMID: 35322682]
  • Xuebin Gao, Yongdui Ruan, Xuan Zhu, Xiaozhuan Lin, Yan Xin, Xiang Li, Meiqing Mai, Honghui Guo. Deoxycholic Acid Promotes Pyroptosis in Free Fatty Acid-Induced Steatotic Hepatocytes by Inhibiting PINK1-Mediated Mitophagy. Inflammation. 2022 Apr; 45(2):639-650. doi: 10.1007/s10753-021-01573-1. [PMID: 34674097]
  • Yuya Kurosawa, Yuta Otsuka, Satoru Goto. Increased selectivity of sodium deoxycholate to around Tryptophan213 in bovine serum albumin upon micellization as revealed by singular value decomposition for excitation emission matrix. Colloids and surfaces. B, Biointerfaces. 2022 Apr; 212(?):112344. doi: 10.1016/j.colsurfb.2022.112344. [PMID: 35101827]
  • Gabriela Alacarini Farina, Valesca Sander Koth, Fábio Luiz Dal Moro Maito, Márcia Rodrigues Payeras, Karen Cherubini, Fernanda Gonçalves Salum. Adverse effects of deoxycholic acid in submandibular glands, submental, inguinal and subplantar regions: a study in rats. Clinical oral investigations. 2022 Mar; 26(3):2575-2585. doi: 10.1007/s00784-021-04227-6. [PMID: 35088226]
  • Xueli Song, Yaping An, Danfeng Chen, Wanru Zhang, Xuemei Wu, Chuqiao Li, Sinan Wang, Wenxiao Dong, Bangmao Wang, Tianyu Liu, Weilong Zhong, Tao Sun, Hailong Cao. Microbial metabolite deoxycholic acid promotes vasculogenic mimicry formation in intestinal carcinogenesis. Cancer science. 2022 Feb; 113(2):459-477. doi: 10.1111/cas.15208. [PMID: 34811848]
  • Jae Won Lee, Elise S Cowley, Patricia G Wolf, Heidi L Doden, Tsuyoshi Murai, Kelly Yovani Olivos Caicedo, Lindsey K Ly, Furong Sun, Hajime Takei, Hiroshi Nittono, Steven L Daniel, Isaac Cann, H Rex Gaskins, Karthik Anantharaman, João M P Alves, Jason M Ridlon. Formation of secondary allo-bile acids by novel enzymes from gut Firmicutes. Gut microbes. 2022 Jan; 14(1):2132903. doi: 10.1080/19490976.2022.2132903. [PMID: 36343662]
  • Francis Quilty, Michael Freeley, Siobhan Gargan, John Gilmer, Aideen Long. Deoxycholic acid induces proinflammatory cytokine production by model oesophageal cells via lipid rafts. The Journal of steroid biochemistry and molecular biology. 2021 11; 214(?):105987. doi: 10.1016/j.jsbmb.2021.105987. [PMID: 34438042]
  • I-Ling Chiang, Yi Wang, Satoru Fujii, Brian D Muegge, Qiuhe Lu, Phillip I Tarr, Thaddeus S Stappenbeck. Biofilm Formation and Virulence of Shigella flexneri Are Modulated by pH of Gastrointestinal Tract. Infection and immunity. 2021 10; 89(11):e0038721. doi: 10.1128/iai.00387-21. [PMID: 34424745]
  • Xuan Qin, Yuanjin Zhang, Jian Lu, Shengbo Huang, Zongjun Liu, Xin Wang. CYP3A deficiency alters bile acid homeostasis and leads to changes in hepatic susceptibility in rats. Toxicology and applied pharmacology. 2021 10; 429(?):115703. doi: 10.1016/j.taap.2021.115703. [PMID: 34461081]
  • Shehab Ahmed Alenazi, Ekramy Elmorsy, Ayat Al-Ghafari, Amr El-Husseini. Effect of amphotericin B-deoxycholate (Fungizone) on the mitochondria of Wistar rats' renal proximal tubules cells. Journal of applied toxicology : JAT. 2021 10; 41(10):1620-1633. doi: 10.1002/jat.4151. [PMID: 33740284]
  • Xing-Ling Chen, Shu-Lan Su, Rui Liu, Da-Wei Qian, Li-Ling Chen, Li-Ping Qiu, Jin-Ao Duan. [Chemical constituents and pharmacological action of bile acids from animal:a review]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2021 Oct; 46(19):4898-4906. doi: 10.19540/j.cnki.cjcmm.20210630.201. [PMID: 34738383]
  • Naoki Shibuya, Masaaki Higashiyama, Yoshihiro Akita, Kazuhiko Shirakabe, Suguru Ito, Shin Nishii, Akinori Mizoguchi, Kenichi Inaba, Rina Tanemoto, Nao Sugihara, Yoshinori Hanawa, Akinori Wada, Kazuki Horiuchi, Kenichi Yoshikawa, Chie Kurihara, Yoshikiyo Okada, Chikako Watanabe, Shunsuke Komoto, Kengo Tomita, Masayuki Saruta, Ryota Hokari. Deoxycholic acid enhancement of lymphocyte migration through direct interaction with the intestinal vascular endothelium. Journal of gastroenterology and hepatology. 2021 Sep; 36(9):2523-2530. doi: 10.1111/jgh.15509. [PMID: 33783040]
  • Gokul Krishnan, Nitin Gupta, Kavitha Saravu, Handattu Manjunath Hande, Ruchee Khanna. Deoxycholate amphotericin for histoplasmosis in a patient with poor kidney function. BMJ case reports. 2021 Aug; 14(8):. doi: 10.1136/bcr-2021-243984. [PMID: 34446514]
  • Ying Han, Wei Liu, Liqing Chen, Xin Xin, Qiming Wang, Xintong Zhang, Mingji Jin, Zhonggao Gao, Wei Huang. Effective oral delivery of Exenatide-Zn2+ complex through distal ileum-targeted double layers nanocarriers modified with deoxycholic acid and glycocholic acid in diabetes therapy. Biomaterials. 2021 08; 275(?):120944. doi: 10.1016/j.biomaterials.2021.120944. [PMID: 34153783]
  • Anders Ø Petersen, Hanna Julienne, Tuulia Hyötyläinen, Partho Sen, Yong Fan, Helle Krogh Pedersen, Sirkku Jäntti, Tue H Hansen, Trine Nielsen, Torben Jørgensen, Torben Hansen, Pernille Neve Myers, H Bjørn Nielsen, S Dusko Ehrlich, Matej Orešič, Oluf Pedersen. Conjugated C-6 hydroxylated bile acids in serum relate to human metabolic health and gut Clostridia species. Scientific reports. 2021 06; 11(1):13252. doi: 10.1038/s41598-021-91482-y. [PMID: 34168163]
  • Rašković Aleksandar, Paut Kusturica Milica, Mitić Gorana, Milijašević Boris, Stojšić-Milosavljević Anastazija, Lalić-Popović Mladena, Stević Snežana, Stilinović Nebojša, Gigov Slobodan. Interaction between apigenin and sodium deoxycholate with raloxifene: A potential risk for clinical practice. European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences. 2021 Jun; 161(?):105809. doi: 10.1016/j.ejps.2021.105809. [PMID: 33741473]
  • Tingting Yan, Nana Yan, Hong Wang, Tomoki Yagai, Yuhong Luo, Shogo Takahashi, Min Zhao, Kristopher W Krausz, Guangji Wang, Haiping Hao, Frank J Gonzalez. FXR-Deoxycholic Acid-TNF-α Axis Modulates Acetaminophen-Induced Hepatotoxicity. Toxicological sciences : an official journal of the Society of Toxicology. 2021 05; 181(2):273-284. doi: 10.1093/toxsci/kfab027. [PMID: 33662127]
  • Shinsa Kameo, Michiki Aso, Ryo Furukawa, Renon Matsumae, Makio Yokono, Tomomichi Fujita, Ayumi Tanaka, Ryouichi Tanaka, Atsushi Takabayashi. Substitution of Deoxycholate with the Amphiphilic Polymer Amphipol A8-35 Improves the Stability of Large Protein Complexes during Native Electrophoresis. Plant & cell physiology. 2021 May; 62(2):348-355. doi: 10.1093/pcp/pcaa165. [PMID: 33399873]
  • Wushuang Zeng, Lanlan Gui, Xianwen Tan, Pingping Zhu, Yiting Hu, Qingliang Wu, Xuejing Li, Lian Yang, Wei Jia, Changxiao Liu, Ke Lan. Tertiary Oxidation of Deoxycholate Is Predictive of CYP3A Activity in Dogs. Drug metabolism and disposition: the biological fate of chemicals. 2021 05; 49(5):369-378. doi: 10.1124/dmd.121.000385. [PMID: 33674269]
  • Nitza Soto, Karoll Ferrer, Katy Díaz, César González, Lautaro Taborga, Andrés F Olea, Héctor Carrasco, Luis Espinoza. Synthesis and Biological Activity of New Brassinosteroid Analogs of Type 24-Nor-5β-Cholane and 23-Benzoate Function in the Side Chain. International journal of molecular sciences. 2021 May; 22(9):. doi: 10.3390/ijms22094808. [PMID: 34062717]
  • Renata Caetano Kuschnir, Leonardo Soares Pereira, Maria Rita Teixeira Dutra, Ludmila de Paula, Maria Luciana Silva-Freitas, Gabriela Corrêa-Castro, Simone da Costa Cruz Silva, Glaucia Cota, Joanna Reis Santos-Oliveira, Alda Maria Da-Cruz. High levels of anti-Leishmania IgG3 and low CD4+ T cells count were associated with relapses in visceral leishmaniasis. BMC infectious diseases. 2021 Apr; 21(1):369. doi: 10.1186/s12879-021-06051-5. [PMID: 33874901]
  • Fereshteh Golfakhrabadi, Mostafa Khaledi, Melika Nazemi, Mehdi Safdarian. Isolation, identification, and HPTLC quantification of dehydrodeoxycholic acid from Persian Gulf sponges. Journal of pharmaceutical and biomedical analysis. 2021 Apr; 197(?):113962. doi: 10.1016/j.jpba.2021.113962. [PMID: 33640688]
  • Zunji Shi, Gui Chen, Zheng Cao, Fang Wu, Hehua Lei, Chuan Chen, Yuchen Song, Caixiang Liu, Jinquan Li, Jinlin Zhou, Yujing Lu, Limin Zhang. Gut Microbiota and Its Metabolite Deoxycholic Acid Contribute to Sucralose Consumption-Induced Nonalcoholic Fatty Liver Disease. Journal of agricultural and food chemistry. 2021 Apr; 69(13):3982-3991. doi: 10.1021/acs.jafc.0c07467. [PMID: 33755449]
  • Wenjie Yao, Zhishi Xu, Jiang Sun, Jingwen Luo, Yinghui Wei, Jiafeng Zou. Deoxycholic acid-functionalised nanoparticles for oral delivery of rhein. European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences. 2021 Apr; 159(?):105713. doi: 10.1016/j.ejps.2021.105713. [PMID: 33453389]
  • Sauman Singh-Phulgenda, Prabin Dahal, Roland Ngu, Brittany J Maguire, Alice Hawryszkiewycz, Sumayyah Rashan, Matthew Brack, Christine M Halleux, Fabiana Alves, Kasia Stepniewska, Piero L Olliaro, Philippe J Guerin. Serious adverse events following treatment of visceral leishmaniasis: A systematic review and meta-analysis. PLoS neglected tropical diseases. 2021 03; 15(3):e0009302. doi: 10.1371/journal.pntd.0009302. [PMID: 33780461]
  • Danli Yang, Mingjie Yao, Ying Yan, Yanna Liu, Xiajie Wen, Xiangmei Chen, Fengmin Lu. Deoxycholic Acid Upregulates Serum Golgi Protein 73 through Activating NF-κB Pathway and Destroying Golgi Structure in Liver Disease. Biomolecules. 2021 02; 11(2):. doi: 10.3390/biom11020205. [PMID: 33540642]
  • Jiaxing Wang, Jianshu Zhang, Xianjuan Lin, Yupeng Wang, Xiang Wu, Fan Yang, Wei Gao, Yan Zhang, Jinpeng Sun, Changtao Jiang, Ming Xu. DCA-TGR5 signaling activation alleviates inflammatory response and improves cardiac function in myocardial infarction. Journal of molecular and cellular cardiology. 2021 02; 151(?):3-14. doi: 10.1016/j.yjmcc.2020.10.014. [PMID: 33130149]
  • Naruemit Sayabovorn, Piriyaporn Chongtrakool, Methee Chayakulkeeree. Cryptococcal fungemia and Mycobacterium haemophilum cellulitis in a patient receiving ruxolitinib: a case report and literature review. BMC infectious diseases. 2021 Jan; 21(1):27. doi: 10.1186/s12879-020-05703-2. [PMID: 33413168]
  • Johanna Abrigo, Francisco Gonzalez, Francisco Aguirre, Franco Tacchi, Andrea Gonzalez, María Paz Meza, Felipe Simon, Daniel Cabrera, Marco Arrese, Saul Karpen, Claudio Cabello-Verrugio. Cholic acid and deoxycholic acid induce skeletal muscle atrophy through a mechanism dependent on TGR5 receptor. Journal of cellular physiology. 2021 01; 236(1):260-272. doi: 10.1002/jcp.29839. [PMID: 32506638]
  • Maimuna Majimbi, Emily Brook, Peter Galettis, Edward Eden, Hani Al-Salami, Armin Mooranian, Hesham Al-Sallami, Virginie Lam, John C L Mamo, Ryusuke Takechi. Sodium alginate microencapsulation improves the short-term oral bioavailability of cannabidiol when administered with deoxycholic acid. PloS one. 2021; 16(6):e0243858. doi: 10.1371/journal.pone.0243858. [PMID: 34138862]
  • Camila S Freitas, João A Oliveira-da-Silva, Daniela P Lage, Rafaella R Costa, Débora V C Mendonça, Vívian T Martins, Thiago A R Reis, Luciana M R Antinarelli, Amanda S Machado, Grasiele S V Tavares, Fernanda F Ramos, Vinicio T S Coelho, Rory C F Brito, Fernanda Ludolf, Miguel A Chávez-Fumagalli, Bruno M Roatt, Gabriela S Ramos, Jennifer Munkert, Flaviano M Ottoni, Priscilla R V Campana, Maria V Humbert, Elaine S Coimbra, Fernão C Braga, Rodrigo M Pádua, Eduardo A F Coelho. Digitoxigenin presents an effective and selective antileishmanial action against Leishmania infantum and is a potential therapeutic agent for visceral leishmaniasis. Parasitology research. 2021 Jan; 120(1):321-335. doi: 10.1007/s00436-020-06971-2. [PMID: 33191446]
  • Zahra Chegini, Mojtaba Didehdar, Amin Khoshbayan, Shahin Rajaeih, Mohammadreza Salehi, Aref Shariati. Epidemiology, clinical features, diagnosis and treatment of cerebral mucormycosis in diabetic patients: A systematic review of case reports and case series. Mycoses. 2020 Dec; 63(12):1264-1282. doi: 10.1111/myc.13187. [PMID: 32965744]
  • Saurav Kumar Jha, Hee-Soo Han, Laxman Subedi, Rudra Pangeni, Jee Young Chung, Seho Kweon, Jeong Uk Choi, Youngro Byun, Yong-Hee Kim, Jin Woo Park. Enhanced oral bioavailability of an etoposide multiple nanoemulsion incorporating a deoxycholic acid derivative-lipid complex. Drug delivery. 2020 Dec; 27(1):1501-1513. doi: 10.1080/10717544.2020.1837293. [PMID: 33107339]
  • Phuong Thao Nguyen, Keishi Kanno, Quoc Thang Pham, Yuka Kikuchi, Masaki Kakimoto, Tomoki Kobayashi, Yuichiro Otani, Nobusuke Kishikawa, Mutsumi Miyauchi, Koji Arihiro, Masanori Ito, Susumu Tazuma. Senescent hepatic stellate cells caused by deoxycholic acid modulates malignant behavior of hepatocellular carcinoma. Journal of cancer research and clinical oncology. 2020 Dec; 146(12):3255-3268. doi: 10.1007/s00432-020-03374-9. [PMID: 32870388]
  • Lingyu Wang, Zizhen Gong, Xiuyuan Zhang, Fangxinxing Zhu, Yuchen Liu, Chaozhi Jin, Xixi Du, Congfeng Xu, Yingwei Chen, Wei Cai, Chunyan Tian, Jin Wu. Gut microbial bile acid metabolite skews macrophage polarization and contributes to high-fat diet-induced colonic inflammation. Gut microbes. 2020 11; 12(1):1-20. doi: 10.1080/19490976.2020.1819155. [PMID: 33006494]
  • Doowon Huh, Khoa D Tran, Megan M W Straiko, Matthew W McCarthy, Angela S Loo, Thomas J Walsh, Christopher S Sales. Efficacy of Amphotericin B in Corneal Preservation Media After Extended Frozen Storage. Cornea. 2020 Oct; 39(10):1274-1277. doi: 10.1097/ico.0000000000002381. [PMID: 32482961]
  • Thanat Ounsinman, Piriyaporn Chongtrakool, Nasikarn Angkasekwinai. Continuous ambulatory peritoneal dialysis-associated Histoplasma capsulatum peritonitis: a case report and literature review. BMC infectious diseases. 2020 Sep; 20(1):717. doi: 10.1186/s12879-020-05441-5. [PMID: 32993529]
  • Iván L Csanaky, Andrew J Lickteig, Youcai Zhang, Curtis D Klaassen. Effects of patent ductus venosus on bile acid homeostasis in aryl hydrocarbon receptor (AhR)-null mice. Toxicology and applied pharmacology. 2020 09; 403(?):115136. doi: 10.1016/j.taap.2020.115136. [PMID: 32679164]
  • Danilo Yamamoto Thomaz, Marcia de Souza Carvalho Melhem, João Nobrega de Almeida Júnior, Gil Benard, Gilda Maria Barbaro Del Negro. Lack of efficacy of echinocandins against high metabolic activity biofilms of Candida parapsilosis clinical isolates. Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology]. 2020 Sep; 51(3):1129-1133. doi: 10.1007/s42770-019-00219-7. [PMID: 31898245]
  • Huanhuan Qi, Xueyuan Zhang, Hao Feng, Yating Xiong, Yuancheng Chen, Jing Zhang, Chunlei Li. Comparative pharmacokinetics of amphotericin B after single- and multiple-dose administration of G-ABCD and conventional amphotericin B deoxycholate to rats. Journal of global antimicrobial resistance. 2020 09; 22(?):608-612. doi: 10.1016/j.jgar.2020.05.011. [PMID: 32512238]
  • Noboru Misawa, Takuma Higurashi, Tomohiro Takatsu, Michihiro Iwaki, Takashi Kobayashi, Tsutomu Yoshihara, Keiichi Ashikari, Takaomi Kessoku, Akiko Fuyuki, Tetsuya Matsuura, Hidenori Ohkubo, Haruki Usuda, Koichiro Wada, Nakayuki Naritaka, Hajime Takei, Hiroshi Nittono, Mitsuharu Matsumoto, Akira Honda, Atsushi Nakajima, Michael Camilleri. The benefit of elobixibat in chronic constipation is associated with faecal deoxycholic acid but not effects of altered microbiota. Alimentary pharmacology & therapeutics. 2020 09; 52(5):821-828. doi: 10.1111/apt.15950. [PMID: 32687674]
  • Pande Putu Erawijantari, Sayaka Mizutani, Hirotsugu Shiroma, Satoshi Shiba, Takeshi Nakajima, Taku Sakamoto, Yutaka Saito, Shinji Fukuda, Shinichi Yachida, Takuji Yamada. Influence of gastrectomy for gastric cancer treatment on faecal microbiome and metabolome profiles. Gut. 2020 08; 69(8):1404-1415. doi: 10.1136/gutjnl-2019-319188. [PMID: 31953253]
  • Thais Furtado Ferreira Magalhães, Marliete Carvalho Costa, Rodrigo Assunção Holanda, Gabriela Freitas Ferreira, Vanessa Silva Dutra Carvalho, Gustavo Jose Cota Freitas, Noelly Queiroz Ribeiro, Elúzia Castro Peres Emídio, Paulo Henrique Fonseca Carmo, Camila Bernardo de Brito, Daniele Glória de Souza, Cláudia Emanuela Viana Rocha, Tatiane Alves Paixão, Maria Aparecida de Resende-Stoianoff, Daniel Assis Santos. N-acetylcysteine reduces amphotericin B deoxycholate nephrotoxicity and improves the outcome of murine cryptococcosis. Medical mycology. 2020 Aug; 58(6):835-844. doi: 10.1093/mmy/myz129. [PMID: 31919505]
  • Bin Zan, Xinhua Liu, Yining Zhao, Rong Shi, Xiaoshu Sun, Tianming Wang, Yuanyuan Li, Shaoyong Liu, Li Yang, Yueming Ma. A validated surrogate analyte UPLC-MS/MS assay for quantitation of TUDCA, TCDCA, UDCA and CDCA in rat plasma: Application in a pharmacokinetic study of cultured bear bile powder. Biomedical chromatography : BMC. 2020 Jul; 34(7):e4835. doi: 10.1002/bmc.4835. [PMID: 32198899]
  • Mazhar Hussein Amirali, Jacques Liebenberg, Sheylyn Pillay, Johan Nel. Sporotrichosis in renal transplant patients: two case reports and a review of the literature. Journal of medical case reports. 2020 Jun; 14(1):79. doi: 10.1186/s13256-020-02385-x. [PMID: 32586384]
  • Jeffrey Molendijk, Thi-My-Tam Nguyen, Ian Brown, Ahmed Mohamed, Yenkai Lim, Johanna Barclay, Mark P Hodson, Thomas P Hennessy, Lutz Krause, Mark Morrison, Michelle M Hill. Chronic High-Fat Diet Induces Early Barrett's Esophagus in Mice through Lipidome Remodeling. Biomolecules. 2020 05; 10(5):. doi: 10.3390/biom10050776. [PMID: 32429496]
  • Min Song, Qiang Yang, Fenglin Zhang, Lin Chen, Han Su, Xiaohua Yang, Haiwen He, Fangfang Liu, Jisong Zheng, Mingfa Ling, Xumin Lai, Xiaotong Zhu, Lina Wang, Ping Gao, Gang Shu, Qingyan Jiang, Songbo Wang. Hyodeoxycholic acid (HDCA) suppresses intestinal epithelial cell proliferation through FXR-PI3K/AKT pathway, accompanied by alteration of bile acids metabolism profiles induced by gut bacteria. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2020 05; 34(5):7103-7117. doi: 10.1096/fj.201903244r. [PMID: 32246800]
  • Marylou Murray, Paul Hine. Treating progressive disseminated histoplasmosis in people living with HIV. The Cochrane database of systematic reviews. 2020 04; 4(?):CD013594. doi: 10.1002/14651858.cd013594. [PMID: 32343003]
  • Sarah Farr, Bogdan Stankovic, Simon Hoffman, Hassan Masoudpoor, Chris Baker, Jennifer Taher, Angela E Dean, Sayeepriyadarshini Anakk, Khosrow Adeli. Bile acid treatment and FXR agonism lower postprandial lipemia in mice. American journal of physiology. Gastrointestinal and liver physiology. 2020 04; 318(4):G682-G693. doi: 10.1152/ajpgi.00386.2018. [PMID: 32003602]
  • Ayman H Kamel, Samar Ezzat, Mona A Ahmed, Abd El-Galil E Amr, Abdulrahman A Almehizia, Mohamed A Al-Omar. Modified Potentiometric Screen-Printed Electrodes Based on Imprinting Character for Sodium Deoxycholate Determination. Biomolecules. 2020 02; 10(2):. doi: 10.3390/biom10020251. [PMID: 32041305]
  • Faisal Usman, Jongdee Nopparat, Ibrahim Javed, Teerapol Srichana. Biodistribution and histopathology studies of amphotericin B sodium deoxycholate sulfate formulation following intratracheal instillation in rat models. Drug delivery and translational research. 2020 02; 10(1):59-69. doi: 10.1007/s13346-019-00662-x. [PMID: 31368043]
  • María Claudia Rodríguez Galvis, Jairo Enrique Pérez Franco, Mirian Yolanda Casas Vargas, María Fernanda Ordoñez Rubiano. Effectiveness and Safety of Amphotericin B Deoxycholate, Amphotericin B Colloidal Dispersion, and Liposomal Amphotericin B as Third-Line Treatments for Cutaneous and Mucocutaneous Leishmaniasis: A Retrospective Study. The American journal of tropical medicine and hygiene. 2020 02; 102(2):274-279. doi: 10.4269/ajtmh.18-0514. [PMID: 31820708]
  • Patricia S Walker, Daniel R Lee, Bryant A Toth, Beta Bowen. Histological Analysis of the Effect of ATX-101 (Deoxycholic Acid Injection) on Subcutaneous Fat: Results From a Phase 1 Open-Label Study. Dermatologic surgery : official publication for American Society for Dermatologic Surgery [et al.]. 2020 01; 46(1):70-77. doi: 10.1097/dss.0000000000001851. [PMID: 30883481]
  • Leticia Aparecida Schiave, Erika Nascimento, Gilberto Gambero Gaspar, Fernando Crivelenti Vilar, Edson Zangiacomi Martinez, Cristiane Masetto de Gaitani, Roberto Martinez. Minimum concentration of Amphotericin B in serum according to the formulation, dose, and daily or prolonged intermittent therapeutic regimen. Revista da Sociedade Brasileira de Medicina Tropical. 2020; 53(?):e20180463. doi: 10.1590/0037-8682-0463-2018. [PMID: 32049198]
  • Ariane J Sousa-Batista, Wallace Pacienza-Lima, Maria Inês Ré, Bartira Rossi-Bergmann. Novel and safe single-dose treatment of cutaneous leishmaniasis with implantable amphotericin B-loaded microparticles. International journal for parasitology. Drugs and drug resistance. 2019 12; 11(?):148-155. doi: 10.1016/j.ijpddr.2019.06.001. [PMID: 31331828]
  • Sreenu Madhumanchi, Roongnapa Suedee, Titpawan Nakpheng, Kittiya Tinpun, Pornvichai Temboot, Teerapol Srichana. Binding interactions of bacterial lipopolysaccharides to polymyxin B in an amphiphilic carrier 'sodium deoxycholate sulfate'. Colloids and surfaces. B, Biointerfaces. 2019 Oct; 182(?):110374. doi: 10.1016/j.colsurfb.2019.110374. [PMID: 31330430]
  • Zizhen Zhang, Hao Chen, Ziyang Chen, Peng Ding, Yingchen Ju, Qiong Gu, Jun Xu, Huihao Zhou. Identify liver X receptor β modulator building blocks by developing a fluorescence polarization-based competition assay. European journal of medicinal chemistry. 2019 Sep; 178(?):458-467. doi: 10.1016/j.ejmech.2019.06.011. [PMID: 31202993]
  • F Samuel van Nierop, Emma C E Meessen, Kyra G M Nelissen, Roos Achterbergh, Laureen A Lammers, Frédéric M Vaz, Ron A A Mathôt, Heinz-Josef Klümpen, Steven W Olde Damink, Frank G Schaap, Johannes A Romijn, E Marleen Kemper, Maarten R Soeters. Differential effects of a 40-hour fast and bile acid supplementation on human GLP-1 and FGF19 responses. American journal of physiology. Endocrinology and metabolism. 2019 09; 317(3):E494-E502. doi: 10.1152/ajpendo.00534.2018. [PMID: 31237451]
  • Yu Zhang, Zheng Cui, Hao Mei, Jingya Xu, Tao Zhou, Fang Cheng, Kaiping Wang. Angelica sinensis polysaccharide nanoparticles as a targeted drug delivery system for enhanced therapy of liver cancer. Carbohydrate polymers. 2019 Sep; 219(?):143-154. doi: 10.1016/j.carbpol.2019.04.041. [PMID: 31151511]
  • Xue-Ping Wang, Seohyun Janice Im, Deidra M Balchak, Nicolas Montalbetti, Marcelo D Carattino, Evan C Ray, Ossama B Kashlan. Murine epithelial sodium (Na+) channel regulation by biliary factors. The Journal of biological chemistry. 2019 06; 294(26):10182-10193. doi: 10.1074/jbc.ra119.007394. [PMID: 31092599]
  • R Lu, C Hollingsworth, J Qiu, A Wang, E Hughes, X Xin, K M Konrath, W Elsegeiny, Yoon-Dong Park, L Atakulu, J C Craft, E C Tramont, R Mannino, P R Williamson. Efficacy of Oral Encochleated Amphotericin B in a Mouse Model of Cryptococcal Meningoencephalitis. mBio. 2019 05; 10(3):. doi: 10.1128/mbio.00724-19. [PMID: 31138748]
  • Kaitlin Branick, Matthew J Taylor, Matthew W Trump, Geoffrey C Wall. Apparent interference with extracorporeal membrane oxygenation by liposomal amphotericin B in a patient with disseminated blastomycosis receiving continuous renal replacement therapy. American journal of health-system pharmacy : AJHP : official journal of the American Society of Health-System Pharmacists. 2019 May; 76(11):810-813. doi: 10.1093/ajhp/zxz054. [PMID: 30994894]
  • Kristen E Syring, Travis J Cyphert, Thomas C Beck, Charles R Flynn, Nicholas A Mignemi, Owen P McGuinness. Systemic bile acids induce insulin resistance in a TGR5-independent manner. American journal of physiology. Endocrinology and metabolism. 2019 05; 316(5):E782-E793. doi: 10.1152/ajpendo.00362.2018. [PMID: 30779633]
  • Jingwen Luo, Pei Zhang, Ting Zhao, Mengdi Jia, Peng Yin, Wenhao Li, Zhi-Rong Zhang, Yao Fu, Tao Gong. Golgi Apparatus-Targeted Chondroitin-Modified Nanomicelles Suppress Hepatic Stellate Cell Activation for the Management of Liver Fibrosis. ACS nano. 2019 04; 13(4):3910-3923. doi: 10.1021/acsnano.8b06924. [PMID: 30938986]
  • Felipe Francisco Tuon, Khaiany Lino Florencio, Jaime L Rocha. Burden of acute kidney injury in HIV patients under deoxycholate amphotericin B therapy for cryptococcal meningitis and cost-minimization analysis of amphotericin B lipid complex. Medical mycology. 2019 Apr; 57(3):265-269. doi: 10.1093/mmy/myy025. [PMID: 29762761]
  • Linxia Xiao, Endian Yu, Hanlin Yue, Qingyong Li. Enhanced Liver Targeting of Camptothecin via Conjugation with Deoxycholic Acid. Molecules (Basel, Switzerland). 2019 Mar; 24(6):. doi: 10.3390/molecules24061179. [PMID: 30917485]
  • Hareton Teixeira Vechi, Raquel Cordeiro Theodoro, Andrea Lima de Oliveira, Ronald Muryellison Oliveira da Silva Gomes, Rodolfo Daniel de Almeida Soares, Munya Gandour Freire, Mônica Baumgardt Bay. Invasive fungal infection by Cryptococcus neoformans var. grubii with bone marrow and meningeal involvement in a HIV-infected patient: a case report. BMC infectious diseases. 2019 Mar; 19(1):220. doi: 10.1186/s12879-019-3831-8. [PMID: 30832607]
  • Jian Zhang, Ling-Zhi Gao, Yu-Jie Chen, Ping-Ping Zhu, Shan-Shan Yin, Ming-Ming Su, Yan Ni, Jia Miao, Wen-Lin Wu, Hong Chen, Kim L R Brouwer, Chang-Xiao Liu, Liang Xu, Wei Jia, Ke Lan. Continuum of Host-Gut Microbial Co-metabolism: Host CYP3A4/3A7 are Responsible for Tertiary Oxidations of Deoxycholate Species. Drug metabolism and disposition: the biological fate of chemicals. 2019 03; 47(3):283-294. doi: 10.1124/dmd.118.085670. [PMID: 30606729]
  • Thuy Le, Vo Trieu Ly, Nguyen Thi Mai Thu, Ashley Nguyen, Nguyen Tat Thanh, Nguyen Van Vinh Chau, Guy Thwaites, John Perfect, Ruwanthi Kolamunnage-Dona, William Hope. Population Pharmacodynamics of Amphotericin B Deoxycholate for Disseminated Infection Caused by Talaromyces marneffei. Antimicrobial agents and chemotherapy. 2019 02; 63(2):. doi: 10.1128/aac.01739-18. [PMID: 30420478]
  • R Michael E Parkhouse, Arturo Carpio, Alfredo Campoverde, Patricia Sastre, Glenda Rojas, Leslie J S Harrison, Maria Milagros Cortez. A modified lateral flow assay, using serum, for the rapid identification of human and bovine cysticercosis in the absence of false positives. Transactions of the Royal Society of Tropical Medicine and Hygiene. 2019 02; 113(2):101-104. doi: 10.1093/trstmh/try116. [PMID: 30383274]
  • Natasha Lucas, Andrew B Robinson, Maiken Marcker Espersen, Sadia Mahboob, Dylan Xavier, Jing Xue, Rosemary L Balleine, Anna deFazio, Peter G Hains, Phillip J Robinson. Accelerated Barocycler Lysis and Extraction Sample Preparation for Clinical Proteomics by Mass Spectrometry. Journal of proteome research. 2019 01; 18(1):399-405. doi: 10.1021/acs.jproteome.8b00684. [PMID: 30444966]
  • Carolina Rocio Santos, Felipe Francisco Tuon, Juliette Cieslinski, Regina Maia de Souza, Rui Imamura, Valdir Sabbaga Amato. Comparative study on liposomal amphotericin B and other therapies in the treatment of mucosal leishmaniasis: A 15-year retrospective cohort study. PloS one. 2019; 14(6):e0218786. doi: 10.1371/journal.pone.0218786. [PMID: 31242231]
  • Benjamin Yii Chung Lau, Abrizah Othman. Evaluation of sodium deoxycholate as solubilization buffer for oil palm proteomics analysis. PloS one. 2019; 14(8):e0221052. doi: 10.1371/journal.pone.0221052. [PMID: 31415606]
  • Rudra Pangeni, Saurav Kumar Jha, Ruby Maharjan, Jeong Uk Choi, Kwan-Young Chang, Young Kweon Choi, Youngro Byun, Jin Woo Park. Intestinal transport mechanism and in vivo anticancer efficacy of a solid oral formulation incorporating an ion-pairing complex of pemetrexed with deoxycholic acid derivative. International journal of nanomedicine. 2019; 14(?):6339-6356. doi: 10.2147/ijn.s209722. [PMID: 31496690]
  • Linxia Xiao, Jialin Xu, Qi Weng, Leilei Zhou, Mengke Wang, Miao Liu, Qingyong Li. Mechanism of a Novel Camptothecin-Deoxycholic Acid Derivate Induced Apoptosis against Human Liver Cancer HepG2 Cells and Human Colon Cancer HCT116 Cells. Recent patents on anti-cancer drug discovery. 2019; 14(4):370-382. doi: 10.2174/1574892814666191016162346. [PMID: 31644410]
  • Elaine F Enright, Kalaimathi Govindarajan, Rebecca Darrer, John MacSharry, Susan A Joyce, Cormac G M Gahan. Gut Microbiota-Mediated Bile Acid Transformations Alter the Cellular Response to Multidrug Resistant Transporter Substrates in Vitro: Focus on P-glycoprotein. Molecular pharmaceutics. 2018 12; 15(12):5711-5727. doi: 10.1021/acs.molpharmaceut.8b00875. [PMID: 30388019]
  • María Téllez R, Catalina Salgueiro C, Marcelo Leiva Hernández, Alberto Fica. [Cerebral cryptococcosis and immune reconstitution inflammatory syndrome. Case report]. Revista medica de Chile. 2018 Dec; 146(12):1481-1485. doi: 10.4067/s0034-98872018001201481. [PMID: 30848753]
  • Yong-Tai Zhang, Kai Zhang, Zhe Li, Hong-Yu Zhang, Teng Guo, Yan-Yan Li, Ji-Hui Zhao, Nian-Ping Feng. DOC-LS, a new liposome for dermal delivery, and its endocytosis by HaCaT and CCC-ESF-1 cells. IET nanobiotechnology. 2018 Dec; 12(8):1037-1041. doi: 10.1049/iet-nbt.2018.5079. [PMID: 30964010]
  • Amin Sadeghpour, Michael Rappolt, Shravasti Misra, Chandrashekhar V Kulkarni. Bile Salts Caught in the Act: From Emulsification to Nanostructural Reorganization of Lipid Self-Assemblies. Langmuir : the ACS journal of surfaces and colloids. 2018 11; 34(45):13626-13637. doi: 10.1021/acs.langmuir.8b02343. [PMID: 30347980]