Fumaric acid (BioDeep_00000000321)
Secondary id: BioDeep_00000400095, BioDeep_00000405208
human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite BioNovoGene_Lab2019 natural product
代谢物信息卡片
化学式: C4H4O4 (116.011)
中文名称: 反丁烯二酸, 富马酸, 延胡索酸
谱图信息:
最多检出来源 Homo sapiens(blood) 13.54%
Last reviewed on 2024-07-01.
Cite this Page
Fumaric acid. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/fumaric_acid (retrieved
2024-12-22) (BioDeep RN: BioDeep_00000000321). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C(=CC(=O)O)C(=O)O
InChI: InChI=1S/C4H4O4/c5-3(6)1-2-4(7)8/h1-2H,(H,5,6)(H,7,8)/b2-1+
描述信息
Fumaric acid appears as a colorless crystalline solid. The primary hazard is the threat to the environment. Immediate steps should be taken to limit spread to the environment. Combustible, though may be difficult to ignite. Used to make paints and plastics, in food processing and preservation, and for other uses.
Fumaric acid is a butenedioic acid in which the C=C double bond has E geometry. It is an intermediate metabolite in the citric acid cycle. It has a role as a food acidity regulator, a fundamental metabolite and a geroprotector. It is a conjugate acid of a fumarate(1-).
Fumaric acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655).
Fumaric acid is a precursor to L-malate in the Krebs tricarboxylic acid cycle. It is formed by the oxidation of succinate by succinate dehydrogenase. Fumarate is converted by fumarase to malate. A fumarate is a salt or ester of the organic compound fumaric acid, a dicarboxylic acid. Fumarate has recently been recognized as an oncometabolite. (A15199). As a food additive, fumaric acid is used to impart a tart taste to processed foods. It is also used as an antifungal agent in boxed foods such as cake mixes and flours, as well as tortillas. Fumaric acid is also added to bread to increase the porosity of the final baked product. It is used to impart a sour taste to sourdough and rye bread. In cake mixes, it is used to maintain a low pH and prevent clumping of the flours used in the mix. In fruit drinks, fumaric acid is used to maintain a low pH which, in turn, helps to stabilize flavor and color. Fumaric acid also prevents the growth of E. coli in beverages when used in combination with sodium benzoate. When added to wines, fumaric acid helps to prevent further fermentation and yet maintain low pH and eliminate traces of metallic elements. In this fashion, it helps to stabilize the taste of wine. Fumaric acid can also be added to dairy products, sports drinks, jams, jellies and candies. Fumaric acid helps to break down bonds between gluten proteins in wheat and helps to create a more pliable dough. Fumaric acid is used in paper sizing, printer toner, and polyester resin for making molded walls.
Fumaric acid is a dicarboxylic acid. It is a precursor to L-malate in the Krebs tricarboxylic acid (TCA) cycle. It is formed by the oxidation of succinic acid by succinate dehydrogenase. Fumarate is converted by the enzyme fumarase to malate. Fumaric acid has recently been identified as an oncometabolite or an endogenous, cancer causing metabolite. High levels of this organic acid can be found in tumors or biofluids surrounding tumors. Its oncogenic action appears to due to its ability to inhibit prolyl hydroxylase-containing enzymes. In many tumours, oxygen availability becomes limited (hypoxia) very quickly due to rapid cell proliferation and limited blood vessel growth. The major regulator of the response to hypoxia is the HIF transcription factor (HIF-alpha). Under normal oxygen levels, protein levels of HIF-alpha are very low due to constant degradation, mediated by a series of post-translational modification events catalyzed by the prolyl hydroxylase domain-containing enzymes PHD1, 2 and 3, (also known as EglN2, 1 and 3) that hydroxylate HIF-alpha and lead to its degradation. All three of the PHD enzymes are inhibited by fumarate. Fumaric acid is found to be associated with fumarase deficiency, which is an inborn error of metabolism. It is also a metabolite of Aspergillus.
Produced industrially by fermentation of Rhizopus nigricans, or manufactured by catalytic or thermal isomerisation of maleic anhydride or maleic acid. Used as an antioxidant, acidulant, leavening agent and flavouring agent in foods. Present in raw lean fish. Dietary supplement. Used in powdered products since fumaric acid is less hygroscopic than other acids. A precursor to L-malate in the Krebs tricarboxylic acid cycle. It is formed by the oxidation of succinate by succinate dehydrogenase (wikipedia). Fumaric acid is also found in garden tomato, papaya, wild celery, and star fruit.
Fumaric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=110-17-8 (retrieved 2024-07-01) (CAS RN: 110-17-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Fumaric acid, associated with fumarase deficiency, is identified as an oncometabolite or an endogenous, cancer causing metabolite.
Fumaric acid, associated with fumarase deficiency, is identified as an oncometabolite or an endogenous, cancer causing metabolite.
同义名列表
136 个代谢物同义名
Fumaric Acid, Pharmaceutical Secondary Standard; Certified Reference Material; Fumaric acid, United States Pharmacopeia (USP) Reference Standard; Fumaric acid, European Pharmacopoeia (EP) Reference Standard; Fumaric acid, anhydrous, free-flowing, Redi-Dri(TM), >=99\\%; Fumaric acid, certified reference material, TraceCERT(R); Fumarate; 2-Butenedioic acid; Trans-Butenedioic acid; Fumaric acid, BioReagent, suitable for cell culture; SODIUM AUROTHIOMALATE IMPURITY B [EP IMPURITY]; SODIUM AUROTHIOMALATE IMPURITY B (EP IMPURITY); 4-02-00-02202 (Beilstein Handbook Reference); Fumaric acid, Vetec(TM) reagent grade, 99\\%; Fumaric acid, tested according to USP/NF; Fumaric acid, qNMR Standard for DMSO; trans-1,2-Ethylenediccarboxylic acid; 26B3632D-E93F-4655-90B0-3C17855294BA; Acido trans 1,2-etilendicarbossilico; 1,2-Ethenedicarboxylic acid, trans-; Fumaric acid, puriss., >=99.5\\% (T); MALIC ACID IMPURITY A (EP IMPURITY); trans-1,2-Ethylenedicarboxylic acid; Acido trans 1,2-etenedicarbossilico; MALIC ACID IMPURITY A [EP IMPURITY]; 1,2-Ethylenedicarboxylic acid, (E); trans-1,2-Ethenedicarboxylic acid; (E)-1,2-Ethylenedicarboxylic acid; trans-1,2-Ethylenedicarboxylate; 2-Butenedioic acid (2E)- (9CI); Fumaric acid, >=99\\%, FCC, FG; 1,2-ethylenedicarboxylic acid; FUMARIC ACID [USP IMPURITY]; FUMARIC ACID (USP IMPURITY); Futrans-2-Butenedioic Acid; Fumaric acid, >=99.0\\% (T); trans-Ethylendicarbonsaure; trans-but-2-enedioic acid; Kyselina fumarova [Czech]; (2E)-2-Butenedioic acid #; ethylenedicarboxylic acid; 2-butenedioic acid, (2E)-; 2(TRANS)-BUTENEDIOIC ACID; trans-2-Butenedioic acid; (2E)-but-2-enedioic acid; 2-Butenedioic acid (2E)-; 2-Butenedioic acid, (E)-; (Trans)-butenedioic acid; (2E)-2-butenedioic acid; (2Z)-2-Butenedioic acid; Acido trans butendioico; FUMARICUM ACIDUM [HPUS]; (E)-but-2-enedioic acid; 2-Butenedioic acid (E)-; Butenedioic acid, (E)-; 2-(E)-Butenedioic acid; (E)-2-butenedioic acid; trans-Butenedioic acid; FUMARIC ACID [USP-RS]; FUMARIC ACID (USP-RS); FUMARIC ACID [WHO-DD]; trans-But-2-enedioate; (E)-Butenedioic acid; (2E)-but-2-enedioate; FUMARIC ACID (MART.); FUMARIC ACID [MART.]; E-2-Butenedioic acid; trans-2-Butenedioate; Maleic acid-2,3-13C2; trans-2-Butendisaure; Fumaric acid, >=99\\%; FUMARIC ACID [VANDF]; (2E)-2-Butenedioate; FUMARIC ACID [HSDB]; FUMARIC ACID [INCI]; FUMARIC ACID [FHFI]; Lichenic acid (VAN); But-2-enedioic acid; magnesium fumarate; 2-(E)-Butenedioate; 2-Butenedioic acid; Fumaric acid, 99\\%; trans-Butenedioate; Maleic-2,3-d2 acid; (E)-2-Butenedioate; Fumaric acid (8CI); but-2-enedioicacid; FUMARIC ACID [FCC]; FUMARIC ACID [II]; Kyselina fumarova; Acido allomaleico; FUMARIC ACID (II); FUMARIC ACID [MI]; Fumaric acid (NF); Fumaric acid [NF]; ammonium fumarate; Allomalenic acid; fumarate dianion; Butenedioic acid; Fumaric Acid,(S); Fumaricum acidum; Allomaleic-acid; Allomaleic acid; Acido lichenico; sodium fumarate; UNII-88XHZ13131; WLN: QV1U1VQ-T; Acido fumarico; Acido boletico; Lichenic acid; fumeric acid; fumarate, 10; fumarate(2-); Boletic-acid; Donitic acid; Tumaric acid; Boletic acid; Fumaric Acid; FC 33 (acid); Tox21_302826; Tox21_201769; Fumarsaeure; Allomaleate; fumarsaure; 88XHZ13131; AI3-24236; Lichenate; fumarate; Boletate; mafusol; Fumaric; Furamag; 1, (E); FC 33; e297; fum; Fumaric acid; Fumarate; Fumaric acid
数据库引用编号
33 个数据库交叉引用编号
- ChEBI: CHEBI:18012
- ChEBI: CHEBI:22958
- KEGG: C00122
- KEGGdrug: D85166
- KEGGdrug: D02308
- PubChem: 444972
- HMDB: HMDB0000134
- Metlin: METLIN3242
- DrugBank: DB01677
- ChEMBL: CHEMBL503160
- Wikipedia: Fumaric_acid
- MeSH: fumaric acid
- ChemIDplus: 0000110178
- MetaCyc: FUM
- KNApSAcK: C00001183
- foodb: FDB003291
- chemspider: 10197150
- CAS: 110-17-8
- MoNA: LU054553
- MoNA: LU054551
- MoNA: LU054552
- PMhub: MS000000904
- MetaboLights: MTBLC18012
- PDB-CCD: FUM
- 3DMET: B00033
- NIKKAJI: J2.880K
- RefMet: Fumaric acid
- medchemexpress: HY-W015883
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-840
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-451
- PubChem: 3422
- KNApSAcK: 18012
- LOTUS: LTS0114831
分类词条
相关代谢途径
Reactome(5)
BioCyc(3)
PlantCyc(0)
代谢反应
731 个相关的代谢反应过程信息。
Reactome(70)
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- The citric acid (TCA) cycle and respiratory electron transport:
CoQ + ETF:FADH2 ⟶ ETF:FAD + ubiquinol
- Pyruvate metabolism and Citric Acid (TCA) cycle:
CIT ⟶ ISCIT
- Citric acid cycle (TCA cycle):
CIT ⟶ ISCIT
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- The citric acid (TCA) cycle and respiratory electron transport:
ETF:FAD + FADH2 ⟶ ETF:FADH2 + FAD
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- The citric acid (TCA) cycle and respiratory electron transport:
ETF:FAD + FADH2 ⟶ ETF:FADH2 + FAD
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Metabolism:
H2O + PBG ⟶ HMBL + ammonia
- The tricarboxylic acid cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Metabolism:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
BioCyc(8)
- aerobic respiration (cyanide insensitive, alternative oxidase) -- electron donors:
UQ + succinate ⟶ UQH2 + fumarate
- TCA cycle, aerobic respiration:
H2O + cis-aconitate ⟶ isocitrate
- aerobic respiration (cyanide sensitive) -- electron donors:
UQ + succinate ⟶ UQH2 + fumarate
- glutamine degradation:
L-aspartate ⟶ ammonia + fumarate
- arginine biosynthesis:
ATP + L-aspartate + citrulline ⟶ AMP + L-arginino-succinate + pyrophosphate
- superpathway of histidine, purine and pyrimidine biosynthesis:
ATP + D-ribose 5-phosphate ⟶ 5-phosphoribosyl 1-pyrophosphate + AMP
- salvage pathways of purine nucleosides:
AMP + pyrophosphate ⟶ 5-phosphoribosyl 1-pyrophosphate + adenine
- purine nucleotides de novo biosynthesis:
ATP + XMP + ammonia ⟶ AMP + GMP + pyrophosphate
WikiPathways(4)
- Metabolism overview:
NH3 ⟶ Glutamic acid
- TCA cycle (Krebs cycle):
citrate ⟶ isocitrate
- TCA cycle (aka Krebs or citric acid cycle):
cis-aconitate ⟶ citrate
- Krebs cycle disorders:
alpha-ketoglutarate ⟶ Succinyl coenzyme A
Plant Reactome(639)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
ISCIT + NAD ⟶ 2OG + H+ + NADH + carbon dioxide
- TCA cycle (plant):
ISCIT + NAD ⟶ 2OG + H+ + NADH + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
CIT ⟶ ISCIT
- TCA cycle (plant):
CIT ⟶ ISCIT
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
CIT ⟶ ISCIT
- TCA cycle (plant):
CIT ⟶ ISCIT
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Glutamate synthase cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Generation of precursor metabolites and energy:
ISCIT + NAD ⟶ 2OG + H+ + NADH + carbon dioxide
- TCA cycle (plant):
ISCIT + NAD ⟶ 2OG + H+ + NADH + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Glutamate synthase cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
CIT ⟶ ISCIT
- TCA cycle (plant):
CIT ⟶ ISCIT
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
2OG + L-Val ⟶ Glu + KIV
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid catabolism:
2OG + L-Val ⟶ Glu + KIV
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Amino acid metabolism:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- tyrosine degradation I:
4FAA + H2O ⟶ ACA + fumarate
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
INOH(10)
- Alanine,Aspartic acid and Asparagine metabolism ( Alanine,Aspartic acid and Asparagine metabolism ):
H2O + N-Acetyl-L-aspartic acid ⟶ Acetic acid + L-Aspartic acid
- L-Arginino-succinic acid = L-Arginine + Fumaric acid ( Citrate cycle ):
Fumaric acid + L-Arginine ⟶ L-Arginino-succinic acid
- Arginine and Proline metabolism ( Arginine and Proline metabolism ):
ATP + Creatine ⟶ ADP + N-Phospho-creatine
- Succinic acid + Ubiquinone = Fumaric acid + Ubiquinol ( Tyrosine metabolism ):
Fumaric acid + Ubiquinol ⟶ Succinic acid + Ubiquinone
- Citrate cycle ( Citrate cycle ):
H2O + cis-Aconitic acid ⟶ Isocitric acid
- Adenylo-succinic acid = AMP + Fumaric acid ( Purine nucleotides and Nucleosides metabolism ):
Adenylo-succinic acid ⟶ AMP + Fumaric acid
- Purine nucleotides and Nucleosides metabolism ( Purine nucleotides and Nucleosides metabolism ):
H2O + XTP ⟶ Pyrophosphate + XMP
- Tyrosine metabolism ( Tyrosine metabolism ):
4-Hydroxy-phenyl-acetaldehyde + H2O + NAD+ ⟶ 4-Hydroxy-phenyl-acetic acid + NADH
- 5'-Phospho-ribosyl-4-(N-succino-carboxamide)-5-amino-imidazole = 5'-Phospho-ribosyl-4-carboxamido-5-amino-imidazole + Fumaric acid ( Purine nucleotides and Nucleosides metabolism ):
5'-Phospho-ribosyl-4-(N-succino-carboxamide)-5-amino-imidazole ⟶ 5'-Phospho-ribosyl-4-carboxamido-5-amino-imidazole + Fumaric acid
- (S)-Malic acid = Fumaric acid + H2O ( Tyrosine metabolism ):
Fumaric acid + H2O ⟶ (S)-Malic acid
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
299 个相关的物种来源信息
- 49188 - Aconitum: LTS0114831
- 1478108 - Aconitum japonicum: 10.1248/YAKUSHI1947.85.5_469
- 1478108 - Aconitum japonicum: LTS0114831
- 112594 - Aconitum variegatum: LTS0114831
- 54422 - Adlumia: LTS0114831
- 54423 - Adlumia fungosa: 10.1139/CJR34-062
- 54423 - Adlumia fungosa: LTS0114831
- 155619 - Agaricomycetes: LTS0114831
- 39509 - Agave: LTS0114831
- 39510 - Agave americana: 10.1038/NPLANTS.2016.178
- 39510 - Agave americana: LTS0114831
- 41955 - Amanita: LTS0114831
- 41956 - Amanita muscaria:
- 41956 - Amanita muscaria: 10.1007/BF01526044
- 41956 - Amanita muscaria: 10.1039/CT9222101743
- 41956 - Amanita muscaria: LTS0114831
- 41954 - Amanitaceae: LTS0114831
- 714442 - Ampelopsis Japonica: -
- 714442 - Ampelopsis japonica ( Thunb. ) Makino: -
- 8292 - Amphibia: LTS0114831
- 4056 - Apocynaceae: LTS0114831
- 3701 - Arabidopsis: LTS0114831
- 3702 - Arabidopsis thaliana:
- 3702 - Arabidopsis thaliana: 10.1016/J.PHYTOCHEM.2008.09.020
- 3702 - Arabidopsis thaliana: 10.1016/J.PHYTOCHEM.2009.03.021
- 3702 - Arabidopsis thaliana: 10.1073/PNAS.1403248111
- 3702 - Arabidopsis thaliana: 10.1104/PP.114.240986
- 3702 - Arabidopsis thaliana: 10.1111/TPJ.14311
- 3702 - Arabidopsis thaliana: 10.1186/1752-0509-1-53
- 3702 - Arabidopsis thaliana: 10.1186/1752-0509-5-1
- 3702 - Arabidopsis thaliana: LTS0114831
- 4454 - Araceae: LTS0114831
- 4050 - Araliaceae: LTS0114831
- 13342 - Arbutus: LTS0114831
- 84005 - Arbutus unedo: 10.1006/JFCA.1999.0868
- 84005 - Arbutus unedo: 10.1006/JFCA.2000.0962
- 84005 - Arbutus unedo: LTS0114831
- 21199 - Asclepias: LTS0114831
- 48545 - Asclepias syriaca: 10.1139/CJR39B-005
- 48545 - Asclepias syriaca: LTS0114831
- 4890 - Ascomycota: LTS0114831
- 40552 - Asparagaceae: LTS0114831
- 4210 - Asteraceae: LTS0114831
- 90168 - Astragalus cibarius: 10.1016/S0031-9422(00)88463-0
- 2 - Bacteria: LTS0114831
- 5204 - Basidiomycota: LTS0114831
- 42336 - Bidens: LTS0114831
- 42337 - Bidens pilosa: 10.1016/0031-9422(89)85049-6
- 42337 - Bidens pilosa: LTS0114831
- 3700 - Brassicaceae: LTS0114831
- 3568 - Caryophyllaceae: LTS0114831
- 4305 - Celastraceae: LTS0114831
- 36622 - Chaenomeles Sinensis (Thouin) Koehne: -
- 3051 - Chlamydomonadaceae: LTS0114831
- 3052 - Chlamydomonas: LTS0114831
- 3055 - Chlamydomonas reinhardtii: 10.1111/TPJ.12747
- 3055 - Chlamydomonas reinhardtii: LTS0114831
- 16737 - Chloranthaceae: LTS0114831
- 3166 - Chlorophyceae: LTS0114831
- 3041 - Chlorophyta: LTS0114831
- 7711 - Chordata: LTS0114831
- 1890464 - Chroococcaceae: LTS0114831
- 41549 - Cirsium: LTS0114831
- 3463 - Corydalis: LTS0114831
- 3044013 - Corydalis govaniana: LTS0114831
- 458692 - Corydalis yanhusuo W.T.Wang: -
- 3781 - Crassulaceae: LTS0114831
- 23159 - Crataegus: LTS0114831
- 510735 - Crataegus pinnatifida: 10.1016/J.BSE.2019.103923
- 510735 - Crataegus pinnatifida: LTS0114831
- 3028117 - Cyanophyceae: LTS0114831
- 140908 - Daviesia: LTS0114831
- 233824 - Daviesia latifolia: 10.1039/CT9140500767
- 233824 - Daviesia latifolia: LTS0114831
- 32084 - Dennstaedtiaceae: LTS0114831
- 767018 - Diaporthaceae: LTS0114831
- 160546 - Diplachne: LTS0114831
- 160547 - Diplachne fusca: LTS0114831
- 2086468 - Diplachne fusca subsp. fusca: LTS0114831
- 543 - Enterobacteriaceae: LTS0114831
- 4345 - Ericaceae: LTS0114831
- 561 - Escherichia: LTS0114831
- 562 - Escherichia coli: LTS0114831
- 33682 - Euglenozoa: LTS0114831
- 2759 - Eukaryota: LTS0114831
- 330892 - Eupatorium Fortunei Turcz: -
- 3803 - Fabaceae: LTS0114831
- 6191 - Fasciola: LTS0114831
- 6192 - Fasciola hepatica: 10.3891/ACTA.CHEM.SCAND.17-2129
- 6192 - Fasciola hepatica: LTS0114831
- 27843 - Fasciolidae: LTS0114831
- 200992 - Fumaria: LTS0114831
- 1095357 - Fumaria agraria: 10.1002/(SICI)1099-1565(199901/02)10:1<6::AID-PCA431>3.0.CO;2-0
- 1095357 - Fumaria agraria: LTS0114831
- 1053349 - Fumaria capreolata: 10.1002/(SICI)1099-1565(199901/02)10:1<6::AID-PCA431>3.0.CO;2-0
- 1053349 - Fumaria capreolata: LTS0114831
- 1092452 - Fumaria densiflora: 10.1002/(SICI)1099-1565(199901/02)10:1<6::AID-PCA431>3.0.CO;2-0
- 1092452 - Fumaria densiflora: LTS0114831
- 1053350 - Fumaria muralis: 10.1002/(SICI)1099-1565(199901/02)10:1<6::AID-PCA431>3.0.CO;2-0
- 1053350 - Fumaria muralis: LTS0114831
- 200993 - Fumaria officinalis: 10.1002/(SICI)1099-1565(199901/02)10:1<6::AID-PCA431>3.0.CO;2-0
- 200993 - Fumaria officinalis: LTS0114831
- 1464625 - Fumaria parviflora: 10.1002/(SICI)1099-1565(199901/02)10:1<6::AID-PCA431>3.0.CO;2-0
- 1464625 - Fumaria parviflora: LTS0114831
- 367484 - Fumaria vaillantii: 10.1002/(SICI)1099-1565(199901/02)10:1<6::AID-PCA431>3.0.CO;2-0
- 367484 - Fumaria vaillantii: LTS0114831
- 4751 - Fungi: LTS0114831
- 1236 - Gammaproteobacteria: LTS0114831
- 5314 - Ganoderma: -
- 9604 - Hominidae: LTS0114831
- 9605 - Homo: LTS0114831
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S11306-012-0464-Y
- 9606 - Homo sapiens: LTS0114831
- 8418 - Hylidae: LTS0114831
- 40424 - Hymenochaetaceae: LTS0114831
- 41589 - Inula: LTS0114831
- 1548589 - Inula grandis: 10.1007/BF00564453
- 1548589 - Inula grandis: LTS0114831
- 5653 - Kinetoplastea: LTS0114831
- 4136 - Lamiaceae: LTS0114831
- 4469 - Lemna: LTS0114831
- 89585 - Lemna aequinoctialis: 10.1371/JOURNAL.PONE.0187622
- 89585 - Lemna aequinoctialis: LTS0114831
- 160553 - Leptochloa: LTS0114831
- 4447 - Liliopsida: LTS0114831
- 8370 - Litoria: LTS0114831
- 681275 - Litoria verreauxii: 10.1038/SDATA.2018.33
- 681275 - Litoria verreauxii: LTS0114831
- 3867 - Lotus: LTS0114831
- 645164 - Lotus burttii: 10.1111/J.1365-3040.2010.02266.X
- 645164 - Lotus burttii: LTS0114831
- 47247 - Lotus corniculatus: 10.1111/J.1365-3040.2010.02266.X
- 47247 - Lotus corniculatus: LTS0114831
- 1211582 - Lotus corniculatus subsp. corniculatus: 10.1111/J.1365-3040.2009.02047.X
- 1211582 - Lotus corniculatus subsp. corniculatus: 10.1111/J.1365-3040.2010.02266.X
- 1211582 - Lotus corniculatus subsp. corniculatus: 10.1111/J.1365-313X.2007.03381.X
- 1211582 - Lotus corniculatus subsp. corniculatus: LTS0114831
- 181267 - Lotus creticus: 10.1111/J.1365-3040.2010.02266.X
- 181267 - Lotus creticus: LTS0114831
- 347996 - Lotus tenuis: 10.1111/J.1365-3040.2010.02266.X
- 347996 - Lotus tenuis: LTS0114831
- 181288 - Lotus uliginosus: 10.1111/J.1365-3040.2010.02266.X
- 181288 - Lotus uliginosus: LTS0114831
- 3869 - Lupinus: 10.1002/(SICI)1099-1565(199903/04)10:2<55::AID-PCA437>3.0.CO;2-I
- 3869 - Lupinus: LTS0114831
- 3873 - Lupinus luteus: 10.1002/(SICI)1099-1565(199903/04)10:2<55::AID-PCA437>3.0.CO;2-I
- 3873 - Lupinus luteus: LTS0114831
- 3398 - Magnoliopsida: LTS0114831
- 40674 - Mammalia: LTS0114831
- 3877 - Medicago: LTS0114831
- 3879 - Medicago sativa: 10.3389/FPLS.2017.01208
- 3879 - Medicago sativa: LTS0114831
- 1890428 - Merismopediaceae: LTS0114831
- 33208 - Metazoa: LTS0114831
- 31969 - Mollicutes: LTS0114831
- 3487 - Moraceae: LTS0114831
- 3734 - Moringa: LTS0114831
- 3735 - Moringa oleifera: 10.1076/PHBI.36.4.295.4579
- 3735 - Moringa oleifera: LTS0114831
- 3733 - Moringaceae: LTS0114831
- 3497 - Morus: LTS0114831
- 3498 - Morus alba L.: -
- 85232 - Morus nigra: 10.1023/B:CONC.0000048249.44206.E2
- 85232 - Morus nigra: LTS0114831
- 2212703 - Mucoromycetes: LTS0114831
- 1913637 - Mucoromycota: LTS0114831
- 2093 - Mycoplasma: LTS0114831
- 28903 - Mycoplasma bovis: 10.1128/MSYSTEMS.00055-17
- 2096 - Mycoplasma gallisepticum: 10.1128/MSYSTEMS.00055-17
- 2092 - Mycoplasmataceae: LTS0114831
- 2767358 - Mycoplasmopsis: LTS0114831
- 4053 - Panax: LTS0114831
- 4054 - Panax ginseng: 10.3389/FPLS.2016.00994
- 4054 - Panax ginseng: LTS0114831
- 3468 - Papaver: LTS0114831
- 3469 - Papaver somniferum: 10.1002/HLCA.194502801103
- 3469 - Papaver somniferum: LTS0114831
- 3465 - Papaveraceae: LTS0114831
- 40470 - Phellinus: LTS0114831
- 34399 - Phomopsis: LTS0114831
- 1807033 - Phomopsis velata: 10.1016/S0031-9422(00)83157-X
- 1807033 - Phomopsis velata: LTS0114831
- 4836 - Phycomyces: LTS0114831
- 4837 - Phycomyces blakesleeanus: 10.1016/0031-9422(96)00146-X
- 4837 - Phycomyces blakesleeanus: LTS0114831
- 1344966 - Phycomycetaceae: LTS0114831
- 58019 - Pinopsida: LTS0114831
- 3887 - Pisum: LTS0114831
- 3888 - Pisum sativum: 10.1080/00021369.1972.10860370
- 3888 - Pisum sativum: LTS0114831
- 156152 - Plantaginaceae: LTS0114831
- 26867 - Plantago: LTS0114831
- 197796 - Plantago asiatica L.: -
- 411227 - Plantago depressa Willd.: -
- 29818 - Plantago major: 10.1055/S-0028-1099839
- 29818 - Plantago major: 10.1086/325089
- 29818 - Plantago major: LTS0114831
- 6157 - Platyhelminthes: LTS0114831
- 4479 - Poaceae: LTS0114831
- 241806 - Polypodiopsida: LTS0114831
- 3689 - Populus: LTS0114831
- 113636 - Populus tremula: 10.1111/NPH.16799
- 113636 - Populus tremula: LTS0114831
- 1214 - Prochloron: LTS0114831
- 135621 - Pseudomonadaceae: LTS0114831
- 286 - Pseudomonas: LTS0114831
- 287 - Pseudomonas aeruginosa: LTS0114831
- 303 - Pseudomonas putida: LTS0114831
- 418401 - Pseudostellaria: LTS0114831
- 418402 - Pseudostellaria heterophylla: 10.3390/MOLECULES21111538
- 418402 - Pseudostellaria heterophylla: LTS0114831
- 32100 - Pteridium: LTS0114831
- 32101 - Pteridium aquilinum: 10.1016/0031-9422(73)85140-4
- 32101 - Pteridium aquilinum: LTS0114831
- 22663 - Punica granatum: 10.1016/J.JEP.2006.09.006
- 278655 - Pycnandra: LTS0114831
- 280718 - Pycnandra acuminata: 10.1016/J.PHYTOCHEM.2007.07.001
- 280718 - Pycnandra acuminata: LTS0114831
- 3440 - Ranunculaceae: LTS0114831
- 3445 - Ranunculus: LTS0114831
- 168837 - Ranunculus silerifolius: 10.1246/BCSJ.45.930
- 168837 - Ranunculus silerifolius: LTS0114831
- 1344955 - Rhizopodaceae: LTS0114831
- 4842 - Rhizopus: LTS0114831
- 64495 - Rhizopus arrhizus: LTS0114831
- 126589 - Rhizopus javanicus: 10.3177/JNSV.43.241
- 1279479 - Rhizopus oryzae: 10.1128/AEM.62.8.2926-2931.1996
- 202994 - Rhodiola: LTS0114831
- 203015 - Rhodiola rosea: 10.1007/BF00575035
- 203015 - Rhodiola rosea: LTS0114831
- 3745 - Rosaceae: LTS0114831
- 5402 - Russula: LTS0114831
- 5403 - Russula cyanoxantha: 10.1007/S11745-001-0704-X
- 5403 - Russula cyanoxantha: LTS0114831
- 5401 - Russulaceae: LTS0114831
- 3688 - Salicaceae: LTS0114831
- 590 - Salmonella: LTS0114831
- 28901 - Salmonella enterica: 10.1021/ACS.JPROTEOME.0C00281
- 28901 - Salmonella enterica: LTS0114831
- 3737 - Sapotaceae: LTS0114831
- 13669 - Sarcandra: LTS0114831
- 92927 - Sarcandra glabra: LTS0114831
- 92927 - Sarcandra glabra: NA
- 4139 - Scutellaria: LTS0114831
- 65409 - Scutellaria baicalensis: 10.1007/S10600-008-0023-Y
- 65409 - Scutellaria baicalensis: LTS0114831
- 18794 - Senecio: LTS0114831
- 121537 - Senecio aegyptius: 10.1135/CCCC19681738
- 121537 - Senecio aegyptius: LTS0114831
- 121546 - Senecio glaucus: 10.1135/CCCC19681738
- 121546 - Senecio glaucus: LTS0114831
- 4070 - Solanaceae: LTS0114831
- 4107 - Solanum: LTS0114831
- 4081 - Solanum lycopersicum: 10.1038/SDATA.2014.29
- 4081 - Solanum lycopersicum: LTS0114831
- 4113 - Solanum tuberosum: 10.1111/J.1365-2621.1984.TB13673.X
- 4113 - Solanum tuberosum: LTS0114831
- 147550 - Sordariomycetes: LTS0114831
- 35493 - Streptophyta: LTS0114831
- 1890426 - Synechococcaceae: LTS0114831
- 1129 - Synechococcus: LTS0114831
- 32046 - Synechococcus elongatus: 10.1111/1462-2920.12899
- 32046 - Synechococcus elongatus: LTS0114831
- 1142 - Synechocystis: 10.1104/PP.108.129403
- 1142 - Synechocystis: LTS0114831
- 25623 - Taxaceae: LTS0114831
- 39987 - Thymelaeaceae: LTS0114831
- 49990 - Thymus: LTS0114831
- 2019959 - Thymus transcaucasicus: 10.1007/BF00575075
- 2019959 - Thymus transcaucasicus: LTS0114831
- 50188 - Torreya: LTS0114831
- 120259 - Torreya fargesii: LTS0114831
- 147460 - Torreya fargesii var. yunnanensis: 10.1021/NP030117B
- 147460 - Torreya fargesii var. yunnanensis: LTS0114831
- 58023 - Tracheophyta: LTS0114831
- 6178 - Trematoda: LTS0114831
- 3677 - Trichosanthes Kirilowii Maxim: -
- 123484 - Tripterygium: LTS0114831
- 205465 - Tripterygium hypoglaucum: 10.1016/J.BSE.2016.07.005
- 205465 - Tripterygium hypoglaucum: LTS0114831
- 1659841 - Tropicoporus: LTS0114831
- 1659895 - Tropicoporus linteus: 10.1007/BF02980143
- 1659895 - Tropicoporus linteus: LTS0114831
- 5690 - Trypanosoma: LTS0114831
- 5691 - Trypanosoma brucei: 10.1128/AAC.00044-13
- 5691 - Trypanosoma brucei: 10.1371/JOURNAL.PNTD.0001618
- 5691 - Trypanosoma brucei: LTS0114831
- 5654 - Trypanosomatidae: LTS0114831
- 13749 - Vaccinium: LTS0114831
- 13750 - Vaccinium macrocarpon: 10.1021/JF0352778
- 13750 - Vaccinium macrocarpon: 10.21273/HORTSCI.29.4.313
- 13750 - Vaccinium macrocarpon: LTS0114831
- 5117 - Valsaceae: LTS0114831
- 33090 - Viridiplantae: LTS0114831
- 142693 - Wikstroemia: LTS0114831
- 33090 - 车前草: -
- 569774 - 金线莲: -
- 203717 - 防风: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Antika Boondaeng, Jureeporn Keabpimai, Chanaporn Trakunjae, Nanthavut Niyomvong. Fumaric acid production from fermented oil palm empty fruit bunches using fungal isolate K20: a comparison between free and immobilized cells.
PeerJ.
2024; 12(?):e17282. doi:
10.7717/peerj.17282
. [PMID: 38666083] - Tantan Gao, Xudong Wang, Yanqiu Qin, Zhengguang Ren, Xiaoyan Zhao. Watermelon Root Exudates Enhance Root Colonization of Bacillus amyloliquefaciens TR2.
Current microbiology.
2023 Feb; 80(4):110. doi:
10.1007/s00284-023-03206-2
. [PMID: 36802037] - Fei Sun, Xiang-Qin Wu, Yue Qi, Xing-Yu Chen, Yu-Hua Cao, Jian-Gang Wang, Shu-Mei Wang, Sheng-Wang Liang. [Application of partial least squares algorithm to explore bioactive components of crude and stir-baked hawthorn for invigorating spleen and promoting digestion].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2023 Feb; 48(4):958-965. doi:
10.19540/j.cnki.cjcmm.20220712.302
. [PMID: 36872266] - Anjali Zaveri, Jacqueline Edwards, Simone Rochfort. Production of Primary Metabolites by Rhizopus stolonifer, Causal Agent of Almond Hull Rot Disease.
Molecules (Basel, Switzerland).
2022 Oct; 27(21):. doi:
10.3390/molecules27217199
. [PMID: 36364023] - S V Popov, R G Guseynov, O N Skryabin, K V Sivak, V V Perepelitsa, A V Davydov, R S Barhitdinov, A S Katunin, M M Mirzabekov. [Evaluation of the results of sodium fumarate, furosemide, and mannitol on the initiation and outcome of renal warm ischemia in an experimental study].
Urologiia (Moscow, Russia : 1999).
2022 May; ?(2):18-26. doi:
. [PMID: 35485810]
- Aysegul Eroglu, Abdulahad Dogan. Investigation of the phytochemical composition and remedial effects of southern grape hyacinth (Muscari neglectum Guss. ex Ten.) plant extract against carbon tetrachloride-induced oxidative stress in rats.
Drug and chemical toxicology.
2022 Apr; ?(?):1-12. doi:
10.1080/01480545.2022.2058011
. [PMID: 35373681] - Fayiz M Reda, Ismail E Ismail, Adel I Attia, Ahmed M Fikry, Eman Khalifa, Mahmoud Alagawany. Use of fumaric acid as a feed additive in quail's nutrition: its effect on growth rate, carcass, nutrient digestibility, digestive enzymes, blood metabolites, and intestinal microbiota.
Poultry science.
2021 Dec; 100(12):101493. doi:
10.1016/j.psj.2021.101493
. [PMID: 34715545] - Zilong Li, Qinhua Chen, Jin Wang, Xiaoyan Pan, Wen Lu. Research Progress and Application of Bioorthogonal Reactions in Biomolecular Analysis and Disease Diagnosis.
Topics in current chemistry (Cham).
2021 Sep; 379(6):39. doi:
10.1007/s41061-021-00352-8
. [PMID: 34590223] - Niloufar Salehi, Gislaine Kuminek, Jozef Al-Gousous, David C Sperry, Dale E Greenwood, Nicholas M Waltz, Gordon L Amidon, Robert M Ziff, Gregory E Amidon. Improving Dissolution Behavior and Oral Absorption of Drugs with pH-Dependent Solubility Using pH Modifiers: A Physiologically Realistic Mass Transport Analysis.
Molecular pharmaceutics.
2021 09; 18(9):3326-3341. doi:
10.1021/acs.molpharmaceut.1c00262
. [PMID: 34428047] - Sengnolotha Marak, Elena Shumilina, Nutan Kaushik, Eva Falch, Alexander Dikiy. Effect of Different Drying Methods on the Nutritional Value of Hibiscus sabdariffa Calyces as Revealed by NMR Metabolomics.
Molecules (Basel, Switzerland).
2021 Mar; 26(6):. doi:
10.3390/molecules26061675
. [PMID: 33802805] - G A Nagana Gowda, Natalie N Hong, Daniel Raftery. Evaluation of Fumaric Acid and Maleic Acid as Internal Standards for NMR Analysis of Protein Precipitated Plasma, Serum, and Whole Blood.
Analytical chemistry.
2021 02; 93(6):3233-3240. doi:
10.1021/acs.analchem.0c04766
. [PMID: 33538164] - Kerri M Smith, Ian D Wilson, Paul D Rainville. Sensitive and Reproducible Mass Spectrometry-Compatible RP-UHPLC Analysis of Tricarboxylic Acid Cycle and Related Metabolites in Biological Fluids: Application to Human Urine.
Analytical chemistry.
2021 01; 93(2):1009-1015. doi:
10.1021/acs.analchem.0c03863
. [PMID: 33290053] - Wioletta Siemiradzka, Barbara Dolińska, Florian Ryszka. Preparation of Sterile Raw Material - Chicken Eggshells in the Process of their Transformation into Selected Calcium Salts.
Current pharmaceutical biotechnology.
2021; 22(2):299-304. doi:
10.2174/1389201021666200903120835
. [PMID: 32881665] - Gurpreet Kaur, Thippeswamy Boreddy Shivanandappa, Manish Kumar, Ajay Singh Kushwah. Fumaric acid protect the cadmium-induced hepatotoxicity in rats: owing to its antioxidant, anti-inflammatory action and aid in recast the liver function.
Naunyn-Schmiedeberg's archives of pharmacology.
2020 10; 393(10):1911-1920. doi:
10.1007/s00210-020-01900-7
. [PMID: 32440768] - Syed Ilias Basha, Somnath Ghosh, K Vinothkumar, B Ramesh, P Hema Praksh Kumari, K V Murali Mohan, E Sukumar. Fumaric acid incorporated Ag/agar-agar hybrid hydrogel: A multifunctional avenue to tackle wound healing.
Materials science & engineering. C, Materials for biological applications.
2020 Jun; 111(?):110743. doi:
10.1016/j.msec.2020.110743
. [PMID: 32279739] - Gulsah Gundogdu, Onur Senol, Fatma Demirkaya Miloglu, Yavuzer Koza, Fuat Gundogdu, Ahmet Hacımüftüoğlu, A M Abd El-Aty. Serum metabolite profiling of ST-segment elevation myocardial infarction using liquid chromatography quadrupole time-of-flight mass spectrometry.
Biomedical chromatography : BMC.
2020 Feb; 34(2):e4738. doi:
10.1002/bmc.4738
. [PMID: 31677392] - Chien-Chang Shen, Wen-Chi Wei, Lie-Chwen Lin. Diterpenoids and Bisnorditerpenoids from Blumea aromatica.
Journal of natural products.
2019 11; 82(11):3181-3185. doi:
10.1021/acs.jnatprod.9b00674
. [PMID: 31646857] - Masumeh Doosti, Mir Saeed Seyed Dorraji, Seyedeh Neda Mousavi, Mohammad Hossein Rasoulifard, Seyed Hojjat Hosseini. Enhancing quercetin bioavailability by super paramagnetic starch-based hydrogel grafted with fumaric acid: An in vitro and in vivo study.
Colloids and surfaces. B, Biointerfaces.
2019 Nov; 183(?):110487. doi:
10.1016/j.colsurfb.2019.110487
. [PMID: 31518957] - Forouzan Heidari, Abbas Bahari, Ali Amarlou, Barat Ali Fakheri. Fumaric acids as a novel antagonist of TLR-4 pathway mitigates arsenic-exposed inflammation in human monocyte-derived dendritic cells.
Immunopharmacology and immunotoxicology.
2019 Aug; 41(4):513-520. doi:
10.1080/08923973.2019.1645166
. [PMID: 31397191] - Zong Xian Zhu, Dan Li Jiang, Bi Jun Li, Hui Qin, Zi Ning Meng, Hao Ran Lin, Jun Hong Xia. Differential Transcriptomic and Metabolomic Responses in the Liver of Nile Tilapia (Oreochromis niloticus) Exposed to Acute Ammonia.
Marine biotechnology (New York, N.Y.).
2019 Aug; 21(4):488-502. doi:
10.1007/s10126-019-09897-8
. [PMID: 31076921] - Jin-Seok Choi, Jong Chan Byeon, Jeong-Sook Park. Naftopidil-fumaric acid interaction in a solid dispersion system: Improving the dissolution rate and oral absorption of naftopidil in rats.
Materials science & engineering. C, Materials for biological applications.
2019 Feb; 95(?):264-274. doi:
10.1016/j.msec.2018.10.089
. [PMID: 30573249] - Ruixia Lan, Inho Kim. Effects of organic acid and medium chain fatty acid blends on the performance of sows and their piglets.
Animal science journal = Nihon chikusan Gakkaiho.
2018 Dec; 89(12):1673-1679. doi:
10.1111/asj.13111
. [PMID: 30270486] - Guangyuan Wang, Tingting Bai, Zhengang Miao, Weiguang Ning, Wenxing Liang. Simultaneous production of single cell oil and fumaric acid by a newly isolated yeast Aureobasidium pullulans var. aubasidani DH177.
Bioprocess and biosystems engineering.
2018 Nov; 41(11):1707-1716. doi:
10.1007/s00449-018-1994-0
. [PMID: 30069713] - Dorottya Nagy-Szakal, Dinesh K Barupal, Bohyun Lee, Xiaoyu Che, Brent L Williams, Ellie J R Kahn, Joy E Ukaigwe, Lucinda Bateman, Nancy G Klimas, Anthony L Komaroff, Susan Levine, Jose G Montoya, Daniel L Peterson, Bruce Levin, Mady Hornig, Oliver Fiehn, W Ian Lipkin. Insights into myalgic encephalomyelitis/chronic fatigue syndrome phenotypes through comprehensive metabolomics.
Scientific reports.
2018 07; 8(1):10056. doi:
10.1038/s41598-018-28477-9
. [PMID: 29968805] - Juan P Zubimendi, Andrea Martinatto, Maria P Valacco, Silvia Moreno, Carlos S Andreo, María F Drincovich, Marcos A Tronconi. The complex allosteric and redox regulation of the fumarate hydratase and malate dehydratase reactions of Arabidopsis thaliana Fumarase 1 and 2 gives clues for understanding the massive accumulation of fumarate.
The FEBS journal.
2018 06; 285(12):2205-2224. doi:
10.1111/febs.14483
. [PMID: 29688630] - Shatrupa Ray, Sandhya Mishra, Kartikay Bisen, Surendra Singh, Birinchi Kumar Sarma, Harikesh Bahadur Singh. Modulation in phenolic root exudate profile of Abelmoschus esculentus expressing activation of defense pathway.
Microbiological research.
2018 Mar; 207(?):100-107. doi:
10.1016/j.micres.2017.11.011
. [PMID: 29458844] - Guanshi Zhang, Manjula Darshi, Kumar Sharma. The Warburg Effect in Diabetic Kidney Disease.
Seminars in nephrology.
2018 03; 38(2):111-120. doi:
10.1016/j.semnephrol.2018.01.002
. [PMID: 29602394] - N Remling, S Riede, U Meyer, A Beineke, G Breves, G Flachowsky, S Dänicke. Influence of fumaric acid on ruminal parameters and organ weights of growing bulls fed with grass or maize silage.
Animal : an international journal of animal bioscience.
2017 Oct; 11(10):1754-1761. doi:
10.1017/s1751731117000696
. [PMID: 28397627] - Xin Li, Jin Zhou, Shuiping Ouyang, Jia Ouyang, Qiang Yong. Fumaric Acid Production from Alkali-Pretreated Corncob by Fed-Batch Simultaneous Saccharification and Fermentation Combined with Separated Hydrolysis and Fermentation at High Solids Loading.
Applied biochemistry and biotechnology.
2017 Feb; 181(2):573-583. doi:
10.1007/s12010-016-2232-3
. [PMID: 27604834] - Jay Nath, Tom B Smith, Kamlesh Patel, Sam R Ebbs, Alex Hollis, Daniel A Tennant, Christian Ludwig, Andrew R Ready. Metabolic differences between cold stored and machine perfused porcine kidneys: A 1H NMR based study.
Cryobiology.
2017 02; 74(?):115-120. doi:
10.1016/j.cryobiol.2016.11.006
. [PMID: 27919740] - Yu Kyong Kim, Mun Ju Choi, Tae Young Oh, Kyung-Sang Yu, SeungHwan Lee. A comparative pharmacokinetic and tolerability analysis of the novel orotic acid salt form of tenofovir disoproxil and the fumaric acid salt form in healthy subjects.
Drug design, development and therapy.
2017; 11(?):3171-3177. doi:
10.2147/dddt.s149125
. [PMID: 29158663] - Marcos Hernández Suárez, Daniel Molina Pérez, Elena M Rodríguez-Rodríguez, Carlos Díaz Romero, Francisco Espinosa Borreguero, Purificación Galindo-Villardón. The Compositional HJ-Biplot-A New Approach to Identifying the Links among Bioactive Compounds of Tomatoes.
International journal of molecular sciences.
2016 Nov; 17(11):. doi:
10.3390/ijms17111828
. [PMID: 27827839] - M M Montiel-Rozas, E Madejón, P Madejón. Effect of heavy metals and organic matter on root exudates (low molecular weight organic acids) of herbaceous species: An assessment in sand and soil conditions under different levels of contamination.
Environmental pollution (Barking, Essex : 1987).
2016 Sep; 216(?):273-281. doi:
10.1016/j.envpol.2016.05.080
. [PMID: 27267743] - Marco Sciacovelli, Emanuel Gonçalves, Timothy Isaac Johnson, Vincent Roberto Zecchini, Ana Sofia Henriques da Costa, Edoardo Gaude, Alizee Vercauteren Drubbel, Sebastian Julian Theobald, Sandra Riekje Abbo, Maxine Gia Binh Tran, Vinothini Rajeeve, Simone Cardaci, Sarah Foster, Haiyang Yun, Pedro Cutillas, Anne Warren, Vincent Gnanapragasam, Eyal Gottlieb, Kristian Franze, Brian Huntly, Eamonn Richard Maher, Patrick Henry Maxwell, Julio Saez-Rodriguez, Christian Frezza. Fumarate is an epigenetic modifier that elicits epithelial-to-mesenchymal transition.
Nature.
2016 08; 537(7621):544-547. doi:
10.1038/nature19353
. [PMID: 27580029] - Dong Wuk Kim, Young Hun Kim, Abid Mehmood Yousaf, Dong Shik Kim, Taek Kwan Kwon, Jung Hee Park, Yong Il Kim, Jae-Hyun Park, Sung Giu Jin, Kyung Soo Kim, Kwan Hyung Cho, Dong Xun Li, Jong Oh Kim, Chul Soon Yong, Jong Soo Woo, Han-Gon Choi. Novel montelukast sodium-loaded stable oral suspension bioequivalent to the commercial granules in rats.
Archives of pharmacal research.
2016 Apr; 39(4):539-546. doi:
10.1007/s12272-015-0664-x
. [PMID: 26983932] - Yao Shi, Susanna Tse, Brian Rago, Udeni Yapa, Fumin Li, Douglas M Fast. Quantification of fumarate and investigation of endogenous and exogenous fumarate stability in rat plasma by LC-MS/MS.
Bioanalysis.
2016 Apr; 8(7):661-75. doi:
10.4155/bio-2015-0026
. [PMID: 26978279] - Vanessa Vieira, Lillian Barros, Anabela Martins, Isabel C F R Ferreira. Nutritional and Biochemical Profiling of Leucopaxillus candidus (Bres.) Singer Wild Mushroom.
Molecules (Basel, Switzerland).
2016 Jan; 21(1):99. doi:
10.3390/molecules21010099
. [PMID: 26784162] - Alan W Bowsher, Rifhat Ali, Scott A Harding, Chung-Jui Tsai, Lisa A Donovan. Evolutionary Divergences in Root Exudate Composition among Ecologically-Contrasting Helianthus Species.
PloS one.
2016; 11(1):e0148280. doi:
10.1371/journal.pone.0148280
. [PMID: 26824236] - Da-Hao Huang, Kun Wang, Chihwei P Chiu, Tzu-Ming Pan, Tsung-Yu Tsai. Effects of chemical and low-temperature treatments and adaption on the responses of virulence factor genes and outer membrane proteins in Escherichia coli O157:H7.
Journal of microbiology, immunology, and infection = Wei mian yu gan ran za zhi.
2015 Dec; 48(6):604-12. doi:
10.1016/j.jmii.2014.03.007
. [PMID: 24856424] - Elizabeth L Cordonier, Riem Adjam, Daniel Camara Teixeira, Simone Onur, Richard Zbasnik, Paul E Read, Frank Döring, Vicki L Schlegel, Janos Zempleni. Resveratrol compounds inhibit human holocarboxylase synthetase and cause a lean phenotype in Drosophila melanogaster.
The Journal of nutritional biochemistry.
2015 Nov; 26(11):1379-84. doi:
10.1016/j.jnutbio.2015.07.004
. [PMID: 26303405] - Liangsheng Xu, Meichun Xiang, David White, Weidong Chen. pH dependency of sclerotial development and pathogenicity revealed by using genetically defined oxalate-minus mutants of Sclerotinia sclerotiorum.
Environmental microbiology.
2015 Aug; 17(8):2896-909. doi:
10.1111/1462-2920.12818
. [PMID: 25720941] - N Remling, S Riede, P Lebzien, U Meyer, M Höltershinken, S Kersten, G Breves, G Flachowsky, S Dänicke. Effects of fumaric acid on rumen fermentation, milk composition and metabolic parameters in lactating cows.
Journal of animal physiology and animal nutrition.
2014 Oct; 98(5):968-81. doi:
10.1111/jpn.12152
. [PMID: 24313964] - Nan-Sun Kim, Hwa-Young Yu, Nguyen-Duc Chung, Tae-Ho Kwon, Moon-Sik Yang. High-level production of recombinant trypsin in transgenic rice cell culture through utilization of an alternative carbon source and recycling system.
Enzyme and microbial technology.
2014 Sep; 63(?):21-7. doi:
10.1016/j.enzmictec.2014.04.010
. [PMID: 25039055] - Karthigayan Shanmugasundaram, Bijaya Nayak, Eun-Hee Shim, Carolina B Livi, Karen Block, Sunil Sudarshan. The oncometabolite fumarate promotes pseudohypoxia through noncanonical activation of NF-κB signaling.
The Journal of biological chemistry.
2014 Aug; 289(35):24691-9. doi:
10.1074/jbc.m114.568162
. [PMID: 25028521] - A Haghikia, R Linker, R Gold. [Fumaric acid as therapeutic agent for multiple sclerosis].
Der Nervenarzt.
2014 Jun; 85(6):720-6. doi:
10.1007/s00115-014-4005-y
. [PMID: 24668400] - Shuai Gu, Qing Xu, He Huang, Shuang Li. Alternative respiration and fumaric acid production of Rhizopus oryzae.
Applied microbiology and biotechnology.
2014 Jun; 98(11):5145-52. doi:
10.1007/s00253-014-5615-9
. [PMID: 24643733] - Agnieszka Nawirska-Olszańska, Anita Biesiada, Anna Sokół-Łętowska, Alicja Z Kucharska. Characteristics of organic acids in the fruit of different pumpkin species.
Food chemistry.
2014 Apr; 148(?):415-9. doi:
10.1016/j.foodchem.2013.10.080
. [PMID: 24262577] - Dong Tian, Zhen-Yu Li, Sheng-Ci Fan, Jin-Ping Jia, Xue-Mei Qin. [NMR-based analysis of water soluble extracts of different Astragali Radix].
Yao xue xue bao = Acta pharmaceutica Sinica.
2014 Jan; 49(1):89-94. doi:
"
. [PMID: 24783512] - Palash Sanphui, Srinu Tothadi, Somnath Ganguly, Gautam R Desiraju. Salt and cocrystals of sildenafil with dicarboxylic acids: solubility and pharmacokinetic advantage of the glutarate salt.
Molecular pharmaceutics.
2013 Dec; 10(12):4687-97. doi:
10.1021/mp400516b
. [PMID: 24168322] - Yingjiao Wang, Tyler Robison, Heather Wiatrowski. The impact of ionic mercury on antioxidant defenses in two mercury-sensitive anaerobic bacteria.
Biometals : an international journal on the role of metal ions in biology, biochemistry, and medicine.
2013 Dec; 26(6):1023-31. doi:
10.1007/s10534-013-9679-2
. [PMID: 24150569] - Nicola Ternette, Ming Yang, Mahima Laroyia, Mitsuhiro Kitagawa, Linda O'Flaherty, Kathryn Wolhulter, Kaori Igarashi, Kaori Saito, Keiko Kato, Roman Fischer, Alexandre Berquand, Benedikt M Kessler, Terry Lappin, Norma Frizzell, Tomoyoshi Soga, Julie Adam, Patrick J Pollard. Inhibition of mitochondrial aconitase by succination in fumarate hydratase deficiency.
Cell reports.
2013 Mar; 3(3):689-700. doi:
10.1016/j.celrep.2013.02.013
. [PMID: 23499446] - Neusa Martins, Sandra Gonçalves, Paula B Andrade, Patrícia Valentão, Anabela Romano. Changes on organic acid secretion and accumulation in Plantago almogravensis Franco and Plantago algarbiensis Samp. under aluminum stress.
Plant science : an international journal of experimental plant biology.
2013 Jan; 198(?):1-6. doi:
10.1016/j.plantsci.2012.09.001
. [PMID: 23199681] - Tahar Ghnaya, Hanen Zaier, Raoudha Baioui, Souhir Sghaier, Giorgio Lucchini, Gian Attilio Sacchi, Stanley Lutts, Chedly Abdelly. Implication of organic acids in the long-distance transport and the accumulation of lead in Sesuvium portulacastrum and Brassica juncea.
Chemosphere.
2013 Jan; 90(4):1449-54. doi:
10.1016/j.chemosphere.2012.08.061
. [PMID: 23026160] - N I Aver'anova, L G Balueva, N V Ivanova. [Comparative efficacy of nitrofurans in children and adolescents with pyelonephritis in presence of crystalluria].
Terapevticheskii arkhiv.
2013; 85(12):75-8. doi:
NULL
. [PMID: 24640673] - Barbara Dolińska, Aneta Ostróżka-Cieślik, Artur Caban, Klimas Rimantas, Lucyna Leszczyńska, Florian Ryszka. Influence of trace elements on stabilization of aqueous solutions of ascorbic acid.
Biological trace element research.
2012 Dec; 150(1-3):509-12. doi:
10.1007/s12011-012-9524-4
. [PMID: 23099563] - T P Pirog, T A Shevchuk, A D Konon, E Iu Dolotenko. [Production of surfactants by Acinetobacter calcoaceticus K-4 grown on ethanol with organic acids].
Prikladnaia biokhimiia i mikrobiologiia.
2012 Nov; 48(6):631-9. doi:
. [PMID: 23330390]
- Huifeng Wu, Xiaoli Liu, Jianmin Zhao, Junbao Yu. Toxicological responses in halophyte Suaeda salsa to mercury under environmentally relevant salinity.
Ecotoxicology and environmental safety.
2012 Nov; 85(?):64-71. doi:
10.1016/j.ecoenv.2012.03.016
. [PMID: 22947507] - Michael T Rose, Terry J Rose, Juan Pariasca-Tanaka, Tadashi Yoshihashi, Heiko Neuweger, Alexander Goesmann, Michael Frei, Matthias Wissuwa. Root metabolic response of rice (Oryza sativa L.) genotypes with contrasting tolerance to zinc deficiency and bicarbonate excess.
Planta.
2012 Oct; 236(4):959-73. doi:
10.1007/s00425-012-1648-4
. [PMID: 22526504] - Maja Mikulic-Petkovsek, Valentina Schmitzer, Ana Slatnar, Franci Stampar, Robert Veberic. Composition of sugars, organic acids, and total phenolics in 25 wild or cultivated berry species.
Journal of food science.
2012 Oct; 77(10):C1064-70. doi:
10.1111/j.1750-3841.2012.02896.x
. [PMID: 22924969] - Sonia Dorion, Audrey Clendenning, Julie Jeukens, Joaquín J Salas, Nanhi Parveen, Andrea A Haner, R David Law, Enrique Martínez Force, Jean Rivoal. A large decrease of cytosolic triosephosphate isomerase in transgenic potato roots affects the distribution of carbon in primary metabolism.
Planta.
2012 Oct; 236(4):1177-90. doi:
10.1007/s00425-012-1675-1
. [PMID: 22678033] - Aikseng Ooi, Kyle A Furge. Fumarate hydratase inactivation in renal tumors: HIF1α, NRF2, and "cryptic targets" of transcription factors.
Chinese journal of cancer.
2012 Sep; 31(9):413-20. doi:
10.5732/cjc.012.10102
. [PMID: 22776233] - Tomohiro Osaki, Kazuo Azuma, Seiji Kurozumi, Yoshimori Takamori, Takeshi Tsuka, Tomohiro Imagawa, Yoshiharu Okamoto, Saburo Minami. Metabolomic analyses of blood plasma after oral administration of D-glucosamine hydrochloride to dogs.
Marine drugs.
2012 Aug; 10(8):1873-82. doi:
10.3390/md10081873
. [PMID: 23015778] - J C Calveyra, M G Nogueira, J D Kich, L L Biesus, R Vizzotto, L Berno, A Coldebella, L Lopes, N Morés, G J M M Lima, M Cardoso. Effect of organic acids and mannanoligosaccharide on excretion of Salmonella typhimurium in experimentally infected growing pigs.
Research in veterinary science.
2012 Aug; 93(1):46-7. doi:
10.1016/j.rvsc.2011.08.018
. [PMID: 21944831] - Jolanta Kwasniewska, Marta Grabowska, Miroslaw Kwasniewski, Bozena Kolano. Comet-FISH with rDNA probes for the analysis of mutagen-induced DNA damage in plant cells.
Environmental and molecular mutagenesis.
2012 Jun; 53(5):369-75. doi:
10.1002/em.21699
. [PMID: 22556029] - Marcella C Orwick, Peter J Judge, Jan Procek, Ljubica Lindholm, Andrea Graziadei, Andreas Engel, Gerhard Gröbner, Anthony Watts. Detergent-free formation and physicochemical characterization of nanosized lipid-polymer complexes: Lipodisq.
Angewandte Chemie (International ed. in English).
2012 May; 51(19):4653-7. doi:
10.1002/anie.201201355
. [PMID: 22473824] - Sandesh C S Nagamani, Ayelet Erez, Brendan Lee. Argininosuccinate lyase deficiency.
Genetics in medicine : official journal of the American College of Medical Genetics.
2012 May; 14(5):501-7. doi:
10.1038/gim.2011.1
. [PMID: 22241104] - Sazada Siddiqui, Mukesh K Meghvansi, Shoukat Saeed Khan. Glyphosate, alachor and maleic hydrazide have genotoxic effect on Trigonella foenum-graecum L.
Bulletin of environmental contamination and toxicology.
2012 May; 88(5):659-65. doi:
10.1007/s00128-012-0570-6
. [PMID: 22392005] - Duncan G G McMillan, Sophie J Marritt, Julea N Butt, Lars J C Jeuken. Menaquinone-7 is specific cofactor in tetraheme quinol dehydrogenase CymA.
The Journal of biological chemistry.
2012 Apr; 287(17):14215-25. doi:
10.1074/jbc.m112.348813
. [PMID: 22393052] - Ruud A Timmers, Michael Rothballer, David P B T B Strik, Marion Engel, Stephan Schulz, Michael Schloter, Anton Hartmann, Bert Hamelers, Cees Buisman. Microbial community structure elucidates performance of Glyceria maxima plant microbial fuel cell.
Applied microbiology and biotechnology.
2012 Apr; 94(2):537-48. doi:
10.1007/s00253-012-3894-6
. [PMID: 22361855] - Dimas M Ribeiro, Wagner L Araújo, Alisdair R Fernie, Jos H M Schippers, Bernd Mueller-Roeber. Translatome and metabolome effects triggered by gibberellins during rosette growth in Arabidopsis.
Journal of experimental botany.
2012 Apr; 63(7):2769-86. doi:
10.1093/jxb/err463
. [PMID: 22291129] - Olivier Levillain. Expression and function of arginine-producing and consuming-enzymes in the kidney.
Amino acids.
2012 Apr; 42(4):1237-52. doi:
10.1007/s00726-011-0897-z
. [PMID: 21567240] - Kinga A Sędzielewska, Katja Vetter, Rüdiger Bode, Keith Baronian, Roland Watzke, Gotthard Kunze. GiFRD encodes a protein involved in anaerobic growth in the arbuscular mycorrhizal fungus Glomus intraradices.
Fungal genetics and biology : FG & B.
2012 Apr; 49(4):313-21. doi:
10.1016/j.fgb.2012.02.002
. [PMID: 22343635] - Jia-Kun Wang, Jun-An Ye, Jian-Xin Liu. Effects of tea saponins on rumen microbiota, rumen fermentation, methane production and growth performance--a review.
Tropical animal health and production.
2012 Apr; 44(4):697-706. doi:
10.1007/s11250-011-9960-8
. [PMID: 21870063] - Lavanya Babujee, Jennifer Apodaca, Venkatesh Balakrishnan, Paul Liss, Patricia J Kiley, Amy O Charkowski, Jeremy D Glasner, Nicole T Perna. Evolution of the metabolic and regulatory networks associated with oxygen availability in two phytopathogenic enterobacteria.
BMC genomics.
2012 Mar; 13(?):110. doi:
10.1186/1471-2164-13-110
. [PMID: 22439737] - Hank Greenway, Konstantin Y Kulichikhin, Gregory R Cawthray, Timothy D Colmer. pH regulation in anoxic rice coleoptiles at pH 3.5: biochemical pHstats and net H+ influx in the absence and presence of NOFormula.
Journal of experimental botany.
2012 Mar; 63(5):1969-83. doi:
10.1093/jxb/err395
. [PMID: 22174442] - Karin Y van Spaendonck-Zwarts, Sadhanna Badeloe, Sjoukje F Oosting, Sjoerd Hovenga, Harry J F Semmelink, R Jeroen A van Moorselaar, Jan Hein van Waesberghe, Arjen R Mensenkamp, Fred H Menko. Hereditary leiomyomatosis and renal cell cancer presenting as metastatic kidney cancer at 18 years of age: implications for surveillance.
Familial cancer.
2012 Mar; 11(1):123-9. doi:
10.1007/s10689-011-9491-5
. [PMID: 22086304] - Richard C Sicher, Jinyoung Y Barnaby. Impact of carbon dioxide enrichment on the responses of maize leaf transcripts and metabolites to water stress.
Physiologia plantarum.
2012 Mar; 144(3):238-53. doi:
10.1111/j.1399-3054.2011.01555.x
. [PMID: 22150442] - Abhimanyu Paraskar, Shivani Soni, Bhaskar Roy, Anne-Laure Papa, Shiladitya Sengupta. Rationally designed oxaliplatin-nanoparticle for enhanced antitumor efficacy.
Nanotechnology.
2012 Feb; 23(7):075103. doi:
10.1088/0957-4484/23/7/075103
. [PMID: 22275055] - Yi-Yu Wei, Chih-Wei Huang, Wei-Yuan Chou, Hwei-Jen Lee. α-Crystallin protects human arginosuccinate lyase activity under freeze-thaw conditions.
Biochimie.
2012 Feb; 94(2):566-73. doi:
10.1016/j.biochi.2011.09.006
. [PMID: 21963434] - Sonia A Thomas, Kenneth B Storey, John W Baynes, Norma Frizzell. Tissue distribution of S-(2-succino)cysteine (2SC), a biomarker of mitochondrial stress in obesity and diabetes.
Obesity (Silver Spring, Md.).
2012 Feb; 20(2):263-9. doi:
10.1038/oby.2011.340
. [PMID: 22134201] - Marie-Françoise Ritz, Caspar Grond-Ginsbach, Stefan Engelter, Philippe Lyrer. Gene expression suggests spontaneously hypertensive rats may have altered metabolism and reduced hypoxic tolerance.
Current neurovascular research.
2012 Feb; 9(1):10-9. doi:
10.2174/156720212799297074
. [PMID: 22272763] - Claudia Catalanotti, Alexandra Dubini, Venkataramanan Subramanian, Wenqiang Yang, Leonardo Magneschi, Florence Mus, Michael Seibert, Matthew C Posewitz, Arthur R Grossman. Altered fermentative metabolism in Chlamydomonas reinhardtii mutants lacking pyruvate formate lyase and both pyruvate formate lyase and alcohol dehydrogenase.
The Plant cell.
2012 Feb; 24(2):692-707. doi:
10.1105/tpc.111.093146
. [PMID: 22353371] - Elaheh Jamalzadeh, Peter J T Verheijen, Joseph J Heijnen, Walter M van Gulik. pH-dependent uptake of fumaric acid in Saccharomyces cerevisiae under anaerobic conditions.
Applied and environmental microbiology.
2012 Feb; 78(3):705-16. doi:
10.1128/aem.05591-11
. [PMID: 22113915] - Claudia Mamani Moreno, Teodoro Stadler, Antônio Alberto da Silva, Luiz C A Barbosa, Maria Eliana L R de Queiroz. Determination of maleic hydrazide residues in garlic bulbs by HPLC.
Talanta.
2012 Jan; 89(?):369-76. doi:
10.1016/j.talanta.2011.12.045
. [PMID: 22284504] - Anne-Marie Boisson, Elisabeth Gout, Richard Bligny, Corinne Rivasseau. A simple and efficient method for the long-term preservation of plant cell suspension cultures.
Plant methods.
2012 Jan; 8(?):4. doi:
10.1186/1746-4811-8-4
. [PMID: 22289515] - Ruth C Martin, Kira Glover-Cutter, James C Baldwin, James E Dombrowski. Identification and characterization of a salt stress-inducible zinc finger protein from Festuca arundinacea.
BMC research notes.
2012 Jan; 5(?):66. doi:
10.1186/1756-0500-5-66
. [PMID: 22272737] - Giancarlo la Marca, Sabrina Malvagia, Serena Materazzi, Maria Luisa Della Bona, Sara Boenzi, Diego Martinelli, Carlo Dionisi-Vici. LC-MS/MS method for simultaneous determination on a dried blood spot of multiple analytes relevant for treatment monitoring in patients with tyrosinemia type I.
Analytical chemistry.
2012 Jan; 84(2):1184-8. doi:
10.1021/ac202695h
. [PMID: 22148291] - Alaa A Salem, Hussein A Mossa. Method validation and determinations of levofloxacin, metronidazole and sulfamethoxazole in an aqueous pharmaceutical, urine and blood plasma samples using quantitative nuclear magnetic resonance spectrometry.
Talanta.
2012 Jan; 88(?):104-14. doi:
10.1016/j.talanta.2011.10.016
. [PMID: 22265475] - Mingxing Yang, Shu Wang, Fuhua Hao, Yajie Li, Huiru Tang, Xuemin Shi. NMR analysis of the rat neurochemical changes induced by middle cerebral artery occlusion.
Talanta.
2012 Jan; 88(?):136-44. doi:
10.1016/j.talanta.2011.10.022
. [PMID: 22265479] - Christopher A Lopez, Sebastian E Winter, Fabian Rivera-Chávez, Mariana N Xavier, Victor Poon, Sean-Paul Nuccio, Renée M Tsolis, Andreas J Bäumler. Phage-mediated acquisition of a type III secreted effector protein boosts growth of salmonella by nitrate respiration.
mBio.
2012; 3(3):. doi:
10.1128/mbio.00143-12
. [PMID: 22691391] - Jun Tian, Xiaoquan Ban, Hong Zeng, Jingsheng He, Yuxin Chen, Youwei Wang. The mechanism of antifungal action of essential oil from dill (Anethum graveolens L.) on Aspergillus flavus.
PloS one.
2012; 7(1):e30147. doi:
10.1371/journal.pone.0030147
. [PMID: 22272289] - Hervé Colinet, David Renault, Blandine Charoy-Guével, Emmanuelle Com. Metabolic and proteomic profiling of diapause in the aphid parasitoid Praon volucre.
PloS one.
2012; 7(2):e32606. doi:
10.1371/journal.pone.0032606
. [PMID: 22389713] - Yang Sun, Zeqin Lian, Chunying Jiang, Yinghong Wang, Haibo Zhu. Beneficial metabolic effects of 2',3',5'-tri-acetyl-N6- (3-hydroxylaniline) adenosine in the liver and plasma of hyperlipidemic hamsters.
PloS one.
2012; 7(3):e32115. doi:
10.1371/journal.pone.0032115
. [PMID: 22470419] - Stewart Frankel, Blanka Rogina. Indy mutants: live long and prosper.
Frontiers in genetics.
2012; 3(?):13. doi:
10.3389/fgene.2012.00013
. [PMID: 22363340] - Stephanus J Ferreira, Uwe Sonnewald. The mode of sucrose degradation in potato tubers determines the fate of assimilate utilization.
Frontiers in plant science.
2012; 3(?):23. doi:
10.3389/fpls.2012.00023
. [PMID: 22639642] - Laura Brugnara, Maria Vinaixa, Serafín Murillo, Sara Samino, Miguel Angel Rodriguez, Antoni Beltran, Carles Lerin, Gareth Davison, Xavier Correig, Anna Novials. Metabolomics approach for analyzing the effects of exercise in subjects with type 1 diabetes mellitus.
PloS one.
2012; 7(7):e40600. doi:
10.1371/journal.pone.0040600
. [PMID: 22792382] - David Toubiana, Yaniv Semel, Takayuki Tohge, Romina Beleggia, Luigi Cattivelli, Leah Rosental, Zoran Nikoloski, Dani Zamir, Alisdair R Fernie, Aaron Fait. Metabolic profiling of a mapping population exposes new insights in the regulation of seed metabolism and seed, fruit, and plant relations.
PLoS genetics.
2012; 8(3):e1002612. doi:
10.1371/journal.pgen.1002612
. [PMID: 22479206] - A I Neĭmark, A V Simashkevich. [Use of furamag to prevent inflammatory complications during endoscopic operations in patients with benign prostatic hyperplasia and urolithiasis].
Terapevticheskii arkhiv.
2012; 84(10):62-4. doi:
NULL
. [PMID: 23227503] - Bing Bai, Noga Sikron, Tanya Gendler, Yana Kazachkova, Simon Barak, Gideon Grafi, Inna Khozin-Goldberg, Aaron Fait. Ecotypic variability in the metabolic response of seeds to diurnal hydration-dehydration cycles and its relationship to seed vigor.
Plant & cell physiology.
2012 Jan; 53(1):38-52. doi:
10.1093/pcp/pcr169
. [PMID: 22156384]