Exact Mass: 165.0789746
Exact Mass Matches: 165.0789746
Found 500 metabolites which its exact mass value is equals to given mass value 165.0789746
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
L-Phenylalanine
Phenylalanine (Phe), also known as L-phenylalanine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (‚ÄìNH2) and carboxyl (‚ÄìCOOH) functional groups, along with a side chain (R group) specific to each amino acid. L-phenylalanine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Phenylalanine is found in all organisms ranging from bacteria to plants to animals. It is classified as an aromatic, non-polar amino acid. In humans, phenylalanine is an essential amino acid and the precursor of the amino acid tyrosine. Like tyrosine, phenylalanine is also a precursor for catecholamines including tyramine, dopamine, epinephrine, and norepinephrine. Catecholamines are neurotransmitters that act as adrenalin-like substances. Interestingly, several psychotropic drugs (mescaline, morphine, codeine, and papaverine) also have phenylalanine as a constituent. Phenylalanine is highly concentrated in the human brain and plasma. Normal metabolism of phenylalanine requires biopterin, iron, niacin, vitamin B6, copper, and vitamin C. An average adult ingests 5 g of phenylalanine per day and may optimally need up to 8 g daily. Phenylalanine is highly concentrated in a number of high protein foods, such as meat, cottage cheese, and wheat germ. An additional dietary source of phenylalanine is artificial sweeteners containing aspartame (a methyl ester of the aspartic acid/phenylalanine dipeptide). As a general rule, aspartame should be avoided by phenylketonurics and pregnant women. When present in sufficiently high levels, phenylalanine can act as a neurotoxin and a metabotoxin. A neurotoxin is a compound that disrupts or attacks neural cells and neural tissue. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of phenylalanine are associated with at least five inborn errors of metabolism, including Hartnup disorder, hyperphenylalaninemia due to guanosine triphosphate cyclohydrolase deficiency, phenylketonuria (PKU), tyrosinemia type 2 (or Richner-Hanhart syndrome), and tyrosinemia type III (TYRO3). Phenylketonurics have elevated serum plasma levels of phenylalanine up to 400 times normal. High plasma concentrations of phenylalanine influence the blood-brain barrier transport of large neutral amino acids. The high plasma phenylalanine concentrations increase phenylalanine entry into the brain and restrict the entry of other large neutral amino acids (PMID: 19191004). Phenylalanine has been found to interfere with different cerebral enzyme systems. Untreated phenylketonuria (PKU) can lead to intellectual disability, seizures, behavioural problems, and mental disorders. It may also result in a musty smell and lighter skin. Classic PKU dramatically affects myelination and white matter tracts in untreated infants; this may be one major cause of neurological disorders associated with phenylketonuria. Mild phenylketonuria can act as an unsuspected cause of hyperactivity, learning problems, and other developmental problems in children. It has been recently suggested that PKU may resemble amyloid diseases, such as Alzheimers disease and Parkinsons disease, due to the formation of toxic amyloid-like assemblies of phenylalanine (PMID: 22706200). Phenylalanine also has some potential benefits. Phenylalanine can act as an effective pain reliever. Its use in premenstrual syndrome and Parkinsons may enhance the effects of acupuncture and electric transcutaneous nerve stimulation (TENS). Phenylalanine and tyrosine, like L-DOPA, produce a catecholamine-like effect. Phenylalanine is better absorbed than tyrosine and may cause fewer headaches. Low phenylalanine diets have been prescribed for certain cancers with mixed results. For instance, some tumours use more phen... L-phenylalanine is an odorless white crystalline powder. Slightly bitter taste. pH (1\\\\\\% aqueous solution) 5.4 to 6. (NTP, 1992) L-phenylalanine is the L-enantiomer of phenylalanine. It has a role as a nutraceutical, a micronutrient, an Escherichia coli metabolite, a Saccharomyces cerevisiae metabolite, a plant metabolite, an algal metabolite, a mouse metabolite, a human xenobiotic metabolite and an EC 3.1.3.1 (alkaline phosphatase) inhibitor. It is an erythrose 4-phosphate/phosphoenolpyruvate family amino acid, a proteinogenic amino acid, a phenylalanine and a L-alpha-amino acid. It is a conjugate base of a L-phenylalaninium. It is a conjugate acid of a L-phenylalaninate. It is an enantiomer of a D-phenylalanine. It is a tautomer of a L-phenylalanine zwitterion. Phenylalanine is an essential aromatic amino acid that is a precursor of melanin, [dopamine], [noradrenalin] (norepinephrine), and [thyroxine]. L-Phenylalanine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Phenylalanine is an essential aromatic amino acid in humans (provided by food), Phenylalanine plays a key role in the biosynthesis of other amino acids and is important in the structure and function of many proteins and enzymes. Phenylalanine is converted to tyrosine, used in the biosynthesis of dopamine and norepinephrine neurotransmitters. The L-form of Phenylalanine is incorporated into proteins, while the D-form acts as a painkiller. Absorption of ultraviolet radiation by Phenylalanine is used to quantify protein amounts. (NCI04) Phenylalanine is an essential amino acid and the precursor for the amino acid tyrosine. Like tyrosine, it is the precursor of catecholamines in the body (tyramine, dopamine, epinephrine and norepinephrine). The psychotropic drugs (mescaline, morphine, codeine, and papaverine) also have phenylalanine as a constituent. Phenylalanine is a precursor of the neurotransmitters called catecholamines, which are adrenalin-like substances. Phenylalanine is highly concentrated in the human brain and plasma. Normal metabolism of phenylalanine requires biopterin, iron, niacin, vitamin B6, copper and vitamin C. An average adult ingests 5 g of phenylalanine per day and may optimally need up to 8 g daily. Phenylalanine is highly concentrated in high protein foods, such as meat, cottage cheese and wheat germ. A new dietary source of phenylalanine is artificial sweeteners containing aspartame. Aspartame appears to be nutritious except in hot beverages; however, it should be avoided by phenylketonurics and pregnant women. Phenylketonurics, who have a genetic error of phenylalanine metabolism, have elevated serum plasma levels of phenylalanine up to 400 times normal. Mild phenylketonuria can be an unsuspected cause of hyperactivity, learning problems, and other developmental problems in children. Phenylalanine can be an effective pain reliever. Its use in premenstrual syndrome and Parkinsons may enhance the effects of acupuncture and electric transcutaneous nerve stimulation (TENS). Phenylalanine and tyrosine, like L-dopa, produce a catecholamine effect. Phenylalanine is better absorbed than tyrosine and may cause fewer headaches. Low phenylalanine diets have been prescribed for certain cancers with mixed results. Some tumors use more phenylalanine (particularly melatonin-producing tumors called melanoma). One strategy is to exclude this amino acid from the diet, i.e., a Phenylketonuria (PKU) diet (compliance is a difficult issue; it is hard to quantify and is under-researched). The other strategy is just to increase phenylalanines competing amino acids, i.e., tryptophan, valine, isoleucine and leucine, but not tyrosine. An essential aromatic amino acid that is a precursor of MELANIN; DOPAMINE; noradrenalin (NOREPINEPHRINE), and THYROXINE. See also: Plovamer (monomer of); Plovamer Acetate (monomer of) ... View More ... L-phenylalanine, also known as phe or f, belongs to phenylalanine and derivatives class of compounds. Those are compounds containing phenylalanine or a derivative thereof resulting from reaction of phenylalanine at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom. L-phenylalanine is slightly soluble (in water) and a moderately acidic compound (based on its pKa). L-phenylalanine can be found in watermelon, which makes L-phenylalanine a potential biomarker for the consumption of this food product. L-phenylalanine can be found primarily in most biofluids, including sweat, blood, urine, and cerebrospinal fluid (CSF), as well as throughout all human tissues. L-phenylalanine exists in all living species, ranging from bacteria to humans. In humans, L-phenylalanine is involved in a couple of metabolic pathways, which include phenylalanine and tyrosine metabolism and transcription/Translation. L-phenylalanine is also involved in few metabolic disorders, which include phenylketonuria, tyrosinemia type 2 (or richner-hanhart syndrome), and tyrosinemia type 3 (TYRO3). Moreover, L-phenylalanine is found to be associated with viral infection, dengue fever, hypothyroidism, and myocardial infarction. L-phenylalanine is a non-carcinogenic (not listed by IARC) potentially toxic compound. Phenylalanine (Phe or F) is an α-amino acid with the formula C 9H 11NO 2. It can be viewed as a benzyl group substituted for the methyl group of alanine, or a phenyl group in place of a terminal hydrogen of alanine. This essential amino acid is classified as neutral, and nonpolar because of the inert and hydrophobic nature of the benzyl side chain. The L-isomer is used to biochemically form proteins, coded for by DNA. The codons for L-phenylalanine are UUU and UUC. Phenylalanine is a precursor for tyrosine; the monoamine neurotransmitters dopamine, norepinephrine (noradrenaline), and epinephrine (adrenaline); and the skin pigment melanin . Hepatic. L-phenylalanine that is not metabolized in the liver is distributed via the systemic circulation to the various tissues of the body, where it undergoes metabolic reactions similar to those that take place in the liver (DrugBank). If PKU is diagnosed early, an affected newborn can grow up with normal brain development, but only by managing and controlling phenylalanine levels through diet, or a combination of diet and medication. The diet requires severely restricting or eliminating foods high in phenylalanine, such as meat, chicken, fish, eggs, nuts, cheese, legumes, milk and other dairy products. Starchy foods, such as potatoes, bread, pasta, and corn, must be monitored. Optimal health ranges (or "target ranges") of serum phenylalanine are between 120 and 360 µmol/L, and aimed to be achieved during at least the first 10 years of life. Recently it has been found that a chiral isomer of L-phenylalanine (called D-phenylalanine) actually arrests the fibril formation by L-phenylalanine and gives rise to flakes. These flakes do not propagate further and prevent amyloid formation by L-phenylalanine. D-phenylalanine may qualify as a therapeutic molecule in phenylketonuria (A8161) (T3DB). L-Phenylalanine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=63-91-2 (retrieved 2024-07-01) (CAS RN: 63-91-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Phenylalanine ((S)-2-Amino-3-phenylpropionic acid) is an essential amino acid isolated from Escherichia coli. L-Phenylalanine is a α2δ subunit of voltage-dependent Ca+ channels antagonist with a Ki of 980 nM. L-phenylalanine is a competitive antagonist for the glycine- and glutamate-binding sites of N-methyl-D-aspartate receptors (NMDARs) (KB of 573 μM ) and non-NMDARs, respectively. L-Phenylalanine is widely used in the production of food flavors and pharmaceuticals[1][2][3][4]. L-Phenylalanine ((S)-2-Amino-3-phenylpropionic acid) is an essential amino acid isolated from Escherichia coli. L-Phenylalanine is a α2δ subunit of voltage-dependent Ca+ channels antagonist with a Ki of 980 nM. L-phenylalanine is a competitive antagonist for the glycine- and glutamate-binding sites of N-methyl-D-aspartate receptors (NMDARs) (KB of 573 μM ) and non-NMDARs, respectively. L-Phenylalanine is widely used in the production of food flavors and pharmaceuticals[1][2][3][4]. L-Phenylalanine ((S)-2-Amino-3-phenylpropionic acid) is an essential amino acid isolated from Escherichia coli. L-Phenylalanine is a α2δ subunit of voltage-dependent Ca+ channels antagonist with a Ki of 980 nM. L-phenylalanine is a competitive antagonist for the glycine- and glutamate-binding sites of N-methyl-D-aspartate receptors (NMDARs) (KB of 573 μM ) and non-NMDARs, respectively. L-Phenylalanine is widely used in the production of food flavors and pharmaceuticals[1][2][3][4].
Benzocaine
Benzocaine is a surface anesthetic that acts by preventing transmission of impulses along nerve fibers and at nerve endings. Benzocaine is a local anesthetic commonly used as a topical pain reliever. It is the active ingredient in many over-the-counter analgesic ointments. Benzocaine is an ester, a compound made from the organic acid PABA (para-aminobenzoic acid) and ethanol. The process in which this ester is created is known as Fischer esterification. A surface anesthetic that acts by preventing transmission of impulses along nerve fibers and at nerve endings.; Benzocaine is a local anesthetic commonly used as a topical pain reliever. It is the active ingredient in many over-the-counter analgesic ointments. Benzocaine is an ester, a compound made from the organic acid PABA (para-aminobenzoic acid) and ethanol. The process in which this ester is created is known as Fischer esterification. [HMDB] D - Dermatologicals > D04 - Antipruritics, incl. antihistamines, anesthetics, etc. > D04A - Antipruritics, incl. antihistamines, anesthetics, etc. > D04AB - Anesthetics for topical use C - Cardiovascular system > C05 - Vasoprotectives > C05A - Agents for treatment of hemorrhoids and anal fissures for topical use > C05AD - Local anesthetics D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics R - Respiratory system > R02 - Throat preparations > R02A - Throat preparations > R02AD - Anesthetics, local N - Nervous system > N01 - Anesthetics > N01B - Anesthetics, local > N01BA - Esters of aminobenzoic acid D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent KEIO_ID B011
7-Methylguanine
7-Methylguanine is a metabolite of DNA methylation and depurination observed in normal human biofluids; however, it has been found significantly higher in the urine of smokers than in nonsmokers. (PMID 16059882). 7-Methylguanine has been identified in the human placenta (PMID: 32033212). 7-Methylguanine is a metabolite of DNA methylation and depurination observed in normal human biofluids; however, it has been found significantly higher in the urine of smokers than in nonsmokers. (PMID 16059882) [HMDB] KEIO_ID M043
3-Methylguanine
3-Methylguanine is a methylated purine base. Methylated purine bases are known to be present in normal urine and to change under pathological conditions, in particular in the development of leukemia, tumors and immunodeficiency, by the altered turnover of nucleic acids typical of these diseases. (PMID 9069642) [HMDB] 3-Methylguanine is a methylated purine base. Methylated purine bases are known to be present in normal urine and to change under pathological conditions, in particular in the development of leukemia, tumors and immunodeficiency, by the altered turnover of nucleic acids typical of these diseases. (PMID 9069642). KEIO_ID M042
Ethyl 3-aminobenzoate
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent
4-Hydroxy-1-(3-pyridinyl)-1-butanone
4-Hydroxy-1-(3-pyridinyl)-1-butanone, also known as 4-HPB, is classified as a member of the Aryl alkyl ketones. Aryl alkyl ketones are ketones have the generic structure RC(=O)R, where R = aryl group and R=alkyl group. 4-Hydroxy-1-(3-pyridinyl)-1-butanone is considered to be soluble (in water) and relatively neutral
5-(3-Pyridyl)-2-hydroxytetrahydrofuran
5-(3-Pyridyl)-2-hydroxytetrahydrofuran is classified as a pyridine or a Pyridine derivative. Pyridines are compounds containing a pyridine ring, which is a six-member aromatic heterocycle which consists of one nitrogen atom and five carbon atoms. 5-(3-Pyridyl)-2-hydroxytetrahydrofuran is considered to be soluble (in water) and relatively neutral
D-Phenylalanine
Flavouring ingredient. (±)-Phenylalanine is found in many foods, some of which are cucumber, green bell pepper, yellow bell pepper, and saskatoon berry.
D-phenylalanine
The D-enantiomer of phenylalanine. D-Phenylalanine is the synthetic dextro isomer of phenylalanine. D-Phenylalanine inhibits biofilm development of Pseudoalteromonas sp. SC2014[1]. D-Phenylalanine is the synthetic dextro isomer of phenylalanine. D-Phenylalanine inhibits biofilm development of Pseudoalteromonas sp. SC2014[1].
Methyl N-methylanthranilate
Methyl N-methylanthranilate is a methyl ester resulting from the formal condensation of the carboxy group of N-methylanthranilic acid with methanol. It has a role as a fungal metabolite, a plant metabolite and an animal metabolite. It is a benzoate ester, a methyl ester, a secondary amino compound and a substituted aniline. It is functionally related to a N-methylanthranilic acid. Methyl 2-(methylamino)benzoate is a natural product found in Zanthoxylum beecheyanum, Mangifera indica, and other organisms with data available. See also: Mandarin oil (part of). Methyl N-methylanthranilate is found in citrus. Methyl N-methylanthranilate is a constituent of mandarin peel oil (Citrus madurensis), petitgrain oil and other citrus species oils. Methyl N-methylanthranilate is a flavouring agent. Constituent of mandarin peel oil (Citrus madurensis), petitgrain oil and other citrus subspecies oils. Flavouring agent. Methyl N-methylanthranilate is found in sweet orange and citrus. A methyl ester resulting from the formal condensation of the carboxy group of N-methylanthranilic acid with methanol. Methyl N-methylanthranilate, a terpene, is a pungent compound that can be found in Citrus reticulate Blanco leaves. Methyl N-methylanthranilate has the potential for pain research[1]. Methyl N-methylanthranilate, a terpene, is a pungent compound that can be found in Citrus reticulate Blanco leaves. Methyl N-methylanthranilate has the potential for pain research[1].
1-Methylguanine
1-Methylguanine is a naturally occurring modified purine derived from tRNA, found in elevated levels in the serum and urine of cancer patients (PMID:2413515). Increase of 1-methylguanine in the urine of colorectal tumor bearing patients, has been justified either by a more rapid turnover of nucleic acids in tumor tissue or by an increase in the extent of their methylation (PMID:9069642). Present in Chinese cabbage (Brassica chinensis), and other plants
Gentiatibetine
Alkaloid from Gentiana lutea (yellow gentian). Gentiatibetine is found in alcoholic beverages, herbs and spices, and root vegetables. Gentiatibetine is found in alcoholic beverages. Gentiatibetine is an alkaloid from Gentiana lutea (yellow gentian).
N2-Methylguanine
N2-Methylguanine is a modified nucleoside. N2-Methylguanine is an endogenous methylated nucleoside found in human fluids; methylated purine bases are present in higher amounts in tumor-bearing patients compared to healthy controls. Human exposure to carcinogenic alkylating agents can lead to the formation of covalently bound adducts in DNA, some of which are excreted in urine as alkylated purines following DNA degrdn. and repair; the N2 position of guanine is one of the major sites for DNA modification by various carcinogens. Measurements of RNA or DNA catabolites in urine can be used as a measure for the metabolism of each of the three major species of RNA. An accumulation of modified ribonucleosides appears in the serum of uremic patients. (PMID: 16527824, 16061253, 8043914, 2428556, 7159514, 9607216) [HMDB] N2-Methylguanine is a modified nucleoside. N2-Methylguanine is an endogenous methylated nucleoside found in human fluids; methylated purine bases are present in higher amounts in tumor-bearing patients compared to healthy controls. Human exposure to carcinogenic alkylating agents can lead to the formation of covalently bound adducts in DNA, some of which are excreted in urine as alkylated purines following DNA degrdn. and repair; the N2 position of guanine is one of the major sites for DNA modification by various carcinogens. Measurements of RNA or DNA catabolites in urine can be used as a measure for the metabolism of each of the three major species of RNA. An accumulation of modified ribonucleosides appears in the serum of uremic patients. (PMID: 16527824, 16061253, 8043914, 2428556, 7159514, 9607216).
Norsalsolinol
Norsalsolinol is a putative metabolic neuromodulators that hs been found to be present in both rat and human brains. It modulates dopaminergic transmission and have been shown to be associated with neurotoxicity within cells and diseases such as alcoholism and Parkinsonism. Norsalsolinol can be synthesized in vivo non-enzymatically by condensation of dopamine with formaldehyde, the oxidized metabolite of methanol. A human metabolite taken as a putative food compound of mammalian origin [HMDB]
3-Pyridinebutanoic acid
3-Pyridinebutanoic acid is a nicotine degradation product. It can be formed from the hydration or reduction of 4-(3-pyridyl)-3-butenoate. 3-Pyridinebutanoic acid can decompose to 3-Pyridylacetate. [HMDB] 3-Pyridinebutanoic acid is a nicotine degradation product. It can be formed from the hydration or reduction of 4-(3-pyridyl)-3-butenoate. 3-Pyridinebutanoic acid can decompose to 3-Pyridylacetate.
Ethyl 2-aminobenzoate
Ethyl 2-aminobenzoate is found in citrus. Ethyl 2-aminobenzoate is a flavouring ingredient. Ethyl 2-aminobenzoate is present in orange juice, orange peel and concord grape. Ethyl anthranilate is a flavouring ingredient. It is found in citrus prodcuts and fruits such as orange juice, orange peel and concord grape.
Benzyl glycinate
Benzyl glycinate, also known as Benzyl glycinate hydrochloride or Benzyl glycinate HCl, CAS number 2462-31-9, is a white crystalline powder at room temperature with melting point at 138-140C and boiling point at 290C. It reacts with strong oxidizers.
Ethenzamide
N - Nervous system > N02 - Analgesics > N02B - Other analgesics and antipyretics > N02BA - Salicylic acid and derivatives C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents
N,N-Dimethylanthranilic acid
N,n-dimethylanthranilic acid is a member of the class of compounds known as aminobenzoic acids. Aminobenzoic acids are benzoic acids containing an amine group attached to the benzene moiety. N,n-dimethylanthranilic acid is soluble (in water) and a weakly acidic compound (based on its pKa). N,n-dimethylanthranilic acid can be found in fig, which makes n,n-dimethylanthranilic acid a potential biomarker for the consumption of this food product. Methyl N-methylanthranilate, a terpene, is a pungent compound that can be found in Citrus reticulate Blanco leaves. Methyl N-methylanthranilate has the potential for pain research[1]. Methyl N-methylanthranilate, a terpene, is a pungent compound that can be found in Citrus reticulate Blanco leaves. Methyl N-methylanthranilate has the potential for pain research[1].
Phenylalanine
COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS L-Phenylalanine ((S)-2-Amino-3-phenylpropionic acid) is an essential amino acid isolated from Escherichia coli. L-Phenylalanine is a α2δ subunit of voltage-dependent Ca+ channels antagonist with a Ki of 980 nM. L-phenylalanine is a competitive antagonist for the glycine- and glutamate-binding sites of N-methyl-D-aspartate receptors (NMDARs) (KB of 573 μM ) and non-NMDARs, respectively. L-Phenylalanine is widely used in the production of food flavors and pharmaceuticals[1][2][3][4]. L-Phenylalanine ((S)-2-Amino-3-phenylpropionic acid) is an essential amino acid isolated from Escherichia coli. L-Phenylalanine is a α2δ subunit of voltage-dependent Ca+ channels antagonist with a Ki of 980 nM. L-phenylalanine is a competitive antagonist for the glycine- and glutamate-binding sites of N-methyl-D-aspartate receptors (NMDARs) (KB of 573 μM ) and non-NMDARs, respectively. L-Phenylalanine is widely used in the production of food flavors and pharmaceuticals[1][2][3][4]. L-Phenylalanine ((S)-2-Amino-3-phenylpropionic acid) is an essential amino acid isolated from Escherichia coli. L-Phenylalanine is a α2δ subunit of voltage-dependent Ca+ channels antagonist with a Ki of 980 nM. L-phenylalanine is a competitive antagonist for the glycine- and glutamate-binding sites of N-methyl-D-aspartate receptors (NMDARs) (KB of 573 μM ) and non-NMDARs, respectively. L-Phenylalanine is widely used in the production of food flavors and pharmaceuticals[1][2][3][4].
2-hydroxy-6-methylaminopurine|2-hydroxy-N6-methyladenine|6-Methylamino-2-hydroxy-purin|6-methylamino-3,7(9)-dihydro-purin-2-one
(4S)-2-acetonitrile-4-methoxycylohex-2-en-1-one|ehretine
(+)-oxerine|(5R,7S)-6,7-dihydro-7-methyl-5H-cyclopenta[c]pyridine-5,7-diol|oxerine
Phenylalanine
An aromatic amino acid that is alanine in which one of the methyl hydrogens is substituted by a phenyl group. Annotation level-2 Acquisition and generation of the data is financially supported by the Max-Planck-Society COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS IPB_RECORD: 2701; CONFIDENCE confident structure L-Phenylalanine ((S)-2-Amino-3-phenylpropionic acid) is an essential amino acid isolated from Escherichia coli. L-Phenylalanine is a α2δ subunit of voltage-dependent Ca+ channels antagonist with a Ki of 980 nM. L-phenylalanine is a competitive antagonist for the glycine- and glutamate-binding sites of N-methyl-D-aspartate receptors (NMDARs) (KB of 573 μM ) and non-NMDARs, respectively. L-Phenylalanine is widely used in the production of food flavors and pharmaceuticals[1][2][3][4]. L-Phenylalanine ((S)-2-Amino-3-phenylpropionic acid) is an essential amino acid isolated from Escherichia coli. L-Phenylalanine is a α2δ subunit of voltage-dependent Ca+ channels antagonist with a Ki of 980 nM. L-phenylalanine is a competitive antagonist for the glycine- and glutamate-binding sites of N-methyl-D-aspartate receptors (NMDARs) (KB of 573 μM ) and non-NMDARs, respectively. L-Phenylalanine is widely used in the production of food flavors and pharmaceuticals[1][2][3][4]. L-Phenylalanine ((S)-2-Amino-3-phenylpropionic acid) is an essential amino acid isolated from Escherichia coli. L-Phenylalanine is a α2δ subunit of voltage-dependent Ca+ channels antagonist with a Ki of 980 nM. L-phenylalanine is a competitive antagonist for the glycine- and glutamate-binding sites of N-methyl-D-aspartate receptors (NMDARs) (KB of 573 μM ) and non-NMDARs, respectively. L-Phenylalanine is widely used in the production of food flavors and pharmaceuticals[1][2][3][4].
L-Phenylalanine
MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; COLNVLDHVKWLRT_STSL_0103_Phenylalanine_2000fmol_180506_S2_LC02_MS02_290; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. L-Phenylalanine ((S)-2-Amino-3-phenylpropionic acid) is an essential amino acid isolated from Escherichia coli. L-Phenylalanine is a α2δ subunit of voltage-dependent Ca+ channels antagonist with a Ki of 980 nM. L-phenylalanine is a competitive antagonist for the glycine- and glutamate-binding sites of N-methyl-D-aspartate receptors (NMDARs) (KB of 573 μM ) and non-NMDARs, respectively. L-Phenylalanine is widely used in the production of food flavors and pharmaceuticals[1][2][3][4]. L-Phenylalanine ((S)-2-Amino-3-phenylpropionic acid) is an essential amino acid isolated from Escherichia coli. L-Phenylalanine is a α2δ subunit of voltage-dependent Ca+ channels antagonist with a Ki of 980 nM. L-phenylalanine is a competitive antagonist for the glycine- and glutamate-binding sites of N-methyl-D-aspartate receptors (NMDARs) (KB of 573 μM ) and non-NMDARs, respectively. L-Phenylalanine is widely used in the production of food flavors and pharmaceuticals[1][2][3][4]. L-Phenylalanine ((S)-2-Amino-3-phenylpropionic acid) is an essential amino acid isolated from Escherichia coli. L-Phenylalanine is a α2δ subunit of voltage-dependent Ca+ channels antagonist with a Ki of 980 nM. L-phenylalanine is a competitive antagonist for the glycine- and glutamate-binding sites of N-methyl-D-aspartate receptors (NMDARs) (KB of 573 μM ) and non-NMDARs, respectively. L-Phenylalanine is widely used in the production of food flavors and pharmaceuticals[1][2][3][4].
benzocaine
D - Dermatologicals > D04 - Antipruritics, incl. antihistamines, anesthetics, etc. > D04A - Antipruritics, incl. antihistamines, anesthetics, etc. > D04AB - Anesthetics for topical use C - Cardiovascular system > C05 - Vasoprotectives > C05A - Agents for treatment of hemorrhoids and anal fissures for topical use > C05AD - Local anesthetics D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics R - Respiratory system > R02 - Throat preparations > R02A - Throat preparations > R02AD - Anesthetics, local N - Nervous system > N01 - Anesthetics > N01B - Anesthetics, local > N01BA - Esters of aminobenzoic acid D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent CONFIDENCE standard compound; INTERNAL_ID 1023; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10012; ORIGINAL_PRECURSOR_SCAN_NO 10007 CONFIDENCE standard compound; INTERNAL_ID 1023; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10042; ORIGINAL_PRECURSOR_SCAN_NO 10037 CONFIDENCE standard compound; INTERNAL_ID 1023; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10067; ORIGINAL_PRECURSOR_SCAN_NO 10063 CONFIDENCE standard compound; INTERNAL_ID 1023; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10090; ORIGINAL_PRECURSOR_SCAN_NO 10086 CONFIDENCE standard compound; INTERNAL_ID 1023; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10098; ORIGINAL_PRECURSOR_SCAN_NO 10094 CONFIDENCE standard compound; INTERNAL_ID 2726 CONFIDENCE standard compound; INTERNAL_ID 8623 CONFIDENCE standard compound; INTERNAL_ID 8273
Ethenzamide
N - Nervous system > N02 - Analgesics > N02B - Other analgesics and antipyretics > N02BA - Salicylic acid and derivatives C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents
ETHYL ANTHRANILATE
CONFIDENCE standard compound; INTERNAL_ID 1140; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10012; ORIGINAL_PRECURSOR_SCAN_NO 10007 CONFIDENCE standard compound; INTERNAL_ID 1140; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9955; ORIGINAL_PRECURSOR_SCAN_NO 9950 CONFIDENCE standard compound; INTERNAL_ID 1140; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9960; ORIGINAL_PRECURSOR_SCAN_NO 9956 CONFIDENCE standard compound; INTERNAL_ID 1140; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9992; ORIGINAL_PRECURSOR_SCAN_NO 9987 CONFIDENCE standard compound; INTERNAL_ID 1140; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10098; ORIGINAL_PRECURSOR_SCAN_NO 10094 CONFIDENCE standard compound; INTERNAL_ID 1140; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10012; ORIGINAL_PRECURSOR_SCAN_NO 10009
FEMA 2718
Methyl N-methylanthranilate, a terpene, is a pungent compound that can be found in Citrus reticulate Blanco leaves. Methyl N-methylanthranilate has the potential for pain research[1]. Methyl N-methylanthranilate, a terpene, is a pungent compound that can be found in Citrus reticulate Blanco leaves. Methyl N-methylanthranilate has the potential for pain research[1].
4-(hydroxymethyl)-N-methylbenzamide(SALTDATA: FREE)
Quinoline, 6-fluoro-1,2,3,4-tetrahydro-1-methyl- (9CI)
2-AMINO-5-METHYL-4H-[1,2,4]TRIAZOLO[1,5-A]PYRIMIDIN-7-ONE
CHLORO(DIETHYLAMINO)DIMETHYLSILANE
C6H16ClNSi (165.07404860000003)
2,6-DIMETHYL-3-PYRIDINECARBOXYLIC ACID METHYL ESTER
4-[CARBOXY-(3-CHLORO-PHENYL)-METHYL]-PIPERAZINE-1-CARBOXYLICACIDTERT-BUTYLESTERHYDROCHLORIDE
Methacetin methoxy-C-13
V - Various > V04 - Diagnostic agents > V04C - Other diagnostic agents > V04CE - Tests for liver functional capacity
2-(1H-1,2,4-triazol-1-ylmethyl)cyclopentanone(SALTDATA: FREE)
cis-2-hydroxymethyl-1-cyclohexylamine hydrochloride
7-METHYL-5,6,7,8-TETRAHYDROIMIDAZO[1,2-A]PYRAZINE-2-CARBALDEHYDE
1-(methoxymethyl)cyclopentan-1-amine,hydrochloride
2-methyl-5, 6, 7, 8-tetrahydro-3H-pyrido[3,4-d]pyrimidin-4-one
6,7,8,9-TETRAHYDRO-3H-PYRIMIDO[4,5-D]AZEPIN-4(5H)-ONE
2-(Tetrahydro-2H-pyran-4-yl)ethanamine hydrochloride
1-(2-HYDROXYMETHYLPHENYL)PIPERIDINE-4-CARBOXYLICACIDETHYLESTER
(3aR,4S,7R,7aS)-hexahydro-1H-4,7-methanoisoindole-1,3(2H)-dione
1H-Imidazole,1-(2-pyrrolidinylcarbonyl)-,(S)-(9CI)
(2R)-7-Fluoro-2-methyl-1,2,3,4-tetrahydroquinoline
2-METHYL-5,6,7,8-TETRAHYDROPYRIDO[4,3-D]PYRIMIDIN-4(3H)-ONE
4-Methoxy-5,6,7,8-tetrahydropyrido[4,3-d]pyrimidine
Benzeneacetic acid, alpha-amino-3-methyl-, (alphaS)- (9CI)
piperazine-1-carboxylic acid amide hcl
C5H12ClN3O (165.06688519999997)
trans-2-Hydroxymethyl-1-cyclohexylamine hydrochloride
Metformin hydrochloride
C78276 - Agent Affecting Digestive System or Metabolism > C29711 - Anti-diabetic Agent > C98234 - Biguanide Antidiabetic Agent D007004 - Hypoglycemic Agents > D001645 - Biguanides C1892 - Chemopreventive Agent 1,1-Dimethylbiguanide or Metformin is a biguanide hypoglycemic agent used in the treatment of non-insulin-dependent diabetes mellitus not responding to dietary modification. Metformin improves glycemic control by improving insulin sensitivity and decreasing intestinal absorption of glucose. Metformin is the most popular anti-diabetic drug in the United States and one of the most prescribed drugs in the country overall, with nearly 35 million prescriptions filled in 2006 for generic metformin alone. [HMDB] Metformin hydrochloride (1,1-Dimethylbiguanide hydrochloride) inhibits the mitochondrial respiratory chain in the liver, leading to activation of AMPK, enhancing insulin sensitivity for type 2 diabetes research. Metformin hydrochloride triggers autophagy[1].
2-(TETRAHYDRO-2H-PYRAN-2-YL)ETHANAMINEHYDROCHLORIDE
4-amino-3-methyl-1,2,7,8-tetrazabicyclo[4.3.0]nona-3,6,8-trien-5-one
2-methoxy-5,6,7,8-tetrahydropyrido[4,3-d]pyrimidine
2H-Isoindole-1-carboxylicacid,4,5,6,7-tetrahydro-(9CI)
Phenylalanine-d5
A deuterated compound that is phenylalanine in which the five aromatic hydrogens are replaced by deuterium.
85-91-6
Methyl N-methylanthranilate, a terpene, is a pungent compound that can be found in Citrus reticulate Blanco leaves. Methyl N-methylanthranilate has the potential for pain research[1]. Methyl N-methylanthranilate, a terpene, is a pungent compound that can be found in Citrus reticulate Blanco leaves. Methyl N-methylanthranilate has the potential for pain research[1].
Perillate
C10H13O2- (165.09154980000002)
The monocarboxylic acid anion formed by loss of a proton from the carboxy group of perillic acid; principal microspecies at pH 7.3.
Aminoethylcysteine
D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors
Tricaine
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent
3-Methylguanine
A 3-methylguanine that is 3,7-dihydro-6H-purin-6-one substituted by an amino group at position 2 and a methyl group at position 3.
D-(+)-Phenylalanine
An optically active form of 3-amino-3-phenylpropanoic acid having R-configuration.
D-phenylalanine zwitterion
A D-alpha-amino acid zwitterion that is D-phenylalanine in which a proton has been transferred from the carboxy group to the amino group. It is the major species at pH 7.3.
Norsalsolinol
An isoquinolinol that is 1,2,3,4-tetrahydroisoquinoline substituted by hydroxy groups at positions 6 and 7. It is present in the dopamine-rich areas of the human brain, including the substantia nigra.
6-hydroxymethyladenine
A 6-alkylaminopurine that is adenine where one of the hydrogens of the amino group is replaced by a hydroxymethyl group.
(R)-3-ammonio-3-phenylpropanoate
An optically active form of 3-ammonio-3-phenylpropanoate having (R)-configuration.
2-amino-3-methyl-3,9-dihydro-6H-purin-6-one
A 3-methylguanine that is 3,9-dihydro-6H-purin-6-one substituted by an amino group at position 2 and a methyl group at position 3.
2-imino-3-methyl-1,2,3,9-tetrahydro-6H-purin-6-one
A 3-methylguanine that is 1,2,3,9-tetrahydro-6H-purin-6-one substituted by an imino group at position 2 and a methyl group at position 3.
2-imino-7-methyl-1,2,3,7-tetrahydro-6H-purin-6-one
A 7-methylguanine that is 1,2,3,7-tetrahydro-6H-purin-6-one substituted by an imino group at position 2 and a methyl group at position 7.
2-amino-7-methyl-7H-purin-6-ol
A 7-methylguanine that is 7H-purine substituted by an amino group at position 2, a methyl group at position 7 and a hydroxy group at position 6.
2-amino-7-methyl-1,7-dihydro-6H-purin-6-one
A 7-methylguanine that is 1,7-dihydro-6H-purin-6-one substituted by an amino group at position 2 and a methyl group at position 7.
L-phenylalanine zwitterion
An amino acid zwitterion arising from transfer of a proton from the carboxy to the amino group of L-phenylalanine; major species at pH 7.3.
N(2)-Methylguanine
A methylguanine in which the methyl group is located at the N2-position.