alpha-Tocopherol (BioDeep_00000000778)
Secondary id: BioDeep_00000397418, BioDeep_00000405478, BioDeep_00000861719, BioDeep_00001898014
natural product human metabolite PANOMIX_OTCML-2023 blood metabolite Antitumor activity BioNovoGene_Lab2019 Volatile Flavor Compounds
代谢物信息卡片
化学式: C29H50O2 (430.38106)
中文名称: (+)-α-生育酚, D-α-生育酚, α-维生素 E, 维生素e, DL-α-生育酚, 天然维生素 E, 维生素 E
谱图信息:
最多检出来源 Homo sapiens(feces) 0.18%
Last reviewed on 2024-06-29.
Cite this Page
alpha-Tocopherol. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/alpha-tocopherol (retrieved
2024-11-24) (BioDeep RN: BioDeep_00000000778). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: c1(c2c(c(c(c1O)C)C)O[C@@](CC2)(CCC[C@@H](CCC[C@@H](CCCC(C)C)C)C)C)C
InChI: InChI=1S/C29H50O2/c1-20(2)12-9-13-21(3)14-10-15-22(4)16-11-18-29(8)19-17-26-25(7)27(30)23(5)24(6)28(26)31-29/h20-22,30H,9-19H2,1-8H3
描述信息
Alpha-tocopherol is a pale yellow, viscous liquid. (NTP, 1992)
(R,R,R)-alpha-tocopherol is an alpha-tocopherol that has R,R,R configuration. The naturally occurring stereoisomer of alpha-tocopherol, it is found particularly in sunflower and olive oils. It has a role as an antioxidant, a nutraceutical, an antiatherogenic agent, an EC 2.7.11.13 (protein kinase C) inhibitor, an anticoagulant, an immunomodulator, an antiviral agent, a micronutrient, an algal metabolite and a plant metabolite. It is an enantiomer of a (S,S,S)-alpha-tocopherol.
In 1922, vitamin E was demonstrated to be an essential nutrient. Vitamin E is a term used to describe 8 different fat soluble tocopherols and tocotrienols, alpha-tocopherol being the most biologically active. Vitamin E acts as an antioxidant, protecting cell membranes from oxidative damage. The antioxidant effects are currently being researched for use in the treatment of diseases causing bone loss, cardiovascular diseases, diabetes mellitus and associated comorbidities, eye diseases, inflammatory diseases (including skin conditions), lipid disorders, neurological diseases, and radiation damage. Though this research is so far inconclusive, vitamin E remains a popular supplement and is generally considered safe by the FDA.
Vitamin E is a natural product found in Monteverdia ilicifolia, Calea jamaicensis, and other organisms with data available.
Alpha-Tocopherol is the orally bioavailable alpha form of the naturally-occurring fat-soluble vitamin E, with potent antioxidant and cytoprotective activities. Upon administration, alpha-tocopherol neutralizes free radicals, thereby protecting tissues and organs from oxidative damage. Alpha-tocopherol gets incorporated into biological membranes, prevents protein oxidation and inhibits lipid peroxidation, thereby maintaining cell membrane integrity and protecting the cell against damage. In addition, alpha-tocopherol inhibits the activity of protein kinase C (PKC) and PKC-mediated pathways. Alpha-tocopherol also modulates the expression of various genes, plays a key role in neurological function, inhibits platelet aggregation and enhances vasodilation. Compared with other forms of tocopherol, alpha-tocopherol is the most biologically active form and is the form that is preferentially absorbed and retained in the body.
A generic descriptor for all tocopherols and tocotrienols that exhibit alpha-tocopherol activity. By virtue of the phenolic hydrogen on the 2H-1-benzopyran-6-ol nucleus, these compounds exhibit varying degree of antioxidant activity, depending on the site and number of methyl groups and the type of isoprenoids.
See also: Alpha-Tocopherol Acetate (is active moiety of); Tocopherol (related); Vitamin E (related) ... View More ...
alpha-Tocopherol is traditionally recognized as the most active form of vitamin E in humans and is a powerful biological antioxidant. The measurement of "vitamin E" activity in international units (IU) was based on fertility enhancement by the prevention of spontaneous abortions in pregnant rats relative to alpha-Tocopherol. Natural vitamin E exists in eight different forms or isomers: four tocopherols and four tocotrienols. In foods, the most abundant sources of vitamin E are vegetable oils such as palm oil, sunflower, corn, soybean, and olive oil. Nuts, sunflower seeds, and wheat germ are also good sources.
Constituent of many vegetable oils such as soya and sunflower oils. Dietary supplement and nutrient. Nutriceutical with anticancer and antioxidant props. Added to fats and oils to prevent rancidity. The naturally-occurring tocopherol is a single stereoisomer; synthetic forms are a mixture of all eight possible isomers
An alpha-tocopherol that has R,R,R configuration. The naturally occurring stereoisomer of alpha-tocopherol, it is found particularly in sunflower and olive oils.
α-Tocopherol (alpha-tocopherol) is a type of vitamin E. Its E number is "E307". Vitamin E exists in eight different forms, four tocopherols and four tocotrienols. All feature a chromane ring, with a hydroxyl group that can donate a hydrogen atom to reduce free radicals and a hydrophobic side chain which allows for penetration into biological membranes. Compared to the others, α-tocopherol is preferentially absorbed and accumulated in humans.
Vitamin E is found in a variety of tissues, being lipid-soluble, and taken up by the body in a wide variety of ways. The most prevalent form, α-tocopherol, is involved in molecular, cellular, biochemical processes closely related to overall lipoprotein and lipid homeostasis. Ongoing research is believed to be "critical for manipulation of vitamin E homeostasis in a variety of oxidative stress-related disease conditions in humans."[2] One of these disease conditions is the α-tocopherol role in the use by malaria parasites to protect themselves from the highly oxidative environment in erythrocytes.[3]
DL-α-Tocopherol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=16826-11-2 (retrieved 2024-06-29) (CAS RN: 10191-41-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
DL-alpha-Tocopherol is a synthetic vitamin E, with antioxidation effect. DL-alpha-Tocopherol protects human skin fibroblasts against the cytotoxic effect of UVB[1].
DL-alpha-Tocopherol is a synthetic vitamin E, with antioxidation effect. DL-alpha-Tocopherol protects human skin fibroblasts against the cytotoxic effect of UVB[1].
rel-α-Vitamin E (rel-D-α-Tocopherol) is a vitamin with antioxidant properties and also a mixture[1].
α-Vitamin E ((+)-α-Tocopherol), a naturally occurring vitamin E form, is a potent antioxidant[1][2].
α-Vitamin E ((+)-α-Tocopherol), a naturally occurring vitamin E form, is a potent antioxidant[1][2].
同义名列表
178 个代谢物同义名
2H-1-Benzopyran-6-ol, 3,4-dihydro-2,5,7,8-tetramethyl-2-(4,8,12-trimethyltridecyl)-, (2R*(4R*,8R*))-(+-)-; 2H-1-Benzopyran-6-ol, 3,4-dihydro-2,5,7,8-tetramethyl-2-(4,8,12-trimethyltridecyl)-, [2R-[2R*(4R*,8R*)]]-; 2H-1-Benzopyran-6-ol, 3,4-dihydro-2,5,7,8-tetramethyl-2-(4,8,12-trimethyltridecyl)-, (2R-(2R*(4R*,8R*)))-; 2H-1-Benzopyran-6-ol, 3,4-dihydro-2,5,7,8-tetramethyl-2-(4,8,12-trimethyltridecyl)-, 2R- 2R*(4R*,8R*) -; 2H-1-Benzopyran-6-ol, 3,4-dihydro-2,5,7,8-tetramethyl-2-[(4R,8R)-4,8,12-trimethyltridecyl]-, (2R)-rel-; 2H-1-Benzopyran-6-ol, 3,4-dihydro-2,5,7,8-tetramethyl-2-((4R,8R)-4,8,12-trimethyltridecyl)-, (2R)-; (2R*(4R*,8R*))-(1)-3,4-Dihydro-2,5,7,8-tetramethyl-2-(4,8,12-trimethyltridecyl)-2H-benzopyran-6-ol; 2H-1-Benzopyran-6-ol, 3,4-dihydro-2,5,7,8-tetramethyl-2-[(4R,8R)-4,8,12-trimethyltridecyl]-, (2R)-; (2R)-3,4-Dihydro-2,5,7,8-tetramethyl-2-[(4R,8R)-4,8,12-trimethyltridecyl]-2H-1-benzopyran-6-ol; (2R)-2,5,7,8-tetramethyl-2-[(4R,8R)-4,8,12-trimethyltridecyl]-3,4-dihydro-2H-1-benzopyran-6-ol; 3,4-Dihydro-2,5,7,8-tetramethyl-2-[(4R,8R)-4,8,12-trimethyltridecyl]-(2R)-2H-1-benzopyran-6-ol; rel-(2R)-2,5,7,8-tetramethyl-2-((4R,8R)-4,8,12-trimethyltridecyl)-3,4-dihydro-2H-chromen-6-ol; (2R)-2,5,7,8-tetramethyl-2-[(4R,8R)-4,8,12-trimethyltridecyl]-3,4-dihydro-2H-chromen-6-ol; (R)-2,5,7,8-tetramethyl-2-((4R,8R)-4,8,12-trimethyltridecyl)-3,4-dihydro-2H-chromen-6-ol; (2R)-2,5,7,8-tetramethyl-2-[(4R,8R)-4,8,12-trimethyltridecyl]-3,4-dihydrochromen-6-ol; 3,4-Dihydro-2,5,7,8-tetramethyl-2-(4,8,12-trimethyltridecyl)-2H-1- -benzopyran-6-ol; 3,4-Dihydro-2,5,7,8-tetramethyl-2-(4,8,12-trimethyltridecyl)-2H-1--benzopyran-6-ol; 3,4-Dihydro-2,5,7,8-tetramethyl-2-(4,8,12-trimethyltridecyl)-2H-benzopyran-6-ol; (2R)-2,5,7,8-TETRAMETHYL-2-[(4R,8R)-4,8,12-TRIMETHYLTRIDECYL]CHROMAN-6-OL; (2R)-2-((4R,8R)-4,8,12-trimethyltridecyl)-2,5,7,8-tetramethylchroman-6-ol; (R)-2,5,7,8-Tetramethyl-2-((4R,8R)-4,8,12-trimethyltridecyl)chroman-6-ol; (2R,4R,8R)-2,5,7,8-Tetramethyl-2-(4,8,12-trimethyltridecyl)-6-chromanol; 2,5,7,8-Tetramethyl-2-(4,8,12-trimethyltridecyl)-6-chromanol; rel-(+)--Tocopherol; rel-D--Tocopherol; 07AA93F0-3339-4EEC-B50B-ADB70F657087; ALPHA-TOCOPHEROL, UNSPECIFIED FORM; (+)--Tocopherol; D--Tocopherol; (+)-2R,4R,8R-alpha-Tocopherol; C29H50O2 (D-alpha-tocopherol); (+)-2R,4’R,8’R-α-Tocopherol; (2R,4R,8R)-alpha-Tocopherol; D-ALPHA TOCOPHEROL [MART.]; ALPHA TOCOPHEROL (USP-RS); (2R,4’R,8’R)-α-Tocopherol; (+)-2R,4R,8R-α-Tocopherol; (all-R)-alpha-Tocopherol; R,r,r-.alpha.-tocopherol; (R,R,R)-alpha-Tocopherol; (2R,4R,8R)-a-Tocopherol; (2R,4R,8R)-α-Tocopherol; ALPHA-TOCOPHEROL [HSDB]; .ALPHA.-TOCOPHEROL [MI]; .ALPHA.-TOCOPHEROL, D-; (+)-.alpha.-Tocopherol; (+)- alpha -Tocopherol; alpha-delta-Tocopherol; (+/-)-alpha-Tocopherol; delta-alpha-tocopherol; alpha-TOCOPHEROL (II); alpha-Tocopherol acid; Antisterility vitamin; (+)-ALPHA-TOCOPHEROL-; Tocopherol, d-alpha-; alpha-Tocopherol, D-; RRR-alpha-tocopherol; Rhenogran Ronotec 50; 5,7,8-Trimethyltocol; (all-R)-α-Tocopherol; (R,R,R)-a-Tocopherol; RRR-alpha-tocopheryl; (R,R,R)-α-Tocopherol; (+)-alpha-Tocopherol; ()-alpha-Tocopherol; rel-alpha-Vitamin E; D-alpha tocopherol; D-alpha-Tocopherol; Vitamin E (D-form); alpha-D-Tocopherol; Prestwick3_000404; Alpha-tocopherols; Vitamin e d-alpha; .alpha.-Vitamin E; Alpha-Tocopherol; (+)-α-Tocopherol; alpha Tocopherol; Tocopherol (R,S); Tocopherol alpha; (+)-a-Tocopherol; DL-α-Tocopherol; Vitamin E alpha; alpha-Tokoferol; UNII-H4N855PNZ1; alpha-Vitamin E; alpha-Tocoferol; Vitamin E [USP]; UNII-N9PR3490H9; dl-a-Tocopherol; α-D-Tocopherol; a-D-Tocopherol; rel--Vitamin E; Vitamin Ealpha; DL--Tocopherol; d-a-tocopherol; d-α-Tocopherol; COVI-OX T 30P; BPBio1_000362; α-Tocopherol; a-Tocopherol; Phytogermine; Waynecomycin; Tox21_113208; Tox21_110563; Acne C-Patch; COVI-OX T 50; Tox21_202081; a-Vitamin E; CAS-59-02-9; Syntopherol; Vita plus E; Profecundin; α-Vitamin E; Phytogermin; Vitaplex E; Evitaminum; CONTROX VP; H4N855PNZ1; (+-)-Med-E; -Vitamin E; Vitamin Eα; Vitamin Ea; RIKKI N 70; Tenox GT 1; TOCOPHEROL; N9PR3490H9; E-MIX 40A; Vitamin-E; EPROLIN-S; Viterra E; Tokopharm; Aquasol E; Eprolin S; Emipherol; Vitayonon; VITAMIN E; Vascuals; Spavit E; TENOX GT; Denamone; Etamican; Palmvtee; Pheryl-E; Viprimol; Almefrol; E Prolin; CHEMBL47; J24.260H; Viteolin; Covi-ox; COVIREL; E-Vimin; Eprolin; Epsilan; Endo E; Vita E; Ilitia; Etavit; Evion; ido-E; Esorb; Lan-E; VitaE; Med-E; Vi-E; VIV; (2R,4R,8R)-α-Tocopherol; α-δ-Tocopherol; δ-α-tocopherol; (R,R,R)-α-Tocopherol; (+)-α-Tocopherol; RRR-α-tocopherol; RRR-α-tocopheryl; (+-)-alpha-Tocopherol; d-α-tocopherol; DL-alpha-Tocopherol; α-Tocopherol; rel-D-α-Tocopherol; rel-α-Vitamin E; alpha-Tocopherol
数据库引用编号
43 个数据库交叉引用编号
- ChEBI: CHEBI:18145
- ChEBI: CHEBI:93909
- KEGG: C02477
- PubChem: 14985
- PubChem: 2116
- HMDB: HMDB0001893
- Metlin: METLIN225
- DrugBank: DB00163
- DrugBank: DB14476
- ChEMBL: CHEMBL47
- ChEMBL: CHEMBL49563
- Wikipedia: Alpha-Tocopherol
- LipidMAPS: LMPR02020001
- ChemIDplus: 0000059029
- MetaCyc: ALPHA-TOCOPHEROL
- KNApSAcK: C00007366
- foodb: FDB000565
- chemspider: 14265
- CAS: 18920-62-2
- CAS: 1406-66-2
- CAS: 2074-53-5
- CAS: 1406-18-4
- CAS: 59-02-9
- CAS: 10191-41-0
- CAS: 16826-11-2
- MoNA: PS001803
- MoNA: PS001805
- MoNA: PS001802
- MoNA: PS001801
- MoNA: PS001804
- MoNA: PS001806
- medchemexpress: HY-N0683
- PMhub: MS000000287
- MetaboLights: MTBLC18145
- PDB-CCD: VIV
- 3DMET: B01577
- NIKKAJI: J24.260H
- RefMet: alpha-Tocopherol
- medchemexpress: HY-W020044
- medchemexpress: HY-N0683A
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-628
- PubChem: 5492
- KNApSAcK: 18145
分类词条
相关代谢途径
BioCyc(0)
PlantCyc(0)
代谢反应
177 个相关的代谢反应过程信息。
Reactome(42)
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of fat-soluble vitamins:
TTPA + alpha-TOH ⟶ TTPA:alpha-TOH
- Vitamin E:
TTPA + alpha-TOH ⟶ TTPA:alpha-TOH
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
6x(PCCA:PCCB) + ATP + Btn ⟶ 6x(Btn-PCCA:PCCB) + AMP + PPi
- Metabolism of fat-soluble vitamins:
atREs + nascent CM ⟶ nascent CM:atREs
- Vitamin E:
TTPA + alpha-TOH ⟶ TTPA:alpha-TOH
- Vitamin E:
alpha-TOH + ttpa ⟶ TTPA:alpha-TOH
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of fat-soluble vitamins:
TTPA + alpha-TOH ⟶ TTPA:alpha-TOH
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of fat-soluble vitamins:
Homologues of TTPA + alpha-TOH ⟶ TTPA:alpha-TOH
- Vitamin E:
Homologues of TTPA + alpha-TOH ⟶ TTPA:alpha-TOH
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of fat-soluble vitamins:
TTPA + alpha-TOH ⟶ TTPA:alpha-TOH
- Vitamin E:
TTPA + alpha-TOH ⟶ TTPA:alpha-TOH
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of fat-soluble vitamins:
atREs + nascent CM ⟶ nascent CM:atREs
- Vitamin E:
TTPA + alpha-TOH ⟶ TTPA:alpha-TOH
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of fat-soluble vitamins:
atREs + nascent CM ⟶ nascent CM:atREs
- Vitamin E:
Ttpa + alpha-TOH ⟶ TTPA:alpha-TOH
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of fat-soluble vitamins:
atREs + nascent CM ⟶ nascent CM:atREs
- Vitamin E:
Ttpa + alpha-TOH ⟶ TTPA:alpha-TOH
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of fat-soluble vitamins:
atREs + nascent CM ⟶ nascent CM:atREs
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of fat-soluble vitamins:
TTPA + alpha-TOH ⟶ TTPA:alpha-TOH
- Vitamin E:
TTPA + alpha-TOH ⟶ TTPA:alpha-TOH
- Vitamin E:
TTPA + alpha-TOH ⟶ TTPA:alpha-TOH
- Vitamin E:
TTPA + alpha-TOH ⟶ TTPA:alpha-TOH
- Vitamin E:
TTPA + alpha-TOH ⟶ TTPA:alpha-TOH
BioCyc(5)
- α-tocopherol degradation:
α-tocopherol + H+ + NADPH + O2 ⟶ 13'-hydroxy-α-tocopherol + H2O + NADP+
- vitamin E biosynthesis (tocopherols):
δ-tocopherol ⟶ 2-methyl-6-phytyl-1,4-benzoquinol
- α-tocopherol degradation:
α-tocopherol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 13'-hydroxy-α-tocopherol + H2O + an oxidized [NADPH-hemoprotein reductase]
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis:
γ-tocopherol + SAM ⟶ α-tocopherol + S-adenosyl-L-homocysteine + H+
WikiPathways(0)
Plant Reactome(3)
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
INOH(0)
PlantCyc(127)
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
2-methyl-6-phytyl-1,4-benzoquinol + SAM ⟶ 2,3-dimethyl-6-phytyl-1,4-benzoquinol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
H+ + homogentisate + phytyl diphosphate ⟶ 2-methyl-6-phytyl-1,4-benzoquinol + CO2 + diphosphate
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
2-methyl-6-phytyl-1,4-benzoquinol + SAM ⟶ 2,3-dimethyl-6-phytyl-1,4-benzoquinol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
δ-tocopherol + SAM ⟶ β-tocopherol + H+ + SAH
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
121 个相关的物种来源信息
- 260130 - Acca sellowiana: 10.1016/J.PHYTOCHEM.2004.06.038
- 38596 - Ajuga reptans: 10.1016/S0031-9422(01)00172-8
- 1859699 - Albifimbria verrucaria:
- 4682 - Allium sativum: 10.1021/JF960524B
- 117272 - Amaranthus cruentus: 10.1007/BF02536726
- 3565 - Amaranthus hybridus: 10.1007/BF02536726
- 28502 - Amaranthus hypochondriacus: 10.1007/BF02536726
- 165353 - Angelica sinensis: 10.1201/B14669-29
- 2306982 - Antidesma pentandrum var. barbatum: 10.1002/JCCS.200700187
- 84005 - Arbutus unedo: 10.1016/S0367-326X(01)00305-7
- 54796 - Argemone mexicana: 10.1515/ZNC-2003-7-813
- 3078 - Auxenochlorella pyrenoidosa: 10.1016/J.LFS.2004.10.055
- 216988 - Betula platyphylla var. japonica: 10.1016/S0960-894X(98)00528-9
- 42337 - Bidens pilosa: 10.1002/JCCS.200000152
- 1125166 - Calea jamaicensis: 10.1016/S0031-9422(00)97995-0
- 41496 - Calendula officinalis: 10.1111/J.1399-3054.1985.TB02321.X
- 56154 - Campanula medium: 10.1007/S10600-014-1165-8
- 4072 - Capsicum annuum:
- 316669 - Caryodendron orinocense: 10.1046/J.1467-2494.2000.00034.X
- 42332 - Centranthus ruber: 10.1007/BF02542606
- 3055 - Chlamydomonas reinhardtii: 10.1111/TPJ.12747
- 3077 - Chlorella vulgaris: 10.1016/J.LFS.2004.10.055
- 335163 - Cistus albidus: 10.1007/BF02542606
- 13447 - Conium maculatum: 10.1007/BF02542606
- 136663 - Cordiera sessilis: 10.1590/S0103-50531997000300013
- 390703 - Coronilla juncea: 10.1007/BF02542606
- 13451 - Corylus avellana: 10.1016/S0021-9673(98)00049-1
- 34329 - Corymbia citriodora: 10.1002/JCCS.200000074
- 140997 - Crataegus monogyna: 10.1016/S0031-9422(00)00250-8
- 1475389 - Croton cortesianus: 10.1016/0031-9422(92)80479-X
- 1465295 - Cupania americana: 10.1248/CPB.53.1037
- 681428 - Cupania latifolia:
- 29636 - Cyathea lepifera: 10.1248/CPB.43.1849
- 224034 - Daphne gnidium: 10.1007/S11746-003-0652-X
- 1503324 - Dictyota dichotoma var. intricata: 10.1016/J.PHYTOCHEM.2004.06.018
- 55571 - Dioscorea alata: 10.1021/JF0711690
- 413758 - Diospyros maritima: 10.3390/MOLECULES14125281
- 984796 - Dorstenia brasiliensis: 10.1590/S0103-50531997000500016
- 82096 - Eleutherococcus senticosus: 10.1002/PTR.3346
- 173280 - Ephedra equisetina: 10.1007/BF02236284
- 34317 - Eucalyptus globulus: 10.1007/BF02542606
- 210332 - Euscaphis japonica: 10.1055/S-2007-981551
- 54829 - Ferula communis: 10.1007/BF02542606
- 66386 - Ficus pumila: 10.1248/CPB.46.1647
- 464312 - Fossombronia alaskana: 10.1016/S0031-9422(00)94840-4
- 464312 - Fossombronia alaskana: 10.1016/S0031-9422(96)00781-9
- 1533088 - Globularia alypum: 10.1007/BF02542606
- 3847 - Glycine max: 10.1248/CPB.33.3834
- 485821 - Guarea kunthiana: 10.1590/S0103-50532004000500025
- 4052 - Hedera helix: 10.1007/BF02542606
- 85353 - Hedera hibernica: 10.1007/BF02542606
- 49577 - Hellenia speciosa: 10.1016/S0031-9422(00)83478-0
- 34190 - Hemerocallis fulva: 10.1002/CHIN.200310223
- 193516 - Hippophae rhamnoides:
- 9606 - Homo sapiens:
- 9606 - Homo sapiens: -
- 4513 - Hordeum vulgare: 10.1016/0955-2863(94)90086-8
- 3486 - Humulus lupulus: 10.5650/JOS1956.42.1003
- 228586 - Humulus Scandens (Lour.) Merr.: -
- 268990 - Hypericum ericoides: 10.1016/J.ARABJC.2013.10.019
- 1137008 - Hypericum perfoliatum: 10.1016/J.ARABJC.2013.10.019
- 65561 - Hypericum perforatum: 10.1016/J.ARABJC.2013.10.019
- 1137039 - Hypericum tomentosum: 10.1016/J.ARABJC.2013.10.019
- 1268566 - Jacobaea auricula: 10.1016/S0031-9422(97)00497-4
- 1127049 - Koanophyllon albicaule: 10.1016/0031-9422(92)83462-8
- 396393 - Labisia pumila: 10.1016/J.PHYTOCHEM.2011.06.014
- 4006 - Linum usitatissimum: 10.1021/JF960735G
- 344083 - Litsea acutivena: 10.1002/JCCS.200700071
- 337466 - Machilus zuihoensis: 10.1016/J.PHYTOCHEM.2005.03.020
- 300977 - Mallotus nudiflorus: 10.1002/HLCA.200490070
- 1081520 - Monteverdia ilicifolia: 10.1590/S0103-50531999000600017
- 1825850 - Monteverdia truncata: 10.1590/S0103-50531999000600017
- 3498 - Morus alba: 10.1021/JF9503725
- 119949 - Myrtus communis: 10.1007/BF02542606
- 43526 - Nauclea orientalis: 10.3987/COM-98-S12
- 1609885 - Neolitsea hiiranensis: 10.1016/J.PHYTOCHEM.2011.01.006
- 39349 - Nepeta tuberosa: 10.1016/S0031-9422(00)81839-7
- 8018 - Oncorhynchus keta: 10.1021/NP990230V
- 497761 - Origanum dictamnus: 10.3109/09637489609031878
- 452416 - Origanum onites: 10.3109/09637489609031878
- 39352 - Origanum vulgare: 10.3109/09637489609031878
- 4530 - Oryza sativa:
- 796242 - Ovatus malisuctus: 10.1055/S-2007-981551
- 96521 - Phillyrea angustifolia: 10.1007/BF02542606
- 71633 - Pinus halepensis: 10.1007/BF02542606
- 130377 - Piper aduncum: 10.1002/HLCA.19930760409
- 511543 - Piper guineense: 10.1002/CHIN.200340213
- 43073 - Pittosporum tobira: 10.1021/NP070650H
- 33090 - Plants: -
- 46147 - Portulaca oleracea: 10.1080/07315724.1992.10718240
- 3891 - Psophocarpus tetragonolobus: 10.1021/JF00109A010
- 280718 - Pycnandra acuminata: 10.1016/J.PHYTOCHEM.2007.07.001
- 58334 - Quercus ilex: 10.1007/BF02542606
- 280017 - Rhamnus alaternus: 10.1007/BF02542606
- 141212 - Rhododendron formosanum: 10.1002/MRC.1844
- 98583 - Rhodomyrtus tomentosa: 10.1016/J.TET.2008.09.054
- 32247 - Rubus idaeus:
- 39367 - Salvia rosmarinus: 10.1007/BF01201582
- 49989 - Satureja thymbra: 10.3109/09637489609031878
- 4550 - Secale cereale: 10.1515/ZNC-1993-11-1212
- 904575 - Senecio tauricola: 10.1016/S0031-9422(97)00497-4
- 370702 - Senegalia gaumeri: 10.1515/ZNC-2002-9-1002
- 4182 - Sesamum indicum: 10.3109/10915819309140647
- 108357 - Sida acuta: 10.1002/JCCS.200700008
- 92921 - Silybum marianum: 10.1016/S0308-8146(01)00152-2
- 59116 - Smilax aspera: 10.1007/BF02542606
- 4081 - Solanum lycopersicum: 10.1021/JF011001T
- 313545 - Staehelina dubia: 10.1007/BF02542606
- 1237123 - Tainia latifolia: 10.1248/CPB.53.1037
- 1423403 - Teucrium leucocladum: 10.1016/J.BSE.2003.12.009
- 1640458 - Trichilia claussenii: 10.1016/0031-9422(95)00969-8
- 1640469 - Trichilia lepidota: 10.1590/S0103-50532002000300014
- 673193 - Uvaria pandensis: 10.1016/S0031-9422(00)84730-5
- 180763 - Vaccinium myrtillus: 10.1002/HLCA.200900220
- 157791 - Vigna Radiata: -
- 3972 - Viscum album: 10.1042/BJ0300890
- 29760 - Vitis vinifera: 10.1186/S12870-016-0760-1
- 1679371 - Walsura yunnanensis: 10.4268/CJCMM20140519
- 241841 - Xylocarpus granatum: 10.1021/NP050545C
- 751877 - Zataria multiflora: 10.1016/S0031-9422(00)00249-1
- 4577 - Zea mays: 10.1016/0165-1218(84)90058-2
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Tingting Fu, Valentina Calabrese, Sarah Bancel, Hervé Quéau, Laura Garnero, Nicolas Delorme, Khedidja Abbaci, Arnaud Salvador, Arnaud Chaumot, Olivier Geffard, Davide Degli-Esposti, Sophie Ayciriex. ToF-SIMS imaging shows specific lipophilic vitamin alterations in chronic reprotoxicity caused by the emerging contaminant Pravastatin in Gammarus fossarum.
Aquatic toxicology (Amsterdam, Netherlands).
2024 Jun; 271(?):106935. doi:
10.1016/j.aquatox.2024.106935
. [PMID: 38723468] - Ningjian Liang, Hussein Mohamed, Rachel F Pung, Joy Waite-Cusic, David C Dallas. Optimized Ultraviolet-C Processing Inactivates Pathogenic and Spoilage-Associated Bacteria while Preserving Bioactive Proteins, Vitamins, and Lipids in Human Milk.
Journal of agricultural and food chemistry.
2024 May; 72(21):12198-12208. doi:
10.1021/acs.jafc.4c02120
. [PMID: 38752986] - Pernille A Madsen, Søren K Jensen, Charlotte Lauridsen. Redox balance and immunity of piglets pre- and post-E. coli challenge after treatment with hemp or fish oil, and vitamin E.
Scientific reports.
2024 05; 14(1):11053. doi:
10.1038/s41598-024-61927-1
. [PMID: 38744900] - Jooyeoun Jung, Caroline Christandi Loe, Yanyun Zhao. Development and characterization of cranberry pomace extract incorporated and vitamin E fortified edible films as an edible separation sheet for fruit leather.
Journal of food science.
2024 May; 89(5):2857-2866. doi:
10.1111/1750-3841.17039
. [PMID: 38532702] - N I M Hemly, N N Zainudin, A I Muhammad, T C Loh, A A Samsudin. Effects of supplementation of different selenium sources on lipid profile, selenium, and vitamin E concentration of yolk.
Tropical animal health and production.
2024 May; 56(4):149. doi:
10.1007/s11250-024-04006-x
. [PMID: 38691179] - Angela K Jarman, Michelle E Shaw, Sonia Y Liu, Catherine E Grueber. An insight into vitamin E and lipid nutrition of the plains-wanderer Pedionomus torquatus.
Zoo biology.
2024 May; 43(3):213-223. doi:
10.1002/zoo.21815
. [PMID: 38294092] - Melika Golmohamadi, Somayeh Hosseinpour-Niazi, Parto Hadaegh, Parvin Mirmiran, Fereidoun Azizi, Farzad Hadaegh. Association between dietary antioxidants intake and the risk of type 2 diabetes mellitus in a prospective cohort study: Tehran Lipid and Glucose Study.
The British journal of nutrition.
2024 Apr; 131(8):1452-1460. doi:
10.1017/s0007114523002854
. [PMID: 38116651] - Piotr Gębczyński, Małgorzata Tabaszewska, Katarzyna Kur, Maria Zbylut-Górska, Jacek Słupski. Effect of the Drying Method and Storage Conditions on the Quality and Content of Selected Bioactive Compounds of Green Legume Vegetables.
Molecules (Basel, Switzerland).
2024 Apr; 29(8):. doi:
10.3390/molecules29081732
. [PMID: 38675551] - Hao Tian, Yi-Fang Li, Gen-Long Jiao, Wan-Yang Sun, Rong-Rong He. Unveiling the antioxidant superiority of α-tocopherol: Implications for vitamin E nomenclature and classification.
Free radical biology & medicine.
2024 Apr; 216(?):46-49. doi:
10.1016/j.freeradbiomed.2024.03.003
. [PMID: 38458392] - Ali Honarvar, Mohsen Setayeshmehr, Sho'leh Ghaedamini, Batool Hashemibeni, Lorenzo Moroni, Saeed Karbasi. Chondrogenesis of mesenchymal stromal cells on the 3D printed polycaprolactone/fibrin/decellular cartilage matrix hybrid scaffolds in the presence of piascledine.
Journal of biomaterials science. Polymer edition.
2024 Apr; 35(6):799-822. doi:
10.1080/09205063.2024.2307752
. [PMID: 38289681] - Van-Trung-Tin Huynh, Suenia de Paiva Lacerda, Fabienne Espitalier, Eric Beyssac, Maria-Inês Ré. Effect of talc and vitamin E TPGS on manufacturability, stability and release properties of trilaurin-based formulations for hot-melt coating.
International journal of pharmaceutics.
2024 Mar; 653(?):123866. doi:
10.1016/j.ijpharm.2024.123866
. [PMID: 38286194] - Azita Sadough Shahmirzadi, Hamid Shafi, Hoda Shirafkan, Zahra Memariani, Narjes Gorji, Reihaneh Moeini. Effect of Medicago sativa seed powder (Plus vitamin E vs. vitamin E alone) on semen analysis in men with idiopathic infertility: A double blind randomized clinical trial.
Journal of ethnopharmacology.
2024 Mar; 322(?):117606. doi:
10.1016/j.jep.2023.117606
. [PMID: 38103848] - Abdelkader A Metwally, Samayita Ganguly, Nora Biomi, Mingyi Yao, Tamer Elbayoumi. Cationic Vitamin E-TPGS Mixed Micelles of Berberine to Neutralize Doxorubicin-Induced Cardiotoxicity via Amelioration of Mitochondrial Dysfunction and Impeding Apoptosis.
Molecules (Basel, Switzerland).
2024 Mar; 29(5):. doi:
10.3390/molecules29051155
. [PMID: 38474668] - Tanvi Patel, Kimberly McBennett, Senthilkumar Sankararaman, Teresa Schindler, Krithika Sundaram, Nori Mercuri Minich, Sindhoosha Malay, Katherine Kutney. Impact of elexacaftor/tezacaftor/ivacaftor on lipid and fat-soluble vitamin levels and association with body mass index.
Pediatric pulmonology.
2024 Mar; 59(3):734-742. doi:
10.1002/ppul.26823
. [PMID: 38179878] - Nirdesh Kumar, Ashmita Das, Nidhi Kumari, Geeta Singh, Urvashi Jain, Amrita Singh, Surendra H Bodakhe. Intermittent Fasting and Vitamin E Supplementation Attenuates Hypothyroidism-Associated Ophthalmopathy.
Molecular nutrition & food research.
2024 Mar; 68(5):e2300589. doi:
10.1002/mnfr.202300589
. [PMID: 38342593] - Paula Muñoz, Verónica Tijero, Celia Vincent, Sergi Munné-Bosch. Abscisic acid triggers vitamin E accumulation by transient transcript activation of VTE5 and VTE6 in sweet cherry fruits.
The Biochemical journal.
2024 Feb; ?(?):. doi:
10.1042/bcj20230399
. [PMID: 38314636] - Liana Trugilho, Livia Alvarenga, Ludmila Fmf Cardozo, Isis Barboza, Maurilo Leite, Denis Fouque, Denise Mafra. Vitamin E and conflicting understandings in noncommunicable diseases: Is it worth supplementing?.
Clinical nutrition ESPEN.
2024 Feb; 59(?):343-354. doi:
10.1016/j.clnesp.2023.12.147
. [PMID: 38220396] - M A G Quaresma, F Abade Dos Santos, L C Roseiro, A P Ribeiro, J D Ferreira, S P Alves, R J B Bessa. Nutritional value of meat lipid fraction obtained from mallard duck (Anas platyrhynchos) reared in semiextensive conditions for hunting purposes.
Poultry science.
2024 Feb; 103(2):103290. doi:
10.1016/j.psj.2023.103290
. [PMID: 38100942] - Xiangjun Qi, Jiayun Guo, Yanlong Li, Caishan Fang, Jietao Lin, Xueqing Chen, Jie Jia. Vitamin E intake is inversely associated with NAFLD measured by liver ultrasound transient elastography.
Scientific reports.
2024 01; 14(1):2592. doi:
10.1038/s41598-024-52482-w
. [PMID: 38296998] - Xiaoran Zhao, Qi Xu, Qian Wang, Xingxing Liang, Jing Wang, Hongwei Jin, Yizhi Man, Dongyang Guo, Feng Gao, Xinjing Tang. Induced Self-Assembly of Vitamin E-Spermine/siRNA Nanocomplexes via Spermine/Helix Groove-Specific Interaction for Efficient siRNA Delivery and Antitumor Therapy.
Advanced healthcare materials.
2024 Jan; ?(?):e2303186. doi:
10.1002/adhm.202303186
. [PMID: 38234201] - Huawei Wei, Zuqing Yang, Sylvain Niyitanga, Aifen Tao, Jiantang Xu, Pingping Fang, Lihui Lin, Liemei Zhang, Jianmin Qi, Ray Ming, Liwu Zhang. The reference genome of seed hemp (Cannabis sativa) provides new insights into fatty acid and vitamin E synthesis.
Plant communications.
2024 Jan; 5(1):100718. doi:
10.1016/j.xplc.2023.100718
. [PMID: 37717143] - Xin Jin, Hangyi Wu, Jie Yu, Yanni Cao, Lanyi Zhang, Zhenhai Zhang, Huixia Lv. Glutamate affects self-assembly, protein corona, and anti-4 T1 tumor effects of melittin/vitamin E-succinic acid-(glutamate)n nanoparticles.
Journal of controlled release : official journal of the Controlled Release Society.
2024 Jan; 365(?):802-817. doi:
10.1016/j.jconrel.2023.12.013
. [PMID: 38092255] - Chikako Kiyose. Anti-inflammatory Effects of Food Ingredients on Mice Adipose Tissues and Adipocytes.
Journal of oleo science.
2024; 73(4):411-418. doi:
10.5650/jos.ess23221
. [PMID: 38556276] - Roseani da Silva Andrade, Fabíola Isabel Suano de Souza, Carolina Sanchez Aranda, Marcia Carvalho Mallozi, Ariel Cordeiro Ferreira, Talita Lemos Neves Barreto, Fernando Luiz Affonso Fonseca, Roseli Oselka Saccardo Sarni, Dirceu Solé. Antioxidant defense of children and adolescents with atopic dermatitis: Association with disease severity.
Allergologia et immunopathologia.
2024; 52(1):65-70. doi:
10.15586/aei.v52i1.933
. [PMID: 38186195] - Ganesh Diwakar, Lisa Barnes, Melanie Riggs, Helen Knaggs, Zoe Diana Draelos. Plant-Derived Extracts Plus Vitamin E and/or Aloe Vera Protect Against Intrinsic/Extrinsic Stressor in Human Skin: In Vitro and Clinical Evidence.
Frontiers in bioscience (Landmark edition).
2023 Dec; 28(12):366. doi:
10.31083/j.fbl2812366
. [PMID: 38179774] - Jill Romer, Katharina Gutbrod, Antonia Schuppener, Michael Melzer, Stefanie J Müller-Schüssele, Andreas J Meyer, Peter Dörmann. Tocopherol and phylloquinone biosynthesis in chloroplasts requires the phytol kinase VTE5 and the farnesol kinase FOLK.
The Plant cell.
2023 Dec; ?(?):. doi:
10.1093/plcell/koad316
. [PMID: 38124486] - Baiyun Zhao, Jing Zhang, Kaiyue Zhao, Wenbin Zhao, Yajuan Shi, Jing Liu, Ling Zeng, Chaoxuan Wang, Xin Zeng, Junping Shi. Study on the mechanism of vitamin E alleviating non-alcoholic fatty liver function based on non-targeted metabolomics analysis in rats.
Naunyn-Schmiedeberg's archives of pharmacology.
2023 Dec; ?(?):. doi:
10.1007/s00210-023-02864-0
. [PMID: 38091076] - Nahed S H Abo Egila, Waleed M Dosoky, Najat S M Khisheerah, Mohamed H Ahmed, Soliman M Zahran, Najlaa H Almohmadi, Wafaa F Abusudah, Mahmoud Kamal, Mahmoud Moustafa, Guillermo Tellez-Isaias, Mohammed Al-Shehri, Mohamed E Abd El-Hack. Does dietary linseed or canola oil affect lipid metabolism, immunity, and n-3 polyunsaturated fatty acids content in quail eggs?.
Poultry science.
2023 Dec; 102(12):103116. doi:
10.1016/j.psj.2023.103116
. [PMID: 37844526] - Ryokei Tanaka, Di Wu, Xiaowei Li, Laura E Tibbs-Cortes, Joshua C Wood, Maria Magallanes-Lundback, Nolan Bornowski, John P Hamilton, Brieanne Vaillancourt, Xianran Li, Nicholas T Deason, Gregory R Schoenbaum, C Robin Buell, Dean DellaPenna, Jianming Yu, Michael A Gore. Leveraging prior biological knowledge improves prediction of tocochromanols in maize grain.
The plant genome.
2023 Dec; 16(4):e20276. doi:
10.1002/tpg2.20276
. [PMID: 36321716] - Daniele Missio, Fabio Gallas Leivas, Francielli Cibin, Tatiana Emanuelli, Sabrina Somacal, Vanessa Buss, Bernardo Gasperin, Dimas Estrasulas de Oliveira, Paulo Bayard Dias Gonçalves, Rogério Ferreira. Vitamin E reduces the reactive oxygen species production in dominant follicle during the negative energy balance in cattle.
Reproduction in domestic animals = Zuchthygiene.
2023 Dec; 58(12):1662-1671. doi:
10.1111/rda.14481
. [PMID: 37743826] - Israel Pérez-Torres, Alfredo Aisa-Álvarez, Sergio Casarez-Alvarado, Gabriela Borrayo, Ricardo Márquez-Velasco, Verónica Guarner-Lans, Linaloe Manzano-Pech, Randall Cruz-Soto, Omar Gonzalez-Marcos, Giovanny Fuentevilla-Álvarez, Ricardo Gamboa, Huitizilihuitl Saucedo-Orozco, Juvenal Franco-Granillo, María Elena Soto. Impact of Treatment with Antioxidants as an Adjuvant to Standard Therapy in Patients with Septic Shock: Analysis of the Correlation between Cytokine Storm and Oxidative Stress and Therapeutic Effects.
International journal of molecular sciences.
2023 Nov; 24(23):. doi:
10.3390/ijms242316610
. [PMID: 38068931] - Ahmad A Altarifi, Kareem Sawali, Karem H Alzoubi, Tareq Saleh, Malik Abu Al-Rub, Omar Khabour. Effect of vitamin E on doxorubicin and paclitaxel-induced memory impairments in male rats.
Cancer chemotherapy and pharmacology.
2023 Nov; ?(?):. doi:
10.1007/s00280-023-04602-y
. [PMID: 37926754] - Sabrina S Andrade, Ramon S B Ferreira, Fabiane O Farias, Rafael de P Soares, Mariana C Costa, Pedro P Corbi, Antonio J A Meirelles, Eduardo A C Batista, Guilherme J Maximo. Solid-liquid equilibria of triacylglycerols and vitamin E mixtures.
Food research international (Ottawa, Ont.).
2023 11; 173(Pt 2):113440. doi:
10.1016/j.foodres.2023.113440
. [PMID: 37803766] - Shalma Maman, Vignesh Muthusamy, Ashvinkumar Katral, Rashmi Chhabra, Nisrita Gain, Shashidhar Bayappa Reddappa, Suman Dutta, Amolkumar Uddhaorao Solanke, Rajkumar Uttamrao Zunjare, Chirravuri Naga Neeraja, Devendra Kumar Yadava, Firoz Hossain. Low expression of lipoxygenase 3 (LOX3) enhances the retention of kernel tocopherols in maize during storage.
Molecular biology reports.
2023 Nov; 50(11):9283-9294. doi:
10.1007/s11033-023-08820-8
. [PMID: 37812350] - Zhanghui Zeng, Yong Jia, Xiaoping Huang, Zhehao Chen, Taihe Xiang, Ning Han, Hongwu Bian, Chengdao Li. Transcriptional and protein structural characterization of homogentisate phytyltransferase genes in barley, wheat, and oat.
BMC plant biology.
2023 Oct; 23(1):528. doi:
10.1186/s12870-023-04535-x
. [PMID: 37904113] - María Ciudad-Mulero, Laura Domínguez, Patricia Morales, Virginia Fernández-Ruiz, Montaña Cámara. A Review of Foods of Plant Origin as Sources of Vitamins with Proven Activity in Oxidative Stress Prevention according to EFSA Scientific Evidence.
Molecules (Basel, Switzerland).
2023 Oct; 28(21):. doi:
10.3390/molecules28217269
. [PMID: 37959689] - Shereen Akhter, Muhammad Zubair, Majid Mahmood, Syed Murtaza Hassan Andrabi, Nasir Hameed, Ejaz Ahmad, Muhammad Kashif Saleemi. Effects of vitamins C and E in tris citric acid glucose extender on chilled semen quality of Kail ram during different storage times.
Scientific reports.
2023 10; 13(1):18123. doi:
10.1038/s41598-023-43831-2
. [PMID: 37872354] - Ryotaro Oyama, Harumichi Ishigame, Hiroki Tanaka, Naho Tateshita, Moeko Itazawa, Ryosuke Imai, Naomasa Nishiumi, Jun-Ichi Kishikawa, Takayuki Kato, Jessica Anindita, Yoshifumi Nishikawa, Masatoshi Maeki, Manabu Tokeshi, Kota Tange, Yuta Nakai, Yu Sakurai, Takaharu Okada, Hidetaka Akita. An Ionizable Lipid Material with a Vitamin E Scaffold as an mRNA Vaccine Platform for Efficient Cytotoxic T Cell Responses.
ACS nano.
2023 10; 17(19):18758-18774. doi:
10.1021/acsnano.3c02251
. [PMID: 37814788] - Chenggang Liang, Zhixiu Guan, Kesu Wei, Wujuan Yu, Li Wang, Xuling Chen, Yan Wang. Characteristics of antioxidant capacity and metabolomics analysis of flavonoids in the bran layer of green glutinous rice (Oryza sativa L. var. Glutinosa Matsum).
Scientific reports.
2023 09; 13(1):16372. doi:
10.1038/s41598-023-43466-3
. [PMID: 37773271] - Muhammad Saleem, Hina Ali, M Bilal, Babar M Atta, Naveed Ahmad. Quality Analysis of Canola and Mustard Oil Using Fluorescence Spectroscopy.
Journal of fluorescence.
2023 Sep; 33(5):1695-1704. doi:
10.1007/s10895-023-03185-4
. [PMID: 36811695] - Ju-Yen Fu, Puvaneswari Meganathan, Nisanthei Gunasegaran, Doryn Meam Yee Tan. Effect of nano-delivery systems on the bioavailability and tissue biodistribution of vitamin E tocotrienols.
Food research international (Ottawa, Ont.).
2023 Sep; 171(?):113048. doi:
10.1016/j.foodres.2023.113048
. [PMID: 37330852] - Jennifer K Frediani, Asim A Lal, Esther Kim, Sharon L Leslie, David W Boorman, Vinita Singh. The role of diet and non-pharmacologic supplements in the treatment of chronic neuropathic pain: A systematic review.
Pain practice : the official journal of World Institute of Pain.
2023 Aug; ?(?):. doi:
10.1111/papr.13291
. [PMID: 37654090] - Germán Muñoz-Sánchez, Lucila A Godínez-Méndez, Mary Fafutis-Morris, Vidal Delgado-Rizo. Effect of Antioxidant Supplementation on NET Formation Induced by LPS In Vitro; the Roles of Vitamins E and C, Glutathione, and N-acetyl Cysteine.
International journal of molecular sciences.
2023 Aug; 24(17):. doi:
10.3390/ijms241713162
. [PMID: 37685966] - M Martini, I Altomonte, I Sodi, Y Vasylieva, F Salari. Sterols, tocopherols, and bioactive fatty acids differences between conventional, high quality, and organic cow milk.
Journal of dairy science.
2023 Aug; ?(?):. doi:
10.3168/jds.2023-23378
. [PMID: 37641300] - Junichi Fujii, Ken-Ichi Yamada. Defense systems to avoid ferroptosis caused by lipid peroxidation-mediated membrane damage.
Free radical research.
2023 Aug; ?(?):1-20. doi:
10.1080/10715762.2023.2244155
. [PMID: 37551716] - R Kh Hamzah, J E Q Al-Musawi. Histological Study of Alteration in Testes and Epididymis of Domestic Rabbits Caused by Tribulus Terrestris and Vitamin E.
Archives of Razi Institute.
2023 08; 78(4):1239-1246. doi:
10.32592/ari.2023.78.4.123
. [PMID: 38226379] - Yanyan Zhou, Xiang Luo, Zhixin Wang, David Julian McClements, Wenna Huang, Hongliang Fu, Kewu Zhu. Dual role of polyglycerol vitamin E succinate in emulsions: An efficient antioxidant emulsifier.
Food chemistry.
2023 Aug; 416(?):135776. doi:
10.1016/j.foodchem.2023.135776
. [PMID: 36889015] - Anji Reddy Konda, Malleswari Gelli, Connor Pedersen, Rebecca E Cahoon, Chunyu Zhang, Toshihiro Obata, Edgar B Cahoon. Vitamin E biofortification: Maximizing oilseed tocotrienol and total vitamin E tocochromanol production by use of metabolic bypass combinations.
Metabolic engineering.
2023 Jul; ?(?):. doi:
10.1016/j.ymben.2023.06.011
. [PMID: 37429412] - Noura M Mesalam, Marwa A Ibrahim, Mohamed R Mousa, Noha Mohamed Said. Selenium and vitamin E ameliorate lead acetate-induced hepatotoxicity in rats via suppression of oxidative stress, mRNA of heat shock proteins, and NF-kB production.
Journal of trace elements in medicine and biology : organ of the Society for Minerals and Trace Elements (GMS).
2023 Jul; 79(?):127256. doi:
10.1016/j.jtemb.2023.127256
. [PMID: 37442019] - Jungeun Lim, Hyokyoung G Hong, Stephanie J Weinstein, Mary C Playdon, Amanda J Cross, Rachael Stolzenberg-Solomon, Neal D Freedman, Jiaqi Huang, Demetrius Albanes. Metabolomic Analysis of Vitamin E Supplement Use in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial.
Nutrients.
2023 Jun; 15(13):. doi:
10.3390/nu15132836
. [PMID: 37447163] - Tania Mesa, Sergi Munné-Bosch. α-Tocopherol in chloroplasts: Nothing more than an antioxidant?.
Current opinion in plant biology.
2023 Jun; 74(?):102400. doi:
10.1016/j.pbi.2023.102400
. [PMID: 37311290] - Sabina Villadangos, Carmen González, Sergi Munné-Bosch. Photo-oxidative stress leading to oxylipin accumulation may trigger drought-induced leaf abscission in olive trees.
Physiologia plantarum.
2023 May; ?(?):e13941. doi:
10.1111/ppl.13941
. [PMID: 37243872] - Sijia Liao, André Gollowitzer, Lisa Börmel, Charlotte Maier, Luisa Gottschalk, Oliver Werz, Maria Wallert, Andreas Koeberle, Stefan Lorkowski. α-Tocopherol-13'-Carboxychromanol Induces Cell Cycle Arrest and Cell Death by Inhibiting the SREBP1-SCD1 Axis and Causing Imbalance in Lipid Desaturation.
International journal of molecular sciences.
2023 May; 24(11):. doi:
10.3390/ijms24119229
. [PMID: 37298183] - David P Scieszka, Devon Garland, Russell Hunter, Guy Herbert, Selita Lucas, Yan Jin, Haiwei Gu, Matthew J Campen, Judy L Cannon. Multi-omic assessment shows dysregulation of pulmonary and systemic immunity to e-cigarette exposure.
Respiratory research.
2023 May; 24(1):138. doi:
10.1186/s12931-023-02441-2
. [PMID: 37231407] - Robert J Hondal. Selenium vitaminology: The connection between selenium, vitamin C, vitamin E, and ergothioneine.
Current opinion in chemical biology.
2023 May; 75(?):102328. doi:
10.1016/j.cbpa.2023.102328
. [PMID: 37236134] - Yaowei Bai, Tongqiang Li, Jiacheng Liu, Yingliang Wang, Chaoyang Wang, Shuguang Ju, Chen Zhou, Yang Chen, Wei Yao, Bin Xiong. Aerobic exercise and vitamin E improve high-fat diet-induced NAFLD in rats by regulating the AMPK pathway and oxidative stress.
European journal of nutrition.
2023 May; ?(?):. doi:
10.1007/s00394-023-03179-9
. [PMID: 37219594] - Adam Yasgar, Danielle Bougie, Richard T Eastman, Ruili Huang, Misha Itkin, Jennifer Kouznetsova, Caitlin Lynch, Crystal McKnight, Mitch Miller, Deborah K Ngan, Tyler Peryea, Pranav Shah, Paul Shinn, Menghang Xia, Xin Xu, Alexey V Zakharov, Anton Simeonov. Quantitative Bioactivity Signatures of Dietary Supplements and Natural Products.
ACS pharmacology & translational science.
2023 May; 6(5):683-701. doi:
10.1021/acsptsci.2c00194
. [PMID: 37200814] - Khushnuma Saleem, Tariq Aziz, Ayaz Ali Khan, Ali Muhammad, Shafiq Ur Rahman, Metab Alharbi, Abdulrahman Alshammari, Abdullah F Alasmari. Evaluating the in-vivo effects of olive oil, soya bean oil, and vitamins against oxidized ghee toxicity.
Acta biochimica Polonica.
2023 May; 70(2):305-312. doi:
10.18388/abp.2020_6549
. [PMID: 37163731] - Valerian E Kagan, Adam C Straub, Yulia Y Tyurina, Alexandr A Kapralov, Robert Hall, Sally E Wenzel, Rama Mallampalli, Hülya Bayır. Vitamin E/Coenzyme Q-Dependent "Free Radical Reductases:" Redox Regulators in Ferroptosis.
Antioxidants & redox signaling.
2023 May; ?(?):. doi:
10.1089/ars.2022.0154
. [PMID: 37154783] - Alfredo Aisa-Álvarez, Israel Pérez-Torres, Verónica Guarner-Lans, Linaloe Manzano-Pech, Randall Cruz-Soto, Ricardo Márquez-Velasco, Sergio Casarez-Alvarado, Juvenal Franco-Granillo, Marcela Elizabeth Núñez-Martínez, María Elena Soto. Randomized Clinical Trial of Antioxidant Therapy Patients with Septic Shock and Organ Dysfunction in the ICU: SOFA Score Reduction by Improvement of the Enzymatic and Non-Enzymatic Antioxidant System.
Cells.
2023 05; 12(9):. doi:
10.3390/cells12091330
. [PMID: 37174730] - Jannik Hornbergs, Karolin Montag, Jennifer Loschwitz, Inga Mohr, Gereon Poschmann, Anika Schnake, Regina Gratz, Tzvetina Brumbarova, Monique Eutebach, Kalina Angrand, Claudia Fink-Straube, Kai Stühler, Jürgen Zeier, Laura Hartmann, Birgit Strodel, Rumen Ivanov, Petra Bauer. SEC14-GOLD protein PATELLIN2 binds IRON-REGULATED TRANSPORTER1 linking root iron uptake to vitamin E.
Plant physiology.
2023 05; 192(1):504-526. doi:
10.1093/plphys/kiac563
. [PMID: 36493393] - Theano Karakosta, Yuchao Wan, Dorothy Truong. Establishing preanalytical stability of vitamin A and vitamin E.
Clinical biochemistry.
2023 May; 115(?):144-148. doi:
10.1016/j.clinbiochem.2022.12.013
. [PMID: 36574897] - W Li, S Li, W Zhuang, Y Shang, G Yan, J Lu, Z Chen, J Lyu. Non-linear relationship between dietary vitamin E intake and cognitive performance in older adults.
Public health.
2023 Apr; 219(?):10-17. doi:
10.1016/j.puhe.2023.03.012
. [PMID: 37075487] - Michelle Kearns, Jean-Christophe Jacquier, Sabine M Harrison, Raquel Cama-Moncunill, Tommy M Boland, Helen Sheridan, Alan K Kelly, Simona Grasso, Frank J Monahan. Effect of different botanically-diverse diets on the fatty acid profile, tocopherol content and oxidative stability of beef.
Journal of the science of food and agriculture.
2023 Apr; ?(?):. doi:
10.1002/jsfa.12633
. [PMID: 37058580] - Maret G Traber, Carroll E Cross. Alpha-Tocopherol from People to Plants Is an Essential Cog in the Metabolic Machinery.
Antioxidants & redox signaling.
2023 04; 38(10-12):775-791. doi:
10.1089/ars.2022.0212
. [PMID: 36793193] - Ying Shen, Ke Liu, Xia Luo, Liming Cheng. The low prevalence rate of vitamin E deficiency in urban adults of Wuhan from central China: findings from a single-center, cross-sectional study.
European journal of medical research.
2023 Mar; 28(1):141. doi:
10.1186/s40001-023-01103-9
. [PMID: 36998030] - Johan Peter Woelber, Katharina Reichenbächer, Tara Groß, Kirstin Vach, Petra Ratka-Krüger, Valentin Bartha. Dietary and Nutraceutical Interventions as an Adjunct to Non-Surgical Periodontal Therapy-A Systematic Review.
Nutrients.
2023 Mar; 15(6):. doi:
10.3390/nu15061538
. [PMID: 36986267] - Alireza Ekhlasian, Ebrahim Eftekhar, Sajedeh Daei, Roghayeh Abbasalipourkabir, Alireza Nourian, Nasrin Ziamajidi. The antioxidant and anti-apoptotic properties of vitamins A, C and E in heart tissue of rats exposed to zinc oxide nanoparticles.
Molecular biology reports.
2023 Mar; 50(3):2357-2365. doi:
10.1007/s11033-022-08103-8
. [PMID: 36580195] - Nicolas Van Bavel, Patrick Lai, Raimar Loebenberg, Elmar J Prenner. Cholesterol enhances the negative impact of vaping additives on lung surfactant model systems.
Nanomedicine (London, England).
2023 Feb; ?(?):. doi:
10.2217/nnm-2022-0232
. [PMID: 36853835] - Rocío Celeste Gambaro, Analía Seoane, Gisel Padula. Vitamin E protective effects on genomic and cellular damage caused by paediatric preventive supplementation for anaemia: an experimental model.
The British journal of nutrition.
2023 Feb; 129(3):468-477. doi:
10.1017/s0007114522001556
. [PMID: 35591764] - Kok-Yong Chin, Sophia Ogechi Ekeuku, Deborah Chia Hsin Chew, Anne Trias. Tocotrienol in the Management of Nonalcoholic Fatty Liver Disease: A Systematic Review.
Nutrients.
2023 Feb; 15(4):. doi:
10.3390/nu15040834
. [PMID: 36839192] - Jiayue Xia, Junhui Yu, Hai Xu, Yuhao Zhou, Hui Li, Shiyu Yin, Dengfeng Xu, Yuanyuan Wang, Hui Xia, Wang Liao, Shaokang Wang, Guiju Sun. Comparative effects of vitamin and mineral supplements in the management of type 2 diabetes in primary care: A systematic review and network meta-analysis of randomized controlled trials.
Pharmacological research.
2023 Feb; 188(?):106647. doi:
10.1016/j.phrs.2023.106647
. [PMID: 36638933] - Masannagari Pallavi, Vani Rajashekaraiah. Synergistic activity of vitamin-C and vitamin-E to ameliorate the efficacy of stored erythrocytes.
Transfusion clinique et biologique : journal de la Societe francaise de transfusion sanguine.
2023 Feb; 30(1):87-95. doi:
10.1016/j.tracli.2022.09.002
. [PMID: 36084917] - K Ismail Mahmud, F Karadaş. Effects of the Melatonin and Vitamin E (Alpha-Tocopherol Acetate) as Antioxidants on Biochemical Blood Parameters, Lipid Profile, and Muscle Vitamin E Concentration in Awassi Lambs Fed a High-Energy Diet and Normal Diet.
Archives of Razi Institute.
2023 02; 78(1):249-259. doi:
10.22092/ari.2022.358494.2234
. [PMID: 37312741] - Antonio Gázquez, María Sánchez-Campillo, Marino B Arnao, Alejandro Barranco, Ricardo Rueda, Søren Krogh Jensen, Jia Pei Chan, Matthew J Kuchan, Elvira Larqué. Natural vitamin E supplementation during pregnancy in rats increases RRR-α-tocopherol stereoisomer proportion and enhances fetal antioxidant capacity, compared to synthetic vitamin E administration.
Annals of nutrition & metabolism.
2023 Jan; ?(?):. doi:
10.1159/000529375
. [PMID: 36702104] - Claire Bordat, Donato Vairo, Charlotte Cuerq, Charlotte Halimi, Franck Peiretti, Armelle Penhoat, Aurélie Vieille-Marchiset, Teresa Gonzalez, Marie-Caroline Michalski, Marion Nowicki, Noël Peretti, Emmanuelle Reboul. Validation of Knock-Out Caco-2 TC7 Cells as Models of Enterocytes of Patients with Familial Genetic Hypobetalipoproteinemias.
Nutrients.
2023 Jan; 15(3):. doi:
10.3390/nu15030505
. [PMID: 36771214] - Diana A Averill-Bates. The antioxidant glutathione.
Vitamins and hormones.
2023; 121(?):109-141. doi:
10.1016/bs.vh.2022.09.002
. [PMID: 36707132] - Dalton S Graham, Gang Liu, Ailar Arasteh, Xiao-Ming Yin, Shengmin Yan. Ability of high fat diet to induce liver pathology correlates with the level of linoleic acid and Vitamin E in the diet.
PloS one.
2023; 18(6):e0286726. doi:
10.1371/journal.pone.0286726
. [PMID: 37267350] - María Sánchez-Campillo, Antonio Gázquez, Ana Serrano-Munuera, Marino B Arnao, Francisco Avilés-Plaza, Azahara M Garcia-Serna, José A Noguera-Velasco, Ana Martínez-López de Castro, Carmen Martínez-Graciá, Clara Suárez-Martínez, Marina Santaella-Pascual, Jesús Vioque, Carmen Montoya-Hernández, Carmen Ballesteros-Meseguer, Marisa Sánchez-Ferrer, Virginia Perez-Fernandez, Eva Morales, Luis García-Marcos, Elvira Larqué. Serum Vitamins A and E at Mid-Pregnancy and Their Relationships with Both Maternal and Cord Blood Antioxidant Status and Perinatal Conditions: The NELA Cohort.
Annals of nutrition & metabolism.
2023; 79(3):313-325. doi:
10.1159/000531239
. [PMID: 37271133] - Tahreem Riaz, Muhammad Waheed Iqbal, Shahid Mahmood, Iqra Yasmin, Ali Ahmad Leghari, Abdur Rehman, Anam Mushtaq, Khubaib Ali, Muhammad Azam, Muhammad Bilal. Cottonseed oil: A review of extraction techniques, physicochemical, functional, and nutritional properties.
Critical reviews in food science and nutrition.
2023; 63(9):1219-1237. doi:
10.1080/10408398.2021.1963206
. [PMID: 34387525] - Salisa Chumsantea, Apiwat Jiruttisakul, Akkaradech Nakornsadet, Piraporn Sombutsuwan, Kornkanok Aryusuk. Simultaneous Determination of Vitamin E and γ-Oryzanol in Rice Bran Oil via HPSEC-PDA without Sample Pretreatment.
Journal of oleo science.
2023; 72(7):655-665. doi:
10.5650/jos.ess22257
. [PMID: 37380482] - Guicun Yang, Nianrong Wang, Hao Liu, Lina Si, Yan Zhao. The association between umbilical cord blood fat-soluble vitamin concentrations and infant birth weight.
Frontiers in endocrinology.
2023; 14(?):1048615. doi:
10.3389/fendo.2023.1048615
. [PMID: 37810886] - Akram Ismael Shehata, Mayada Alhoshy, Tao Wang, Muhammad Mohsin, Jianfeng Wang, Xuexi Wang, Tao Han, Yilei Wang, Ziping Zhang. Dietary supplementations modulate the physiological parameters, fatty acids profile and the growth of red claw crayfish (Cherax quadricarinatus).
Journal of animal physiology and animal nutrition.
2023 Jan; 107(1):308-328. doi:
10.1111/jpn.13704
. [PMID: 35451120] - Aiyong Cui, Peilun Xiao, Zhiqiang Fan, Yuan Zeng, Hu Wang, Yan Zhuang. Associations between vitamin E status and bone mineral density in children and adolescents aged 8-19 years: Evidence based on NHANES 2005-2006, 2017-2018.
PloS one.
2023; 18(3):e0283127. doi:
10.1371/journal.pone.0283127
. [PMID: 36928218] - Stepan Feduniw, Lidia Korczyńska, Konrad Górski, Magdalena Zgliczyńska, Monika Bączkowska, Maciej Byrczak, Jakub Kociuba, Mohamed Ali, Michał Ciebiera. The Effect of Vitamin E Supplementation in Postmenopausal Women-A Systematic Review.
Nutrients.
2022 Dec; 15(1):. doi:
10.3390/nu15010160
. [PMID: 36615817] - Petar Šušnjara, Nikolina Kolobarić, Anita Matić, Zrinka Mihaljević, Ana Stupin, Saška Marczi, Ines Drenjančević. Consumption of Hen Eggs Enriched with n-3 Polyunsaturated Fatty Acids, Selenium, Vitamin E and Lutein Incites Anti-Inflammatory Conditions in Young, Healthy Participants - A Randomized Study.
Frontiers in bioscience (Landmark edition).
2022 12; 27(12):332. doi:
10.31083/j.fbl2712332
. [PMID: 36624951] - Dany Joël Ngassa Ngoumen, Damaris Enyegue Mandob, Fils Armand Ella, Bruno Dupon Akamba Ambamba, Jules Vidal Kamga Nanhah, Martin Fonkoua, Judith Laure Ngondi. Flavonoid-enrich extract of Autranella congolensis (Sapotaceae) protects against aluminium chloride-mediated Alzheimer's disease-like oxidative stress in rat through the antioxidant properties.
Metabolic brain disease.
2022 Dec; ?(?):. doi:
10.1007/s11011-022-01142-x
. [PMID: 36522491] - Yuan Guo, Dong Li, Tiantian Liu, Meifang Liao, Yuxin Li, Weitang Zhang, Zijin Liu, Mingxun Chen. Effect of Overexpression of γ-Tocopherol Methyltransferase on α-Tocopherol and Fatty Acid Accumulation and Tolerance to Salt Stress during Seed Germination in Brassica napus L.
International journal of molecular sciences.
2022 Dec; 23(24):. doi:
10.3390/ijms232415933
. [PMID: 36555573] - Hema S Chauhan, Vignesh Muthusamy, Tuhin Rashmi, Sudipta Basu, Anjali Anand, Brijesh K Mehta, Nisrita Gain, Rajkumar U Zunjare, Ashok K Singh, Hari S Gupta, Firoz Hossain. Characterization of crtRB1- and vte4-based biofortified sweet corn inbreds for seed vigour and physico-biochemical traits.
Journal of applied genetics.
2022 Dec; 63(4):651-662. doi:
10.1007/s13353-022-00715-x
. [PMID: 35972676] - Marisa Lúcia Romani Paraboni, Vanusa Manfredini, Gênifer Erminda Schreiner, Itamar Luís Gonçalves, Claudio Silveira, Alessandra Gonçalves Commodaro, Rubens Belfort. Comparative study of oxidative stress and antioxidative markers in patients infected with Toxoplasma gondii.
Parasitology international.
2022 Dec; 91(?):102645. doi:
10.1016/j.parint.2022.102645
. [PMID: 35977613] - Larissa Catelli Rocha Torres, Alan Giovanini de Oliveira Sartori, Anna Paula de Souza Silva, Severino Matias de Alencar. Bioaccessibility and uptake/epithelial transport of vitamin E: Discoveries and challenges of in vitro and ex vivo assays.
Food research international (Ottawa, Ont.).
2022 12; 162(Pt B):112143. doi:
10.1016/j.foodres.2022.112143
. [PMID: 36461364] - Laura Bainy Rodrigues de Freitas, Larisse Longo, Eduardo Filippi-Chiela, Valessa Emanoele Gabriel de Souza, Luiza Behrens, Matheus Henrique Mariano Pereira, Luiza Cecília Leonhard, Giulianna Zanettini, Carlos Eduardo Pinzon, Eduardo Luchese, Guilherme Jorge Semmelmann Pereira Lima, Carlos Thadeu Cerski, Carolina Uribe-Cruz, Mário Reis Álvares-da-Silva. Ornithine Aspartate and Vitamin-E Combination Has Beneficial Effects on Cardiovascular Risk Factors in an Animal Model of Nonalcoholic Fatty Liver Disease in Rats.
Biomolecules.
2022 11; 12(12):. doi:
10.3390/biom12121773
. [PMID: 36551202] - Yavuz Yagiz, Gary P Wang, Liwei Gu. Emulsification by vitamin E TPGS or Quillaja extract enhanced absorption of berberine without affecting its metabolism in humans.
Food & function.
2022 Nov; 13(23):12135-12143. doi:
10.1039/d2fo02288e
. [PMID: 36321951] - Hajar Heidari, Zahra Hajhashemy, Parvane Saneei. A meta-analysis of effects of vitamin E supplementation alone and in combination with omega-3 or magnesium on polycystic ovary syndrome.
Scientific reports.
2022 11; 12(1):19927. doi:
10.1038/s41598-022-24467-0
. [PMID: 36402830] - Zineb Lakhlifi El Idrissi, Hamza El Moudden, Najoua Mghazli, Abdelhakim Bouyahya, Chakir El Guezzane, Mohammed Merae Alshahrani, Ahmed Abdullah Al Awadh, Khang Wen Goh, Long Chiau Ming, Hicham Harhar, Mohamed Tabyaoui. Effects of Extraction Methods on the Bioactivities and Nutritional Value of Virginia and Valencia-Type Peanut Oil.
Molecules (Basel, Switzerland).
2022 Nov; 27(22):. doi:
10.3390/molecules27227709
. [PMID: 36431807] - Youssef Elouafy, Zineb Lakhlifi El Idrissi, Adil El Yadini, Hicham Harhar, Mohammed Merae Alshahrani, Ahmed Abdullah Al Awadh, Khang Wen Goh, Long Chiau Ming, Abdelhakim Bouyahya, Mohamed Tabyaoui. Variations in Antioxidant Capacity, Oxidative Stability, and Physicochemical Quality Parameters of Walnut (Juglans regia) Oil with Roasting and Accelerated Storage Conditions.
Molecules (Basel, Switzerland).
2022 Nov; 27(22):. doi:
10.3390/molecules27227693
. [PMID: 36431794] - Imane Aissous, Mouad Benrebai, Souad Ameddah, Ahmed Menad, Ramazan Erenler, Samir Benayache, Fadila Benayache. The preventive effects of Centaurea maroccana Ball. extract against oxidative stress induced by cisplatin in mice brains: in vitro and in vivo studies.
Drug and chemical toxicology.
2022 Nov; ?(?):1-14. doi:
10.1080/01480545.2022.2139841
. [PMID: 36330673] - Mitchell DiPasquale, Michael H L Nguyen, Stuart R Castillo, Isabelle J Dib, Elizabeth G Kelley, Drew Marquardt. Vitamin E Does Not Disturb Polyunsaturated Fatty Acid Lipid Domains.
Biochemistry.
2022 11; 61(21):2366-2376. doi:
10.1021/acs.biochem.2c00405
. [PMID: 36227768] - Rocío C Gambaro, Ignacio Rivero Berti, Maximiliano L Cacicedo, Stephan Gehring, Vera A Alvarez, Guillermo R Castro, Analía Seoane, Gisel Padula, German A Islan. Colloidal delivery of vitamin E into solid lipid nanoparticles as a potential complement for the adverse effects of anemia treatment.
Chemistry and physics of lipids.
2022 11; 249(?):105252. doi:
10.1016/j.chemphyslip.2022.105252
. [PMID: 36272518]